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PREFACE.,

FOR the purpose of covering the theoretical side of
thermodynamics more rapidly than could be done with
the aid of existing text-books, the author prepared
these notes four years ago for use in his classes.

The results were fairly satisfactory, and as the work
is now used by other teachers, a revised edition has
been prepared. In this, errors have been corrected,
the text has been condensed, and additional problems
have been added.

It is not intended as a reference-book, except for
those who have worked it through and have solved the
problems.

There is little that is new in it. All the later
writers have been consulted in preparing the work,
and whatever has seemed the most satisfactory method
of arriving at a result has been made use of.

The work is not complete in itself, and a good table
of the properties of vapors is required to work out
many of the problems. The tables prepared by Pro-
fessor Peabody are used in the text.

H. W. SPANGLER.
UNIVERSITY OF PENNSYLVANIA,

June 6, 1901.
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PREFACE TO THE FOURTH EDITION.

IN issuing the fourth edition of these Notes, it has '

been necessary to modify that portion relating to
superheated steam. The formule here given are
sufficiently accurate for practical work for pressures
between 15 and 200 lbs. and for superheating up to
300° above the saturation point, the results obtained
from these formula being within one per cent of the
best experimental results.

The proble'ms have been revised, using the quan-
tities given in the seventh edition of Peabody’s

Tables.

UNIVERSITY OF PENNSYLVANIA,
june I, 1908.






NOTATION.

A =Heat equivalent of work=-}y.
¢=Specific heat, the subscript indicating the law
of the expansion, and is used whether units
are foot-pounds or heat-units.
H =Total heat required to make 1 pound of vapor
from liquid at 32 degrees F,
J =Mechanical equivalent of heat=778.
K =Constant of equation py"=K.
m = Weight.
M =Weight.
n=Exponent in equation pv"=K.
p=Pressure in pounds per square foot, absolute.
Q =Heat required in heat-units or foot-pounds.
¢=Heat of liquid.
r=Total latent heat.

%= Entropy of evaporation.

p=Inner latent heat.
R=Constant for any substance in equation pv=RT.
s=Volume of 1 pound of vapor.
d=Volume of 1 pound of liquid.
t=Temperature Fahrenheit.
T =Temperature absolute.
6 =Entropy of the liquid.
¢ =Entropy of superheating.
u=Difference between the volume of 1 pound of
vapor and I pound of liquid=s—a.
v=Volume in cubic feet of 1 pound.
V = Any volume.
W =Work, foot-pounds or heat-units.






NOTES ON THERMODYNAMICS.

IN Physics a distinction is made between perfect
gases and vapors. In this work we will also deal with
these two classes of substances, and, for engineering
purposes, perfect gases are such as practically obey the
laws of Boyle and Charles. Under the head of perfect
gases would be classed air, hydrogen, oxygen, super-
heated steam, ammonia, carbonic acid, etc., all being
sufficiently far from their condensing-point to obey
the laws referred to above. '

In the shape of a formula these laws can be best
stated as

pv:RT. B ¢ 4]

This equation is constantly being used in thermody-
namics, and the exact meaning of the terms is impor-
tant. In all this work English units, pounds, feet,
and degrees Fahrenheit will be used. In these units
the following definitions may be given to the terms of
equation (1):

2 is the absolute pressure in pounds per square foot.

v is the volume in cubic feet of 1 pound of the sub-
stance dealt with,
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T is the absolute temperature, Fahrenheit degrees.

R is,a constant whose value depends on the sub-
stance and the units taken.

To determine the value of R for any substance, we
must have for one given condition of pressure and
temperature the corresponding value of the volume of
1 pound. This we have for many substances. Thus,
for air we have, for a pressure of 14.7 pounds per
square inch, or p = 14.7 X 144, and a temperature of
32 degrees Fahrenheit, or 7 = 492.7, the volume of
1 pound of air, or v = 12.39 cubic feet. These are
quantities determined by experiment. Putting these
values in equation (1), we have for air

R = 11_/ _ 14.7 X_x4472< 12.39

7= 77 Ta027 = 53.37»
or, for air, with the units we have taken, we have
pv =53.37T.

This equation is a/ways true for air, and if, at any
time or under any conditions, two of the variables in
the equation are given, 'the third can be found.

Problem 1.—10 pounds of air at 200 degrees F. occupy 120
cubic feet; what must be the pressure ?

Here 7 = 460.7+200 = 660.7 ; v = %’:lz;

_ 53.37x660.7
- 12

?

Prob. 2.—How many pounds of air does it take to fill 5600 cubic
feet at 15 pounds pressure per square inch and at 6o
degrees F.?

= 2950 pounds per square foot.*

* The slide-rule or three-place logarithms are used in the solu-
tion of all problems, and the result is probably correct within 2%,
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Here/p/=| 15144507 =460.7 + 60 = 520.7 ;

v = 3207%5337 _ 12.9, and as this is the volume
15X 144

of 1 pound, 5600 cubic feet contain Ei—m;- = 434

pounds of air. .
Prob. 3.—At what temperature will 10 pounds of air at 15 pounds
pressure per square inch fill 6o cubic feet ?
T =1242° F. abs.
Prob. 4.—What must be the pressure in a vessel of 4 cubic feet
if it contains 30 pounds of air at 50 degrees F.?
2 = 205000 lbs.
Evidently, if, in equation (1), we are dealing with
a substance twice as heavy as air, the value of  in the
first member, or the volume of a pound, will be only
half as great and, consequently, the value of R would

be only half as great.

Substance.* g::‘:tillv; Vaﬁle.
Air..ooiivieinennnens 14.4 §3.37 53.4
o 16 24 53 8.1

.................. 6 X 533 48.

) S Y I 14.4 X 53.37 770
14.4

N.tierersoeosonnnnnnn 14 _I; X 53.37 54.9
14.

COg.cvvvnenncnnanns 22 724 X 53.37 35.0
14.4

NHsoovvinenninnnn. 8.5 .5 X 53.37 90.6
14.4

CO . vvvirininnnannns 14 E7Y X 53.37 54.9
14.

H,;0 (steam) ........ 9 ——494 X §3 37 85.6

* Some of these substances do not act as perfect gases at usual
pressures and temperatures, so that care must be exercised in
using these constants.

er
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This enables us to apply the formula of equation (1)
and its constant, as determined for air, to many other
substances. From a table of relative densities one can
readily determine the value of R for these substances,
as in the table on page 3, and these values are practi-
cally correct for engincering calculations.

Prob. 5.—How many pounds of oxygen will a holder contain
whose volume is 3 cubic feet, pressure 250 pounds
per square inch, and temperature 75 degrees F.?
We have for oxygen

R="ED. 7o or475=5357:

# = 2350 x 144 = 3600c;
M4 XS3E oo
v = 16 and
36000
3 % 36000 x 16
44 %5537 X 5357
Prob. 6.—What weight of hydrogen wiil fill a holder of 3.§
cubic feet at 200 pounds pressure and 7= 80
degrees F2 m=.242 lbs
Prob. 7.—What is the temperature at which a cubic foot of CO,
will weigh .2 pound at 100 pogads pressure ?
£=1599" F.
It is convenient to rcduce the expression for the
weight to a stmple formula. If 7 is the total volume
and t the volume per pound. then

wt. = =4.21bs

r . i
; = l:\ht. or W = kf.

from which of course, it [™= z. the weight is 1 pound.
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Prob, 8.—How many pounds of air will fill a vessel of 400
cubic feet at 15 pounds pressure if one-half the
volume is at 80 degrees F. and the rest at 600
degrees F.?
The weight of the portion at 8o degrees is
M, = 15 % 144 X 200
53.37 X 541

and the weight of the remainder is

= 14.9y

__ 15 X 144 X 200

* = T53.37 x 1061 =762.

The total weight is 22.52 pounds.

Prob. 9.—What must be the pressure at which 20 pounds of
air will fill 270 cubic feet, 180 cubic feet being at

500 degrees and go cubic feet at 6o degrees F.?

2 = 2970 lbs,
In defining a perfect gas, there was one peculiarity

which was not mentioned and which will now be of
use. When a perfect gas is allowed to remain at the
same temperature while its volume changes, the
amount of heat that must be added to it to change
its pressure and volume is that required to do the
external work and no more. That s, if a perfect gas
is allowed to expand and change its temperature, the
quantity of heat which must be added to it is that
required to change the temperature, added to that
required to do external work.

As the equation pv = RT contains three variables,
it is not convenient to indicate all the variations of
2, v, and T on the same diagram, and for convenience
of representation, and because a diagram whose co-
ordinates are pressure and volume is a diagram of
work, the p, v co-ordinates will be understood unless .
different co-ordinates are marked on the figure.
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Thus, in Fig. 1 if we call the two axes pressure and
volume, and-we have-a pound of gas in the conditions
> represented by a, its volume is oy and

its pressure is ay, the temperature being

fixed from the equation pv = R7. If

¢ now the pressure of the gas is increased
\ ! from ay to &y, there being no change
vy wwves & jn volume, there will be no work done
Fro. . by theair. Asits pressure is increased

the temperature is increased in the same proportion,
and we must have added enough heat to cause this
change in temperature. If, however, instead of in-
creasing the pressure, it had been maintained constant
and the volume increased from or to or, we would
have had not only to raise the temperature, but to
have done work overcoming a pressure ay through a

D>
distance v

Again, if nelther the prossure nor the volume re-
wains Qonsant, we have it Figl 2 the condition a for
e IRl condition and 4 far x

ot and the amonn: of U .
must have hoen kddsS U}
WA Sow hoen encegk O]

SRR T L1
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pound of water at 62 degrees F. to raise its tempera-
ture to 63 degrees, and is called the British Thermal
Unit, or simply B.T.U.

The unit of work is the foot-pound, and, experi-
mentally, it has been determined that one B.T.U. is
equivalent to 778 foot-pounds.

The number of heat-units which must be added to
1 pound of any substance to raise it I degree in tem-
perature is called the specific heat.

Referring now to Fig. 1, if ¢, is the amount of
heat which must be added per degree to raise the
temperature from a to &, then ¢, is the specific heat
for constant volume, and the total heat required is
¢(T,— T,) when 7, and 7, are the temperatures cor-
responding to the conditions & and a respectively.
The value ¢, for air is 17 heat-units, or 132 foot-
pounds.

Prob. 10.—If 5 cubic feet of air at 30 pounds pressure per
square inch and 6o degrees F. has 20 heat-units
added to it at constant volume, and if the heat
required to raise the temperature of 1 pound I
degree at constant volume is .17 heat-unit, what
is the resulting temperature ?

5% 30X 144

53.37 X 521 _ .774 pound. The

heat required to raise this 1 degree is .774 X .17

= .131 heat-unit., The 7#e¢ in temperature is

The weight of airis

therefore —T%l = 153 degrees.

Prob. 11.—If 15 cubic feet of air at 100 pounds pressure per
square inch is raised from 6o degrees to 100 de-
grees F. at constant volume, how much heat is
required ? Q=534 B.T.U,
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Similarly, if ¢, is the zotal/ amount of heat per
degree 'which’'must-be 'added to the pound of gas at
a, Fig. 1, to cause the gas to expand from a to ¢,
then ¢, is the specific heat for constant pressure,
and the total heat required is ¢,(7, — 7,). In this
case, however, the heat has been used partly in rais-
ing the temperature, the remainder being required to
do external work. We can therefore write for the
quantity required to change the temperature only,
¢,(T. — T,), and for the quantity required to do the
work, ay(ox — oy) or p,(v. — 7.), and, as all the heat
must be accounted for, we can write

N — 1) = (T, — T)+ 2w — ). - . (2)
For air ¢, is .239 heat-unit, or 186 foot-pounds.

Prob. 12.—If 1 pound of air is changed from 20 degrees to 30
degrees F. at a constant pressure of 100 pounds
per square inch, how much heat must be added if
to raise the temperature alone required that the
equivalent of 132 foot-pounds of work be added
for each degree ?

The heat to change the temperature only is the
equivalent of (30— 20) x 132 = 1320 foot-pounds.
The amount of work to be done is to overcome
the pressure of 100X 144 pounds per square foot
through the difference in volume. The initial

volume is 53.37 X 481 = .79 and the final vol-
100 X 144
ume = 53-37 X491 =1.83. The work is then 100
100 X 144

X 144(1 83 — 1.79) = 576.0 foot-pcunds. The total
heat required is therefore the equivalent of 1320
+ 576 = 1896 foot-pounds.
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Prob. 13.—If ¢, = 132 foot-pounds, prove, by using equation (2),
that ¢, ='186'foot-pounds.

Taking now the third case, if we call ¢, the total
amount of heat per degree which must be supplied
from a to 4, Fig. 2, then ¢, is the specific heat for the
law represented in the figure. This is used up partly
in changing the temperature, which will account for
the amount ¢,(7;— 7,), and the balance in doing the
work represented by the area ayxrd. We can there-
fore write

\Ti—T)=c\Ti—T)tayzd. . . (3)

The two equations above can be written in the gen-
eral form,

Total Heat =
Heat required to raise temperature 4 work done,

or, in the differential form,

dQ = cdt+pdv, . . . . (4)

the latter term being the calculus method of indicating
the elementary area a’y'2'd’.

This equation is the fundamental one of the thermo-
dynamics of gases.

Equation (2) can be written as below from the fact
that pv, = R7,, and p,v, = R7,:

C,(Z:.—- Ta) =‘cv( 7‘,— 7‘1) + R( Tc_ Ta))
or

g=c+R . . . . . (5)
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This equation represents the relation between the
quantities which it is important to remember.

Experimentally, it has been shown that, for perfect
gases,
4 = 1.41,
c
and we can write

Gyt Rii1.41: 18 .41,
or
Heat added at constant pressure: Heat required to
raise the temperature : the work done :: 1.41:1:.41.
Prob. 14.—If 5 pounds of air at 170 degrees F. has 16 heat-units
added to it at constant pressure, how much work

is done? What is the final temperature ?
To find the work done we have 5 X f,(" — 170)

=16 h. u.
Work = 5 x R(#fs — 170) = %:T x 16 x 778 ft.-1bs.
= 3620 ft.-bs.
Work 3620
= =13°6.
S8 T 5xs5337 0
The final temperature is 170 4 13.6 = 183.6.

The rise in temperature =

Prob. 15.—A given weight of air expanding at constant pressure
does 1000 foot-pounds of work. What heat mast
have been added to the air? How much heat was
used to raise the temperature ? ’

4.42 B.T.U.; 3.13 B.T.U.

Prob. 16.—15 cubic feet of air expands to 40 cubic feet under a
constant pressure of 30 pounds per square inch.,
‘How much heat was required ? 476 B.T.U.

Now pv = R7, and if all are variables, we can write

pdv + vdp = Rat,
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and substituting this value of pdv in (4), we have

dQ = c,dt + Rdt — vdyp,
or, from (35),
dQ=cdt —vdp . . . . . (6)

The two equations (4) and (6) are often spoken of as
the two fundamental equations of the thermodynamics
of perfect gases.

The quantity of heat required to cause 1 pound of
air to expand doing work can then be written as
follows:

Q= clTy=T)+ [0, . . . ©)

v,

in which 7 is the final temperature, v, the final vol-
ume, and 7, and v, the corresponding initial condi-
tions.

Prob. 17.—If the initial condition is such that 5 pounds of air
occupy 5o cubic feet at 30 degrees F., and the final
condition such that it occupies 120 cubic feet at 40
degrees F., and the expansion takes place along a
straight line, how much work is done and how
much heat added ?
It is first necessary to find the pressure. From gv=RT
53.37 X 491
50
5
pounds per square foot. For the final condition,

_ 53.37 X 501
= 120
5
The work done is therefore, from a diagram,

2630 + 1120

we have for the initial state, p = = 263c

= 1120 pounds per square foot.

(120 — 50) = 131000 ft.-lbs. = 168 h. u.
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The heat required to raise the temperature is

53.37 X 10
41 x 778

and the total heat required is

§X¢p(Ta—Th)=75 % =8h.u,

168 4 8 = 176.

]
To determine the value of area abcd or the /;dv,
we must know the law connecting
':p,,;r’ the pressure and the volume of
" the path ab. If we call this gz~
= K, we have, knowing p,, v, and

7Ty, and p,, v,and T,,
A" = K, 20" =K,

FiG. 3. ( %;) _ (%: )-'

__ log py— log 2,
"= Togu,—log v & Tt (8)

-
S
-

s"\
—

[}

af-----

or

The value of X is obtained from either of the above
equations.

Prob. 18,—What is the value of » that the expansion curve
passing through the same initial and final points
as in problem (17) should be go* = X'?

, n=.975.
Y B Kav K 1™
Area of abed _Apdv = i —- 0_;:1_".

K 1 I ]
= ” — I ,”l.—l Z""_l .
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Putting in the value of X for the equation above, we
have the work

I I
W= (pon — pw) = 5 — (RT, — RT))

- R(Tz_.]‘,)..i...---(9)

I — 2

Prob. 19.—Having given, in problem (17), that the law of the
expansion is pv9% = KX, how much work is done
if the final condition is # = 40°?

53.37

Work = 5x
I —.975

(40 — 30) = 107000 ft.-lbs,
The total quantity of heat required is therefore

R

I —n

Q=clf— )+ ——AL,—T). . . . (10)

¢, — nc, + R ¢, — nc,
=20 LT, — 1y =2""%1,— T)

= a7, — 7)),

when ¢, is the specific heat according to the law
" =K.

Equation (10) is worth committing to memory as it
is here given.

Prob. 20.—How much heat would be required in problem (19)?
From problem (17) the heat required to change the
temperature is 8 heat-units. From (19) the work

done = %o:_g_ == 137 heat-units. The total heat

required is 137 + 8 = 145 heat-units.
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The special cases already treated of and some others
may readily bé dériveéd'from equations (9) and (10).

In n = o, pv* = K becomes p = constant, the work
done, from (g), is, evidently, R(7, — 7)), and the heat
required, from (10), is (c,,+ R(T,— T)=c(T,— T)
as before.

1
If — = o, we have v = constant, and the work done,
”

from (g), is evidently o, as

R

(T,— T) =o.
N °

X |~

The heat requircd from (10), is ¢ (T — T,)
(T T)=o,

If the heat is constant, we have

. ... € - .
and one solution of this is t—f = n. This expansion,
v

where no heat is added nor taken away but work is
done, is called adiabatic expansion, and its equation is
“
id L c
pvo= K, or, as for air - = 1.41, we have
v

=K . . . . . (11)

The work done is

;f;(T—

n 2

Z)= (5= 7).

ol
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Evidently, as ¢; = R 4-¢,, and ¢, = 1.41¢,, we have
R = .41¢,, and the work done is, for adiabatic expan-
sion, ¢ (7, — T;), and the heat given up is c(7, — T))
to do this work.

If the temperature is kept constant we have 7,="T,,
pv = RT = K, and » = 1. The amount of heat re-
quired is then, from equation (g),

C’—Cv __9
T — 1L 7,) ~

“which is indeterminate. We can, however, determine
the quantity of work done and of heat added by going
back to the original equation,

Q=cdT, — T)+ [ pav.
Here 7, = 7, and pv = K. Consequently

Q= pdw—-/.[{—d—Klog, = pv, log, . (12)

Evidently, from the equation pv = R7, we can put
RT, for either g7, or p,v,, and, from pv = K, we can

put for Z—z the value % In solving problems, that form

1 2
of equation should be used which covers the greatest

amount of given data.

Prob. 21.—If 1 pound of air has 4o heat-units added to it and
25 heat-units are the equivalent of the external
work, what is tie value of z in the equation

"= K? 7 =.754.
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R
1—n
remainder, 15 h. u,, =¢y (72 — 7h),or

15 co(tl —7n) _1—n

25 R 41

As the external work = 25 h. u. =

(Ta —Tl), the

Prob. 22.—If 10 heat-units are added to 1 pound of air at con-
stant pressure, what work is done and what.is the
rise in temperature ? We have

¢picy: R :: Heat added : Heat to raise tempera-
ture : work

10 10 X.41
II4IiT:.41:010¢ —

‘141 141
. 8
Work = m__><l4_4‘lill = 2270 ft-Ibs.
As we are dealing with 1 pound, the rise in temper-
ature

_ Work
- R

= 42.4 degrees.

Prob, 23.—If 40 heat-units are added to 5 pounds of air having
a pressure of 25 pounds per square inch and a
volume of 30 cubic feet, what is: (1) final V, g, ¢;
(2) the work done if (A) it is added at constant
pressure, (B) at constant volume, (C) at constant
temperature, (D) according to the law ;57/‘ =K?

A.—(1) 32.5, 3600, — 23; (2) 9obo.

B.—(1) 30.0, 4030, — 9; (2) o.

C.—(1) 40.1, 2700, — §7; (2) 31120.

D.—(1) 33.9, 3384, — 31; (2) 14000.
The value of # when no heat is added could have
been determined directly from the fundamental equa-

tions as follows: When no heat is added we can write
dQ = c'ndt + pdz’ =0, or Cvdt = — pdv,
and dQ=cdt —vdp=o0, or cdt=vdp,
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and dividing one by the other we have
o pdv ¢, dp dv
=—"—, or —.——=——
vdp G P v’
or integrating between limits we have
[7

% g, 2) = 1o, (2) = tog, (2"

or, dropping'the logarithms,
< K7

g‘ ", or 20, = pv,%, or pv =K.

To determine whether the temperature will rise or
fall during expansion, whether work must be done by
the air cor on the air, and whether heat must be added
or taken away, Fig. 4 will be of service. Through
the initial point A4,
Fig. 4, we have drawn
a series of curves for
different values of #.
n = o is at constant

I .
pressure, — =0 13 at

constant volume, z=1
is at constant tempera- Fic. 4.
ture, and » = 1.41 is an adiabatic.

Evidently all expansion curves having 7 positive will
fall between @ and &, all having # negative will fall
between @ and 4. All compression curves having 7
positive will fall between ¢ and %, and negative values
will fall between & and e.

All curves having valves of n between 0 and—1 are
curved as shown at /, and if n is between —1 and —
the curves are shown at k. All curves having nega-
tive values of » pass through the origin.
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Starting at A, if the path of the air is to the right,
work 'is" done by the-air, or is positive; if to the left,
work is done on the air, or is negative. The following
table should be mastered by the student. From A4,
then, calling rise in temperature, heat added, or work
done by the air positive, we have, if curve falls between

the limits,
k.

]

Temp. Hest. W
I +
1.41 —_

atod . ...... .
btoe ..ot

= =0

EAA
S 23

| + +

| +++

ctod . ......... n -
dtoe.. coiiae.. o - -
1 _ - -

etof . .......0
frog (oo .41+ -
gtoh. ..ol g n + + -
htoa ... ...... <o + + +
It is worth noting that as long as the substance is
one of the so-called perfect gases, the amount of work
done and of heat added depends only on the initial
and final pressures and volumes and the law of the
expansion, and not at all on the rature of the sz
statee nor the weight presens. Thatis if g, = 14.400,
Ty =100 A, = 0000, and & = 2. the quantity of work is
IO fabhs, ard the guartity of heat is — Q-3
LU whether the sehstance is ain, or oxygen. or
Avdrogen, o whether the weightis 3ba 1ider3ihs
\We are ow realy to tawe up the guestion of the
amncent of heat expendad and the amouzt of werk
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pv™ = K until it reaches a point 2,2,7,. Suppose now
it expands along the line po” =K to the condition
27T It is then compressed along the line po™ =K,
to pv,7,, which is such a point that, if the compres-
sion is continued along the line pv* = K|, it will again
reach its initial condition.

There are certain algebraic relations between the
quantities in this diagram which should first be de-
duced. They are:

2 _ts, n_ v B 1
o v oo T I
From the given data we have ‘
2™ =005 PV = vy’ Pt = P p = P,
and multiplying these equations together we have
PR P N P N 28

(vy)™ " = (vaw)™ ",

N

l

v, 7
;—t:i.........(r:;)
Again,
L m\". s "
2= =)
or
Dbs _ 2" .
m—(m) =1, from (13),
;7’3::;—“- . (19)
1 4

Multiplying (13) by (14) we have
wh _ tes LTy
nwp  pve L I T (15)
These relations should be kept in mind, as they
often lead to an easy solution of problems. Equations
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that required to raise the body from 7, to 7, through
7y, or
R
([”+ I—n

R

I—m

) (1= T+ (et 1=5) (B=T)

= total heat added; or, calling ¢, and ¢, the specific
heats according to the laws 1, 2 and 4, 1, we have
Total heat = ¢,(71 — 7)) + (73 — 7).

The efficiency, which is the ratio of the work done
to the heat expended, is then

R(— T, = Tit Ti 4 T = )

I1—n I—m
(i — 1) + cu(Ty — 1))
If either set of curves is adiabatic we have, say for
n = 1.41, for the efficiency

1 I '
= )+ h- %= 1)

C,,,( 7‘2 - Tl)

R(—

As R = .41¢,, we have

—L—-Ti+T+7s

I,—1T, ’
or
7,1,
7,7,
Putting 75 = 72, ¢ , we have for the efficiency
1

ﬂ;ﬁ=n£5 ... (16)




22 NOTES ON THERMOD YNAMICS.

That is, tn any suck cycle, the efficiency is the drop
in temperature along either adiabatic divided by the
highest temperature on that adiabatic. The amount
of work done in suck a cycle can be determined by mul-
tiplying the heat added by this efficiency.

Prob. 24.—A cycle is made up of two adiabatics and two
curves pv* = K., If 10 heat-units are added to
1 pound of air, #1 = 3000 pounds per square
foot, 1 = 10 cubic feet, how much work will be
done, the lowest temperature in the cycle being
o degrees F., and what is the highest tempera-
ture in the cycle?
In Fig. 6 we have the data given as shown. To
3000 X 10

determine 7:, we have 73 = ¥———— = 3561,
53.37
The work done is
561 — 461 _
10 X 61 X 778 = 1390 ft.-lbs.

To determine 7., we know that 10 heat-units are
added from 7, to 7, ac-
cording to the law pv*

Y] =K, or

T, :
1= {¢» + ~ (T - T7)
I—5
& .
— 5337(1 1 —
1) = 8 (_4[ +.5)(T. 7).
Fic. 6.

T’_TI=32.8, Ta=5938.

Prob. 25.—A cycle is made up of two isothermals and two con-
stant-volume lines. The extreme volumes are 40
and 10 cubic feet, and the extreme pressures are
15 and 100 pounds per square inch. How much
work is done and how much heat is required ?

1023 wg800 ft.-lbs.; 437 B.T.U.

Prob. 26.—A cycle is made up of two constant-pressure and

two isothermal lines. The extreme pressures are
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15 and 10 pounds per square inch, and the ex-
tremeé volumes are 10 and 70 cubic feet. How
much work is done and how much heat is re-
quired ? 32100 ft.-lbs.; 403 B.T.U.
Prob. 27.—Having given 2 pounds of air at g, = 3000 pounds,
V1 = 15 cubic feet, 73 =460, T3 = 420, and pv''=K,
how much work is done, the other curves being
adiabatics ? 2100 ft.-Ibs.

In a cycle such as we have just been considering it

can be shown that the work done
T

may be expressed in a number of pv®
ways. In Fig. 7 the heat added p”m.”
from 7, to T, =¢, (7, —T)=Q,. | =

The heat taken away from 7, to 7,
=c, (T, — 7T,)= Q,. The first of
these divided by 7, is equal to the second divided
by 7,. For we have the relation

pv™ T

F1G. 7.

and, therefore,
Tz - Tl — Ts _ T4
T, - 7,

1

(T, — 1) _ ca(Ty— T)
Tl - T4 )

In the same way the heat along the top line di-
vided by 7, is equal to the heat along the bottom
line divided by 7,. The work in such a cycle can
therefore be stated %s the heat added along either
line divided by the temperature at either end of the
line taken and multiplied by the range of tempera-
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Z—'——-j_.—g, which .is‘evidentlyl less than —Z‘%‘, as Ty is
1 1
greater than 7,. As the efficiency is less, the work
done by the same quantity of heat is less. Therefore
the greatest efficiency is obtained when heat is added
at constant temperature, which also implies that heat
must be taken away at constant temperature.

The diagrams we have drawn heretofore have shown
the amount of work done, but have given us no
graphical idea of the quantity of heat which enters the
cycle. This quantity of heat, as well as the quantity
of work, can be shown by a definite area on this
diagram. By a definite area is meant one that can be
measured by a planimeter.
~ Suppose I, 2, Fig. 9, to be the path representing
the changes in pressure and volume. We have the

ta 16L1a

N —m————=

Fi1G. 9.

work done 44 B+ C, the letters refcrrmg to the
spaces in which they occur.,

At 1 the total energy in the gas can be represented
by drawing the adiabatic 1, 12, 6 and continuing it
indefinitely to the right. The area under this curve,
or C+ F -+ G, is the equivalent of the energy in the
substance at I, because it is the amount of work
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which would be done if it was allowed to expand at
the expense of its own heat until it reached the abso-
lute zero. At 2 the energy remaining in the gas can
be represented by the total area under the adiabatic 2, 3
drawn through 2. This is equal to D+E4-F+HG.
We have then that the amount of heat added is equal
to the energy remaining at 2 plus the work done from

I to 2 and minus the energy at 1, or

Heat added

= (D+-E+ F+-HAG)HA+B+C)—(C+F+G)
= A+B+D+E+H,

or the area between the path 1, 2 and two adiabatics

drawn through the extremities of the path and indefi-
nitely extended.

We have already scen that the work done by a

pound of air expanding adiabatically can be repre-
sented by

R
i—1 =1

where 7, is the final and 7] is the initial temperature.

The energy in a pound of gas at 1 can be determined
. T,

by making 7;in the above equation o, and %‘ or ‘—Z:—?Il-'

is the energy. Similarly at 2 the energy in a pound

of the gas is —]—)24% If 2, 4 is an isothermal through

2, the energy in the gas at 2 _is the same as at 4, or
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RTY;”. and ify\1;/3)1 5ids)|anrisothermal through 1, the

energy in the gas at 1, 3, or § is

v _RTL
41 41"

Evidently, if, after expansion takes place from 1 to
2, we allow it to continue adiabatically to 3, the air
has as much energy at 3 as it had at 1, and whatever
heat we have added has all gone to do work. The
total workdoneis (4 + B+ C+ D + E+ F),and
this is equal to the heat added from 1 to 2.

The area D 4 E + Fis equal to the area X - L,

RT,
for at 2 the energy in the gas is —Z’, and at 4 it is the

RT,
same. At 3 the energy is Tll’ and at 5 it is the same.

Passing from 2 to 3 the energy converted into work is

R
Tl(Tz — 7)), and from 4 to § it is the same. But the

work done is in one case D+ £ + F, and in the other

K+ L; and as they are the equivalent of the same
amount of energy, they are equal to each other.

Prob. 28.—How much energy is there in 1 pound of air after it
has expanded adiabatically to 20 cubic feet, if its
initial conditions were p = 2000 pounds, v = 16
cubic feet? 71200 ft.-1bs,

Prob. 29.—What is the energy in 10 cubic feet of oxygen at
160 pounds pressure per square inch and 100
degrees F, ? 351000 ft.-1bs,
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There is another method of illustrating graphically
the heat added under any conditions. If we attempt
to draw a diagram having absolute temperature 7 for
ordinates and Q, the heat, for the area under any curve

Q

to the other axis of co-ordinates, the ahscissa is

because Q f Td( dQ) The quantity f —= is

called entropy.

Evidently on such a diagram an adiabatic is repre-
sented by a line parallel to the 7 axis, because no
heat is added along an adiabatic. The diagrams
shown in Figs. 10 and 11 represent a p, v diagram

and a 7, /ﬂi—IQ, diagram.

128 B
T=1128 -
000 B -
8 ES
4
<3
- [
: £3
: i
g " A c
g c 561
2 40,‘ °22 E
z
§ X " bg€¥_'
E A
H @ 1 G 109: Iz
: s
£ 10 20 aQ
VOLUME IN CUBIC FEET. T
F1G. 10. FiG. 11.

The data assumed in drawing these diagrams are
pa= 3000, T,=13561, v, =10, vy=20; for AB,
n=0; AC, n=1; AD, n =1.41; CE, n= 1.41;
and for DE, n = 1.
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In locating points in Fig. 11, the point A is taken
at any point'on'the’'7-=-561°1line. To determine the
distance to C, we have, as this is a constant- tempera- i
ture line, dQ = pdv, and

ndQ__ pdv dv
/T_f.'[‘— 7'—1610gl'_'_'37l

To locate the point B, we have dQ = ¢,d¢ and

40 (et T,
f ” = ¢, log, T: = 128.

These diagrams are drawn to such a scale that the
area represents foot-pounds in either diagram. In the
first diagram, Fig. 10, the area under 48 is the work
done at constant pressure, and in the second diagram,

1.41
Fig. 11, it is the heat added and is % as great. In

the first the area under AC is the work done at con-
stant temperature, and in the second it is the heat
added and is exactly equal to it. In the first the
area under 4D is the work done adiabatically, and in
the second it is zero, as it should be.

If we draw through D an isothermal as shown by
the line DE, the point £ completes a cycle, and from
Quc _ Qo
Tuc Tor
above, and the areas ACED in the two figures are
equal.

the second  figure evidently , as proved

Prob. 30.—Draw diagrams, similar to Figs. 10 and 11, to
scale, representing the expansion of 1 pound of air
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at 6o pounds pressure and 100 degrees F. (A)
adiabatically, '(B) along the isothermal, (C) at con~
stant pressure, until the volume is doubled, and in
each case, if possible, represent by a definite area
the amount of work done and energy expended.

GENERAL EQUATIONS.

In taking up the portions of thermodynamics treat-
ing of substances generally, certain matters which we
have already deduced apply, while certain others do
not. Thus, Fig. 12, if ABis the path of the substance

under discussion (any substance), the
8 external work done is here, as before,
the area ABDC. The total amount
of heat added to cause the substance
to pass from 4 to B is again repre-
- sented by the area between 4B and
two adiabatics at the extremities A
and B indefinitely extended to the
right. Here, however, the adiabatics are not neces-
sarily curves whose equation is p'4' = X, as this rela-
tion only applies to perfect gases. They are curves,
however, so drawn that from B to £, for instance, the
area BEFD, which is the external work done, is the
exact equivalent of the heat-energy which has disap-
peared as such between B and E.

We have called certain lines isothermals, and made
certain statements about these lines. That is, in Fig.
13, if AB is an isothermal for a perfect gas, it is a rect-
angular hyperbola, the heat added from A4 to B is
the area L’BAL and is exactly equal to the area

!
|
1
'
:
!
|
1

D

nfe-d--

Fie. 12.
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ABCD representing the external work. Hereafter
AB, if it'is 'an ‘isothermal,is A

only a line of constant tem-
perature; it need not be and
often ¢s not a rectangular hy-
perbola. The heat added is
equal to L'BAL but is not
necessarily equal to ABCD.
The work done #s equal to ABCD and may or may
not be equal to L’BAL.

The attempt will be made hereafter to use the terms
adiabatic and isothermal in the general sense spoken
of above.

Fig. 14 shows the work done, and Fig. 15 the heat
added isothermally to any substance. In Fig. 14 the

[ ) S Ty,

A

PRESSURE
TEMPERATURE

VOLUME ENTROPY

FiG. 14. F1aG. 15.

isothermal may be a rectangular hyperbola if we are
dealing with air, a constant-pressure line if we are deal-
ing with a mixture of liquid and vapor, or it is the line
which represents the relation between p and v at con-
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stant temperature. In Fig. 15 it must be a line perpen-
dicularto'the 7Makis. 4L and BL are adiabatics; in Fig.
14 they are curves, and in Fig. 15 they must be straight
lines parallel to the 7 axis. The heat Q added from 4 to
B in both diagrams is the area ABL'L. Draw any other
isothermal A4’B’ in both diagrams so that its tempera-
ture is d¢ degrees below AB. Evidently, from Fig. 15,

the area ABB'A’ is equal to —Qj;a't. From Fig. 14, the

equal area ABB’'A4’ isfdp dv, and these two quantities

are equal to each other, or

%dt:/dpdv, N € £:))

where dp is the vertical distance between 4B and
A'B’, or dv is the horizontal distance between these
lines, but not both at the same time. We can write
the equation in either of the following forms:

Q 7B ?p
Tdt = / (dp) dv = (dv)dp,

A ’ 24

the quantity in the parenthesis meaning that the value
of (dp) is fixed by the isothermals and that dv is the
other independent variable, or in the last member the
reverse is the case.

As it is the quantity @4 in Fig. 14 that we must
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insert in the equation for (dp), we can determine its
value from'the equation of ‘the substance by deter-
A *
mining (A]t))’ which gives us the rate of change of p

v

with 7, and multiplying this by @7, or aé = (%) dt.

Similarly (dv) = ¢d = (%)) dt, or writing these values
#

in the original equations, we -have

Q= (%) st aw=["19%) 4t p.
Gdt= | \Gp)dtdv=| \At)pdtdp,

A A

or differentiating,

dQ = %)vdv - T(%)#dp,
v )
Q= T/Z(%’)y@: Tl;’(% - (19)

We see, then, that, if heat is added to any substance
along an isothermal, the quantity of this heat can be
represented by either of the two quantities in equa-

tion (19).

# This form is chosen to clearly indicate that we wish to obtain
a number (or an expression) giving the ratio of the simultaneous
changes of p and 7' at constant volume, and this in no way de-
pends on the value of a7,
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Prob. 31. —Prove from equation (19) that if heat is added to air
at constdrt! ltemperature, the heat required is

RT1 s
Oge E.

For air pv = RT and (Ap) = (@) ,from this equa-
v v

At at
tion, gives
vdp = Rdlt,
ap\ _ R
dat ), v’

From equation (19),

Q =/ s 7R 0.
v 4 v

As the temperature is to be constant, we have
]
Q=RTlog,—.
Y4

Prob. 32.—How much heat must be added at constant tem-
perature to a substance whose equation is

2730

p =10

to change its volume at constant temperature

fro.m 71 to Vs ? 2.3(va — %)2730 % 10(6.1 - "’-T‘c')
Prob. 33.—Having given T

AT B
A

as the relation between the pressure, volume, and
temperature of a substance, how much heat must
be added at constant temperature to change its
volume from #, to 7., having given the values of
. vs BY1 1
A, B, py,and T'? TAlOg¢7f+. (_ )

7 711_7/’ .
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If, however, the heat, instead of being added along
an isothermal, is added along any other line, the follow-
ing method will determine the
quantity of heat. Let 4B (Fig.
16) be the line of the expansion,
the co-ordinates being p.and 2.
Let A and C be points d¢ degrees
apart. The heat added between
the points 4 and C is represented Fic. 16,
by the area 432C, and this area = dQ. Through C
draw the isothermal CD until it cuts the line of con-

‘stant pressure through 4. The heat added from A4 to

C is equal to that added from A to D, minus that
from D to C. Or, it is more nearly true to say that
the latter quantity becomes more and more nearly
equal to the heat added from 4 to C, as the tempera-
ture difference between A and C becomes smaller.
Calling the difference in temperature 4, then AD is

(%) dt, and CE is dp, as the point C is fixed by the
»

intersection of the isothermal 47 degrees above 4 and
the given curve of expansion AB. The area 34D1is
the heat added from A4 to D, or is by definition ¢,dt.
The heat from D to C is the area 21DC, or, from

page 33, is 7| <§—:,) dp, and we have taken this form
»

because AD or dv is the quantity fixed by the two
isothermals & degrees apart. The heat from 4 to Cis

AC23 =AD13— D(C21 =c,dt — T(g;)pdﬁ= dQ, (20)
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which, is, one form _of the general thermodynamic
equation.

Another form of this equation
is obtained as follows: Draw AF
(Fig. 17) at constant volume until
it cuts the isothermal through C.

2 Then the area 14C2 differs from
A 1AF4 + 4FC2 by the area AFC,
which disappears as d¢ is made

FiG. 17.

smaller. Then
Ag=dv AF = a7 at
&= v, = Af)., :
and we have the areas

AF41 = cdt 4FC2=T ( p) dv,

and

dQ:c.,dt+T(%’)vdy,. C L (@)

which is a second form of the fundamental equation.

4 A
In these two equations the terms A—f and — deand

only on the equation of the substance, and could

4 d
have been written _d!; and 7;, while the other terms
depend on the law of the expansion. That is, in the first
one we have made 47 and dp depend on the law which

we have chosen to assume for the expansion, but the

4
value 77;— depends only on the substance which is to
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expand. In using these formulae it must be remem-
bered that the units must be the same for all the
terms. That is, if the area dpdv is in foot-pounds, it
represents a certain part of the diagram, and the ¢, or
¢, must be in foot-pounds also; or if ¢, and ¢, are in
heat-units, the value of dpdv must be in heat-units
also.

Prob. 34.— Suppose that there is a substance, ammonia, which,
in the state we propose using it, is a gas, and
that the relation between its pressure, temper-
ature, and volume, as determined by experiment,
can be expressed by the equation pv=99T —
710pt. What will it do under various methods
of expanding it? :

First calling p constant, we have

Pd’l’=99dT,

dv) _99

), p’
and calling v constant, .

P\ _ 99

dt), v+178p~%
and the two forms of the fundamental equation
are therefore

or

dQ=cpdt<—T%9dp. C e LA
T
dQ =C.,,dt + Q%de’ . e (B)

If now the substance is to expand at constant vol-
ume, we have, from (B), Q=c,dt. If at constant



38 NOTES ON THERMODYNAMICS.

pressure, from (A),.Q =cpdt. If at constant tem-
perature; from-(A),

99
dQ=—Z=dp,
@ 4
= —golog, 22.
Q=—99 log o
If it is to expand adiabatically, we have dQ=o.
From (A),
codt=T 2 dp,
?
or
& _99
T ¢ p’
or 2

D_(2)”
T, \p

In using the fundamental formula we must remem-
ber that the formula gives us the heat added from 4
to B in the figures, and that when we speak of the
heat in a substance we are measuring for some datum.
Ordinarily this is taken at 32 degrees F., and, as this
is the temperature at which a change of state in water
takes place, we must define more particularly, so that
if we are dealing with water or its vapor it is cus-
tomary to measure the heat from that in water at 32
degrees.

Heat in Water and Steam.—The application of the
general formula to the heat in a liquid and its vaporis
as follows: When heat is added to a liquid (water, for
instance) at 32 degrees, its temperature rises and its
volume changes slightly. This continues until the
temperature reaches such a point that vapor begins to
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form. This is always a definite point for a given pres-
sure. For water, 15 pounds pressure and 213 degrees
correspond, 100 pounds pressure and 327.6 degrees;
for ammonia, 37.8 pounds pressure and 10 degrees,
180 pounds pressure and go degrees, etc. The addi-
tion of any further quantity of heat to the liquid which
is ready to boil does not increase the temperature, but
vapor begins to form, part of the heat being used up
in increasing the volume, and part in some sort of
internal work required to change the liquid water into
vapor. This condition of affairs continues until suffi-
cient heat has been added to convert all the liquid
into vapor. Any further addition of heat again raises
its temperature and continues to increase the volume.

The addition of heat, therefore, at constant pres-
sure takes place in three successive stages: first,
while it is entirely a liquid; second, while part is
liquid and part vapor; and third, after it is entirely a
vapor. We have generally

dQ = c,dt + T(g—‘;)dzf.

While it is a liquid # is practically constant and
dQ = cdt, Q = ¢(T, — Tg) and is called ¢, or the
heat of the liquid.

In reality there is a certain amount of work done
and dv is not strictly zero, but the ordinary value of
the specific heat of liquids includes the very small
amount of heat necessary to do the external work.

¢, is not necessarily constant and / ¢,47 is not neces-

sarily equal to ¢, (7, — 7y). If we know the relation
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between, ¢, and_ 7, it should be inserted before inte-
grating and the exact value found. It is customary
to say that for water ¢, = 1, while in reality ¢ =
1 4 .000042 4 .0000009¢2, ¢ being in the centigrade
scale, and we have

Q=q=/cdt:/(1+.ow04t+.mt’)dt
= ¢ 4 .00002¢% 4 .0000003#%,

which is the true value of the heat of the liquid in
French units. To get the corresponding quantity in
English units, enter this equation with the centigrade
temperature, and § the value of the quantity obtained
is the value in B.T.U. for the corresponding Fahren-
heit temperature.

Prob. 35.—The specific heat of liquid anhydrous ammonia is
given by the equation (French units)
¢ = 1.006 + .0037%.
How much heat must be added to 1 kilogram to
raise its temperature from 20 to 4o degrees C.?
22.34 Cals.
Prob. 36.—What is the specific heat of liquid ether at 30 de-
grees C. if the equation for ¢ (French units) is
¢ = .5297 + .00032*? .547.
Prob. 37.—How much heat is required to raise 1 pound of
water from 6o to 160 degrees F., using the specific
heat of water? 100.37 B.T.U.
Prob. 38.—What will be the temperature of 1 pound of water
at 60 degrees if 10 heat-units are added to it,
using the value of the specific heat given above?
. 70.01° F.
Prob. 39.—Using the data of problem (36), how much heat
must be added to 1 pound of liquid ether to raise
its temperature from 4o to 5o degrees F.?
5.334 B.T.U.
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It is interesting,to-mete just what proportion of
this value of ¢ is actually used for heating and what
proportion goes to do outside work, because the part
that does work may or may not be available if, for
any reason, we have to make use of the heat in the
water,

One pound of water at 50 degrees occupies .016
cubic foot.

One pound of water at 140 degrees occupies .01627
cubic foot.

The amount of work done if the water is under,
say, 100 pounds pressure per square inch is .00027
X 100 X 144 = 3.89 foot-pounds, or .005 heat-units.
The total heat required to raise 1 pound of water
from 5o degrees F. to 140 degrees F. is go.1 heat-
units, or a practically negligible amount is used for
doing work and we can say that all the heat added
while it is still a liquid remains in it.

When the water reaches the boiling-point the tem-
perature no longer rises, and we must again apply our
general formula, as the conditions under which it was
originally applied no longer hold. We have

AQ=cdt+ T (%) "d'u.

Now

dt=0 and Q=fT(i%)”dv=r,

the total latent heat, as it is called. As 7T is con-
stant, we could have written

r=T/(g)vdv C e (22)
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Toapplyithis formula-it is necessary to know the
relation between p and ¢ for the vapor to determine

di
the limiting values of ». Experimentally, the rela-
tion between p and ¢ can be easily obtained. The
value of v when the liquid is all vapor is difficult to
determine experimentally, and as 7 can be determined
readily by experiment, this formula is of more value
in determining the limiting value of v than in deter-
mining the value of . In applying the formula

d
the value of (f—) , and it is also necessary to know

/
either way, we know that d_f does not depend on 4,

as for each pressure there is a definite temperature
and the equation might have been written

r= (%) [ao=7(D) 0,

where v,is the volume of 1 pound of vapor, and 7, the
volume of 1 pound of liquid.

Prob. 40.—What is the volume of 1 pound of saturated steam
at 100 pounds pressure per square inch if
r = 1113.9 — .695¢, and

P = 99x144, Te = 326.9+460.7,
2100 = 100%144, 70 = 327.6+4060.7,
Dron = 101 X144, The = 328.34460.7,

dp = pra—puew =2 X144,
AT= Tun—Tuo = 1-41
7100 = 1113.9—.695 X 327.6=2884.
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From/the formulalr=7 -j—f(v.—'ux) we have

884 x 778 = 788.3 X (va—w1),

2X 144
I,
884x778x1.44 _

or T = N 144%x7883 4.36

and V2 = 4.36+.016 = 4.38.

Prob. 41.—What is the volume of 1 kilogram of saturated vapor
of ether at 50° C,, using the first five columns of
Table IV, Peabody ? * .2I1 cu. m.

Prob. 42,—What is the value of » in English units for carbon
bisulphide at 50° F., using only columns 1, 2, 3,9,
10, 11 of Table VII, Peabody? 162 B.T.U.

Prob. 42a.—If the latent heat of ice is 144 B.T.U. and if the
weight of ice per cubic foot is 57.5 lbs. and of water
is 62.5 lbs,, what pressure will be required to lower
the melting-point from 32° to 31° F.?

2 = 165000 1bs,
Rankine gives log p = A4 —,g} - ]—C,; for the rela-

tion between the pressure and the temperature, and
the above equation can be written

B |

Regnault’s experiments give the following for the
relation between the latent heat and the temperature:

r =-1113.9 — .695¢;

and Peabody has deduced constants for Regnault’s
formula in the form of log p = @ — ba* 4 ¢B” for the

* Peabody’s Tables of the Properties of Saturated Steam and
other Vapors.
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relation between pressure and temperature which can
be used for determining the value of 7, — 7,.

The value of » above given consists of two parts,
one of which does external work and the other internal
work. Calling # the difference in volume v, — 7, , p the
pressure, and A4 the heat equivalent of work, the ex-
ternal work is Ap«, and the internal is » — Apu = p.
The relations between p and Apx are. very different
from the corresponding quantities while in a liquid
state, as the Apu is about {;p.

It is to be remembered that the external work has
been done, and while the heat to do it has been ex-
pended, this heat no longer existsin the steam formed.
It may have been expended in pumping water, and
may exist as potential energy stored in water in some
distant reservoir. That is, » has been expended and p
remains in the vapor, and the 4p« is not in the steam
and 7s not available for any future work. When the
pound of water at 32° F. is heated and entirely evapo-
rated under constant pressure, we have added to it
¢ +7 = H heat-units, and this is called the total heat.
It is often written as total heat ‘“in the steam.” This
expression is incorrect, as it is the total heat required
to form the steam. The amount of heat ‘“in the
steam’’ is only ¢ + p.

The steam being entirely formed, the addition of
more heat at constant pressure superheats it. It has
been found that the specific heat of superheated steam
is not constant. A value for the specific heat at con-
stant pressure deduced for the experiments of Thomas
and Short is
' cp=.447 +.000448¢' —.000602 (¢ —¢')

=.725+.00105¢ —.000602T"
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in which ¢ is the saturation temperature corresponding
to the pressure, #is the actual temperature of the steam,
¢’ —¢ is the amount of superheating, and T is the
absolute temperature of superheated steam.

The total quantity of heat, required to superheat the

steam is
Q= f cpdt
v

Q =[-447 +.000448¢' —.000301(¢"' —¢')](¢"' —¢')
the quantity .447 +.000448t' —.0c0301 (¢ —¢') being the
mean specific heat between the temperature of saturated
¢’ and the temperature of the superheated steam ¢”.
Call this value ¢,, and it must be remembered that it
varies with both ¢ and ¢#”.

Of this heat added, only a portion remains in the
steam. A certain amount of external work must
have been done, and, while we have expended
Cm(Tsup.— Tsas.) heat units, a quantity of work has been
done equal to p(vgyp —Ves.)- The heat remaining in
the steam is therefore .

Cm( Tsup. - Tsnt.) —? (‘vsup. — Vsat. ) .

To determine the value of this quantity we must
have the relation between the pressure, volume, and
temperature of superheated steam.

This relation, determined experimentally, can be
expressed by the following equation (Peabody):

pv=285.85T—.256p,
from which either 7 or v can be found readily if the
remaining two quantities are given. This formula
applies both to saturated and to superheated steam.

or
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From this equation the increase in volume due to
superheating,' 'or 'the'increase in temperature to pro-
duce a given increase in volume, can be determined
by putting in this equation the data for both the
superheated and the saturated conditions and solving
for the quantity desired. \We have for the amount
of superheating in degrees

Ts.“ — T,... — r‘:.m:\ — :'sat)

and for the increase in volume due to superheating

8i.
o o =

Csepe T ‘st —

2
“”%

T,

V4

From the same relation we can write, for that portion

of the heat required to superheat the steam which
remains in the steam,

(S frem T cma T

In tabular form we thea have, startins with water
at 32 degrees and ending at the state givex below:

ALL LIQUID.
Heat adéed = ¢
Hear remainins
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MIXTURE OF LIQUID AND VAPOR.

(# = parts vapor.)

Heat added = ¢ + »7;
Heat remaining = ¢ 4 xp;
Work done = xA4pu.

ALL VAPOR.,

Heat added = ¢ + 7+ Gm(y‘sup. — T
Heat remaining

=9 + P +Cm(Tsup. - Tsat.) - .p(vsup. - sat.);
=g94+r+ (cm—'ll) (Y;up. — Zae)s

Work done = Apu + p(Vep, — Vsar)-
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STEAM TABLES.

In using Peabody’s tables for saturated steam with
English units, Table I should be used when the tem-
perature of saturation is given, and Table II when
the pressure is given, thereby reducing the amount of
interpolation to a minimum. In these tables

¢ is the temperature / at which water boils under
a pressure .

2 is the pressure absolute per square inch.

¢ is the number of B.T.U. that must be added to
I Ib. liquid H,O at 32° to bring it to the tem-
perature #, or to bring it to the boiling-point
under the pressure p, and is roughly equal to
t— 32.

H is the number of B.T.U. that must be added to
1 Ib. liquid H,O at 32° to raise its temperature
to zand to boil it at a pressure p without super-
heating it. It is the quantity of heat required
for each pound of steam when a boiler is oper-
ating at constant pressure, and is not the quan-
tity of heat required if the pressure in the boiler
is rising or falling.

7 is the number of B.T.U. that must be added to
1 1b. of water, just ready to boil, at a temper-
ature ¢, under a pressure p, to convert the
entire pound into steam.

p is that portion of » remaining in the steam,
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Apu is the quantity of external work done, in B.T.U.,
while the quantity of heat 7 is being added at
constant pressure. To convert water into steam
at constant pressure the volume of the contain-
ing vessel must increase actually or construct-
ively, and this work is that amount which must
be done for each pound. In an ordinary steam-
engine, if there were no radiation nor conden-
sation, this Ap» would be the work done up to
the point of cut-off. This quantity is never in
the steam, and does not appear when the steam
is quiescent, but only when the volume of the
steam in a boiler changes a? constant pressure.

0 is the entropy of the liquid. A better working
knowledge of this quantity will be obtained
by considering it as one of the coordinates
in a diagram similar to that shown in Fig. 11,
rather than by attempting to give it a physical
meaning.

s is the volume in cubic feet of one pound of the
steam at a pressure 2.

y is the weight of one cubic foot of the steam.

Similar definitions apply in the other tables, the
quantities in French units being in large calories,
heat in a kilogramme, centigrade degrees, etc.

Changing Units.—As many substances have their
properties stated in French units, while the general
data of a problem may be given in English units, the
following may be of use in changing from one set of
units to another:

Pressures—If it is remembered that 1 atmosphere



gso NOTES ON THERMODYNAMICS.

is 14.7 lbs. per square inch, 760 mm. of mercury and
10334 kg. per square metre, any pressure can be
changed from one set of units to the other by the use
of these figures.

Heat Quantities.—The number of large calories
added to 1 kg. is § the number of B.T.U. added to
1 pound of any substance at the same temperature.
If, therefore, ¢,7, H, p and Apx in an English table are
multiplied by §, we will have the corresponding quan-
tities in the French table.

Temperatures.—Multiply the absolute temperature
in Fahrenheit degrees by § and we have the corre-
sponding number on the centigrade absolute scale, or
take § the centigrade temperature (not absolute) and
add 32° for the corresponding Fahrenheit temperature
(not absolute).

Entropy.—As, in a temperature-entropy diagram,
the area of the diagram (heat added) is § as great
numerically in French units as in English, and as one
coordinate, the temperature, is numerically § as great
in French units as in English units,the other coordinate,
the entropy, must be the same in either system of units.

Volume and Weight.—As the volume of I pound of
steam in cubic feet is 16 times as great numerically as
the volume of I kilogram of steam in meters, to change
the specific volume in an English table to French
units we divide by 16. Similarly to change the density
in English units to French units, multiply by 16.

Instead of attempting to remember these quantities,
a comparison of line 212° in Table I with line 100° in
Table III will enable one to see these relations.
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Prob. 43.—How much external work is done in converting 1
pound 'of water'at' 6o ‘degrees into a mixture hav-
ing x = .6 at 150 pounds pressure?

Hoéw much heat is expended ? :

38800 ft.-lbs.; 818.5 B.T.U.
Prob. 44.—How much heat is in 1 pound of superheated steam

at 150 pounds pressure and 400 degrees F., count-
ing from 32 degrees, and how much work has been
done ? 1128.1 B.T.U.; 68200 ft.-lbs.

Prob. 45.—If 80,000 foot-pounds of external work is done in
converting 1 pound of water into steam at 150
pounds pressure, what must be the condition of
the steam? 178° superheated.

The distinction between the heat added and the
heat remaining in a substance can be perhaps better
understood by the following example: Suppose B

(Fig. 18) is the initial state of 1
pound of water at 15 pounds pres-

o A sure and 213 degrees F., and 4 is
its final condition at 100 pounds
pressure and 327.6 degrees F.
At B the water has in it ¢=181.3
heat-units. At A4 it will have in
it as steam

FiG. 18.

7+ p= 208.1 4 8&02.4 = 1100.5. 72

LAY

To pass from B to A we must do a certain amount of
work. The difference in volume between B and 4 is
4.393 cubic feet.

Suppose that the volume A4 is first filled at 15 pounds
pressure, and that afterwards heat is added and the

2.

v

o
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pressure is raised to 100 pounds from C to 4: the
amount of work done is equal to

15 X 144 X 4-393

778 = 12.2 heat-units.

The total heat that must be expended is therefore
1100.5 4 12.2 — 181.3 = 93I.4 heat-units.

Suppose again that the pressure is first raised to D
and the volume is then increased to A. The work
done in this case is equal to

100X 144X4-393

= 81.1 heat units,
778

and the heat required is
1100.§ + 81.1 — 181.3 = 1000.3.

It is therefore to be noted that the amount of heat
which must be expended depends upon the way in
which it is expended, but that the portion of the heat
added which remains in the substance i 1s, in the exam-
ple above given, always '

1100.5 — 181.3 = 9I19.2 heat-units,

or

G0 T Proo — Q1
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Prob. 46.—Four pounds of a mixture of steam and water at 60
pounds pressure per square inch fill a vessel 4 of
10 cubic feet capacity, and 6 pounds of mixture fill
another vessel, B, of 10 cubic feet at 100 pounds.
pressure. If the contents of the two vessels are
intimately mixed, the volume not changing, what
will be the final pressure, assuming no radiation ?

First determine the heat in vessel A.\We have

4xX7.107+4(1—x).016=10, x=.35.

Heat=4(262,1+.35X83Q.3) = 2211.
To determine the heat in vessel B:
6xX 4.409+6(1 —x).016 =10, x=.376.
Heat=06(298.1+.376 X 802.4) = 3600,
The heat per pound of the mixture is then

22114 3600

o =581.1,

and the volume occupied per pound is {§ = 2 cubic
feet. We have then two equations to satisfy :

x X s+ (1 —x).016 =2,
¢ + xp = §81.1,

and these can best be solved by trial.

Prob. 47.—What heat must be added at constant volume to
raise the pressure of one pound of a mixture of
steam and water occupying 3.8 cubic feet from
100 to 150 pounds pressure per square inch ?

204.1 B.T.U.

Prob. 48.—A vessel of 10 cubic feet capacity has in it 4 pounds
of a mixture of steam and water at 100 pounds
pressure; 25 pounds of water at 6o degrees F. are
pumped into the vessel. What is the resulting
temperature, assuming no radiation? f=160.2° F,

Prob. 49.—1If 10 cubic feet of dry saturated steam at 100 pounds
pressure per square inch is allowed to pass from a
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boiler into an open vessel having in it 25 pounds

of''water-at!/ 66 /degrees F., what is the resulting

temperature ? t=156.2° F.

Adiabatics.—We have already proved that if a sub-
stance expands at constant tem-
perature between two adiabatics,
the heat added divided by the tem-
perature is constant. To repeatin
a slightly different form, let the dia-
gram, Fig. 19, be a heat diagram,
in which 48 and EF are constant- “exwmosv
temperature lines,and AC and BD F16. 19
are two adiabatics. Then the area ABDC divided by
T,=area EFDC divided by T, or Qur = Qar di-
I, Tg

rectly from the figure. We can also write

S [a_ [T

as each of these quantities is the horizontal distance
between the lines AC and BD. That is, it makes no
difference how much heat is added between £ and B,

TEMPERATURE
m
|
t
|
1
i
1
1
=

for instance, nor how it is added, the quantity / ETQ
Q EF QAB

is constant and, if we please, is equal to == or =~

B
or is equal to / @ EGB), the 7 in the latter case
T
E

being a variable, and is the temperature at which

d(Q ggp) is added.
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Along thé/ddiabatic, as'dQ /= o, we have f é% =o0.
dQ

The statement that / - is constant between two

b adiabatics for any substance gives us

| : another method of obtaining the equa-
P . . . .

tion to the adiabatic for air. In Fig.
20 suppose a to be a point on one
Fic 20. adiabatic, and & and ¢ pointson another.

T

aQ .
As / 90Q is constant from a to &, or to ¢, suppose ab
to be a constant-volume line and ac a constant-pres-

sure line.
We have for ab *
aQ _ [Tc,ar T,
T Jn T TRy
for ac
dQ Teg dt T.
f ¢ log, = 7
and

¢, log, 7 1 T
v e v — Cp 108 7y
.7 T,

@)- &g
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or, as pv = RT,

pbvb _ pﬂl.‘l 7/‘.1'“
Ptvb - P‘l.dl,”bl.‘l ’

or
pbvbl.ll —_ p‘v‘l.‘ﬂ,

which we have before deduced in an entirely different
way. ’

When we come to apply this method to liquids and
vapors the problem is rather more complicated. In
Fig. 21 suppose @ to represent the
pressure and volume of I pound of | d____p
water, and suppose the temperature §
to be 7,. Let éc be an adiabatic | |
curve such that at % we have z,| @ c
pounds of steam and I — x, pounds
of water, and suppose that at ¢ we
have x, pounds of steam and 1 — x, pounds of water.

We know that
[ [
« T J. T

from what has just been proved.

On the path from & to & suppose first the tempera-
ture is raised to &, and then that x, pounds of steam
are made. From a to 4, dQ = cdt, because in the
general formula,

dQ = c,dt + T(j—f)dv,

FiG. 21.

d
we have dv = 0, and hence @Q = ‘i’
« T r, T
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From J to 4 the heat dQ added is rdx, and we can

write
40 _ / “rdz _ %
d r - o Tb - Tb

/ aQ / bcdt x,,r,,

From a to ¢ we can write

aQ “cdt
S [T e

and as these are equal, we can write

"cdt x,,r,, Tecdt X7,
/ -+ - ‘/I‘. - _7'- + 7. L (2 3)

In this equation ¢ is the specific heat of water, or is

and

I?’ and if we know one value of x, we can deter-

mine any other. Ordinarily the value of /‘;j,t can
be calculated with sufficient accuracy by calling ¢ = 1,
and / [:;—t is then ¢ log,% . Peabody’s tables calls '

this quantity 6 and determines its value, using the
exact value of ¢, so that it need not be calculated.
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Prob, 50.—If 1 pound of a mixture of steam and water occupying
3.8 cubic feet’at' a-pressure of 100 pounds absolute
expands adiabatically to 15 pounds pressure, what
is its volume ?

We have from the steam-table
T100=327.6 +460.7; Vol. 1 lb. steam;go=4.409 cu. ft.;
r100=2883.8.
Calling To= 32°+ 460.7, we have

dt
0100=./‘CT= 2.3026 (log 788.3 —log 492.7) =.470

approximately, or .4743 from the tables. —
T15=2134460.7; Vol. 1 lb. steam;5=26.20 cu. ft.;
r15=9065.6; 615=.3141.
To determine x;, we have, as .016 is the volume of
a pound of water,
(1—xp).016 +xp 4.409=3.8; -
xp=.863.
We can then write
4743+ 863X 1.1227 = —.3141 4 %,1.4358;
4743+ .969=.3141 +1.4358%;
%, =.787.
Vol. =787 X 26.20+ (1 —.787).016 = 20.6 cu. ft.

Prob. 51.—If 1 pound of a mixture containing 40 per cent of
water is compressed adiabatically from 20 to 6o
pounds pressure, what is the percentage of mois-
ture at the higher pressure ? 38.6%.

. Prob. 52.—A pound of a mixture is expanded adiabatically, so
that it has the same percentage of water at 60 and
15 pounds. What must have been the percentage
at 60 pounds pressure ? : 50%.



NOTES ON THERMOD YNAMICS. 59

Whenever a body expands adiabatically, or at the
expense of its own heat, the amount of external work
done must be the difference in the quantity of heat in
it at the beginning and at the end of the expansion.

If we have a mixture of steam and water at the
beginning of the expansion so that the portion of
steam is x;, the heat present is ¢, + x,0,. At the end
of the expansion the heat is g, + x,0,, and the amount
of work done is therefore

Qi+ 2P — g — 220,

Prob. 53.—In problem (50) how much work is done in the
expansion ?

From the tables
q1=298.1, p1=2802.4,
g2=181.3, p2=893.0, and
the work =298.1+.863% 802.4—181.3—.787X893.0=105.8h.u.,
or 105.8 X 778 = 82300 ft.-1bs.

Prob. 54.—What work is done if 20 cubic feet of a water mix-
ture weighing 6 pounds expands adiabatically from

8o pounds to 20 pounds pressure ?
277200 ft.-lbs.
Prob, 55.—1 pound of steam at 100 pounds pressure expands

adiabatically to 15 pounds. How much work is
done? 94700 ft.-lbs.

Prob. 56,—1 pound of water at 327 degrees F. expands adia-
batically to 15 pounds pressure. How much work
is done? 13070 ft.-lbs.

If we are dealing with superheated steam instead of -

d
a mixture, we have for the value of _Y—Q three parts:
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one while it is il a:liquid or f &;f — 0, one while it is

becommg steam at constant temperature, or — (as it

is all converted into steam), and a third portlon,

Tsup.
0'=f ﬂ=(725+ .00105¢) log =& Tuwp.
. 7sat, Tsat.

. —.000€ Cz(Tsup." Tsat.) =0,;
and we can write

dQ —0+— FHO . (24)

When superheated steam expands adiabatically, we
have, for the amount of work done, the difference in
the quantity of heat at the beginning and end of
expansion. ‘

The heat at the beginning is

21(Voup.— Var. ):I

@1 +pl+ _Cm(y‘sup. - Y‘sat) 778

The heat at the end of expansion is

B (V:u - 8a
72 + Py + _Cm( Tsup. - Tut.) - P2 - t')]

on the assumption that it remains superheated until
the end of the expansion.

The temperature-entropy table in Peabody gives
the value of the entropy corresponding to equation 24
above, the column headings being the entropy. Under
the heading quality, the value of x is stated when the
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column, contains: four-places, and when less than four
the number represents degrees superheat. The “heat
content ” is the amount of heat required to make the
steam as in a boiler by first raising its temperature to
the boiling point for the given pressure, then adding »
and finally superheating it at constant pressure. The
heat remaining in the steam is-the ‘“heat content”
minus the work done. As the work done is the increase
in volume times the pressure we can write for the heat
remaining in the steam the following expression

Heat content _Pressure X (Speciﬁc7\7z§1ume —.016)X 144

Prob. 57.—1 pound of steam at 150 pounds pressure occupies
a volume of 3.3 cubic feet. What is its condi-
tion after it expands adiabatically to 15 pounds
pressure, and what work is done?

As 1 pound of saturated steam at 150 pounds pressure
occupies 3.016 cubic feet, the steam in the problem

" must be superheated, and from the equation of
superheated steam we have for the amount of

superheat .
Tsup = Toat. = P('”sup. —Vsa -)
) ) 85.85
_150X144X (3.3—3.016) _

o
85,85 71.°3.
for the entropy we have

0150+%+ent. sup.=.5138 +1.0534+

89r1.
[(.725 + .c0105 X 358.3) 2.3 log%os— .000602 X 71.3]

=1.6142.
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At 15 1bs. we- have 015+x%= 1.6142

X15= .906.
The heat in the steam at the initial condition is
g+r+cemXy1.3—work

or
1329.8+861.4
+[.447 + .000448 X 358.3 — .000301 X 71.3]71.3
_ 150X 144(3.3—.016)
778
or

329.8 +861.4+41.8 —g1=1142.
The heat at the final condition is
4+ xp=181.3+.906 X893 =0991I.3.
The work during adiabatic expansion is
1142 —991.3=150.7 h. u.= 117200 ft. lbs,

Prob. 58.—If 1 lb. of steam at 151.4 pounds pressure has a

volume of 4.239 cubic feet, what is its condition
and how much work is done if it expands to
70.3 pounds pressure ? :

From the temperature entropy tables we have, page 107,
p=151.4, sup.=271°, heat content 1335, and
specific volume = 4.239.

The entropy is 1.64.

Under the column for the same entropy, on page 93,
we find

$=170.3, sup.=22°, heat content 1187, and specific
vol. =6.40.
The steam is therefore superheated 22° at the end of
the expansion.
The work done is the difference in the heat in the sub-
stance at the beginning and end of the expansion.
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The heat at:the beginning is
151.4 X 144(4.239 —.016)

1335— =1217.
335 778 7
And at the end of the expansion
1187 — 70.3 X 144(6.40 — .016) — 1104,

778
The work done is

1217 —1104=113 h. u.=87900 ft. 1b.

Prob. 59.—1If 1 Ib. VA at 70° F., x = 1 expands adiabatically to
10° F., what is the value of x at the end of the ex-
pansion and how much work has been done?

x =.922; 40690 ft.-lbs.

Curve of Constant Steam Weight.—If 1 pound of
saturated steam expands in such a manner that we
have always 1 pound of salurated steam whatever its
pressure, the expansion curve is called a curve of con-
stant steam weight. Or if a mixture of steam and
water having a given proportion of steam expands in
such a way that, whatever its pressure, there is always
the same proportion of steam present, the curve of
expansion is called a curve of constant steam weight.

Prob. 60.—If 1 pound of a mixture of steam and water at 120
pounds pressure expands so that 30 per cent is
always steam, what are the volumes at 120, 9o, 60,
and 30 pounds pressure ?

At 120 pounds we. have for the volume of the steam
.30X 3.717, and for the water .70X .016, and the
total volume is 1.1151+.0112=1.1263 cubic feet.

Prob, 61.—A mixture of 6o per cent steam and 4o per cent water
expands from go to 15 pounds pressure, so that
there is always 60 per cent steam. What is the
volume at every 15 pounds pressure, if the total
weight is 5 pounds?

9o lbs., v = 14.6; 15 lbs., v=78.6 cu ft.
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To Determine the Work Done.—The amount of work
done by such an expansion can only be approximately
determined by calculation. The most convenient way
of doing it is to assume that the expansion curve is in
the form pv*=K’, and find the most probable value of
n, and from the equation of the curve determine the
area.

To determine the most probable value of #, it is
not correct to determine several values of » and
average them. The following, from the method of
least squares, gives the most probable value of # and
is not at all difficult to follow out. Determine as
many values of p and v as desired, and write these
values in the logarithmic equation as below:

logp,+7nlogv,=log K'=K";
log g+ n log v, = K",
log s+ n log 75 = K", etc.

Add these equations together and we have
Slogp+nSlogv=3K"..... (A)

Now multiply each of the original equations by the
coefficient of » in that equation and we have

log p, log v, 4 (log v,)* = K" log v}
log p; log v, + 7 (log 7, )* = K" log v,;
log g5 log 75+ 7 (log 73 )* = K" log vs.

Adding these equations together we have

= log plog v+ 73 (log v)* = ZK" log v. . (B)
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Solving (A) and, (B) will give the most probable value
of n. Ordinarily three-place logarithms are not accu-
rate enough for this work. The amount of work
is then '
W = v — fﬂvl.
n—1

To determine the quantity of heat that will be re-
quired to produce this expansion, we know that the
heat at the end of the expansion added to the work
done must be equal to the heat in the steam at the
beginning of the expansion added to the heat sup-
plied. We have already shown how to determine
three of these quantities so that the heat supplied can
be determined.

Prob. 62.—1 pound of steam at 60 pounds pressure expands to
40 pounds along a curve of constant steam
weight. How much work is done and how much
heat must be supplied? We have the following
for the pressures and volumes: .

At 6o lbs. V = 7%.107 cu. ft.;
solbs, V = 8.429 cu. ft.;
40 lbs, V' =10.39 cu. ft.
To determine the law of expansion write :

log p+nlogv= K"

1.778+ 852m= K" 1.514+ J25n= .852K”

1.699+ .925n= K" 1.573+ 85in= .925K"

1.602+1.0178= K" 1.629+1.034n=1.017K"

5.079+2.794n=3K" (A)  4.71642.616n=12.794K"" (B)
n=1.07.

Work=6ox I44X7.1<:Z);joxx 144X10.39 _

22200 ft. 1bs.
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22200
778

236.24850.5+ 28.5 —262.1 —830.3=22.8 h. u.

Heatl required = g+ pee+ — geo — Peo.

Rectangular Hyperbola.—In many cases a rectan-
gular hyperbola practically represents the expansion
taking place in a mixture of steam and water under
actual conditions. This is in no sense a theoretical
expansion line for a steam expansion, but it practi-
cally represents what actually takes place in many
steam-engine cylinders. The law of the expansion
here is pv = K, and the amount of work done is

Y, ?
2,7, log, (i) = p,7, log, (;;)
The amount of heat required is
93+ %0 + Py log, (ﬁl) — @1 — %Py,
2

the subscript 2 referring to the final condition, and 1
to the initial condition.

Prob. 63.—1 pound of a water mixture containing 3o per cent
of moisture expands from 100 pounds to 20
pounds, so that 30 per cent of moisture is always
present. How much work is done, and must
heat be added or taken away, and how much ?

63800 ft.-lbs.; added, 35.6 B.T.U.

Prob. 64.—1 pound of a mixture containing 30 per cent of moist-
ure expands from 100 pounds to 30 pounds along
arectangular hyperbola. How much work is done,
what is the condition at the end of the expansion,
and how much heat must be added or taken away?

53600 ft.-lbs.; added, 81.2 B.T.U.

YN

ALk
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CYCLES PASSED THROUGH BY VAPORS.

When a vapor is used in a cylinder the amount of
work done and the amount of heat required can be
determined as follows: Suppose that at 2, Fig. 22, we
have 1 pound of a mixture of vapor and liquid, x, parts
being vapor, and suppose that, at
b, x; parts are vapor, the pressure re-
maining constant.

From & to ¢ let the expansion be
according to any law, and at ¢ let x,
be the proportion of the vapor. Let
heat be taken away first at constant
pressure, and then according to the same law as the
expansion curve &¢, so that we have at the end of the
cycle the same condition of affairs as at the beginning.

The amount of work done is the area of the figure
abed. It can be most easily calculated by finding the
separate areas and combining them so that

W =abtla' + bcc’d’ — cdd'c’ — add’a’.
The area abd’a’ = (x5 — 2,)Apts.
The area cdd'c’ = (x, — x,)Ap.u..

The areas under é¢ and ad depend upon the law of
the expansion and can be determined as shown before.

The amount of heat required to do this work is the
heat required from a to ¢ and is equal to

(9 + xcpc) — (92 + xapa) + abec’a’.



68 NOTES ON THERMOD YNAMICS.

The amount of heat which must be taken away is

- (94 + xapa) + adcc’a’ + (94' + xcpc)'
The relation between the various values of x depends
on the law of the expansion.
If the expansion is adiabatic, the value of x, and z,
can be determined if x, and x, are given. We have

x,n Z‘.f ,
T,

all the terms of which are known except z,; and

_0+

Xa7a xdrd

T,

from which x, can be determmed.
As 7, and 7, are equal to 7, and 7,, and similarly
for ¢ and 4, we can write from the last two equations

rﬂ
‘7‘2(4’5 a) = 7. (Jr’c xd)'
The work done can then be written
W= Apui(xs — x2) + (95 + %sps — 9. — %.p.]
- Apcuc(xc - xd) - [qa + XaPa — Ga— xdpd]

S Xy — Xy — Xt Xare

= (x5 — xa)rs — (2. — 27,
T,
= (xb - xn)(rﬁ - _7"?_)

a

=(x; — x,,)r,,(T";a T‘)
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In the last equation (x, — x,) 7, is the heat added

. T,-T,
from a to 6. The efficiency is therefore “T ‘, which

a

is Carnot’s efficiency, as might have been expected as
this is a Carnot cycle. When this condition of affairs
exists in a cylinder, the cylinder fulfils the functions
of boiler, engine, and condenser, as we have assumed
that the given weight of the substance is in the
cylinder at all the points of the cycle.
Prob. 65.—How much work is done in the cycle of Fig. 22, if 5
pounds of a mixture of steam and water expands
‘adiabatically, having pa= 100 pounds per square
inch, pa=135 pounds per square inch, xs =.1, 26=.9?
From the tables
ro=8838h. u.; 7,=788.3; T,=6737.
The heat added from a to & is
Mxp— xa)7s = §x(.9 —.1)x883.8=3535 h. u.
The work done is

88.3 — 673.
7—738-—-—8.3737 X3535X 778 =400poo ft.-Ibs.

Prob. 66.—1 pound of NH, expands through a cycle, as in
Fig. 22. If ¢, = 60 degrees F., 7, = 10 degrees F.,

X, =.1, 23 =1, how much work is done and how

much heat isrequired ? 34800 ft.-Ibs.; 466.2 B.T.U.
Prob. 67.—If in a cycle, like Fig. 22, . = 15 cubic feet, v, =1
cubic foot, g, = 150 pounds per square inch, g, =15,
how much work is done if expansion and com-
pression are adiadatic, and how much heat is

required if 1 pound of steam is used?

31300 ft.-bs.; 227 B.T.U.
In an actual engine the conditions are different
from those in the last figure, as from @ to b there is

not the same weight in the cylinder, and from ¢ to d
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the weight also varies. And in addition there is con-
stant’interchange'of heat between the cylinder walls
and the steam.

First, neglecting the action of the cylinder-walls,
suppose Fig. 23 represents what takes
place in the cylinder. At a the
clearance volume is filled with steam
whose steam proportion is z,. The
steam from the boiler is admitted and
fills the cylinder to ¢. Expansion
takes place to 4, and the exhaust

D) =l
B
-4

Fi1c. 23.

to a again.

Let m pounds be in the cylinder at @, and M pounds
be added from the boiler. Let 2’ be the value for
the steam coming from the boiler. If we know the

volume at ¢, we have = volume of 1 pound

V.
m 4+ M
and

V.
xrf‘.+(l —_ x‘_.) .0[6 = ”‘__l'_——M—,

from which x, can be found.

To find the work from 4 to ¢ we have that the heat
at ¢ added to the work done is equal to the heat at a
added to the heat received from the boiler, or

(m+MYg.+x.p)+Work be=m(g,+-x.p.)+M(g+27).
Work bc = m(q.+ x.pa — 9. — x.p)+ M(x'r, — z.p,).

We might have written

Work bc = (I, — 17.)p.,
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but it has been written in the form first given to call
attention to the fact that the last term in the first
equation contains 7, and not p,. The reason is that
the heat brought into the cylinder from the boilers
includes not only ¢. and #'p,, but also the external
work which must be done in forcing this steam out of
the boiler, or x'Apu,

The work under ¢d is determined as before shown,
and the work under da is the area of the rectangle
under ad, or h

Va—Vo)a

Prob. 68.—In an engine having Fig. 23 for a card, let V, = .4
cubic feet, V3=28 cubic feet, #5 = 100 X 144,
Da=15X144, Xz = .9, xa = .8, cd being an adia-
batic. How much work is done?

First find x,.

%er100 _ 8r1s,

/) 7}
100—015+—— Tro  Tis’
TIOO[ 8r15 ]
-0 6
100 | Tas 100+015

. 12,‘,7[8><1 4358 — 4743 +.3141] = 8.

To find the volume at ¢ we must know the weight
along cd and we have

xgmasq+ (1 — x4)mgz.016 =8,
From the tables sq=26.20;

8

8
Md= g 26.20+ .2 X 016 20,96

=.382 lbs.;

=.382(89 X 4.409+ .11 X .016) =1.5 cu. ft.
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The work bc=(1.5 — -4)100x 14} =15840

The work'cd= .382 {give +.& Pise — g1s — .8p1s] X 778 =34®0

50440

The work du = (8 — .)I15Xx 144 = 16400

Work in cycle = 34040

Prob. 69.—In the above problem, how much steam must the
boiler have furnisiied ? .364 Ibs.

Prob. 70.—How much steam was in the cylinder at 4, and what
was the value of x; if there was no loss of heat
through or to the cylinder-walls and if 2’=1?

.0812 ibs.; superheated 87°.

Prob. 71.—In problem 68, how much heat must have been taken
up by the cylinder-walls if 2’ =1 and x,=.89?
43.5 BT.U.

If, instead of the exhaust continuing to g, it had
stopped at ¢ of Fig. 24, the above formula will apply
by putting in the corresponding
values of pressures and temperatures,
etc., for the new point a4, and the
amount of work will be reduced by
the area aef, which must be deter-
mined as already shown.

In all engines using vapors, the quantity of heat re-
jected along the line da of Fig. 23, or de of Fig. 24,
is a large proportion of the total heat supplied to an
engine. To use the same working substance over and
over again in an engine, it must be liquefied, pumped
into a boiler, and evaporated again. All the heat re-
jected from the engine less the amount which remains
in the working substance as a liquid cannot be again
utilized for doing work in the same engine. The
quantity of heat which must be supplied to the work-
ing substance for each cycle is therefore the amount

~

Fi1c. 234.
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which must be added to it as a liquid at the tempera-
ture of its discharge from the engine.

Prob. 72,—In Fig. 24, using steam, ifx. =7, m. =1, 2, =1,
m, =.1, P = 100 X 144, pa =15 X 144, fa = 30X 144,
the curves ¢d and ea are rectangular hyperbolas,
how much work is done per cycle and how much
heat is expended if ' = 1?

79080 ft.-Ibs.; goo.s B.T.U.

Prob. 73.—If, having given the data of problem 72, the sub-
stance is anhydrous ammonia, what work is done
and how much heat is expended per cycle ?

48160 ft.-1bs; 550.4 B.T.U.

Prob. 74.—1If, having given the data of problem 72, the substance
is CS,, what is the work done and what the heat ex-
pended per cycle? 15441 ft.-lbs; 146.5 B.T.U.

When the action of the cylinder-walls is taken into
account, the following analysis might be made after
the method of Hirn. Assume that at ¢, Fig. 23, we
have steam with a given proportion of moisture and
that the expansion is a rectangular hyperbola, and
assume further that saturated steam without moisture
has been supplied, which is nearly true, and that the
steam discharged is steam without moisture, which
may or may not be true.

From ¢ to 4 the cylinder-walls must give up heat per
pound equal to

V.
(9. + z4Pa) + p.v. log. 'I/_v: = (7. + %P2,

all the terms of which are known except x,. This
can be calculated from

Vs
x,,s4—|-(1 -_ xd) .016 = m.
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From 4 to a the cylinder-walls must give up heat to
the amount

pa(”d - I,.)
778
— (m 4+ M) (244 xaps).
This is, of course, on the assumption that no heat

is radiated. The amount radiated can be accounted
for and the formula made exactly true.

m(qo+xa u)+ M(?a‘l‘"-)—

Prob. 75.—Suppose we have, Fig. 23, volume 4 =7.2 cubic
feet, volume a =.14 cubic feet, volume ¢ = 1.08
cubic feet; weight steam used = .35 pound; pres-
sure ¢ =100, pressure @ =15; x. = .64, Xa =.9.
What should theoretically be the condition of the
exhaust steam if the boiler supplies steam having
2’ =1, and the expansion curve is a rectangular
hyperbola, assuming no radiation from the cylinder.

The heat received from the boiler less that rejected to
the condenser or air is the work done, as we have
assumed no radiation.

The heat received is M(g. + 7).
The work done is

7.20
1.08
= 27000 ft.-lbs. = 34.7 h. u.

The heat rejected is M(ga+ x.7,) and
Mga + xara) = M(g: + 7o) — 34.7;
o= 35e+7e —ga) — 347

100 X 144 X .94+ 100 X 144 x 1.08 log, 7.06 X 144X 15§

Mr,
_.35(298.1 +883.8—181.3)—34.7 _ 033
.35 X 965.6 ket

showing that under these conditions the exhaust
steam will have 6.7 per cent moisture in it.
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» Prob. 76.—A condensing engine working between 150 and 4
pounds- pressure requires 15 pounds of dry satu-
rated steam per indicated horse-power per hour.
If no heat is radiated from the cylinder, what
must be the average condition of the exhaust ?

x=289.47,.

% Prob. 77.—Draw a diagram showing the quantity of dry satu-
rated steam that must be used per horse-power per
bour in order that the exhaust at 4 pounds pres-
sure may be dry saturated steam, if the steam-
pressure is 80, 100, 120, 140, and 160 pounds per
square inch, there being no radiation,

80 lbs. press. 52.6 lbs. weight.
160 1bs. press. 39.6 Ibs. weight.

UNIv. OF it i1GAN,
JUL 16 1912 .
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