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PREFACE.

The theory of the algebraic functions developed in the following pages is algebraic

in its methods and perfectly general. It holds for any algebraic equation reducible or

irreducible, however complicated its singularities may be and whatever its character

at infinity. The development of the theory may be said to culminate in the comple-

mentary theorem, in Chapter XII, from which theorem a number of well-known theorems

in the theory of the algebraic functions immediately follow as corollaries.

The principles here presented have been in the possession of the writer for some
eight years past and had in fact, in a somewhat different form, already been written

up with a view to publication in the summer of 1898. Other matters however inter-

vened and the work was laid aside for a long period. Since then further interruptions

have occurred, — the theory however has been twice rewritten in the interval and has

probably lost nothing by the delay in publication. The writer has not felt it to be

necessary to go into the theory of the Abelian integrals, his object having been attained

on presenting the purely algebraic side of his subject.

The principle embodied in the statement of the limitation on the orders of coin-

cidence which a reduced form can have simultaneously with the n branches of the

fundamental algebraic equation, is evidently of wider scope than the theory of the

algebraic functions. Also the method of the deformation of a product, or its equivalent,

should find its application elsewhere, for example in the theory of the algebraic num-
bers and in the theory of the algebraic functions of several variables. In the

latter connection the writer might say that he possesses a simple representation of

the branches of an algebraic function of any number of variables in the neighborhood

of a singular manifold and hopes to be able to utilize this representation in combin-

ation with the methods employed in the present volume.

In conclusion the writer desires to express his thanks to Professor Mittag-Leffler

and Professor Phragmen for the interest they have taken in his work. Acknowledge-

ment is also due to the publishers, Messrs Mayer and Muller, for the obliging readi-

ness with which they have always met the wishes of the author.

Toronto, May, 1906.

J. C. FIELDS.
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CHAPTER I.

Introductory.

Reduction of an algebraic equation to an equation of integral algebraic form.

The integral algebraic equation F (z, v) = of degree N in the two variables and of

degree n in the dependent variable v alone. The reduced form of a rational function

of (z, v). The orders of coincidence of a rational function of (z, v) with the n branches

of our equation corresponding to a given value of the independent variable z. The
orders of coincidence jjl 1; . . . \> n of the n branches each with the product of the remain-

ing n — 1 branches.

Being given any algebraic equation

(1) E (z, u)= e v u
v + e^u?-1 + +e =

in which the coefficients are integral rational functions of a variable z it

may happen that a multiple factor is present. Such factor would be de-

tected on applying to E{z,u) and E'u{z, u) the process for finding the greatest

common divisor. Ridding ourselves of the repeated factors so discovered

we obtain an equation which is free of multiple factors and which we shall

find it convenient to write in the form

(2) f(z,u) = u» + fn_1u
n-1

+---+fQ=

where the coefficients / are rational functions of z — integral or fractional.

The least common denominator of these coefficients we shall represent bjT

the letter g.

Fields. 1
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2 CHAPTER I.

Multiplying the left-hand side of equation (2) by g
n and writing v= gu

we obtain an algebraic equation

(3) F(z,v) = vn + Fn_1 v
n~1 +--- + F =

in which the coefficients F are polynomials in z. The degree of this equa-

tion in z and v we shall indicate by the letter N. We shall then have

N>n.
It is with equation (3) that we principally have to do in the present

volume, and as we shall have occasion later on to refer to its constant

coefficients it will be convenient to write it also in the form

(4) F(z,v) = laSit z
svt= 0.

This equation then may be any integral algebraic equation reducible

or irreducible subject only to the condition that it contain no multiple

factor. In the neighborhood of any point in the z-plane it will split up

into n branches whose equations may be written in the form

(5) v-P^O, v-P2
= 0, ... v— P„=

where for a finite point z= a the P's represent series in z— a involving

only positive exponents, integral or fractional, while for the point at oo

they represent series in - involving integral or fractional exponents which

may be either positive or negative, the number of the latter however being

necessarily finite.

The n branches will be made up of a number of simple branches in-

volving only integral exponents and various groups of branches which

constitute complete cycles. In the following there will be no distinction

made between the two kinds of branches, a simple branch being regarded

as constituting by itself a cycle of order 1.

By virtue of equation (3) any rational function of (z, v) may be re-

duced, and that in one way only, to the form

(6) H(z,v) = hn_x v"-
1 + K-2 vn

~2 + + h

where the coefficients h are rational functions of z. This of course is on

the supposition that the reduced form continues to represent the same
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INTRODUCTORY. 6

algebraic function of z as the given form for each of the irreducible fac-

tors of the equation (3) simultaneously, in the case where this equation

is reducible.

When we refer to the reduced form of a rational function of (z, v) it

will always be the form (6) which is meant, and it may be taken for

granted that the functions with which we shall here have to do, have

already been reduced to this form where nothing in the text or formulae

implies the contrary.

We shall speak of the order of a function of (z, v) relative to a branch

v—P= or of the order of coincidence of the function with the branch,

meaning thereby the lowest exponent which presents itself on developing

the function in powers of z— a or -, as the case may be, after substituting

for v from the equation to the branch. The order of coincidence of a

function with a branch can then be either positive or negative, integral

or fractional. Instead of saying the order of coincidence of a function

with a branch it may sometimes be convenient to speak of the order of

coincidence of the branch with the function and we shall employ the two

forms of expression indifferently to denote identically the same thing.

The order of coincidence of a given function with the curve F(z,v) =
for a given value of z we shall define as the smallest order of coincidence

of the function with one of the n corresponding branches of the curve.

The order of coincidence of the function v— P
7c

with the branch

v—Pz
= and that of the function v— Pi with the branch v— Pj

c
= are

the same being both equal to the smallest exponent of z— a or -, as the

case may be, in the difference Pk —Pi. For the sake of brevity then and

without any risk of ambiguity one may speak of the order of coincidence

of the two functions v— Pk and v— Pi or of the order of coincidence of

the two branches v—P
7c
= and v—P

z
= with one another, meaning

thereby the order of coincidence of the function v— Ph with the branch

v— Pi= or that of the function v—Pt
with the branch v—P

7c
= 0.

The order of coincidence of the branch v— Pj
c
= with v—P

;
we shall

indicate by H,i = ^i,k- Its order of coincidence with

www.libtool.com.cn



4 CHAPTER I.

(7) (v-P1 ) ... {v-Pk_x
){v-Pk+l ) ... (v-Pn )

the product namely of the n— 1 factors of F(z,v) conjugate to v—Pk , will

evidently be equal to the sum of its orders of coincidence with the sepa-

rate factors. On indicating this order of coincidence by \s.k we shall have

(8) H= H,i+ '• + H,k-i + H,k+i + + Hn-

The quantities \L
ki z

which here appear are all finite as otherwise we should

have a factor v—Pu (l=\=k), which is identical with v—Pk , in which case

F(z, v) would have a repeated factor contrary to hypothesis.

The orders of coincidence

(9) (Ji, [X2. • • • <J-n

of the several branches of the equation (3) each with the product of the

remaining n— 1 branches are then all finite, and of the order of coinci-

dence y.k corresponding to the branch v—Pk= it may further be said

that it will be an integral multiple of — where vk is the order of the cycle

to which the branch belongs. To prove this it is only necessary to remark

that the order of coincidence of the branch v—Pk= with the product (7)

is made up of the sum of its orders of coincidence with the remaining vk
—

1

branches of the cycle to which it belongs together with its order of coinci-

dence with the product of the other n— vk branches of the curve. The

n— vk branches in question constitute a number of complete cycles and

their product therefore involves no fractional exponents. The order of

coincidence of the branch v— Pk= with this product must then be an

integral multiple of -
, its order of coincidence with each of the branches

of its own cycle is such a multiple of - and its aggregate order of coinci-

dence with the n— 1 factors of the product (7) must therefore also be an

integral multiple of -

.
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CLASSIFICATION OF VALUES OF Z,

CHAPTER II.

Classification of values of z.

The cycles into which the n branches corresponding to a given value of the

variable z group themselves. Three categories of values of the variable z, depending

on the character of the corresponding set of values \t lt ;j 2 ,
... [».„.

We shall now examine a little more closely the nature of the numbers

[I
ft
which have been defined in the chapter preceding, confining ourselves

for the present however to those numbers which correspond to finite val-

ues of the variable z.

Suppose that the n branches of the curve corresponding to the value

z = a group themselves into r cycles having the orders v
x , v2 , . . . vr respect-

ively. To this value of z will correspond r values bt , b 2 , . . • br of v and

these values may or may not happen to be all unequal.

The equations (5) in Chapter I are supposed to represent the n branches

of the curve and of these the equations representing a cycle of the order

v may be written more fully in the form

(1)

= v— b— ae^z— a) v — . . .

i

= v— 6-as
2 (s — ay — . . .

i

= V — b — ae
v (z
— a) v — . . .

where el5 s2 , ... sv are the vth roots of unity. This cycle we shall call an

isolated cycle if its v branches are the only ones of the n branches of

the curve which pass through the point (a, b).
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6 CHAPTER II.

Of the set of n values ^ those corresponding to the several branches

of a cycle are evidently all equal to one another.

First occupying ourselves with the branches of an isolated cycle we

can immediately dispose of the case in which v= 1 that is of the case of

an isolated simple branch. Namely, the order of coincidence of an isolated

simple branch with each of the other n — 1 branches and therefore with

their product is equal to 0. Assuming then in regard to our isolated cycle

that we have v>2 we shall distinguish two cases according as we have

a =|=0 or a= in the equations (1) above. In both these cases we may
say that the order of coincidence of a branch of the cycle with the pro-

duct of the other n—\ branches of the curve is equal to the sum of its

orders of coincidence with the other v — 1 branches" of the cycle, for its

order of coincidence with a branch of another cycle will be equal to 0.

In the former of the two cases just mentioned the order of coinci-

dence of two branches of the cycle with one another will evidently be

equal to - and the sum of the orders of coincidence of one of these

branches with the remaining v — 1 branches of the cycle, and therefore

with the remaining n— 1 branches of the curve, will be equal to , a

value which is <1. In the latter case the order of coincidence of two

branches of the cycle with one another will be >- and the sum of the

orders of coincidence of one of these branches with the remaining v — 1

branches of the cycle, and therefore with the remaining n— 1 branches of

the curve, will be >— - = 2 a value which is >1.

In the former of the two cases under consideration the product of the

v branches (1) will contain a term in z— a to the first power, as will there-

fore also the product of the n branches of the curve when arranged ac-

cording to powers of z— a and v— b. The point (a, b) in this case then

will not be a multiple point on the curve F(z,v) = 0. In the latter of the

two cases however the product of the v branches will contain no such

term of the first order in z— a alone and the terms of lowest order in
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CLASSIFICATION OF VALUES OF Z. 7

2— a and v— b will never have an order which is <2. In this case then

the point (a, b) will be a multiple point on the curve.

This disposes of the isolated cycle in so far as is necessary for our

purpose and we shall now consider the case in which the branches of a

second cycle pass through the point (a, b). The order of this second cycle

we shall indicate by v'.

In the first place assuming v<v' the order of coincidence of a branch

of the first cycle with a branch of the second will be >-; its order of

coincidence therefore with the product of the v' branches of the second

cycle will be >1. Its order of coincidence with the product of the re-

maining v — 1 branches of the first cycle will be > and its order of

coincidence with the product of the other n— 1 branches of the curve will

therefore be >1 H , a value which is >1. Secondly assuming v>v' the

order of coincidence of a branch of the first cycle with a branch of the

second will be >-, its order of coincidence therefore with the product of

the v' branches of the second cycle >- . Its order of coincidence then with

the product of the branches of the second cycle and the remaining v — 1

branches of the first cycle, and therefore its order of coincidence with the

product of the other n— 1 branches of the curve, will be > h- = 1 H

a value which is >1.

The order of coincidence of a branch of a cycle which is not isolated

with the product of the remaining n— 1 branches of the curve is then

always >1. Also the product of the branches of either cycle separately

contains no terms of order <1 in z— a and v — b so that the combined

products of the branches of the two cycles, and therefore the product of

the n branches of the curve, arranged according to powers of 2— a and

v— b, will contain no terms of order <2. The point (a, b) will therefore

in this case be a multiple point on the ctirve.

In accord with the results just obtained, any finite value of z may be
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8 CHAPTER II.

assigned to one of three categories for which the corresponding sets of

orders of coincidence [I are characterized as follows:

A. To z = a correspond n different values of v and therefore n iso-

lated simple branches. The orders of coincidence j^ , . . . jln in this case are

all equal to 0.

B. To z= s correspond less than n different values of v but no mul-

tiple point. The orders of coincidence jlx , ... jJiB will then be all < 1 but

not all of them will be equal to 0.

C To z = a corresponds, among other points, at least one multiple

point. The orders of coincidence p.lt ... £„ in this case will include ones

which are > 1

.

The points of the curve which correspond to a value z = a which be-

longs to the category (A) are neither multiple nor branch points. In the

case of the category (B) they include among them a non-multiple branch

point, and in the case of the category (C) a multiple point which may or

may not happen to be at the same time a branch point. The values of

z belonging to the categories (B) and (C) are finite in number being, as

we know, the roots of the discriminant of the equation F (z, v) = 0.
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METHOD OF DEFORMATION OF A PRODUCT.

CHAPTER III.

Method of deformation of a product.

Proof that it is always possible to construct an integral rational function of (z,v),

in whose reduced form the coefficient of vn
~l

is not divisible by z— a, and whose
orders of coincidence with the n branches corresponding to the value z = a are pre-

cisely the same as those of an arbitrarily assigned integral rational function whose
reduced form is not divisible by z— a. Representation of such function in the form
of a product. Deformation of a product. The orders of coincidence of an integral ra-

tional function which is not divisible by z— a, with the n branches corresponding to

the value z = a, cannot be simultaneously greater than the numbers (j. 1; ... \s.„.

We shall now consider the integral rational functions of (z, v), with a

view to ultimately determining more precisely the nature of the sets of

orders of coincidence which such functions may possess for the n branches

of the curve corresponding to a given value z= a.

Suppose

( 1

)

G (z, v) = gn_x v
n' x + g,^2 v

n-*+---+ g

to be an integral rational function of (z, v) in its reduced form, the coef-

ficients g being therefore polynomials in z. Of the orders of coincidence

of this function with the n branches of the curve corresponding to a fi-

nite value of the independent variable, evidently none can be negative.

For the value z = oo however one at least of the orders of coincidence of

the corresponding branches with the function must be negative unless the

function is everywhere finite, in which case, as is well-known, it must

represent a constant — it may be a different constant — for each of the

irreducible factors of the fundamental equation.

Fields. 9
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iO CHAPTER III.

The effect of multiplication or division by a factor z — a on the orders

of coincidence of a function is evident. Namely on multiplying the func-

tion by this factor its orders of coincidence with the branches correspond-

ing to the value z= a would be each increased by 1, the orders of coinci-

dence corresponding to the other finite values of z would remain unchanged

and its orders of coincidence with the branches at oo would be each de-

creased by 1. The reverse effect would result on dividing by the factor

in question. For the study of the possible sets of orders of coincidence

corresponding to a finite value z = a, which may happen to be offered by

an integral rational function of (z, v), it will then suffice to confine our

considerations to functions G(z,v) in which the coefficients g do not have

the common factor z— a.

Assuming now that we have to do with a given function G(z,v) in

which the coefficients g are not all divisible by z— a, it may or may not

happen that the coefficient g„_ x
is divisible by this factor. In the former

case we shall prove that there always exists an integral rational function

of (z, v) , in whose reduced form the coefficient of v"~* is not divisible by

z— a, and whose orders of coincidence with the n branches corresponding

to the value z = a are precisely the same as the orders of coincidence of

the given function with these branches.

Suppose namely that gn-\ is the first coefficient in G (z, v) which is not

divisible by z— a. Multiplying this function by v^- 1 we obtain

g„^v"+^- 2 + +g11 -\+iV«+g„-iv«- l + ---+g v^- 1
.

Reduced by aid of the equation F(z,v) = 0, this expression will take

the form

r (z,v) = T„-i v
n~l + <rn_2 v

n-2 + • • + to

in which the coefficient -/„_, evidently has the form (z~a)i+g„-\, since the

coefficients gn_u ... gn-\+i are by hypothesis all divisible by z—a.

The multiplication by the factor vl
~ l does not affect the orders of

coincidence with the branches corresponding to the value z = a, unless v = o

is a value of v corresponding to this value of z. In the latter case we may
replace the multiplier v*-~ l by {v— c) l~ l where v= c is not one of the values

of v corresponding to z= a. This multiplier will not affect the orders of
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coincidence corresponding to the value z= a and, like the factor v^- 1
, it will

also evidently give us for coefficient of v
n~l in the reduced form an expres-

sion of the form (z — a)*(+g„-i. The function F (z, v) so obtained is then an

integral rational function of (z, v) in its reduced form, in which the coeffi-

cient of v n~ l
is not divisible by z— a and whose orders of coincidence with

the branches corresponding to the value z= a are precisely the same as

those of the given function.

We have proved, that being given any integral rational function of

(z, v) which in its reduced form is not divisible by z

—

a, we can always

find an integral rational reduced form in which the coefficient of v"
_1

is

not divisible by z— a, and whose orders of coincidence with the several

branches of F(z, v) =0 corresponding to the value z= a are precisely the same

as those of the given function. The study of the possible sets of orders

of coincidence, which an integral rational function of (z, v) may have with

the n branches of the fundamental curve corresponding to a value z = a,

reduces itself then to the consideration of the orders of coincidence of func-

tions of the type G(z,v) in which the coefficient gr„_
t of vn

~l
is not divi-

sible by z

—

a.

A function G(z,v) may be factored in the form

(2) G (z, i;) =gn^ (v- &) (v-Q2) . . . (v- Qn^)

where the Q's are series in powers of z— a. The exponents of z— a which

appear may be integral or fractional, and the factors of the product group

themselves in cycles. Unless gn_ x
be divisible by z— a however none of

the exponents will be negative.

Supposing gn_ x
not to be divisible by z— a, the order of coincidence

of G (z, v) with any branch of the curve F (z, v)= corresponding to the

value z = a, will be equal to the sum of the orders of coincidence of the

n— 1 factors v— Q with the said branch. To determine the possible sets

of orders of coincidence corresponding to a value z= a which may be pre-

sented by a reduced form G(z, v), which is not divisible by z— a, it will

be sufficient then to consider those that may be offered by a product of

the form

(3) (v-Q
l
)(v-Q

?
)...(v-Qn..l ).
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12 CHAPTER in.

With reference to the product (2) we have said that the factors v— Q
group themselves in cycles. It will be convenient for us however in the

consideration of the product (3), not to limit ourselves to the case in

which the factors v— Q constitute a set of complete cycles. In this pro-

duct then we shall simply assume that the Q's represent series in powers

of z— a, integral or fractional — here too we do not exclude the case in

which a finite number of negative exponents may present themselves.

Whether or not the series Q happen to represent algebraic functions is

immaterial for the moment.

The point at oo it is to be understood is not excluded in the reasoning

which follows, and in a product of the form (3) having reference to this

point z — a is of course replaced by - •

We shall now prove that the orders of coincidence of a product of

the form (3) with the n branches of the curve corresponding to a given

value of z cannot simultaneously be greater than the numbers pu ... jii„

respectively as defined in Chapter I, for the value of the variable in

question.

It will be convenient to employ the expression deformation of a pro-

duct to describe the process of replacing in a given product one or more

of its factors by as many new ones. Being given any product of the form

(3) we shall show by a succession of deformations, none of which dimin-

ishes any of the orders of coincidence of the product with the several

branches of the curve corresponding to the value of the variable z in

question, that we may derive another product whose orders of coincidence

with the several branches are not simultaneously greater than the corres-

ponding values in the set of numbers £u ... jj„. It will then follow that

the same holds good in regard to the orders of coincidence of our original

product with the several branches.

To prove our proposition we shall compare the factors of the given

product with factors of the product

(4) F (z, v) = (v- Px ) (
V-P2)...(v- Pn ).

It may be that a factor v— Q of the product (3) has a greater order

of coincidence with a certain factor v—P of the product (4) than with any
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other of the factors of this product. In that case we shall substitute the

factor v— P for the said factor in our product. This substitution does

not diminish the order of coincidence of the product with any of the n

branches of the curve and gives an infinite order of coincidence with the

branch v—P= 0. — In case however the factor v— Q in question has the

same greatest order of coincidence with several of the factors in the pro-

duct (4), we may substitute any arbitrary one of these factors for the

factor v— Q without diminishing any of the orders of coincidence of the

product with the several branches. Suppose namely that the order of

coincidence of the factor v — Q with the branch v—Pk= is at least as

great as its order of coincidence with any of the other n— 1 branches. If

then v—Pi=Q be one of these n— \ branches, it follows that the lowest

exponent in the difference Pi—Q is not greater than the lowest exponent

in the difference Pk — Q, and therefore not greater than the lowest expo-

nent in the difference (Pi—Q) — (Pk — Q)= Pi—Pk . The order of coinci-

dence of the factor v — Q with the branch v— Pi = is then not greater

than the order of coincidence of v— Pk with this branch, and as a conse-

quence the order of coincidence of our product with the branch v— Pt
=0

loses nothing on replacing v — Q by v— Pk in the product.

Substituting then for each of the n— 1 factors v — Q a, factor v —P in

the manner just indicated, the original product (3) will be replaced by a

product of b— 1 factors selected from among the n factors v— P, including

it may be repetitions, and having orders of coincidence with the several

branches which are in no case less than the orders of coincidence of the

original product with these branches.

Of the n factors of the product (4) one at least must be lacking in

the product of »— 1 factors which we have just constructed, and still more

will be lacking if the same factor presents itself more than once among

the n— 1 factors of our product. In the latter case we shall rid our pro-

duct of repeated factors by a further series of deformations. If, namely, a

certain factor v—Pk appears more than once in the product, we shall

replace one of its repetitions by a factor v—P which does not as yet

appear in the product and namely by that one, or if there be several such,

by one of those, with which it has the greatest order of coincidence. This
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14 CHAPTER in.

deformation rids us of one of the repetitions in the product and evidently

does not subtract from the orders of coincidence of the product with any

of the branches, unless it be in the case of ones with which it still retains

infinity as order of coincidence. Not accounting this a diminution, we

may say then that the deformation in question has not diminished any of

the orders of coincidence of the product with the several branches.

By a succession of such deformations we may rid ourselves of all

repeated factors, without diminution in any of the orders of coincidence,

obtaining as the factors of our final product n— 1 different factors of the

product (4). Supposing v—Ps to be the lacking factor in the product this

will have the form

(5) (v-PJ ... (v-P^)(v-Pt+l ) ... (v-Pn ).

The orders of coincidence of this product with all the branches of the

curve excepting v— Ps
= are infinite, and with this branch its order of

coincidence is \ls . Since none of the orders of coincidence with the several

branches has been diminished by the successive deformations in passing

from the original product to the product just considered, it follows that

the order of coincidence of the given product with the branch v —Ps
=

must be < jl,,.

Of any product of the form (3) then we may say, that one at least

among its orders of coincidence with the several branches cannot exceed

the corresponding number in the system y.u jl2 , . . . jL„. In other words the

orders of coincidence of a product of the form (3) with the branches

v— Pi = 0, ... v—PH = 0, cannot simultaneously be greater than the numbers

[I,, ... jx„ respectively.

In particular any rational function of (z,v) of the form

(6) tf*-
1 + h'n_2 v

n~2 + ...+h'

where the coefficients Ji are rational functions of z, can be represented by
a product of the type (3), and its orders of coincidence therefore with the

several branches of the curve corresponding to a given value of the vari-

able z, cannot simultaneously be greater than the respective members of
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the corresponding system of numbers ^ , ... -Im . This holds whether the value

of the variable z in question be finite or infinite.

Since any integral rational function of (z,v), involving vn
~l

, may be

obtained from a function of the form (6) by multiplication with an integral

rational function gn_ x
of z, we conclude that any product of the form (2), and

therefore any function of the form (1) in which g„_ x is not divisible by z— a,

has orders of coincidence with the branches of the curve corresponding to the

finite value z = a, which are not simultaneously greater than the numbers

of the corresponding system p1} . .. £„, It follows then that any function of

the form (1), — that is, that any integral rational function of (z, v) — which

is not divisible by z— a, cannot have orders of coincidence with the branches

of the curve corresponding to the value z= a, which are simultaneously

greater than the numbers of the system ^ , ... y.,„ corresponding to this

value of the variable.
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CHAPTER IV.

Sets of orders of coincidence for a value z = a.

The n branches corresponding to a given value z = a regarded as grouped in r

cycles of orders Vi , . . . vr respectively. The orders of coincidence of an integral rational

function which is not divisible by z— a, with the branches of the several cycles,

cannot simultaneously be greater than the numbers \l
% , ... p* respectively. Construc-

tion of an integral rational function which is not divisible by z— a, which has [as— —

as its order of coincidence with the branches of the cycle of order vs — where a may
have any one of the values 0, 1, . . . v»— 1 — and whose orders of coincidence with

the n— v, branches of the remaining cycles may be as large as we please. The great-

est value of the exponent i which can present itself in a rational function of the form

(z— a)~'G(z,v) in which G(z, v) is a polynomial which is not divisible by z— a, and

where the function is finite for all the branches corresponding to the value z — a , is

the greatest of the integers [m], ... [jxr J

.

We have shewn in the chapter preceding, that a product of the form

(3) has orders of coincidence with the branches v—

P

l
= Q, ...v—P„=

which cannot simultaneously be greater than the corresponding numbers

(I] , . . . (Im respectively. We have further constructed a product of the said

form, namely

(v-PJ ... (v-PZ,)(v-Ps+ ,) ... (v-Pn)

whose orders of coincidence with the several branches are infinite, except-

ing in the case of the branch v— Ps
= with which its order of coincidence

is equal to the corresponding number [I,, The excepted branch may of

course be any one of the n branches.

In what precedes we have been dealing with the individual branches
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of the curve independently of their ordering in cycles. We shall now sup-

pose that the n branches corresponding to a given value of the variable z

group themselves into*r cycles of orders v
1 , ... v,. respectively, and the orders

of coincidence of the individual branches of these cycles, each with the

product of the other n — 1 branches of the curve, we shall indicate by \i. lt

... [v respectively. — That the orders of coincidence of the branches of the

same cycle, each with the product of the remaining n— 1 branches of the

curve, are equal, is evident. — The numbers (ij, ... [a,, repeated v1} ... v,

times respectively will be identical with some arrangement of the numbers

\S.l, ... Jln .

The orders of coincidence of a rational function of (z,v) with the sev-

eral branches of a cycle are the same. From the chapter preceding it

follows that the orders of coincidence of a rational function of the form

(6), with the branches of the several cycles, cannot simultaneously be greater

than the numbers ^ , ... \>.r respectively corresponding to the value of the

variable z in question. Also for a finite value z = a we derive that the

orders of coincidence of a function of the form (1) in the chapter preced-

ing, — that is of an integral rational function of (z,v) which is not divis-

ible by z— a — with the branches of the several cycles cannot simultane-

ously be greater than the corresponding numbers ^ , ... fi.,, respectively.

We have seen that the orders of coincidence of all n branches of the

curve with a prodixct of the form (3) in Chapter III, cannot be indefinitely

great, and in fact that they cannot simultaneously be
_
greater than the

numbers jj.j , . . . jim respectively corresponding to the value of the variable in

question. Further, in formula (5) of that chapter we have constructed a

product of the said form whose orders of coincidence with n— 1 out of the

n branches are infinite, while its order of coincidence with the remaining

branch v—Ps
= is equal to jj.s . We shall now shew that it is possible to

construct a product of the form in question, which at the same time repre-

sents a rational function of (z,v), and whose orders of coincidence with the

branches of an arbitrarily chosen set of r— 1 out of the r cycles are finite

but as large as we may please, while its order of coincidence with the

branches of the other cycle is equal to [i
s , in case this cycle be the one

of order vs.

Fields. 3
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18 CHAPTER IV.

Our lettering of the n branches of the curve has heretofore been arbi-

trary, and we may therefore for the moment assume it to have been so

ordered that the vs branches v—P1
= 0, . . . v—PVs

= Q constitute the cycle

of order v
a . Consider the product of n— 1 factors

(1) (v-P2 ) (v-P3 ) . . . (v-Pv) (v-PVs+1 ) . . . (v-Pn ).

The orders of coincidence of this product with all the branches except-

ing v— Pj = are infinite and with this branch its order of coincidence is \s.
s .

By deformation of the product (1) we shall derive another product

(2) (v- Q2) (v-Q3)...(v- Qv) (v- QVs+1 ) ...(v-Qn )

where the Q's are obtained by discarding terms of higher order in the se-

ries Pi, P3 , ... P„. The Q's in the last n- vs factors namely are obtained

on dropping terms beyond certain orders in the n— vs series P
Vs+\ , ... Pn ,

such orders being taken the same in the case of all the series belonging to

the same cycle. The partial product

(3) R(z,v) = (v-QVs+1)...(v-Qn )

thus arrived at will represent a rational function of (z,v) , for the w— v, se-

ries PVj+1 , . . . Pn constitute a set of complete cycles. The function will fur-

ther be an integral rational function of (z,v) in the case where we have to

do with a finite value of the variable z = a. Also the orders of coincidence

of the function is! (z,v) with the n— v
s branches v—PVs+1

= 0, ... v— P„=
may be made as large as we like, by retaining in the Q's terms of suffi-

ciently high order in z— a or - as the case may be.

The Q's in the vs— 1 factors of the partial product

(4) (v-Qs)...(v-QVt)

we shall suppose to be obtained by retaining terms of sufficiently high or-

der in the v„— 1 series P2 , ... PVg . In the combined system of n— 1 series

Q2 , Q3 ,- •• Qn we shall assume — what is evidently permissible — that

terms of sufficiently high order from the series P2 , P3 , ... Pn have been
retained in order that the order of coincidence of the product (2) with the

branch v—P2 = may be equal to \l
s , and in particular with regard to the
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v
s
— 1 series Qit . . . Qv we shall assume that terms of sufficiently high or-

der from the series P*. ... Pv have been retained in order that the orders of
i

coincidence of the product (2) with the v
5
— 1 branches v—P2

= 0, ... v—Pv =0
may be all greater than |i

s
,

In the product (2) then as we have constructed it, the series Q involve

but a finite number of terms. Its order of coincidence with the branch

v—P1
= is equal to \>,s ; with the branches v—P2

= 0, ... v—P
Vs
= its or-

ders of coincidence are greater than [x
s and may be, for that matter, as

much greater as we please, while its orders of coincidence with the remain-

ing n— vs branches of the curve may also be regarded as indefinitely large.

If the branches of which we have been speaking have reference to a

finite value of the variable z= a, the function represented by the partial

product (4) may evidently be written in the form

B6 {z,v) +B1 (z,v){z— a)
v
s + + Bv _1 {z,v){z— a) v

s

where B (z,v), B1 (z,v), ... B
Vs_1 (z,v) are integral rational functions of (z,v).

If we have to do with the point at oo, it will only be necessary here and

in what immediately follows to replace z— a by-. In this case also the

functions B (z,v), . . . Bv ^(z,v) would be rational but not in general integral.

Substituting R (z,v) and the expression just written for the partial

products (3) and (4) respectively in (2), we obtain as total product an ex-

pression of the form

(5) B(z,v) = {B (z,v) + B1 (z,v){z-a)
v'+ +B

Vs
^(z,v)(z-a)^}. R(z,v).

It is always possible then to construct a function of the form (5) whose

order of coincidence with the branch v— P1
= is equal to [i^, while its

orders of coincidence with the remaining n— 1 branches are as large as we

may please; though so far as regards the v
s
— 1 branches v—P2= 0, . . . v—

P

v
=0

it will be sufficient for our purpose that its orders of coincidence with

these branches be greater than [i
s

,

Kepresenting the v
sth roots of unity by <h

= 1, s
2 j

••• £v
s
construct the v

5

functions
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1 Va — 1

B'(z,v) = {B
liz,v) +Bl (z,v) Sl(z-ah+ +Bv -r{z,v)z\*-\z-a) <}.R{z,v)

1 v4- - 1

.v.-l/

(6)

B"(z,v) = {B {z,v)+Bl
(z,v)e2{z-ays+ +B

Vs
-!(z,v)4* \z—a) v

s }.B(z,v)

Vs-l

^(z,»)={b (z,b)+Bi(z,»)!,
i
(2-o)h •• +b»,-iM<; \z~a)

vs l-^M.
The first of these functions is identical with the function B(z,v) in

(5); the other v
s
— 1 functions are derived from B(z, v) by substituting

s
2{z— a)

vB, ... sv (z— a) v
s respectively for (z— a)

v
s . The effect of such a

substitution on the orders of coincidence of the branches of the cycle

of order v
s is simply to interchange these orders of coincidence with

one another. Supposing then that the function B' (z, v) has [>-s as its

order of coincidence with the branch v—Px
= while its orders of coinci-

dence with the branches v—P2= 0, ... v—i\= are greater than [i
s , the

function BW(z, v) will have the order of coincidence jj.s with that branch
i i

which is derived from v— P l
= 0by substituting sx (z— a) v

s for (z— a) vs, while

its orders of coincidence with the remaining vs— 1 branches of the cycle

will be greater than jj s .

The only one of the v
s
functions B' (z, v) , B" (z,v), ... B(VJ (z, v) whose

order of coincidence with the branch v—P
1
= is equal to (j.s is the first,

and the orders of coincidence of the remaining v
s
— 1 functions with this

branch are all greater than p-s . Any linear combination with constant

multipliers of these v
s functions will then have jj.s as its order of coinci-

dence with the branch v—

P

t
= in case the multiplier of B'(z,v) is other

than 0. Multiplying the functions by £i
s_0

,
4*~ Q

, ••• e
v

s_a respectively and

adding, we obtain such a linear combination

il°-
a
B'{z,v) + t>-°B"(z,v) + +%-°B(-v

°Xz,v).

Giving a any one of the values 0, 1, ... vs
— 1 and substituting for

B'(z,v), B"(z,v), ... B (
'^(z,v) the expressions by which they are defined in

(6), the terms will all disappear with the exception of those involving the

factor (z— a) vs, for we have
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2s^- a +'c = v
s or

11=1

according as t = a or s|= a (mod. v
4 )

.

It follows that

a

v,Bo(z,w)(2— oKiJ(z,«)=8j.-«B'(z>u ) + ... + <%*-<>B lv
']

(z,v)

is a function whose order of coincidence with the branch v—P1
= is equal

to }) s . The order of coincidence of the rational function Bc(z,v) .B(z.v)

with this branch, and therefore also with the remaining v
s
— 1 branches of

the cycle, will be equal to \> s
.

cs

The orders of coincidence of the rational functions

(7) E {z,v).R(z,v), B1(z,v).B(z,v),... Bv -i{z,v).R(z,v)

with the branches of the cycle of order v
s will then have the values

1

v..

respectively. Furthermore with the remaining n— v
s branches of the curve

belonging to the other r— 1 cycles, the orders of coincidence of the func-

tions (7) may be supposed to be as large as we please in virtue of the

factor B(z, v).

On comparing the product (2) with its expression in the form (5), we

see that the term vn
~~l

will be contained in the function B (z, v) . B(z, v)

.

The first of the v
5 functions (7) may then be written in the form

B (z, v) . B(z, v) = v*
1-1 + h'n_2 v

n-2 + + h'

and is therefore expressible as a product of the form (III, 3)*. The coef-

ficients ti are here rational functions of z, and in fact integral rational

functions of z in case we have to do with a finite value of the variable

* We shall find it convenient to refer in this manner to formulae other than those of the

current chapter. Namely we enclose in parentheses the number of the chapter, followed by the

number of the formula.
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z = a. We see then that we can construct a product of the form (III, 3)

representing a rational function of (z, v) and having (i, as its order of coin-

cidence with the branches of the cycle of order v
s , while its orders of coin-

cidence with the branches of the remaining r— 1 cycles are as large as we

may please.

We have just seen that the first of the v
s
functions (7) involves the

term r"~ l

, and we see further that this is the only one of the v
s functions

which involves v to as high a power. On adding this function then to

any one of the remaining v
s
— 1 functions B {z,v).R(z,v) in (7), we obtain

a function

{B«{z,v) + B,(z,v)}.R(z,v)

involving the term vn
~x and having (a

5 as its order of coincidence with

the branches of the cycle of order vs . This function will then have

the form (III, 6) and will therefore be expressible as a product of the

form (III, 3). Also its orders of coincidence with the n— v
s branches

v—Pv +i = 0, ... v— P„= may be supposed to be indefinitely large by

virtue of the factor R(z,v).

The vs functions

(8) B (z,v).R(z,v), {B [zt v) +B 1
(z,v)}.B(z,v),... {Bn[z,v) +Bv -r{z,v)} . R(z,v)

then constitute a set of v
s rational functions of (z, v) each of which is ex-

pressible as a product of the form (III, 3) — or, what is the same thing,

each of which may be written in the form (III, 6) — and of which

the orders of coincidence with the branches of the cycle of order vs have

the values

l v.-l
(*•«» K— ~, •• \>:i

"

s s

respectively, while their orders of coincidence with the branches of the

other r— 1 cycles may be made as large as we like by a proper choice of

the factor R(z,v). If our formulae here have reference to a finite value

z= a of the variable the functions (7) and (8) will be integral functions of

(z, v), for in that case the factors of the product (1) and therefore those

of the product (2) involve no negative powers of z— a, and the same will
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then be true of the product (5) and therefore also of the functions (7)

and (8).

Since the term vn
~l appears in each of the functions (8) none of these

functions is divisible by z— a. We see then that it is always possible to

construct an integral rational function of (z,v) which is not divisible by

z— a and whose order of coincidence with the branches of the cycle of

order v
s is equal to jx

3
— where o may have any one of the values

, 1 , . . . v
s
— 1 — while its orders of coincidence with the branches of the

other r— 1 cycles are as large as we may please.

The results already obtained in this chapter, in so far as they regard

a finite value z = a, may be combined in the one statement. — The orders

of coincidence of an integral rational function of (z,v) which is not divis-

ible by z— a, with the branches of the several cycles, cannot simultane-

ously be greater than the corresponding numbers [% , ... My respectively,

but it is always possible to construct such a function whose orders of

coincidence with the branches of an arbitrarily chosen set of r— 1 out of

the r cycles are as large as we may please, while its order of coincidence

with the branches of the other cycle is equal to \>.s
— -, in case this cycle

be the one of order v„ — where a may have any one of the values

0, 1,... v.-l.

The former of the two theorems here combined might also be stated

in a somewhat modified form as follows: — If the orders of coincidence

of an integral rational function of (z,v) with the branches of the several

cycles are simultaneously equal to or greater than the numbers

1 l

Ml + - , . . . U., + -

respectively, the function must be divisible by z— a. From this it will

follow, that if the orders of coincidence of an integral rational function

of (z, v) with the branches of the several cycles be simultaneously equal

to or greater than the numbers

'j-i + i— 1 + - , . . . mv + i— 1 + -
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respectively, where i is any positive integer, the function must be divis-

ible by (z— a)''.

It may also be noted as a consequence of the two theorems stated

above that the highest possible order of coincidence corresponding to the

value z= a, which an integral rational function G(z, v) which is not divis-

ible by z — a can have with the curve F{z, v) = 0, is the greatest of the

numbers [il5 ... [*,.. From this it follows further that the greatest value of

the exponent i which can occur in a rational fractional function of the

form (z— a)
-

*G (z, v) , which is infinite for none of the branches correspond-

ing to the value z = a and in which the numerator G(z, v) is not divisible

by z — a, is the greatest of the integers [m], ... [(*.,.].

As to the point at oo , we have shewn in the present chapter that the

orders of coincidence of a rational function of the form (III, 6) with the

branches of the several cycles at oo , cannot simultaneously be greater than

the corresponding numbers ^, ... [i,. respectively, but that it is always

possible to construct such a function whose orders of coincidence with the

branches of an arbitrarily chosen set of r— 1 out of the r cycles are as

large as we please, while its order of coincidence with the branches of the

other cycle is equal to jt, — in case this cycle be the one of order vs

— where o may have any one of the values 0, 1, ... vs
— 1. Functions of

(z, v) of this description will not in general be integral and the functions

(8) which we have actually constructed, if expressed in the form (III, 6),

would have coefficients h' consisting of a finite number of terms in powers

of - involving as a rule both positive and negative exponents, since expo-

nents of both characters appear in the factors of the product (1) from

which the functions (8) were derived.

In the reduced form of any rational function of (z, v)

hn_1 v
n-1 + hn_2 v

n-2 + --- + h

we may suppose the coefficients h to be developed in powers of -. Both

positive and negative exponents may present themselves, the number of

the latter however being in any case finite.
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If we have /&„_i=|=0 the function can also be written in the form

(9) •$C

g${v^ + h'n_2 v«-* + --+h'
)

where k may happen to be o or an integer positive or negative, and where

gl-\ is a series which involves only positive powers of - and in which the

constant term is different from 0. Since the factor vn
~x + h'n_2 v

n~2 + + h'

cannot have orders of coincidence with the branches of the several cycles

at oo which are simultaneously greater than the corresponding numbers

(i
x , ... \>.r respectively, it follows that the orders of coincidence of a func-

tion of the form (9) with the branches of the several cycles, cannot simul-

taneously be greater than the numbers ^ + k, ... [v + k respectively.

The orders of coincidence of any rational function of (z, v) then with

the branches of the several cycles at oo , in the case where the function

in its reduced form involves a term hn_^v
n~x

, cannot simultaneously be

greater than the numbers \><l + k, ... pr + k respectively, where k is the small-

est exponent which appears in the development of ~hn_x in powers of -
.

Both in this case and in the case where hn_x=0, further results will be

obtained in Chapter VI in regard to the connection between the form of

a function and its orders of coincidence with the branches at oo.

It may be remarked that it is also possible by direct deformation of

the factors of the product (1) to obtain a set of v
3 products of the form

(III, 3), which represent rational functions of (z, v) and whose orders of

coincidence with the branches of the cycle of order vs are, as in the case

of the functions (7) and (8), equal to

respectively, while their orders of coincidence with the branches of the

other cycles are as large as we may please.

In the case of a finite value z= a, where for the order of one of the

cycles we have vs =l, the cycle in question reduces to a single simple branch,

say v—P1
=0. By what precedes it is then possible to construct an inte-

Fields. 4
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gral rational function of (z, v), — and in fact an integral rational function

which is not divisible by z— a — whose order of coincidence with the

branch v—P^O is just equal to [i
s , while its orders of coincidence with

the remaining n— 1 branches are as large as we may please. We may also

prove that if the orders of coincidence of an integral rational function with

these n— 1 branches are sufficiently large, its order of coincidence with the

branch v— Px
=0 must be >[i

s .

We shall first consider an integral rational function

G(z,v) = gn_l v
n-1 +---+g

in which the coefficient gn_x is not divisible by z— a. This function we

may represent in the form of a product

Q (z, v)= gr„_! (v— Q2) ... (v— #„_!).

The orders of coincidence of the function (z, v) with the several branches

of the curve corresponding to the value z = a will be equal to the orders

of coincidence of the product

(v-Q2)...(v-Qn_1 )

with these branches since gn_x is not divisible by z— a.

Supposing now that the orders of coincidence of this product with the

n— 1 branches v—P2=0,...v—Pn=0 are sufficiently large, it must be

that each one of the n— 1 factors v— Q corresponds to a different one of

these n— 1 branches, in this sense, that it has a higher order of coinci-

dence with this branch than with any other of the n branches of the curve.

If namely the order of coincidence nM of the branch v— Pk
= with the

branch v—P
t
= be the largest order of coincidence of the branch v—P

7c
=0

with any of the other n— 1 branches, it will follow that this branch cannot

have with the product in question an order of coincidence which is > (n— 1) \>.k l}

unless it has with some one factor v— Q at least, an order of coincidence

which is >y% i
and therefore greater than its order of coincidence with any

of the other n— 1 branches. The order of coincidence of the factor v— Q
in question with the branch v— Pk= would then be greater than its order

of coincidence with any of the other n — 1 branches.
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Indicating by m k the number (n— l)(iM just constructed relatively to

the branch v—Pk= 0, we can construct a set of numbers m 2 ,m 3 , ... m n

corresponding to the branches v—P2= 0, v— P3 =0, ...v—P
re
= respec-

tively, such that if the orders of coincidence of the function (z, v) with these

n — 1 branches be simultaneously greater than the numbers m 2 , m 3 , . . . mn

respectively, to each of the branches will correspond a factor v— Q having

with this branch an order of coincidence greater than its order of coinci-

dence with any of the other n— 1 branches. The order of coincidence of

the branch v—P1
= with any one of the factors v— Q will then be equal to

its order of coincidence with the branch v— P = which corresponds to

this factor, and its order of coincidence with the function O {z, v) will

therefore be equal to the sum of its orders of coincidence with the branches

v—

P

2
= 0, ... v— P„= 0. The order of coincidence of the branch v—P1

=
with the function 0(z,v) must then be ji,, for the cycle of order vs=l we

have supposed to be constituted by this single branch.

In the case where the function 0(z, v) has orders of coincidence with

the branches v—P2
= 0,...v—Pn= which are simultaneously greater

than the numbers m 2 , ... mn respectively, and where at the same time the

coefficient gn_1
is not divisible by z— a, it must, as we have just seen,

have \i, as its order of coincidence with the branch v—P1
= d. This will

hold good also in the case where gn_x
is divisible by z— a so long as the

function itself is not divisible by z— a, for in this case adding to the func-

tion G(z,v) an integral rational ftinction of (z,v), whose orders of coinci-

dence with the branches v—P2 =0, ... v—Pn= are simultaneously greater

than the numbers w 2 , . . . mn respectively and in which the coefficient of

vn
~~l

is not divisible by z— a, both the sum and the function added will

be functions of the form already considered, in which the coefficient

of v
,l~l

is not divisible by z— a and whose orders of coincidence with the

n — 1 branches v—P2
= , ... v—Pn= are simultaneously greater than the

numbers m 2 , ... mn respectively. The orders of coincidence of the sum and

of the function added, with the branch v—Pt
= , must then be both equal

to \t.
s , and therefore the order of coincidence of the sum less the function

added, that is the order of coincidence of the original function 0(z,v) with

the branch in question, must be > fis
. In all cases then the order of coin-
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cidence of an integral rational function G (z, v) with the branch v—P
x
= is > \>.t

when its orders of coincidence with the branches v—P2= 0, ... v— ^,,=
are greater than the numbers m 2 , . . . mn respectively, and in case the

function is not divisible by z— a its order of coincidence with the branch

v— P
1
= will be \ls , since its orders of coincidence with the branches of

the several cycles cannot in such case be simultaneously greater than the

numbers \>.u ... pn , which by the definition of the numbers m they all are

with the exception of the order of coincidence with the branch v—P1
=0.

Still supposing the branch v—P1
= to be a simple branch, the like

reasoning would evidently also suffice to prove that its order of coincidence

with an integral rational function G(z,v) must be >^s , if this function have

sufficiently large orders of coincidence with all the other branches which

pass through the same point of the fundamental curve as the branch

v—P
1
= 0. If namely the equations v—P1 =0, v—P2 =0, . .. v = Pk=

represent all the branches of the curve passing through a point (a,b),

and if the orders of coincidence of the function G(z, v) with the branches

v— -P2= 0, ... v—Pk= be greater than the respective numbers m 2 , ... m k

constructed relatively to these branches, its order of coincidence with the

branch v— P
1
= will certainly be >iv Also in case the function G(z,v)

be not divisible by the factor z— a its order of coincidence with the branch

v— P
1= will be just =\i

s , for this is evidently the case if the coefficient

of v"-1 in G(z,v) be not divisible by z— a, and if this coefficient be divis-

ible by z— a it is nevertheless possible, as we have seen in Chapter III, to

construct an integral rational function which possesses precisely the same
orders of coincidence with the n branches corresponding to the value z= a
and in which the coefficient of v 11'1

is not divisible by z— a.
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CHAPTER V.

Adjoint orders of coincidence.

Adjoint orders of coincidence. Construction of a rational function possessing any
assigned set of adjoint orders of coincidence corresponding to a given value of the

variable z. Definition of an adjoint function. F'
v

(z, v) an adjoint function. A rational

function which is adjoint for all finite values of z is necessarily integral. Every
coincidence of an integral rational function with the branches of a cycle corresponding

to a finite value of z, over and above the coincidences requisite to adjointness, im-

poses an extra condition on the coefficients of the function. Every extra coincidence

with the branches of a cycle corresponding to the value z = o° of a rational function

of degree JV— 1, assumed to be adjoint relatively to the value z = oo, imposes an
extra condition on the coefficients of the function.

The set of functions (7) in the last chapter has been constructed with

reference to some particular one of the cycles corresponding to a given

value of z. Such a set of functions might be constructed for each of the

cycles corresponding to the value of the variable in question.

Suppose a system of r such sets of functions, each corresponding to a
r

different cycle, to be constituted by the following2 v
s
= n functions :

—
s=l

f.B1>0(z,t;)..S 1 (z,t;), Bhl{z,v) . Bx{z,v) , ... BhVl -i(z,v) .R^v)
B

2i
{z,v) . B2{z,v), B2A{z,v) . B2(z,v), . . . B2

, Vi -i(z,v) . B2{z, v)

(1) Bs>0{z,v) . Rs(z,v), Bs>1(z,v) . Bs{z,v), .

.

. Bt ,v -i{z,v) . Bs{z,v)

Br>0{z,v).Br(z,v), BrA{z,v).Br{z,v), ... Br
, Vr-i(z,v) .Br{z,v)
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Here the v
s functions in the sth row are supposed to have reference to

the cycle of order v
s , and their orders of coincidence with any branch of

this cycle are assumed to have the values

_1
]

vs -i

respectively, while their orders of coincidence with the branches of the

other cycles may be assumed to have values which are greater than a set

of arbitrarily assigned values, by virtue of our choice of the factor Bs (z,v).

Any function Bsrj {z,v) . Bs(z, v) in the above system then is supposed to have

p.s as order of coincidence with the branches of the cycle of order v
s ,

while its orders of coincidence with the branches of the other cycles are

indefinitely large.

By the aid of the system of functions (1) we shall now be able to

construct a rational function of (z, v) — and, in case the system have refer-

ence to a finite value of the variable z, an integral rational function of

(z, v) — whose orders of coincidence with the branches of the several cycles

have the values

Vi v2 vr

respectively, where n
l , w 2 , ... n r may be any given integers, subject only

to the condition that the values (2) be not less than the respective numbers

(3) (ii-1+i, H-l+K ... V-r— l+ u
--

Vi V2 Vr

If the numbers (3) have reference to a finite value of the variable z

none of them will be negative. The same will then be true of the numbers

(2) also. If however we have to do with the point at oo negative values

may happen to present themselves, both among the numbers in (3) and

among those in (2). In both these cases too the value may occur, and

in fact for finite values of the variable z other than those belonging to the

category (C), the numbers (3) will all be equal to 0.

The numbers m, ... \>.r , as we have already seen in Chapter I, are inte-

gral multiples of -, . . .
-- respectively, and the orders of coincidence (2)

may therefore be expressed in the form
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™1 + t*l—!r> W 2 + ^2
—

-?, . . . «ly + ft.—J1

Vi V2 Vr

where the numbers m are positive integers or zero and where the numbers

<3
S are to be found among the vs integers 0,1, ... vs

— 1.

To construct a function possessing the orders of coincidence in ques-

tion, select the r functions

(4) Bi l<Sl
(z,v) . R^{z,v) ,B2,„2

(z,v) . R2 {z,v), ... Bri <,
r
(z,v).Rr(z,v)

out of the r rows in (1), and multiply these functions by the respective

factors

\{z— a)
m\\{z—a)"*, ... \{z— a)

mr

where \ , . . . \r are constants which are different from 0. Adding the r

products we obtain as sum

(5) Mz-«r BhGl (z,v) . R1(z,v) + + K(z-a)mrBr, Gr
(z,v) . Rr (z,v).

The order of coincidence of the sth element in this sum with the

branches of the cycle of order v
s is m s + \>.s

s
. Its orders of coincidence

with the branches of the other r— 1 cycles may at the same time be as-

sumed to be greater than a given set of arbitrary numbers, this only re-

quiring a proper choice of the factor Rs (z, v) as appears from Chapter

IV. Suppose then, that for each of the values 5 = 1, 2, ... r the factor

Rs (z, v) has been so constructed, that the function

(z-a)m°Bs,<s
(z,v).Rs (z,v)

has, as its orders of coincidence with the branches of the several cycles,

the following

(6) m 1 + [*!—~ + , w 2 + [a
2
—J + , ... m +P — aJ ... m +v. —J +

v
l

v2 v
s

vr

where the symbol + attached to any number denotes that the correspond-

ing order of coincidence is greater than the indicated number. Here the

5th number in (6) is the only one to which the symbol does not find itself

attached.

The several elements of the sum in (5) then have orders of coincidence

with the branches of the cycle of order v
s which are greater than the num.-
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ber m, + jj-s
—

-, with the exception of the -sth element whose order of coin-

cidence with the branches of the cycle in question is precisely this number.

The number m s + \l
s
—i is therefore the order of coincidence of the sum

(5) with the branches of the cycle of order vs . Since this is true for the r

values s=l,2, ... r, it follows that the sum (5) represents a rational func-

tion of (z,v) whose orders of coincidence with the branches of the cycles

of orders v
1} ... vr respectively are given by the numbers

mi + Pi— J, w 2 + i4 — J. ... m T + iv— t
1
.

v
l

y2 vr

This function then has as its orders of coincidence with the branches of

the r cycles the required set of values (2).

A function whose orders of coincidence with the branches of the several

cycles corresponding to a given value of the variable z are equal to or

greater than the corresponding numbers in the system (3) belonging to this

value of the variable, we shall say is adjoint to the fundamental curve

F(z,v) = for the value of the variable in question, and such a set of or-

ders of coincidence we shall call a set of adjoint orders of coincidence.

Also of an individual branch we shall say that its order of coincidence

with a function is adjoint, if such order of coincidence happens to be equal

to or greater than the corresponding number y.— 1 + -. This is intended to

define our use of the word adjoint not only for any finite value of the

variable z, but also for the value z=oo.

We shall find it convenient at times to make use of the word extra-

adjoint, to designate an order of coincidence which is equal to or greater

than the number (j. corresponding to the branch in question. A function

would then be said to possess a set of extraadjoint orders of coincidence

for a given value of the variable z, if its orders of coincidence with the

branches of the several cycles were simultaneously equal to or greater than

the corresponding numbers ^, ... ft, respectively. An extraadjoint order of

coincidence is of course always also an adjoint order of coincidence. A
distinction between adjoint and extraadjoint orders of coincidence exists
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only in the case of a branch which belongs to a cycle of order v > 1 , for

in this case only do ^e have n.=|=[i— 1 + -. For a simple branch then the

terms adjoint and extraadjoint are synonymous.

It may happen that the same function possesses the property of

adjointness for every value of the variable z. For example F'v (z, v) is such

a function, as can readily be shewn. — Namely, on taking the partial

derivative with regard to v of F (z, v) as represented in (III, 4), we obtain

(7) no*, »)=(»-*!)... (
v-M^V; + --- + ^pJ

and on substituting in this expression v= Ps , we get the same result as on

making this substitution in the product

(v-PJ ... (v-Ps^)(v-Ps+1 ) ... (v-Pn).

The order of coincidence of this product with the branch v—Ps=0 is

equal to jl, as we have seen in Chapter I, and this will therefore also be

the order of coincidence of the function F'v (z, v) with the branch in question.

The orders of coincidence of the function F'v (z, v) with the branches

v—P1
= 0, ... v—Pn= respectively will then be equal to (t1? ... \L„, and

its orders of coincidence with the branches of the several cycles into which

these n branches group themselves will consequently have the values

m , ... ;jy . The orders of coincidence of the function F'v (z, v) are therefore

extraadjoint for the value of z to which the product (III, 4) corresponds.

To every value of z however corresponds a representation of F (z, v) in the

form of such a product, and the function F'v (z,v) is therefore extraadjoint

to the curve F(z,v)=0 for every value of z — the value z=oo included.

It is then also adjoint to the curve for all values of the variable z.

If we define an extraadjoint function as one which possesses a set of

extraadjoint orders of coincidence for every value of the variable z the

function F'v (z, v) will be an extraadjoint function, and to a constant factor

the only extraadjoint function, for the quotient of any extraadjoint function

by F'v (z, v) would be nowhere infinite and would therefore be a constant*.

* The constant might of course have a different value for each of the irreducible equations

included in the fundamental algebraic equation in the case where this equation is reducible.

Fields. 5
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A function which is adjoint to the curve for all values of the variable z

we shall call an adjoint function. The function F'v (z,v) is then also an

adjoint function. This function, it may be remarked, is integral in (z,v),

and the same will be true of any rational function of (z, v) which is an

adjoint function. In fact, in its reduced form, any rational function of

(z, v) which is adjoint for all finite values of z must be integral.

To prove the statement just made consider any function in its reduced

form. It mav be written as a fraction —-rp- where the numerator is an
9 (*)

integral function of (z, v) and the denominator an integral function of 2,

and where further G(z, v) and g(z) have no factor in common. Supposing

g (z) to be other than a constant it will contain some factor z— a. The

function (z, v) is not divisible by this factor, and its orders of coincidence

with the branches of the several cycles corresponding to the value z = a

therefore cannot simultaneously be greater than the corresponding num-

bers [j-j , . . . (j.r respectively. The orders of coincidence of the function

,\ with the branches of the several cycles then cannot simultaneously

be greater than the numbers ^— 1 , ... y.r
— 1 respectively. Its order of

coincidence with the branches of at least one of the cycles must therefore

be less than the number of the system (3) corresponding to this cycle.

The function under consideration is consequently not adjoint for tin

value 2 = a.

If then the denominator g(z) of the function
r

, , be other than a
9 (z)

constant, there will be some finite value of z for which the function is not

adjoint. It follows that a rational function of (z,v) which is adjoint for

all finite values of z, must at the same time be an integral function of

these variables.

The converse of the last statement is in so far true that we may say,

that any integral function of (z, v) is adjoint for all values of z belonging

to the categories (A) and (B) of Chapter II, for the numbers (3) corre-

sponding to any such value of 2 are all equal to and the orders of

coincidence of an integral function with branches corresponding to a finite

value of 2 are never less than 0. For a value 2 = a belonging to the cate-
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gory (A) namely, we have r= n, j> 1
=

(
i 2
= . . , = [t

r
= 0, v,,=v2

= . . . =vr
= l

and the numbers in (3) are all of the type 0—1 + 1 = 0. For a value of

z belonging to the category (B) we have r<n and the numbers in (3)

which are not of the type just mentioned are nevertheless of the type

v — 1 1— l+-=0, for as we have seen in Chapter II the order of coincidence

of a branch of a cycle of order v with the product of the other n— 1

branches is equal to in case the cycle does not correspond to a mul-

tiple point.

To say then that a rational function of (z, v) is adjoint for all finite

values of z is equivalent to saying that it is integral and adjoint for all

values of z belonging to the category (C), that is for all values of z to

which correspond multiple points.

For a value of z belonging to the category (C) the corresponding

numbers jj.j , . . . \>,r are not all less than 1, and among the numbers (3)

therefore there will be one at least which is greater than 0.

The number of values of z belonging to the category (C) is as we

know, finite, and the number of conditions to which we must subject the

undetermined coefficients of an integral rational function of (z, v) in order

that it may be adjoint for one of these values is also finite. The number

of conditions necessary to adjointness for all the values of z belonging to the

category (C) then is finite, and the number of linearly independent rational

functions of (z, v) which are adjoint for all finite values of the variable z

will therefore be infinite. The number of linearly independent rational

adjoint functions is however finite, and more generally the number of

linearly independent integral rational functions of (z,v) which are adjoint

for the value z = qo is finite as we shall see in chapter VI, for we shall

there shew that the degree of such a function is <iV— 1.

Returning to the consideration of the function (5) — supposed to be

constructed with reference to a finite value of the variable z= a — we see

that it is an integral function of (z, v), for the exponents m lt ... w r are

zero or positive and the factors Bs^a (z,v). Rs (z,v) appearing in the indi-

vidual elements of the sum are integral, as we have seen in Chapter IV.

We have shewn that it is always possible for a given value of the variable
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to construct a function of the form (5), having as its orders of coincidence

with the branches of the corresponding cycles an arbitrary set of adjoint

orders of coincidence.

Let us now build an integral rational function of (z, v)

gn-iv"-
1 + gn_2 v'

1
-2 + +g

in which the polynomials g are of sufficiently high degree in z, their con-

stant coefficients also being arbitrary. First subject these arbitrary constant

coefficients to the conditions necessary to the adjointness of the function

for a given finite value of z. The number of siich necessary conditions for

adjointness we shall indicate by the letter A. Now subject the coefficients

to the still further conditions implied in the function having as its orders

of coincidence for the value of the variable in question, the set of adjoint

orders of coincidence

n
x
n2 nr

From the set of orders of coincidence necessary to adjointness, to the

set of adjoint orders of coincidence in question, we may pass by a series

of steps each individual one of which involves an addition to the order of

coincidence of the function with the branches of one and of only one of

the cycles, the addition to the order of coincidence being — in case the

cycle in question be the one of order v, . That this is possible follows from

the fact that we can construct an integral rational function of (z, v), having

as its orders of coincidence with the branches of the cycles corresponding

to a given value of the variable z an arbitrary set of adjoint orders of

coincidence.

Every step in the process just described implies a further condition on

the coefficients of the function, and only one further condition as is evi-

dent, for the order of coincidence of a rational function of (z,v) with the

branches of a cycle of order v
s is always measured by an integral multiple of

-• The number of independent conditions to which the coefficients of an
's

arbitrary integral rational function of (z,v) must be subjected, in order
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that it may have as its orders of coincidence with the branches of the

several cycles corresponding to the finite value of the variable z= a the

set of adjoint orders of coincidence here in question, is therefore equal to

^ + ^-h + 1 _i) h+ .... + (6_ f, + 1 _i) v

or we may say that the number of independent conditions which must be

satisfied by the coefficients of the function, in order that it may have as

its orders of coincidence with the branches of the several cycles a certain

set of adjoint orders of coincidence \i\, ... p.'
r , is equal to

(8) ^ +
(

(

,'
1
_p.1+ i_I) Vl + .... + (^_.^ + i_l) Vr .

What the number A is will be determined later on.

If instead of a finite value of the variable it were the value z = oo

with which we had to do, we should have instead of (5) an expression of

the form

(9) X
i(i)'"'

£i »A*,v)'rl (z,v) + -~-+K(\)
mr
Pr,or

{z,v). Pr(z,v)

having as its orders of coincidence with the branches of the several cycles

at oo an arbitrary set of adjoint orders of coincidence (2), the numbers and

functions here in question being supposed of course to be defined or con-

structed, as the case may be, with reference to the value z=oo.

The function (9) will not in general be integral in (z, v), for the expo-

nents m are positive or zero and the functions Bit<s (z, v). Fs(z,v) construct-

ed with reference to the value z = oo will as a rule involve both positive

and negative powers of - . Also the number of powers of - of both descrip-

tions which occur in the expression of these particular functions, as we have

constructed them, is finite.

It will be convenient for us to here anticipate the results of the chap-

ter following, in order that we may include in the conclusions of the present

chapter the value z= oo as well as the finite values of the variable. In

Chapter VI namely, it will be proved that the degree of a rational function
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of (z, v) which is adjoint for the value z = oo cannot be greater than iV— 1.

The degree of a function, it is to be here understood, has reference to the

function in its reduced form and is supposed to be defined not only for

integral rational functions of (z, v) but also for non-integral functions of

the variables. If, namely, a function of the form

h n_1h
n-1

+J> n_2v
n-2+--+h

be not integral we assume that the coefficients h have been developed

according to powers of - and the degree of the function is then defined,

as in the case of an integral function, by the sum of the exponents of z

and v in the term or terms of highest order in these variables.

A rational function of (z,v) of degree N— l may be written in the form

(10) z^O^^h,^"' 1 + K-2
n-2 + ••• +h

where in the function #(-,?;) the coefficients of the several powers of v,

supposed to be developed according to powers of -, involve no negative

exponents, and in fact no exponents which are less than the exponents of

the powers of v which they multiply. Under this form then will be in-

cluded, among others, all rational functions of (z,v) which are adjoint for

the value z= oo.

The statement just made is of course to be accepted only provisionally,

on the understanding that we are to supply in the following chapter, a

proof of the proposition that the degree of a rational function of (z,v)

which is adjoint for the value z=oo cannot be greater than N—l. The

function (9) we have supposed to be adjoint for this value of z and it will

therefore be included in the form (10).

Consider the general function of the form (10), that is the general ra-

tional function of (z,v) of degree N— l. We shall suppose the coefficients

h to be developed according to powers of -. The constant coefficients of

these powers of - we may assume to be arbitrary up to terms of as high

an order as we please. Assuming to begin with that the coefficients are
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arbitrary for all terms up to ones of sufficiently high order in - for the

purpose which we have in view, — namely for the purpose of determining

in the most general case the number of conditions which must be satisfied

by the constant coefficients in a rational function of degree N— 1, in or-

der that it may have a certain set of adjoint numbers as its orders of

coincidence with the branches of the several cycles corresponding to the

value z= oo — we shall first subject these coefficients to the conditions

just necessary for the adjointness of the function relative to the value

2=00. The as yet undetermined number of such conditions of adjointness

we shall indicate by the letter A.

We shall now subject the coefficients to the still further conditions

implied in the function having as its orders of coincidence for the value

z = oo, a certain set of adjoint numbers

Vi
' v 2

' '
vr

'

From the set of orders of coincidence necessary to adjointness to the

set of adjoint orders of coincidence in question, we may pass by a series

of steps each individual one of which involves an addition to the order of

coincidence of the function with the branches of one and of only one of

the cycles, the addition to the order of coincidence being — in case the

cycle in question be the one of order V That this is possible follows from

the fact that we can construct a function of the form (9), and therefore

one of the form (10), having as its orders of coincidence with the branches

of the cycles corresponding to the value z=» an arbitrary set of adjoint

orders of coincidence.

Each step in the process just described will imply one and only one

extra condition on the coefficients of the function. The number of extra

conditions implied in passing from the set of orders of coincidence just re-

quisite to adjointness to the set of adjoint orders of coincidence here in

question, will therefore be given by the sum

(?-'. +i4H^ +1 4)-- + - +(^ +14) v_
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The total number of independent conditions to which the constant coeffi-

cients in an arbitrary function of the form (10) must be subjected, in or-

der that it may have as its orders of coincidence with the branches of the

several cycles corresponding to the value z=oo the set of adjoint orders of

coincidence (2), will then be equal to

where we intend the letter A to have the meaning which has just been

attached to it, and where the other symbols also are supposed of course

to be defined with reference to the value z=oo.

Making use of the notation (j-'i,^, . . .
p'

r , instead of that employed

above, to indicate an arbitrary set of adjoint orders of coincidence corre-

sponding to the value z = oo, the expression just obtained assumes the form

(8). The form (8) then may be regarded as having reference to any given

value of the variable z, the value z = oo included, the symbols involved in

the form being supposed in each case to be defined with reference to the

particular value of the variable under consideration.

If we have to do with a given finite value of the variable z the sym-

bol A, as we have seen, indicates the number of conditions just sufficient

to the adjointness of an integral rational function of (z,v) for the particu-

lar value of z in question, while the whole expression (8) gives the number

of independent conditions which must be satisfied by its coefficients, in

order that it may have as its orders of coincidence with the branches of

the corresponding cycles the set of adjoint orders of coincidence \l\. ja'2) . . . v-'r ,

supposed to be defined for the value of z under consideration. If z = oo

is the value of the variable to which the expression (8) is supposed to

have reference, the letter A indicates the number of independent conditions

just sufficient to the adjointness of a function of the form (10), that is of

a function of degree N— 1, for the value of z in question; while the whole

expression (8) gives the number of independent conditions which must be

satisfied by its coefficients, in order that it may have as its orders of

coincidence with the branches of the corresponding cycles the set of adjoint

orders of coincidence \t,\,\L 2 , ... ^r , supposed to be defined for the value

Z= oo.
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We have seen that every coincidence of an integral rational function

with the branches of a cycle corresponding to a finite value z= a, over and

above the coincidences requisite to adjointness, imposes an extra condition

on the coefficients of the function. Indicate, as before, by A, the number
of conditions requisite to the adjointness of a sufficiently general integral

rational function. Over and above the coincidences requisite to adjointness

impose B further coincidences on the function. In all we thus subject the

coefficients of the function to A + B independent conditions. Now suppose

the branch v— P
1
= to be a simple branch. Suppose also that the B

additional adjoint coincidences here in question have reference to the %— 1

branches v—

P

2
= 0, ... v—P„= and indicate by A' the number of condi-

tions requisite to the adjointness of an integral rational function relative

to these n— 1 branches alone. If now we impose on an integral rational

function the coincidences requisite to adjointness relative to the n— 1

branches v—P2= 0, ... v—P„= 0, and over and above these coincidences the

B additional adjoint coincidences here in question, we subject its coeffi-

cients in all to A' + B independent conditions. If however B is a suffici-

ently large number and if we attribute to each of the cycles, whose branches

are included among the n—1 branches v—P2
= 0,...v—Pn= 0, a suffi-

cient number of the B coincidences, we know from the preceding chapter

that the order of coincidence of the integral rational function with the

branch v—P1
= must also be adjoint. It follows that the A' +B conditions

requisite to adjointness relative to then— 1 branches v—P2= 0, ... v—Pn=
and to the possession of the B additional adjoint coincidences here in

question, suffice also to insure adjointness, relative to the n branches

v—P1
= 0, ...v— Pm = together with the possession of the B additional

adjoint coincidences.

It follows that we must have A' + B= A + B and therefore also A' = A,

The number of conditions requisite to the adjointness of an integral ratio-

nal function of (z,v) relative to then— 1 branches v—P2
= 0, ... v—Pn= 0,

is then the same as the number of conditions requisite to adjointness rela-

tive to all n branches v—Px
= 0, ... v—Pn -=0. From this it follows that

if an integral rational function of (z,v) have adjoint orders of coincidence

with all the branches corresponding to a given finite value z= a save with

Fields. 6
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a single simple branch, its order of coincidence with this simple branch

must also be adjoint. In the statement of this proposition it is evidently

not necessary to retain the word simple, since if the order of coincidence

of a rational function with one branch of a cycle be adjoint its order of

coincidence with any other branch of the cycle must also be adjoint, for

the orders of coincidence of a rational function with the branches of a

cycle must all be the same. We may then say that if an integral rational

function of (z, v) have adjoint orders of coincidence with all the branches

corresponding to a given finite value z = a excepting with a single branch,

its order of coincidence with this branch must also be adjoint.

We might add that an integral rational function of (z, v) which posses-

ses extraadjoint orders of coincidence with n — 1 out of the n branches

corresponding to a finite value z= a, must also possess an extraadjoint

order of coincidence with the remaining branch. For in the case of a simple

branch there is no distinction between adjoint and extraadjoint orders of

coincidence, and in any other case the orders of coincidence of a rational

function with the several branches of a cycle are the same.
i i_

If G((z— a)v ,v) be an integral rational function of (z— a) v and v whose

orders of coincidence with all but one of the n branches corresponding to

the value z = a are extraadjoint, its order of coincidence with the remain-

ing branch will also be extraadjoint. To see this it is only necessary to
i i

write (z— a) v = <; when our function G((z—a)v ,v) becomes an integral ratio-

nal function of (?,V), whose orders of coincidence with all but one of the

branches of the transformed fundamental equation corresponding to the

value s= are extraadjoint, and whose order of coincidence with the re-

maining branch must therefore also be extraadjoint. The truth of our
i

theorem is then evident on retransforming to terms of (z—a) v
.
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CHAPTER VI.

Degree of function as related to orders of coincidence at oo.

Connection between the degree of a rational function and its orders of coinci-

dence with the branches at oo. In a rational function which is adjoint relatively to

the value z=<x> the degree of the element involving vn
~~1 is <w— 1 and the degree of

the function itself is <2V— 1.

We have defined the degree of a rational function of (z,v) as the sum

of the exponents of z and v in the term or terms of highest order in

these variables which appear in the expression of the function in its re-

duced form, the coefficients of the powers of v being supposed to be devel-

oped according to powers of -. The same definition we may assume to

apply also in the case of functions of (z,v) possessing a reduced form in

which the coefficients of the powers of v involve irrationalities, and where

in their development according to powers of - fractional exponents may

happen to present themselves. The definition does not exclude the pres-

ence of fractional powers of v though such powers will not appear in the

functions with which we are going to occupy , ourselves.

We shall now seek to determine a connection between the degree of

a function and its orders of coincidence with the branches at oo. The

cycles at oo we shall suppose to be r in number, of orders vlt ... vr respec-

tively, and the symbols ^ , ... \>.r will be defined as heretofore.

In one respect it will be convenient to modify our previous notation

for the purposes of the present chapter.. We shall have namely to do with
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products of the type (III, 3) constructed with reference to the value z=oo,

and products of this description we shall here represent in the form

(1) ^H))HH)}-4v - z Q„ i
a

l

where the series Q — in case they do not happen to be identically equal

to — commence with a constant term which is different from and

where the exponents (3 may happen to be positive or negative, integral or

fractional.

The function F (z,v) too we shall write in the form

(2) F(Z,V) -[tf-za.P^l) »-Z-P2g)
V—

2

W«P,

instead of employing the representation given in (III, 4). Here the series

P, like the series Q, are supposed to commence with a constant term which

is different from 0.

We shall assume that the elements of the two sets of exponents

?'i, ?'>, . . . ?n_ t
and ?!, ?

2 , ... *,. as they stand, are arranged in order of ascend-

ing magnitude, .not excluding of course the possibility that several succes-

sive elements of either series may happen to be equal to one another.

The numbers of elements of the P-set and of the a-set which are ^1
we shall indicate by t and s respectively. The P's which are > 1 will then

be pm , ... ?„_, and the degree of the function represented by the product

(1) will evidently be equal to

(3) * + P«+l +P*+2 +

The a's which are >1 will be as+l ,

tion F (z,v) will therefore be equal to

rj
-

n and the degree N of the func-

+ *„s + as+1 + as+2 +

As in Chapter I we shall indicate the order of coincidence of the two

factors v—z"kPk [-\ and v— z'hPA-j with each other by the symbol )t.k>l and

the orders of coincidence of the factors
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v-z^P^, v-z^P2$, ...v-vP^l)

each with the product of the other n— 1 factors, we shall indicate by

r>-l> (J-2> • • • [*<»•

We shall now suppose that we have to do with a product of the form

(1) whose orders of coincidence with the several branches of the curve are

simultaneously greater than ^.1
— X, jl2

— X, ... ^n
— X respectively, where X is

any given positive number, and we shall determine a limit for the degree

of a function which can be represented by such a product. That the num-

ber X cannot be zero or negative, follows from the fact that a product of

the form (1) cannot have orders of coincidence with the several branches

of the curve which are simultaneously greater than the numbers j^, ... jj.„

respectively.

Comparing the factors of the product (1) with those of the product (2), it

may be that a number of the exponents p are equal to a number of the expo-

nents a, and it may further happen that Q's and P's corresponding to such equal

exponents coincide in a number of their coefficients. In any case there will

be at least one value which occurs more frequently among the a's than among

the p's, for the latter exponents are in the aggregate one less in number

than the former.

We shall distinguish two cases: —
I. The smallest value which occurs more frequently among the a's

than among the p's is >1.

II. Of the values which occur more frequently among the a's than

among the p's one at least is <1.

For the present confining our attention to the former of the two cases,

we shall suppose that the said smallest value occurs q times among the

exponents a and r (<q) times among the exponents p. The latest element

in the set of exponents au ... a„ which has this value we shall indicate by

%, and the number of elements of the set p l5 ... p„_! which are not greater

than this value we shall indicate by t. The elements <x _ 2+1 , a _ 2+2 , ... a

and pT _,.+1 , pT _,.+2 , ... pT will then be the aggregate of those which have

this value in the two sets of exponents.

In the product (1) replace each one of the r factors
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[,-.-*-..
^.(j)]....[.-^(J)]

by that one of the q factors

[.-.-. ft-,+ .(j)]....h=^e)]

with which its order of coincidence is greatest. This deformation of the

product (1) makes no alteration in the values of the set of exponents p

and evidently also does not diminish the order of coincidence of the pro-

duct with any one of the n branches. It may be that certain of the q

factors v—z"Pl-\ here in question have been repeated in the deformation.

In that case we replace a repeated factor by one of the q factors which

has not as yet been substituted and namely by that one — or by one of

those — with which it has the greatest order of coincidence. If repeated

factors still remain we replace them in like manner successively by others

of the q factors which do not as yet appear, until finally for the r factors

v— zPQl
-J

of the original product we have substituted r different ones from

among the q factors v— z'
J-P\j here considered. The set of exponents (3 has

not been altered by the deformations just effected, and the product has

lost nothing from its orders of coincidence with any of the branches, save

perhaps in the case of ones with which its orders of coincidence are still

infinite.

The deformed product may be written in the form

(4, [r-Mft] - [-^„(l)][.--~-'lW.G)] -

... [_,«~~p,_,4)] [»->'e,+
,(J)]

... [«Ml4]

on supposing the q factors v—z"P\-\ considered above to have been prop-

erly lettered for this purpose. From among these q factors then one at

least — the factor v—z
r/"JPJ-\ — is lacking in the product (4).
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Since the exponents ft, ... ft_r are all less and the exponents ft+i, ... ft,_i

all greater, than the exponent a , it follows that the order of coincidence

of the branch v—zaQ
Pj-) = with the product (4) is equal to

— (t— r)aG + [ia!a_ 2+1 + ••• +[ia
,
a _ 2 + ,.— ft+i— . . . — P„_i .

Now, by hypothesis, the order of coincidence of the branch here in question

with the original product (1) was >[Ia— *, and since it has not been dimin-

ished by the deformation its order of coincidence with the product (4) will

also be >jia— X. We therefore have

— (T—rK + m)G _,/ + 1 + +!X 3 , z-q + r— ft+1— • — ftl_i>|J.,—

x

and since

|J.a = l
1
a, 1 + • + frj^-j+l + '• + Fa,o-l + N,a+1 + '" + ^o, «

= _( _gr)a + (iaj ,_ 7+1 + ••• + tJ. 3,o-i— «a+i— '• — *«

it follows that

— (t— r)a«j + (1.0,3-j + i
4- •• + n-o, o-s+f— ft+i — '•' — P»-i>

— (°— q) a ° + V-a, a-q+l + •" + \>-i, G-l~ a3+ 1 — '

'

'
~««— *

whence

— (t— r)« 3— ft+1 ft,-i> — (o— ?)a s + V-°, o-j+h-i + •

'

•• +V-a, 3-1— «a + i <*„— X.

The numbers |x0ja_ g+ ,.+ 1
•• |x 3

,
3 -i are however each >— «,, so that

- (t— y)« s— Pt+i P»-i> — (a—9)«o- (?—r— l)«o - «a + i
a»— *

and consequently

(5) ft+1 + • +P„_1
<(^-^— l)«3 + «3 +l+ ••• +0-n +l.

By hypothesis we have ft+1 >a >l and a3+1 >aa . Also the first of the

set of exponents a
t , ... an and the first of the set -ft, . . . ft_j which are >1,

we have indicated by «I+1 and ft+1 respectively. It follows therefore that

we must have aa+1 >o,+1 and ft+i>ft+i. Adding ft+1 + • + ft then to

both sides of the inequality (5) we obtain

ft+1 + •• +ft +1 + ••• +P„_i<(a— t— l)a + pt+1 + • +ft + «o + i+ • +«„ + X.
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From our hypothesis that aa_ ?+1 = ••• =a is the smallest value which

occurs more frequently among the a's than among the p's, it follows that

among the ?—r exponents p x , ... px_ r are to be found the o— q elements a t, ... a._
q

and the value a 3 repeated r times, since pT _,.+ 1
= •• = pt = aa_ ? + 1 = • = a„.

Among the exponents p<+1 , . . . pT will then be found the a— s elements

a,+ i, ... a less the elements a _9+ ,.+1 , ... aa , whence we derive

P/+i + ••• + Px<«*+i + •• +*.— (q— r)aa + {(r -t)— (a— s— q + r))* a

since none of the exponents p here in question, and therefore in particular

none of the z— t—(a—s— q + r) exponents among these, for whose values

we have not more precisely accounted, can have a value which is > a .

On substituting the expression on the right of the inequality last ob-

tained, for p,+1 f • • + pT on the right of the inequality next preceding, we

obtain

[it+i + +P„-i<(s— t— l)a + a,+ 1 + ••• +a + a a + 1 + ••• + a„ + X.

Adding t to both sides of this inequality, the resulting inequality may
be written in the form

t + ?t+i + ••• +P„-i<(«—t—1)(«g— 1) +5 + as+1 + ••• +a„+\— 1.

Here we have «, > 1 , and in the case where we have a > 1 we shall have

at the same time t>s— 1, for the exponents alt ... a„ being <1 and there-

fore <a , will all be found among the exponents p and therefore in partic-

ular among the exponents Pi, ... P* which are <1. This follows from our

hypothesis that a is the least value which does not occur as frequently

among the p's as among the a's. We shall therefore either have a = 1

,

or simultaneously <xa > 1 and t>s—l, whence in either case we have

(s— t— l)(«a— 1)<0. From our inequality above we then derive the ine-

quality

(6) * + Pm+ • +P«-i<* + «»+i + ••• +«« + >>-!•

Expressed in words, this inequality states that the number of the ex-

ponents p which are < 1 plus the sum of those p's which are > 1 , is less

than the number of the a's which are < 1 plus the sum of those which are

>1 increased by the number X — 1.
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This disposes for the moment of Case I and we shall now occupy our-

selves with Case II. In this case there are one or more values which are

< 1 and which occur more frequently among the a's than among the p's.

It will be convenient here to make our notation run parallel to that al-

ready employed in the treatment of Case I, and with that end in view we

shall employ a a to indicate the latest element in the series alt ... an which

is not > 1 , and whose value at the same time appears more frequently

among the a's than among the p's. The number of elements of the set of

exponents p l5 ... p„_! which are not greater than this value we shall indi-

cate by x. The number of the a's and the number of the p's which have

the value a we shall indicate by q and r (<q) respectively, so that the

elements aG_ 2+1 , ... a and pT-,-+i, ... px will be the aggregate of those which

have this value in the two sets of exponents.

The reasoning in Case II would now begin in precisely the same way

as in Case I. We should derive (4) by deformation of the product (1) and

the text would remain unaltered up to and inclusive of the inequality (5).

Starting out then with the inequality (5), the p's there appearing will in-

clude all those which are >1 since we have pT <;a <l. They will therefore

include &+1 , the first of the p's which is > 1. Further among the t— t ex-

ponents pt+I , ... & will be found all the elements a0+1 , ... as , since by hy-

pothesis a was the latest of the set of exponents a
1 , ... a.n which was not

> 1 and whose value at the same time occurred more frequently among the

a's than among the p's. The remaining (t— v)— (s— a) of the p's here in

question will be each >aa since pT was the latest p which was not >a
,

and we shall therefore have

Pt+i + •• +$e>(t— * — S + a)a + aa + 1 + • + as .

Subtracting the left-hand side and the right-hand side of this ine-

quality from the left-hand side and the right-hand side respectively of the

inequality (5), we derive

whence

t + Pt+i + +P»-i<(«— t— 1)K— 1) +S + as+1 + ••• +a„ + X-l.
Fields. 7
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Here we have a <l. In case we have aa = 0, or if we have simultane-

ously a <l and t<s—1, we shall at the same time have (s—t—1) (a —1)<0,

and therefore

t + fr+i + • • + P»_i<* + a*+i + • • + «„ + >- — 1

the same inequality (5) already found to hold true in Case I. If however

we have a a <l and t>s— 1 this inequality does not immediately follow. In

this case, going back to the product (1) we shall substitute the factors

v—z^P^y ... «— z«.P,(^

respectively for the first s factors of the product. The deformed product

will have the form

(7, [,-*".p,(j)] . .

. H^|)[M-<M*)] • • • M-e-i

•

Since we have t>s— 1 and P«<1 the exponents p,, ... ps are none of them

>1. The same is also true of the exponents a if ... vs since a s+1 is the first

of the a's which is >1. It follows therefore that the orders of coincidence

of the branches

v_ 2 r,s+1p sfi
(Aj = 0, . . . V— Z"nPn (]]

=

with the product have not been affected by the deformation. Furthermore

the orders of coincidence of the s branches

V-Z*iPr (i)=0, ...v-zfP, (|)=0

with the deformed product are infinite. It consequently follows that the

orders of coincidence of this product with the several branches are simul-

taneously greater than the numbers |ju — X, ... {T„— X respectively, for such

by hypothesis was the case for the orders of coincidence with these branches

of the original product (1).

The smallest value which occurs more frequently among the exponents

a lt ... a„ than among the exponents of the product (7) will evidently be

>as+ i and therefore > 1. The product (7) then comes under the head of
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those products which have been handled in Case I, and the inequality (6)

will therefore apply to its exponents. The only exponents however which

appear in this inequality are the ones which are > 1 , and these exponents

have not been affected by the deformation of (1) into (7). In (7) then,

as in (1), the exponents which are >1 are pm , ... p^_t and these exponents

therefore satisfy the inequality

t + P*+i + • + P„_i<S+«.+i + •• 4 aB + X— 1. •

We have established the existence of the inequality (6) then in the

Cases I and II and it therefore holds in regard to any product of the form

(1), whose orders of coincidence with the several branches are simultane-

ously greater than the numbers ji, —

X

}
...

f.n
— X respectively. As we have

already seen, the expression on the left of this inequality is equal to the

degree of the function represented by the product (1). We have also seen

that the expression s + as+1 + +an is equal to the degree N of F(z,v).

It follows then from the inequality (6), that the degree of a function re-

presented by a product of the form (1) must be <N + X— 1, in case its or-

ders of coincidence with the several branches of the curve be simultane-

ously greater than the numbers jL l — X, ... \~>,n
— X respectively. In particular

if a rational function of (z, v) of the form

vn
- 1 + h'n^vn-2 + ••• +h'

have orders of coincidence with the branches of the several cycles corre-

sponding to the value z --= co , which are simultaneously greater than the

corresponding numbers \>.i — X, . . . \j.r
— X respectively, its degree will be

<N + X-1.

The theorem just stated for the rational form above will also hold good

for any rational function of (z, v) in its reduced form, and that too for any

value of the number X positive, negative or zero. For suppose that the

orders of coincidence of the rational function

with the branches of the several cycles are simultaneously greater than
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the numbers [ii — ^> ••• V-r
— * respectively, and assume to begin with that

we have /?„_ x
=]= 0. We may write the function in the form (IV, 9)

(;)r ,n

The orders of coincidence of the factor

v"-1 + h'^v"-2 + +h'

with the branches of the several cycles will then be simultaneously greater

than the numbers y-i— X

—

k, . . . (ir— X— & respectively, and its degree —
in accord with what has been already proved for a function of its form —

must therefore be <N + \ + k—1. Multiplying by the factor (-) gl-\ the

degree of the product will be <N + \— 1. We have proved then, with re-

gard to any rational function in whose reduced form the coefficient of

vn
~l

is different from 0, that its degree is <N + X— 1, in case its orders of

coincidence with the branches of the several cycles are simultaneously

greater than the numbers Hi— X, ... \Lr
— X respectively.

The existence of a function of the form here in question, having orders

of coincidence with the branches of the several cycles which are simultane-

ously greater than the numbers jii — X, ... \>.r
— X respectively, implies fur-

ther a limitation on the value of the exponent 1c. Namely we saw that

the orders of coincidence of the factor

V*- 1 + h'n-zV
1-2 + + k\

with the branches of the several cycles, must be simultaneously greater

than the numbers Hi — X— k, ... pr
— X

—

k respectively, and we know from

Chapter IV, that for a function of this form the orders of coincidence with

the branches of the several cycles cannot simultaneously be greater than

the numbers [*-i , ... \>y respectively. It follows that we must have X + k>
and consequently — &<X. The degree of the element involving vn

~l in the

general rational function (IV, 9) is however n— k— 1, and this degree in

the case of the functions here in question must therefore be <n + X— 1.

We may say then of a rational function in whose reduced form we
have hn_ x

=|= 0, and whose orders of coincidence with the branches of the
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several cycles are simultaneously greater than the numbers n t
— X, ... [j.r—

X

respectively, not only that its degree is <N + X— 1, but also that the degree

of the element hn_xv
n~l must be <re + X— 1. For example F'v (z,v) is a func-

tion which involves the element nvn
~1

, and whose orders of coincidence

with the branches of the several cycles, as we have seen in the chapter

preceding, are equal to ja
; ,

... |j.r respectively. These orders of coincidence

however are simultaneously greater than the numbers (ti— 1, ... v-r
— 1. The

degree of the function then in accordance with the theory deA^eloped above

would have to be <N , and it is as a matter of fact equal to N— 1 except

in the case where the degree of F (z, v) depends on a term which does not

involve v, in which case the degree of F'v (z,v) is <N—1. The degree of

the function z~'
c F'v (z, v), it may be remarked, is <_N— 1c— 1 and its orders

of coincidence with the branches of the several cycles are equal to the

numbers ^ + k, ... \>.r + h respectively.

Turning now to the case of a rational function in which we have

A-n_1
= 0, we shall prove that its degree is subject to the same limitation

which has been shown to exist in the case where we have /?.„_!=!= 0, That

is we shall prove that the degree of a function

(8) K_2v
n~2 + +h

must be <iV + X— 1, if its orders of coincidence with the branches of the

several cycles corresponding to the value z= oo are simultaneously greater

than the numbers jm— X, ... \ir— X respectively. — To the function (8) we

add any rational function in which the coefficient of vn
~l

is different from

0, and whose orders of coincidence with the branches of the several cycles

are simultaneously greater than the numbers [ii — X, ... >jy— X respectively.

Such a function, for example, is z^\~1F'v {z,v). The sum

zK-1F ,

v (z,v)+hn_2 v
n-2 + +h

involves the power vn
"x with a coefficient which is different from 0. Also

its orders of coincidence with the branches of the several cycles are simul-

taneously greater than the numbers (ti— X, ... <j.
r
— X respectively. Its de-

gree must therefore be <i^ + X— 1. The degree of z^-y~
l F'v (z, v) however is

<iV +[XJ—2<N + X— 1. Therefore the degree of the difference obtained on
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subtracting this function from the sum must be <N +1—1 — that is the

degree of the function (8) is <iV + X— 1.

With regard to any rational function of (z, v) then, whose orders of coinci-

dence with the branches of the several cycles corresponding to the value z = oo

are simultaneously greater than the numbers {x x
— X, ... {ir— X respectively,

we have proved that the degree of its reduced form must be <N + X— 1,

and further that the degree of the element An_1
vm_1 , in case it presents it-

self, must be <w + X— 1.

When X is an integer the theorem just stated may evidently also be worded

as follows : — Any rational function of (z, v), whose orders of coincidence

with the branches of the several cycles corresponding to the value z= oo

are equal to or greater than the numbers

(9) !«.-* + 7. ...fv-X + ~

respectively, will, when expressed in its reduced form, have a degree which

is <iV + X— 2 and the degree of the element hn_ lv
n~ i in this form, in case

it presents itself, will be <n + X— 2.

In particular when X= 1 the numbers (9) represent the orders of co-

incidence just requisite to adjointness for the value z= 00. We conclude

that the reduced form of a rational function of (z, v) which is adjoint

for the value z= 00 will have a degree which is <_N— 1 and that the de-

gree of the element hn_1v
n~1

in this form will be <re— 1. It evidently fol-

lows that the coefficient h„_i in this case can contain no negative expo-

nents in its development according to powers of
z

An important case is that in which X=— 1. For this value of X the

theorem will read as follows: — A rational function of (z, v) whose orders

of coincidence with the branches of the several cycles are equal to or greater

than the numbers

(10) |ll+ i + I,... |lY+ i + i
'1 vr

respectively, must have in its reduced form a degree which is <iV— 3, and

the degree of the element hn_ x
vn
~ l in this form, in case it presents itself,

must be <;n— 3.
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In the case of an integral rational function to which the theorem just

stated applies an element hn_lv
n~1

will not present itself, for the degree of

such an element would in this case be >n— 3. We may then say of an

integral rational function of (z,v) whose orders of coincidence with the

branches of the several cycles are equal to or greater than the respective

numbers of the set (10), that it must on reduction take the form (8) and

have a degree which is <iV— 3.

Integral rational functions of the degree N— 3 and possessing for the

value z= oo orders of coincidence such as those here in question will re-

appear in the theory later on.
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CHAPTER VII.

Sets of complementary adjoint orders of coincidence.

Functions which are complementary adjoint to each other for a given value of

the variable z. The product of integral rational functions which are complementary
adjoint to the order i for a value z=a is divisible by (z— af. The orders of coinci-

dence of an integral rational function
ty

(z, v) for a given value z = a will be comple-

mentary adjoint to the order i to a certain set of adjoint orders of coincidence

corresponding to the same value of the variable, if the product of <|> (z, v) by the

general integral rational function possessing the latter set of orders of coincidence be

divisible by (z— a) 1
.

Returning now to the consideration of finite values of the variable z,

we have seen in Chapter IV that the orders of coincidence of an integral

rational function of (z, v) which is not divisible by z— a, with the branches

of the several cycles corresponding to the value z=a, cannot simultane-

ously be greater than the numbers \>. L , ... \i.
r respectively corresponding to

the value of the variable in question. We have furthermore seen, that if

an integral rational function of (z, v) have orders of coincidence with the

branches of the several cycles which are equal to or greater than the numbers

(1) (1.,+t— 1 + ^,. ... V.

r + i-l+~

respectively, where i is a positive integer, then must the function be divi-

sible by (z

—

a)*.

Let us now consider the product of two integral rational functions of

(z, v). This prodiict expressed in its reduced form may happen to be divi-

sible by z— a though this is not the case for either of the factors sepa-

www.libtool.com.cn



SETS OF COMPLEMENTARY ADJOINT ORDERS OF COINCIDENCE. 57

rately. We shall suppose <p (z, v) and <j» (z, v) to be two integral rational func-

tions of (z,v), which may or may not happen to be divisible by z— a.

Their orders of coincidence with the branches of the several cycles we shall

designate by \i.\, . . . ji). and
</-i, ... \>" respectively. The orders of coinci-

dence of the product of the two functions with the branches of the cycles,

will be equal to the stuns of the pairs of the corresponding orders of coin-

cidence of the functions with these branches. Its orders of coincidence with

the branches of the several cycles will therefore be

* u i n
V-i + !

J
-i , • • fV + V-r •

If we now have

or, what amounts to the same thing, if we have

\H + V-'i>\h + l— 1, ... \>'
r + tV>P'r + *'— 1

where i is a positive integer, it follows that the product in its reduced

form must be divisible by (z—a)*, and we therefore have

(3) ?{z,v).ty(z,v) = (z— a)*"Q(z,t>)

where Q (z, v) is an integral rational function of (z, v) supposed to be ex-

pressed in its reduced form. The functions <p (z, v) and <|» (z, v) also we sup-

pose to be expressed in their reduced forms, and the relation (3) is then

equivalent to an identity of the form

(4) tp (z, v) . <|> (z, v) = & (z, v) . F (z, v) + (z— a)
{Q (z, t;)

where &(z,v) is an integral rational function of (z,v) not involving v to a

power higher than v
n~~2

, for F (z,v) involves the term v
n and powers of v

higher than f
2"-2 do not present themselves, since neither of the factors

on the left of the identity involves v to a power higher than v
n~x

.

Suppose, for example, that we have to do with a value z= a to which

correspond n different points of the curve. The n branches in this case are

all simple and we have r= n. We also have |j-i = [j. 2 = • • • =>„= 0. If further-

Fidds. 8

www.libtool.com.cn



58 CHAPTEft VII.

more the functions <p (z, v) and <\ (z, v) have as orders of coincidence with the

several branches of the curve the numbers i)-i
= i, [4= *\ ••• V-'i^i, P-z+i = . .

.

... [j.;= and n-i
=

,
\>"= , . . . fi'/= ,

(j."+1= ?:,... jj£ = t respectively, we have

and the product of the functions reduces to the form given on the right

of (3).

Let us now consider an example in which we have to do with a value

z = a to which correspond less than n different values of v. The orders

of coincidence of the functions y(z,v) and ty(z,v) with the branches of the

several cycles we shall suppose to be numbers
jj-i , ... \>.'

r and
jj-i' , . . . p/r

'

respectively, which satisfy the conditions

V-\>i— 1 + —,... \>-'
r >i—l + -; \h>h, ••• V-">V-r

where, as before, i is supposed to represent an integer. The inequalities

(2) are then satisfied and the product of the two functions is reducible to

the form given on the right of (3). The same would evidently also hold

true in case the orders of coincidence of the functions satisfied the con-

ditions

(J.i>i, . . . K>i; ri';? Pi— 1 + -»••• V-'r>\>-r
— 1 + — •

In the preceding the functions <? (z, v) and <|< (z, v) may or may not hap-

pen to be divisible by z

—

a. In the case of the last example however it

is evident that the greatest value of the integer i consistent with the func-

tion f(z, v) not being divisible by z—a is the greatest of the integers [fij,

... [|j.r], for we have seen that no integral rational function of (z, v), which

is not divisible by z— a, can have orders of coincidence with the branches

of the several cycles which are simultaneously greater than the numbers

I*!, ... IV respectively.

The term adjoint has already been defined in Chapter V. If the pro-

duct of two functions be adjoint for a certain value of the variable z, we

shall say that the functions are complementary adjoint to each other for
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such value of the variable. Also if the orders of coincidence of the pro-

duct with the branches of the several cycles be not less than the numbers

H + i—1 + -,... \\ + i— 1 + -

respectively, we shall say that the functions are complementary adjoint to

the order i for the value of the variable in question. The sets of orders

of coincidence of the functions too, in such case, we shall say are comple-

mentary adjoint to the order i. For our purposes it here suffices to regard

i as an integer.

A function which is adjoint for a given finite value of z is, for such

value of the variable, complementary adjoint to any integral rational func-

tion of (z, v), for the product of the two functions would evidently also be

adjoint for the value of the variable in question.

There is no limit to the order to which two integral rational functions

of (z,v) may be complementary adjoint for a given value z = a, and that

too — one case excepted — without either of the functions being divisible

by z— a. In Chapter IV namely, we have seen that it is always possible

to construct an integral rational function of (z, v) which is not divisible by

z— a, and whose orders of coincidence with the branches of an arbitrary

set of r— 1 out of the r cycles are as large as we may please while its

order of coincidence with the branches of the remaining cycle, in case this

be the one of order vs , is [v Excepting in the case where r = 1 then, we

might construct two functions <p (z, v) and (|> (z, v) neither of which is divisible

by z— a and which are such that the orders of coincidence of one of them

with the branches of r— h out of the r cycles are indefinitely large, while

the orders of coincidence of the other one with the branches of the remain-

ing k cycles are as large as we may please. The orders of coincidence of

the product of the functions with the branches of all r cycles could thus

be made indefinitely large without either of the functions being divisible

by z— a. Where we have r = 1 however this would be impossible, for in

this case the n branches constitute a single cycle of order n and the set

of numbers pu ... \ir reduces to the single number [%, so that it would not

be possible to construct an integral rational function of (z, v) which is not
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divisible by z— a and whose order of coincidence with the branches of the

cycle is greater than \iv This is included namely under the general theo-

rem that an integral rational function of (z,v) which is not divisible by

z— a cannot have orders of coincidence with the branches of the several

cycles which are simultaneously greater than p.1? ... \>.r respectively.

In (3) we have an expression for the product of two integral rational

functions of (z, v) which are complementary adjoint to each other to the

order i for the value z = a. More generally we can write the product of

any two integral rational functions <p (z, v) and <]) (z, v) in the form

(5) <p (z, v) . + (z, v) = x
w
(z, v) + (z— a)

1 Q (z, v)

where the product in its reduced form is supposed to be separated into

two parts
~/i

{i)

(z,v) and (z— a)
1 Q (z, v) , of which the latter is divisible by

(z— a)
1 while the former involves no power of z— a higher than (z— af~l

.

Corresponding to a given integer i there is evidently only one such repre-

sentation of the product.

In case the functions tp (z, v) and
(J»

(z, v) happen to be complementary

adjoint to the order i for the value z = a, the function y}
l)

(z,v) must vanish

identically and the relation (5) will assume the form (3). We may also

write (5) in the form of an identity

(6) <?(z,v).-Hz,v) = V(z,v).F(z,v) + -/}
i)

(z,v) + (z-a) i
Q(z,v)

which reduces to the identity (4) when f(z,v) and ty(z,v) are complement-

ary adjoint to each other to the order i. If then for the value z= o an

integral rational function <]» (z, v) possess a set of orders of coincidence which

is complementary adjoint to the order i to a set of numbers y.[, ... \>'
r , it

follows that the function /.'''(z,^) must vanish identically in the product

of ^(z,v) by any integral rational function <p(z,v), whose orders of coinci-

dence with the branches of the several cycles are equal to or greater than

the numbers [>.\, ... \i.'
r respectively.

We shall limit ourselves to the case in which the numbers
f«.j, ... \>.'

r

constitute an adjoint set relative to the value of the variable in question,

and shall prove that in this case the converse of the proposition just

stated also holds good. We shall prove namely, that the orders of coinci-
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dence p.'!, ... |4' of an integral rational function ty(z,v) with the branches

of the several cycles, must be complementary adjoint to the order * to a

set of adjoint numbers [%, ... \j.'
r , if the function x®(z > v ) always vanishes

identically in the product of <|) (z, v) by any integral rational function f (z, v)

whose orders of coincidence with the branches of the several cycles are

equal to or greater than the numbers \>[,... \>'
r respectively. Otherwise

expressed, the orders of coincidence jj."
, . . . |4' of <|> (z, v) must satisfy the

inequalities

\l[ + \>-">\>-
l + i—l, ... I-C + [*-"> tV + *— 1

if the function y^(z,v) always vanishes identically in the product of ty(z,v)

by any integral rational function f(z,v), whose orders of coincidence with

the branches of the several cycles are equal to or greater than the adjoint

numbers
jj-i , . .. \t'r respectively.

To prove this we shall have to make use of the irrational function

B{z,v) whose form has been given in (IV, 5). We have seen that it is

always possible to construct such a function having orders of coincidence

as large as we please with n— l out of the n branches and having \).s as

its order of coincidence with the remaining branch, in case this branch be

a member of the cycle of order vs . Indicating the branch in question by

the equation v— Pi — and imiltiplying the function B (z, v) by the factor

<_ j
i_

(z— a)
s

Vs
, we obtain a function

(7) (z-af~ l
's+i

~^B(z,v) = (z-af
s
' lLs+1 ~'i{B (z,v) +

(z— a) vsB1 (z,v)+
••• +{z—a) v, B^-^z^)} .R(z,v)

whose order of coincidence with the branch v— Px
= is jj/s + 1

, while

its orders of coincidence with the other branches may be regarded as in-

definitely large. Let us now consider one of the elements (z

—

a) vsBQ(z,v) . R(z,v)

in the sum which constitutes the function B(z,v). The order of coinci-

dence of such an element with the branch v —Px
= is equal to \>.s , as we
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have seen in Chapter IV. This then will evidently a] so be the order of

coincidence of the element with each of the branches belonging to the cycle

of order v
s . In the expression on the right-hand side of (7) then, the or-

der of coincidence of an element

(
8

) (z-af
s N

*
v
» Ba (z,v).R{z,v)

with the branches of the cycle of order v
s will be equal to (\>'

s
— |J-

S + 1
)

+ \>s
=

V-'s + 1 — --
, while by virtue of the factor R (z, v) its orders of coinci-

dence with the branches of the other cycles may be made as large as

we please.

Indicating by ? a = |X— t*-s + 1 H ] the greatest integer contained in

the exponent of z— a in (8), we evidently have

and the order of coincidence of the rational function

(9) (z-ay°Ba (z,v).R(z,v)

with the branches of the cycle of order v
s is therefore >\>'

s , while its or-

ders of coincidence with the branches of the other cycles may by proper

choice of the factor R(z, v) be made greater than any assigned set of va-

lues. We shall assume then that it has been so chosen that the orders of

coincidence of the function (9) with the branches of the cycles of orders

v
1? . . . v

s_u vs+1 , . . . vr are not less than the numbers u.'
1; . . .

^'
I_u \t!s+1 , ... \>!r re-

spectively. The function (9) is therefore an integral rational function of

(z, v), whose orders of coincidence with the branches of the several cycles

are not less than the numbers [>.[, ... ^.'
>_1 ,

\i'
s ,

[>.'
s+l , ... \>!r respectively. It is

then one of those functions <?(z,v) in the product of which by the given

function <|i (z, v) the function -/
(!)

(z, v) vanishes identically.

If therefore in the identity (6) we replace <?(z,v) by the function (9)

we arrive at an identity which may be written in the form
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(10) (z— aY"Ba (z,v).R(z,v).^{z,v) = »a {z,v).F(z,v) + (z— a)%(z,v).

Multiplying both sites of this identity by the factor

, a— l

>«-e-*+i +— 'a

(z— a)

we obtain

,_ o-l

(11) (z- a)^ ^ v
* BQ {z,v).R (z, v) . <|> (z, «) = *G (z, v) . .F (z, v) + (z- a)*Q a (z, v)

where however &a (z,v) and Qa (z,v) may contain a fractional power of z— a

as factor. Summing the expressions (11) for « = 0, 1, (v,— 1) we arrive

at an identity

(12) (z— df'~^
+1
~» B(z,v) .$(z,v)=»{z,v) .F(z,v) + (z— o)*a (z, «)

j_
where €-(z,«) and Q(z, v) are integral rational functions of ((z— a)

v
'

s ,v), of

which the former involves v at most to the power v
n~~2 whereas the latter

involves v to the power v
n_1 at most.

The function B (z, v) , as we have seen, may be supposed to have or-

ders of coincidence as large as we please with the n— 1 branches of the

curve other than v— Pi = 0, and the same will therefore hold true for the

function Q (z, v). If however the orders of coincidence of Q (z, v) with the

n— 1 branches in question be sufficiently large, we know that its order of

coincidence with the remaining branch v—P1
= must be >|i,. If, for

example, its orders of coincidence with n— 1 of the n branches be extra-

adjoint, we know from the proposition at the end of Chapter V that its

order of coincidence with the remaining branch must also be extraadjoint.

In constructing the function B(z,v) then, we shall suppose in the first

place that we have assigned extraadjoint orders of coincidence to all n

branches excepting only the branch v— Pi = 0. Its order of coincidence

with this branch also will then be extraadjoint, and will as we know

be precisely equal to [is , In the second place the extraadjoint orders of

coincidence which we have assigned to the n— 1 branches in question, we

shall assume to have been chosen sufficiently large to assure orders of

coincidence with the branches of the several cycles on the part of the
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product on the left-hand side of the identity (12.), which are simultan-

eously equal to or greater than the numbers i + \h, • • • i + \>-r respectively —
the branch v—Pt

= being always excepted. The order of coincidence of

the product with the branch v—Vx
= will evidently be equal to the

sum (p.',— \).s + 1 ) + \l
s + \>.'

s
' = jj/s + (^' +1 . Now the orders of coinci-

dence of the several branches with the product are equal to their orders

of coincidence with the element (z— a)'Q (z, v) on the right-hand side of the

identity (12). The orders of coincidence of this element with the branches

of the several cycles must then be equal to or greater than the numbers

i + (J-j , ... i + \>.r respectively — the branch v—P1
= o being excepted. The

function Q (z, v) must then have extraadjoint orders of coincidence with all

the branches — excepting only the branch v—P1
= 0. Its order of coin-

cidence with this branch must then also be extraadjoint. The order of

coincidence of the branch v—^ = with the element (z— aYQ(z,v) will

therefore be >* + [V Its order of coincidence with the element however

is equal to its order of coincidence with the product on the left-hand side

of the identity (12) and must therefore have the value (j.'
s + |j" + 1 — —

.

v„

It follows that we must have \>.'
s + \>.'

s
'. + 1 >i + \>-s , whence

v-'s + v'sTv-s + i— 1 + -•

The inequality just arrived at has been derived with reference to an

arbitrary one of the n branches, represented for convenience by v—^ =
and supposed to belong to the cycle of order v

s . Such an inequality

corresponding to any arbitrary one of the r c}^cles will then exist, and we

shall have simultaneously the r inequalities

V-ii + {*-"> \h + i— l +-. ... K + K>\>-r + i— 1 +T-

The function <|i (z, v) must therefore be complementary adjoint to the

order i to the integral rational functions <p (z, v), whose orders of coincidence

with the branches of the several cycles are not less than the respective

members of the set of adjoint numbers
|j-i, ... \t'r .
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To recapitulate. — If the function y}' ] (z,v) vanish identically in the

product of a given integral rational function <]> (z, v) by any arbitrary inte-

gral rational function <p (z, v), whose orders of coincidence with the branches

of the several cycles are not less than the respective members of a certain

set of adjoint numbers {>.[ , . . .
\>'
r , the said function <]» (z, v) must be com-

plementary adjoint to the order i to the system of functions y (z, v) in

question. Conversely, we have seen that the function y}
l)

(z,v) in (6.) must

vanish identically, in case the functions <p (z, v) and <p (z, v) be complementary

adjoint to the order i.

We may say then that the necessary and sufficient condition that an

integral rational function
<Jj

(z, v) should be complementary adjoint to the

order i to all integral rational functions <p (z, v), whose orders of coincidence

with the branches of the several cycles are not less than the respective

members of a certain set of adjoint numbers \>.\, . . . </.,., is that the functions

X
U) (z,v) in (6.) corresponding to the products of ty(z,v) by the functions

f (z, v) in question, shall in all cases vanish identically.

Fields.
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CHAPTER VIII.

Conditions for certain sets of orders of coincidence for z = a.

The number of the linearly independent conditions which must be satisfied by

the coefficients of an integral rational function <|i (z. v) whose orders of coincidence

corresponding to a finite value of the variable z are complementary adjoint to the

order i to a given set of adjoint orders of coincidence corresponding to the value of

the variable in question. The number of the linearly independent conditions which

must be satisfied by the coefficients of an integral rational function of (z, v) in order

that it may be adjoint relatively to a given finite value of the variable z. Extension

of results to the value z= oo

.

In order that the function -/ <

''

)

(z, v) in (VII. 6) may vanish identically

the coefficients of the functions «p (z, v) and <{• (z, v) must satisfy a number

of conditions, depending on the value of the exponent i. The coefficients

of '/i

U) (z,v) are bilinear in the coefficients of ®(z,v) and §{z, v), and evidently

also only involve such coefficients of these functions as belong to terms in

which z— a appears to a power lower than (z— a)'. If one of the functions

f (z, v) or <|) (z, v) be given, the coefficients of the other function must satisfy

a number of linear conditions in order that the corresponding function

"i
U) (z,v) may vanish identically. If the functions x

(i)

(z,v) in the products

of the members of a given system of integral rational functions '?
x (z,v),

f,(z,v), ... by the same integral rational function <])(z, v) are all to vanish

identically, the coefficients of <]i (z, v) must satisfy a number of linear con-

ditions corresponding to each of the functions y (z, v) in question. These

conditions, it may be, are not independent of one another. The number

of the conditions which are independent of one another is in any case
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however finite, for whatever the functions © (z, v) may be, so long as they

are integral, and however many they may be, it will suffice to equate to

the coefficients of <|> (z, v) belonging to terms involving z— a to a power

lower than (z— af, in order that the corresponding functions y.
U) (z,v) may

all vanish.

If an integral rational function <P (z, v) is to be complementary adjoint

to the order i to the system of integral rational functions f(z,v), whose

orders of coincidence with the branches of the several cycles are not less

than the respective members of a given set of adjoint numbers \i.[, ... |4, we

have seen that the functions X
{i)

(z,v) in the system of products <p (z, v) . $ (z, v)

must all vanish identically. Among other conditions, this implies that the

coefficient of the term in (z— a)
l~l vu

~l in each of the functions x
{i)

(z, v)

in question must be equal to 0. We shall now shew conversely, that

if the coefficient of (z— a)
i~lvn

~l
is always in the functions x

{i)

(z, v)

corresponding to the products of a certain integral rational function <\> (z, v)

by the members of the system of integral rational functions <p(z, v), whose

orders of coincidence with the branches of the several cycles are not less

than the respective members of a certain set of adjoint numbers \*.\, . .. >i'r ,

then must the system of functions xw (z, v) corresponding to the set of

products in question all vanish identically.

We shall suppose that the coefficient of (z— a)'~
l vn

~ l
is equal to in

each of the system of functions x
il)
(z,v) in question, and we shall assume

at the same time, if possible, that one of the functions — ^
(i)

(z, v) — does

not vanish identically. We shall then have a relation of the form

f (z, v) . <|» (z, v) = x
w

(z, v) + (z— af ii (z, v)

in which y}'
l)

(z, v) does not vanish identically and where f (z, v) is one of the

system of functions f(z,v), whose orders of coincidence with the branches

of the several cycles are not less than the adjoint numbers [/l9 ...p/r

respectively. We shall further assume that v* is the highest power of v

which occurs in the expression of y}
l)
(z,v) and that a term in (z— afv*

presents itself. — Here we have of course s<i— l,i<w— 1. — On multi-

plying the equation above by the factor (z— a)
i~s~1

v
n~t~1 we obtain
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(z — «)'

—

1
1
"-'-'

c (2, r).% (z, v) - (z— a)'-
5" 1

v"-'-
x

y
0)

(z, v) +

(z— a)'.(z— a)''-'
-1

v"
-1' 1

li (z, v)

.

Since the function /"'(z, v) involves a term in (z— aYv*, the function

(z— fl)'
-*-1

w"~'
_1

/'"(z, ?;) will involve a term in (z— a)'
_I

v"
_l

. Furthermore

this function as it stands is in its reduced form, for it involves no power

of v higher than v"~ l
. It will then consist of terms divisible by (z— a)\

together with a function -/'"(z, v) which involves a term in (z— a)
t_1 v

ll~ l

.

On representing the reduced form of (z— a)*
-4-1 1"~*-1 y{z,v) by <f(z,v),

the last equation will assume the form

<p (z, v) . $ (z, v) = y}
i]

(z, v) + (z — a)* £2 (z, v)

where v.
li)
(z,v) involves a term in (z— a)

i_1
i;"

_1
, and where the orders of

coincidence of the function <p (z, v) with the branches of the several cycles

are evidently not less than those of the function c(z,v) with the same

branches, and therefore not less than the adjoint numbers [i!
x , .

.

. \i.'r

respectively. This result however is at variance with our original hypoth-

esis according to which the coefficient of (z— ay~ l

v
n~ x

is in every

function y
U)
(z,v) corresponding to one of the system of integral rational

functions rf(z,v), whose orders of coincidence with the branches of the

several cycles are not less than the numbers \>.\ , ... \>.'
r respectively. If

then the coefficient of (z— a)'~
[

v
n~l

is in each one of the system of

functions y.
Ui

(z, r) here in question, it must be that these functions them-

selves all vanish identically. In the preceding chapter however we have

seen if these functions all vanish identically, that the function <j> (z, v)

must be complementary adjoint to the order i to the system of functions

« (z, r) , whose orders of coincidence with the branches of the several cycles

are not less than the numbers \t\ , .... \>!r respectively. It follows there-

fore, that if the coefficient of (z— a)
i~1

v
n~1

is always in the functions

~/.
li)

(z,v) corresponding to the products of the integral rational function

't (2, v) by the members of the system of integral rational functions <p (z, v),

whose orders of coincidence with the branches of the several cycles are

not less than the adjoint numbers \>.\, ... \>'
r respectively, then must the

function '\{z,v) be complementary adjoint to the order i to the functions
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<f (z, r) in question. As the converse of this statement has already been

seen to hold good we arrive at the following theorem. — The necessary

and sufficient condition that an integral rational function
<J*

(z, v) should be

complementary adjoint to the order i to the system of integral rational

functions <p (z, v) , whose orders of coincidence with the branches of the

several cycles are not less than the respective members of a certain set of

adjoint numbers \>.'

1 , ... y.'
r , is that the coefficient of (z— a)

l~~ l
v
n~l in the

functions yf (z, v) corresponding to the products of $ (z, v) by the functions

f {z, v) in question, shall in all cases be equal to 0.

Write the functions <p (z, v) in the form

? (z, v) = <p
M

(z, v) + (z— af ((z — a, v))

where we employ the notation ((z — a, v)) to represent an expression which,

arranged according to powers of z — a and v, involves no negative exponents.

The only terms in ?(z, v) which affect the corresponding function y}
i]

(z, v)

are those which appear in f
(i)

(z, v). The same function y®(z, v) then

appears in the expression of the product <?
{i)

(z, v) .
<I»

(z, v) in the form

(VII, 6), as in that of the product 9 (z, v) . <!• (z, v) in such iorm. To each

one of the functions <p (z, v) corresponds a function <p
w

(z, v) . The number

of these 'f
w-functions which are linearly independent of one another is

finite. Their number we shall indicate by I and shall represent by

<?f{z,v),<ff(z,v),...<ff{z>v) a complete system of linearly independent ?!5

functions corresponding to the functions <p (z, v) , whose orders of coin-

cidence with the branches of the several cycles are not less than the

adjoint numbers \>.\, ... y!r respectively.

We shall have a system of I identities

(I) ff (z, v) . <!> (z, v) = #
s (z, v) . F(z, v) + X? (z, v) + (z- of B,(z, v), (s = 1 , . . . 1}

in which, if the coefficient of (z— af~l
v
n~l in each of the I functions

Xi
] (z,v), ... yf (z, v) be equal to 0, these functions themselves will all vanish

identically and the function ty(z,v) will be complementary adjoint to the

order i to the system of functions f(z,v). For, if ?(z,v) be any one of the

www.libtool.com.cn



7<> CHAPTER VIII.

system of functions in question and f
>!)

(z,v) the corresponding -s'"-function,

we shall have an identity of the form

'f

(/)

(z, v) . •} (z, ») = # (z, f?) . ^ (z, v) + x"'
1

(3, v) + (2— a)*fl (z, v)

where ?
U)

(z,v) is a linear function of the I functions ®f{z,v), ... <?f{z,v),

and where therefore evidently also the function y!'
]

(z,v) is the same linear

function of the I functions '/'/'(z, v), ... yf(z,v) in the identities (1). If then

the coefficient of (z— a)
i_V'~x in each of these I functions be 0, its coeffi-

cient in the function y
M
(z,v) corresponding to any one of the functions y{z,v)

will be 0. The functions y
U)
(z,v) themselves will therefore vanish identi-

cally by what we have proved above, and the function <|» (z, v) will be com-

plementary adjoint to the order i to the functions y{z,v) in question.

Conversely, if <l> (z, v) be complementary adjoint to the order i to the system

of functions ®(z, v), we have seen that the coefficients of (z— a)
i~1

v
n~L in

the corresponding set of functions y
U)

(z,v), and therefore in particular in

the I functions -/i'

1 (z,v), ... yf (z, v) , must all be equal to 0.

In order that the integral rational function ${z,v) should be comple-

mentary adjoint to the order i to the system of functions y (z,v), whose

orders of coincidence with the branches of the several cycles are not less

than the adjoint numbers \l\, ... [*,',. respectively, it is then necessary and

sufficient that the coefficient of (z— a)'~V_1 should be equal to in each

of the I functions /
(

1

' )

(z, v) , ... '/'/' (z, v) corresponding to the I functions

f '/' (z, v) , . . . 'if{z,v) in the identities (1). On regarding the coefficients of

<jj(z, v) as undetermined, and equating to the coefficients of (z— a)
i~~l

v
n~ i

in the I functions yf[z,v), . . . yj'(z,v) appearing in the identities (1), we

obtain I linear equations between the coefficients of ty(z,v), expressing the

necessary and sufficient conditions that <\(z,v) should be complementary

adjoint to the order * to the system of functions f{z,v).

That the I equations just referred to are linearly independent of one

another may readily be seen. For if the coefficients of (z— a)1"1 if"1 in the

I functions /.i"(z,v), ... y!P(z,v) were linearly connected, the like linear ex-

pression in the functions ff(z,p), ... <?f(z,v) would give us a function <?
{ii
(z,v)

such that the coefficient of (z— a)'~V'
_1

in the function y
U)
(z,v) correspond-

ing to the product ?
{ii

(z,v).ty(z,v) would be equal to 0, no matter what
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the coefficients of ty(z,v) might happen to be. The function <[
{i)

(z,v) can-

not vanish identically, since by hypothesis the I functions vf(zv), ... ff(z,v)

are linearly independent of one another. Suppose v" to be the highest

power of v which appears in the expression of the function v {i)

(z,v) and

suppose furthermore that a term «(z— a)r
v

s actually presents itself. On
choosing for ${z,v) the function p(z— af~x~r

v
n~x~s

, the function -/
{;)
(z,v) cor-

responding to the product '^'\z,v). ,\{z,v) will evidently involve a term

*|3(z— a)'
-1

ft"
-1

in which the coefficient is not equal to unless we have

P = 0. We cannot therefore have a function <f®(z, v), such that the coeffi-

cient of (z— a)
i'~1

v
n~~1 in the function '/}

%\z} v) corresponding to the product

'?
M
(z,v).ty(z,v) is equal to independently of the values of the coefficients

of ty(z,v). It follows that the I equations in the coefficients of the func-

tion <]>(z,r;), obtained on equating to the coefficients of (z— af~
1
r'"~

1 in the

I functions xf(z,v), ... xf(z,v), are independent of one another.

While our more immediate object in what just precedes was to prove

the linear independence of the coefficients of (z— af~
x
vn
~l in the I func-

tions /
<!)
(z,v) corresponding to the particular set of I functions

<f

( ':,

(z, «) which

appear in the identities (1), it is to be remarked that the proof itself has

implied nothing in regard to these functions, other than that they are

linearly independent of one another and that they do not involve z— a to

a power higher than (z— a)'. We may therefore say that the coefficients

of (z— a)'
--1

*;"
-1

in the functions 'f^{z,v) appearing in any number of iden-

tities of the form

<P

(,:)

(z, v) . <|> (z, v) = ft (z, t7) .F{z,v) + /> (z, v) + (z— a,y Q (z, v)

are linearly independent of one another so long as the corresponding func-

tions f
ll)
(z,v) are linearly independent of one another, the function <\{z,v)

being supposed to have arbitrary coefficients.

In Chapter V we have employed the letter A to indicate the number

of conditions to which the coefficients of the general integral rational

function of (z, v) must be subjected, in order that it may be adjoint to the

fundamental curve for a given value z = a. We are now in a position to

determine the number A in terms of known quantities corresponding to

the value of the variable in question. Suppose r to be the number of the
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cycles corresponding to this value of the variable, v, , ... v,. respectively their

orders and ji, , . . . (i,. the numbers which have heretofore been indicated by

these symbols. The greatest of the integers [(jj], [[%], ... [)J,.J we shall re-

present by the letter M .

Each of the r integers just mentioned is equal to or greater than the

corresponding member of the set of adjoint numbers

1 1 ! 1 1 1

It follows that the integer M is less than none of these numbers and it is

therefore possible to construct an integral rational function of (z,v) having

precisely M as its order of coincidence with each of the n branches of the

curve, for as we have seen in Chapter V we can construct such a function

having any given set of adjoint numbers as its orders of coincidence with

the branches of the several cycles.

The number of the conditions which must be satisfied by the coeffi-

cients of an otherwise arbitrary integral rational function of (z,v) in order

that it may have M as its order of coincidence with each of the n branch-

es, will evidently be obtained from (V, 8) on substituting M for each of

the symbols [J.', , ... y!r appearing in that formula. The number of these

conditions will therefore be

(2) A +{M- H + l-f)v, + ... +(Jf_^+ l_I) Vr .

a v.

Now these conditions only affect the coefficients of terms involving z—a
to a power lower than {z— a)

M
. The expression just written therefore gives

the number of the conditions which must be satisfied by the functions

'i

{M)
(z,v) corresponding to the system of integral rational functions <f(z,v),

whose orders of coincidence with the n branches of the curve are none of

them less than M

.

The number of the functions tM)
(z,v) which are linearly independent

we shall indicate by lA . This number plus the number of the conditions

to which the coefficients of the functions are subjected, must be equal
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to the total number nM of the coefficients in a function of the form

f
m) (z,v). It follow^ that

Ia +A-+(M — \l
1 + 1— ^)v

1 + ... + (J|f— m. + l — ^)v, = nJIf

whence

(3) lA +A = ([x,- 1 + I) v, + ... + Ov- 1 + ^K

for we have v, + . .
. + v. = %.

From what we have proved a little earlier in the chapter, we know

that lA is just equal to the number of the conditions which must be

satisfied by the coefficients of an integral rational function <|> (z, v), in order

that it may be complementary adjoint to the order M to the system of

functions <p (z, v) here in question. In order that <[" (z, v) should be comple-

mentary adjoint to the order M to these functions <p (z, v) • however, it is

evidently necessary and sufficient that its orders of coincidence with the

branches of the several cycles should not be less than the adjoint numbers

tM — 1 H— > • • • W— 1 + —

respectively. The conditions which the coefficients of <{) (z, v) must satisfy

are therefore just those conditions which are necessary to adjointness and

whose number has been indicated by A. We must therefore have lA = A.

From (3.) we derive the formula

(4) 2 lA= 2A = ([x, - 1 + 1) v, + . .
. + (;*,,

- 1 + 1) vr .

VI Vy

Since A, by virtue of its definition, is an integer, it follows that an even

integer is represented by the sum on the right of this equation. For the

number of the independent conditions then, which must be satisfied by the

coefficients of the general integral rational function of (z,v) in order that

it may be adjoint to the fundamental curve for the finite value z = a, we

obtain the formula
Fields. 10
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(5) A = ~2(v.s -1 +£•) v
, = 2 IV— !(»•— »)

s = l

where the summation 2ty<> *s supposed to extend itself to the t»(« — 1)

combinations of the n branches taken two at a time.

On substituting its value for A in formula (V, 8.), we obtain an ex-

pression for the number of the independent conditions which must be

satisfied by the coefficients of the general integral rational function of

(z, v), in order that it may have as its orders of coincidence with the

branches of the several cycles a certain set of adjoint numbers (i'j, ... \i'r .

The expression so obtained may be written in the form

(6) 2^-^2^-1 +^=2^-^
s=l s=l s = l

and is equal to the number of the coincidences imposed on the function

less the number of the conditions requisite to adjointness for the value

of the variable z in question.

We now desire to deduce for z = oo the results which correspond

to those which we have just obtained for finite values of the variable.

To attain our end more expeditiously, we effect a simple transformation

of the fundamental equation F(z,v) = which reduces the case here in

question to that already treated. Namely on substituting z = £
-1

,

v = z
m

f\ = i~^"'f\ in F(z,v) = and on multiplying by £'"", the fundamental

equation will be replaced by an equation in (£, tj) of the form

(7) G (6 , i» = if + #„_, rf

-

1 + • • • + Q =
,

where the coefficients O will certainly be integral rational functions of £ in

case m has been chosen integral and large enough.* This in particular will

be the case if m has been taken equal to the largest exponent of z which

makes its appearance in the expression of the function F(z,v). Since this

* It is readily seen that the smallest eligible value for m is the least integer which is

not less than any of the numbers mi, — m^, — m3 . . .
—mn , where njj, is the greatest exponent

of z which presents itself in the coefficient of v"~ k
in the function F(z,v).

www.libtool.com.cn



CONDITIONS FOR CERTAIN SETS OP ORDERS OF COINCIDENCE FOR Z = a. 75

suffices for our purpose we assume once for all that m has been so

chosen.

The algebraic equation (7) is then an integral algebraic equation and

the theory which has already been developed for functions of the variables

(z, v) relatively to the integral algebraic equation F(z, v) = 0, will evidently

also hold good for functions of the variables [i ,
f]) relatively to the integral

algebraic equation 6r(S,?)) = 0. The theorems which we have obtained for

finite values of the variable z will then have their counterpart for finite

values of the variable i, and in particular for the value £ = 0.

The n branches of the equation O(i,fi) = corresponding to the value

£ = will be given by n equations of the form

(8) ii-Pi(S) = 0, -n-p2 (i) = 0, ....t,_p„(£)«0

where the series P(£) involve no negative powers of £. From these n

equations, on multiplying by z
m

, we evidently obtain the equations to the

branches of the original equation F(z, v) = corresponding to the value

z = oo
, in the form

(9) v-zmP1 (b = 0,v-zm P2 (b = 0,...v-zm Pn (b-0.

These branches will group thenselves into some number r of cycles,

whose orders as heretofore we shall indicate by v
l5

v
2J . . .

v
r respectively.

The cyclical characters of the branches in (8) will be the same as those

of the corresponding branches in (9), and the order of coincidence of any

two of the branches in (8) with each other will evidently be greater by

m than the order of coincidence with each other of the corresponding

branches in (9). If then we indicate the orders of coincidence of the

branches of the several cj^cles which present themselves in (9.), each with

the product of the other n— 1 branches, by

(10) p-i, f 2 , ••• Ir-

respectively, the orders of coincidence of the branches of the corresponding

cycles in (8.), each with the product of the other n — 1 branches, will be

equal to
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(11) m(n— 1) + \>.i, m (n— 1) + |* 2 , ... m(n— 1) + (ir

respectively, numbers which by virtue of their signification can none of

them be negative.

From the theory given in Chapter IV we immediately derive that the

orders of coincidence of an integral rational function of (£,*]) which is not

divisible by £, with the branches of the several cycles of the equation

O{£, r
i) = corresponding to the value S = 0, cannot simultaneously be

greater than the respective members of the set of numbers (11.), but that

it is always possible to construct such a function whose orders of coin-

cidence with the branches of an arbitrarily chosen set of r— 1 out of the

r cycles are as large as we may please, while its order of coincidence with

the branches of the other cycle is equal to m(n— 1) + (i
s , in case this

cycle be the one of order v
s5 where a may have any one of the v

s values

0, 1, ... (v
s
— 1). We also derive that an integral rational function of (£,•»))

must be divisible by £*, if its orders of coincidence with the branches of

the several cycles be simultaneously equal to or greater than the numbers

m (n— 1) + {!! + {— 1 H— , ... m{n—l) + \Lr + i— 1 -j—

respectively, where i is any positive integer. It furthermore follows that

the greatest value of the exponent j in the denominator V of a rational

fractional function £~J r(i,ri), which is infinite for none of the branches

corresponding to the value £ = and in which the numerator T (£,*)) is an

integral rational function of (£,*]) which is not divisible by £, is the

greatest of the integers

m (n— 1) + OJ, m {n — 1) + |>2], ... m(n—l) + [\>.r].

In accord with the definition of the word adjoint given in Chapter V,

a function of (£,?i) will be adjoint to the curve G{£,fi) = for the value

S = 0, when its orders of coincidence with the branches of the several

cycles are not less than the numbers

(12) m{n— 1) + H-J
— 1 +-,... m(» — 1)+^. — 1 +-

www.libtool.com.cn



CONDITIONS FOR CERTAIN SETS OF ORDERS OF COINCIDENCE FOR Z = fl. 77

respectively. On employing the symbol A to indicate the number of the

conditions necessary to the adjointness of an integral rational function of

(£,vj) relative to th!6 curve 6r(S,r]) = for the value 1=0, we shall have in

analogy with (5), the formula

(13) I=lt{ni(n-l)+v.s -l+±}vs = lmn(n-l) + lt(v-s -l+~)vs.

Furthermore from Chapter V we derive that it is possible to construct

an integral rational function of (£,yj) having any arbitrarily assigned set of

adjoint numbers as its orders of coincidence with the branches of the sev-

eral cycles corresponding to the value S = 0, that is to say having as its

orders of coincidence with the branches of the several cycles any integral

multiples of —,—,...— respectively, which are equal to or greater than the

corresponding members of the set of numbers (12). Writing any such set

of adjoint numbers for convenience in the form

(14) m(n— 1) + \l\, m(n—l) + \>.'
2 , . . . m(n— 1) + ji',

the numbers p,\, (i/2 , ... ^'
r will be integral multiples, positive or negative,

of —,—,...— respectively, and will evidently be equal to or greater than

the numbers

Hi-l+£, H 2-l+^, ... IV-1+^

respectively. The numbers ^\, |i/
2 , ... [*•', will therefore constitute a set of

adjoint numbers relatively to the curve .F(z,t!) = for the value z = oo.

The number of the conditions which must be satisfied by the coeffi-

cients of the general integral rational function of (?,7j), in order that it

may have as its orders of coincidence with the branches of the several

cycles corresponding to £ = the set of numbers (14), will then be given

by a formula analogous to (6) and will be equal to
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(15) 2 {*«(»-!) + p-'.H-J 2W»-i) + p.- 1 +f

K

«-l 2
,=.1

1
'

1
r

1

= -
2
mn(n— \) + 2f-'» v»— g 2d1.— J + 7")v

In regard to what some of these conditions are, it will be convenient to

be more precise. Representing an integral rational function of ($,ij) by

the expression

(i6) p„-,rr1 + p,l-2*r
2 + •• +po

where the coefficients p may be supposed to involve powers of £ up to as

high an order as we please, we shall require that this function have as its

orders of coincidence with the branches of the several cycles of the curve

Cr($,7]) = corresponding to the value £ = 0, the set of numbers (12), that is

we shall require that the function be adjoint to the curve (S, yj) = for

the value of the variable in question. Certain of the coefficients in the

function, as we shall see, must vanish.

Multiplying the expression (16) by £-mln-1) we obtain a function

(17) 4-m(re-1)

(P„_, rr 1 + P„-2 ?r2 +•••+&,)

whose orders of coincidence with the branches of the several cycles will

be less by m(n— 1) than the numbers given in (12). The orders of coinci-

dence of this product with the branches of the several cycles will then be

equal to the numbers

respectively. Now these are the orders of coincidence necessary to the

adjointness of a rational function of the variables (z,v) with the curve

F(z, «) = for the value z = oo, and they will evidently also be the orders

of coincidence of the function (17), transformed to terms of (z, v), with the

branches of the several cycles of the curve F(z,v) = corresponding to

the value z= oo. The function (17), expressed in terms of (z,v), will then

be adjoint to the curve F(z,v) = for the value z = oo. We have shown
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however in Chapter VI, that a rational function of (z,v) which is adjoint

for the value z = oo, must have a degree in (z,v) which is <iV— 1. The

product (17) therefore, expressed in terms of (z,v), must have a degree

which is <JV— 1.

Substituting z
_1 and z~^

m
v respectively for £ and yj in (17), we obtain

the expression

(18) p^g) v
n~x + Pn^)zm v

n-2 + p„^g) 2
2m^-3 + • • + Po)-

1

)
z""""

1 '

whose degree in (z,#) must be <JV— 1. The first element iu the sum sat-

isfies this condition as it stands, and evidently also satisfies the further

condition required in Chapter VI from the element hn_ y v
n~~x in a rational

function which is to be adjoint for the value z = oo — namely that its

degree be <n— 1. In the case of the other elements p„_s l- \z
{s~X)m

v
n~*

, the

limitation that their degree be < N— 1 , will require that the coefficients of

a number of the lower powers of - in the functions p„_, - he equal to 0.

If namely I- is the lowest power of- which appears in p„_s
- , we must

have — p + (s— \)m + n—s<N— 1 and therefore p>(«— l)(m— 1) + n — N.

It follows then that in a function p„_s
- , terms involving exponents which

are less than (s— I) (in— l) + n—N cannot appear. That the number

(s— l)(m— 1) + n—N cannot be negative is evident, since for the case here

in question we have s>2 and by our choice of the integer m we have

N<.m + n— 1.

The number of terms which must be missing in a function

pre_s (], (<s>2), as a consequence of the limitation on the degree of the

function (18), is then (m— 1) (s— 1) + n—-N, and the total number of such

terms lacking in the n— 1 functions corresponding to the values s=2,3, • • n

will therefore be given by the sum

B = 2{(m-l){s-l) + n-N} = \n(n-l)(m+l)-(n-l)N.
s=2
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This then is the number of the conditions which must be imposed on

the coefficients of the general function of the form (18) in order that it

may have the degree N— 1.

Under the A conditions necessary to the adjointness of a function of

the form (18) are included the B conditions here in question. The number

of the conditions then that must be imposed on the coefficients of a func-

tion of the form (18) and of the degree JV— 1, in order that it may be

adjoint to the curve F(z,v) = relatively to the value z = oo , is A—B. Un-

der the form (18) however is included the most general rational function

of (z,v) of degree N—l, in which the coefficients of the several powers of

v are represented by series in - involving a finite number of powers, posi-

tive and negative, and where the degree of the element of the function

involving v
n~l

is not greater than n—l. It follows that the number of

the independent conditions which must be satisfied by the coefficients in

the most general rational function of (z, v) of degree N— 1 — that is to

say in the most general function of the form (V, 10) — in which the ele-

ment involving v"~
l

is of degree n— 1, in order that the function may be

adjoint to the curve F(z,v) = for the value z = oo, is given by the

formula

A-B = {n-l)N-\n{n-l) +12^.-1 +±-)v„

The limitation here made on the degree of the element involving

v"~
l in the function (V, 10) is — as we have proved in Chapter VI — a

necessary one, in order that the function may be adjoint for the value

z = oo. The number of conditions imposed on the coefficients of the func-

tion by this limitation is evidently N — n, for it requires that the coeffi-

cients of the terms in z
N^ v

n~\ z
N-"^if\ ... zv"'1 be all equal to 0. The

number of conditions then which must be satisfied by the coefficients of

the general rational function of degree N—l

K-xVn~' + K_2 v
n-2 + +h

,

in order that it may be adjoint to the curve F(z, v) = for the value
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z=co, will be equal to A — B + N — n. Indicating this number by A, as

has already been dgne in Chapter V, we shall have

(19) A = n(N~l)-ln{rt -l) + l^(v .

l -l i f)v

This then is the number of independent conditions which are just suffi-

cient to the adjointness of a rational function of degree N—l for the

value z = oo

.

We have seen in Chapter V that the expression

r

A + 2 (v's - \'s + i-!k

represents the number of conditions which must be satisfied by the coeffi-

cients in the general function of the form (V, 10), in order that it may
have as its orders of coincidence with the branches of the several cycles

corresponding to the value z = oo, a certain set of adjoint numbers |i.'
l5

|j'
2> • • {'*,•

On substituting in this expression the value just determined for A we

obtain

(20) W (tf-1) l«(»-l) + 2|i/.v.-i2ta-l +1)V
s=l s=l s

This is therefore the number of independent conditions which must be

satisfied by the coefficients in the general rational function of degree N—l,

in order that it may have as its orders of coincidence with the branches

of the several cycles corresponding to the value z = oo, a certain set of ad-

joint numbers \j.\, \>.'
2 , •• \?'

r -

Fields.
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CHAPTER IX.

Modified formulation of conditions.

The function R(z,v). Introduction of the functions ^(z,v). Modified formula-

tion of the conditions satisfied by the coefficients of the function <|) (z, v).

In order that an integral rational function ty(z,v) may be complement-

ary adjoint to the order i to the system of functions <p(z,v), whose orders

of coincidence with the branches of the several cycles are not less than

the adjoint numbers [i.\, ... \>.'
r respectively, it is necessary and sufficient,

as we have seen in the chapter preceding, that the coefficients of (z—af~
l
v
n~x

in the I functions y,f(z,v) which appear in the system of identities (VIII, 1)

should be equal to 0. We have also seen that the I conditions so im-

posed on the coefficients of the function ty(z,v) are linearly independent

of one another.

Let us now consider an identity of the type in question

(1) <p
{i)

(z,v).<Hz,v) = &(z,v).F(z,v) + '/}
i)

(z,v) + (z-aYQ(z,v).

Here it is to be borne in mind that vn
~~2

is the highest power of v which

can appear in &(z,v), and that Fn the coefficient of vn
in F(z, v) is equal

to 1.

Multiplying both sides of the identity by a function

R (z, v) = Bn_x v
n'x + Bn_2 v

n~2 + +B

in which the coefficients F„_lt . . . B are as yet undetermined integral ra-

tional functions of z, we obtain
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(2) 4. (z , v) . <p
(;

» (z, v) .R(z,v)=» (z, v) .F(z,v).R (z, v)

+ x
w

(z, v) . R (z, v) + (z— af ii (z, v) . R (z, v) .

The unreduced product F (z, v) . R (z, v) will have the form

F(z,v).R(z,v) = 82 „_x v
2 "-1 + 82 „_2 v

2 »
"2 + • • • + 8

where the coefficients 8 are integral rational functions of z. In particular

the first n coefficients will be given by the equations

*- 2 n-r
= "

re-) +1 -O re— 1 + * re—r+2 *»-2 + ' ' + % re Rn—rl V = 1 > • • • W ) •

The as yet undetermined functions i? may now be so chosen that the n— 1

expressions $2,1-2 > ^2»-3> ••• $« are au identically equal to 0. Namely on

equating these expressions to we obtain the n— 1 equations

FnRn _r + Fn_, i?n_,+1 + • • + Fn_r+1 Rn_^ = 0,(r = 2, ...n).

These equations determine the ratios of the functions R , i?x , ... 7?„_2 to

i?„_! , and on taking Rn-i = 1 and remembering that we have Fn = 1 we

obtain for the determination of the functions Rt the formula

Fn-i Fn_2 Ft+1

F„ -Fre-i Ft+2

i?* = (-!)*
F Ff

Fn Fn_x

where £ takes the values 0, 1, ... n— 2. The functions R
t
so determined

are integral rational functions of z and evidently give us for R (z, v) a func-

tion which may be written in the form

(3) B{z,v) = (-!)"

1 V
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Our determination of the functions R , .

.

. i?„_! make the coefficients

'^«-j, •• &„ in the expression for the product F(z,v) . R(z,v) vanish identi-

cally and gives us at the same time S2n^ l
=FnRn_i= l, so that we may write

(4) F(z,v).R(z,v)^v2 '1-1 + S,^
1
vn
- 1 + ±$

where the coefficients $„_! , . . . S are evidently integral rational functions

of z. For the first element on the right-hand side of the identity (2) we

shall then have

* (z, v) . F {z, v) . R (z, v) = » (z, v) v2 "- 1 + * (z, v)
(
8n_ Y v

H~ l + '
• • + S )

.

On effecting the multiplications here indicated, we note in the expression

on the right that no term involving the power v2h
~2 can present itself,

for a term will either be divisible by v2n
" x or it will involve at most the

power v2n
~~3

, since &(z,v) contains no power of v higher than vn
~'2

.

Returning now to the identity (2) with the function R(z,v) determined

as above, it is evident that any terms involving v2 n~2 in the expression on

the right-hand side of the identity must be sought in the portion

X"
1
(z, v) . R (z, v) + (z— a) 1 Q (z, v) . R (z, v)

of this expression. If in particular we would find the terms involving

(z— a)'~
l v2H

" 2
, it plainly suffices to confine our attention to the product

X
l0

(z, v) . R(z, v). In this product furthermore v2n
~2

is the highest power

of v which can occur, since v"
[

is the highest power which appears in

either of the two factors. Also since the coefficient Rn..x of v"" 1 in the sec-

ond factor is equal to 1, the coefficient of v2n
~2 in the product must be

equal to the coefficient of v"~L in x
(" (z,v), and in particular the term in

(z— a)'
-1

u2 "-2
in the product y}

l) (z,v).R(z,v) must have as its coefficient

the constant coefficient of (z— a)i~ l vn
' 1 in the function x

(i)

(z> v). The coef-

ficient of (z — af" 1 vn
~ l in y}

l)

(z,v) is then identical with the coefficient of

(z— a)'~V" - in the expression on the right of (2), and therefore the same

as the coefficient of (z— af^v2 '1
"2 in the product on the left of this identity.

The coefficients of (z— a,y~ l v"~ l in the I functions y!I
] {z,v) appearing

in the identities (VIII, 1) are then just the same as the coefficients of

(z— a)'
-1

v
2 "~2

in the I products
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(5) i/(z,v).ff(z,v).R{z,v), (8=1,. ..I)

obtained on multiplying the expressions on the left of these identities by

R(z, v), and the vanishing of the coefficients of (z— af~~
l v2n

~2 in these I

products will impose just the same conditions on the coefficients of ']> (z, v),

as would the vanishing of the coefficients of (z

—

a) l~~1vn
~~l in the I functions

lf(z,v). In order that an integral rational function ty(z,v) should be com-

plementary adjoint to the order * to the system of functions <?(z,v), whose

orders of coincidence with the branches of the several cycles are not less

than the adjoint numbers [x'l5 ... y.'
r respectively, it is therefore necessary

and sufficient that the coefficients of (z— a)
i~~l vin

~2 in the I products (5)

should all vanish.

We shall now write the I products f^(z,v). R(z,v) in the form

(6) ?<" (z, v) . R (z, v) = es (z, v) + v"-1
C f (z, v)

,

(s= 1 , . . . I)

where on the right the element vn
~l

£#> (z, v) is made up of all terms of the

product on the left which are divisible by vn
~l and which at the same

time are not divisible by (z—af. In the element Gs (z,v) then any term

containing v to a power higher than vn
~2 must be divisible by (z

—

a)\

On representing the I products (5) in the form

4. (z, v) (6. (z, v) + vn
~l

C?

»

(z, v))

,

(s = 1 , . . . I)

we see that the terms in the products ty(z,v) .Qs (z,v) which involve powers

of v higher than v2n
~3 must be divisible by (z—af, and that therefore the

coefficients of (z—aY~l v2n
~2 in the products

$(z,v).V n
-l

^(Z,v) (5=1, ...I)

must be the same as in the products (5). It follows that the coefficients

of (z— a)
i~1 vn

~ 1 in the I products

(7) HZ,V).1?(Z,V) {8-1,.., I)

are the same as the coefficients of (z— a)
i_1

t>
2 "^2 in the I products (5), and

consequently the same as the coefficients of (z

—

a)
l~~ l vn

~l
in the I functions

y_f (z,v) which appear in the identities (VIII, 1).
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The necessary and sufficient conditions in order that the integral ra-

tional function ^(z,u) may be complementary adjoint to the order i to the

system of functions <p(z,v), whose orders of coincidence with the branches

of the several cycles are not less than the adjoint numbers \l\, ... \>.'
r re-

spectively, are then obtained on equating to the coefficients of (z

—

a)l~ lvn
~ x

in the I products (7), and the I equations in the coefficients of ty(z,v) so

obtained are linearly independent of one another.

The functions tf(z,v) corresponding to the I functions 'f^(z,v) can be

readily derived from the identities (6). Namely on effecting the multiplica-

tions indicated on the left of these identities, and discarding in the results

terms divisible by (z

—

a)
1 and terms involving v to a power lower than

v
n~l

, there remain the I products vn
~l

^l
) (z,v), from which on division by

d"
-1 we obtain the I functions tf(z,v).

We shall find it convenient conversely, to have the means of determin-

ing the functions y
{s(z,v) in terms of the corresponding functions cf(z,v).

— On multiplying both sides of the identities (6) by F(z,v) and substitut-

ing for F (z, v) . R (z, v) the expression given in (4), we obtain I identities

f* (z, v) . (v
2n~ l + S„_i v"- 1 + + S ) = % (z, v) . F(z, v) + vn

~l
Ci? (z, v) . F (z, v) .

(8=1, ...I)

Here the only terms in the product on the left which involve v to a power

higher than v2n
~2 are contained in the element ^f(z,v) .v

2n~l

, none of whose

terms is divisible by (z— a)\ Furthermore, the only terms on the right

which are not divisible by (z— of and which involve a power of v higher

than v
2n~2 are evidently contained in the element vn

~1 t,f(z,v).F(z,v).

It follows that v
2 n~~ l

<ff (z, v) represents the aggregate of terms in the

product vn
~ 1 if(z,v).F(z,v), which are divisible by v2 "-"1 but not by (z—a)\

The aggregate of terms in the product t^(zv) .F(z,v) which are divisible

by v" but not by (z—af are therefore represented by vH$) (z,v). This is

equivalent to saying, that to the set of I products C,' (z, v) . F (z, v) corre-

sponds a set of I identities —

(8) C!/» (z, v) . F(z, v) = II, (z, v) + vn 'tf (z,v), (s=l,...l)
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where the functions W
s (z,v) are integral rational functions of (z,v), in which

any term which is divisible by v" is also divisible by (z— of.

To determine the I functions yf(z,v) corresponding to I given func-

tions t,f(z,v) then, it is only necessary to effect the multiplications indi-

cated on the left of the identities (8) and discard in the products terms

which are divisible by (z

—

a)
z and terms involving v to a power lower than

vn . There remain the I products vn <?f(z,v), from which on dividing by

vn we obtain the I functions ff(z,v).

On expressing the functions <?f{z,v) and tf(z,v) more fully in the forms

w* (z,v)= p<:u v*-1 + p<:u^-2 + +p (!)

(l))

fc
,

(
z^)=T^-1^1

+Ti! )»-2
^-2

+ •• +Ti:
,

of

{s h '" l)

the process just described will evidently give for the determination of the

functions yf(z,v) in terms of the coefficients of the functions K^fav), the

set of I congruences

n—1

( 10) ff (z, v) = 2 (KVJ\ + *\,-iT#+1 + ' + ^+iTi!U) •
**

, [mod. [z-af]

,

s=\, 2, ... I

whence also

(11) P (;?^nT5 + ^»-1T5+1 + ••• +^+1 Ti!U, [mod.(z-a)'J.

For the value z = oo we shall now derive formulae analogous to those

which we have just obtained for finite values of the variable. To do this

it is only necessary to transform to the variables i= z"l
,y\= z^m v, replacing

our equation F(z,v) = by the equation (t(6,t)) = with which we have

already had to do in (VIII, 7). On considering rational functions of (J.tj)

relatively to the equation G(t,t}) = 0, we can then appropriate for finite

values of the variable £, and in particular for the value 6= 0, the theory

which we have developed in the present chapter for finite values of the

variable z and for rational functions of (z,v) considered with reference to

the equation F (z, v) = 0.

Making use of the notation employed in (VIII, 14) to designate a set

of adjoint numbers relatively to the cycles of the equation G(t,ri) = 0, corre-

sponding to the value 6 = 0, we shall consider the conditions which must
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be satisfied by the coefficients of an integral rational function <!>(£, yj) in

order that it may be complementary adjoint to the order i to the system

of integral rational functions cp % yj) , whose orders of coincidence with the

branches of the several cycles corresponding to the value 6 = are not less

than the adjoint numbers

m(n— 1) + \i
1
,m(n— 1) + \l'.,, . . . m(n— 1) + \i'r

respectively. If I is the mimber of the linearly independent functions k (,>
(£,yj)

obtained on dropping terms divisible by ¥ in the functions <p(£,y]), it fol-

lows from Chapter VIII that I is also the number of linearly independent

conditions which must be satisfied by the coefficients of the function tp(£, yj).

To formulate these conditions more explicitly, we select a set of I linearly

independent functions cp'/
1

(£,yj), ¥2' (£,»]), . . . f\
i]
{tii), and construct, after the

analogy of the function E(z,v) in formula (3), the function

(12) i2 (til) = (-!)-

1 7) 7]
2

.
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(14) ^M.CfM, (8=1,... I)

The functions* yf (£, yj) and Cf (£,tj) can also be connected by identities

constructed after the analogy of the identities (8). Namely we shall have

Z identities of the form

(15) ci°(s.i).G
(

(e,T
(I)
= n,(6, 1

i) + T
i

-
?if(e,7j), (a«=i, ...z)

so that to determine the Z functions <p?(£, ?]) in terms of the corresponding

functions tf (|, yj) , it is only necessary to effect the multiplications indicated

on the left of these identities and discard in the products terms which are

divisible by 4* and terms involving yj to a power lower than yj". There re-

main the Z products y"
<pf (£, yj) , from which on dividing by t" we obtain the

Z functions <pf(irq).

On representing the functions <if (£, tj) and C|?'(€, yj) in the forms

(*? (i l) = ^?»-i T-1 + J°i!U rf"
2
+ • + P% 1

(16)
fe

) (i^) = T^-1
^-1 +T« l-2^r2 + ••• +T?oJ

{s "" )

the process just described will give for the determination of the functions

<pf(t,n) in terms of the coefficients of the functions Ci° (€, tj) , the set of Z

congruences

(17) ??>(£, i) s 2 (^T5+^-iT^+1 + • • • +Gt+iT&-i) J, [mod. fl,
#=0

s=l, 2,... Z

whence also

(18) F®
t = GnJf t + <?n_iT5+i + + G'mlT-i, [mod. ?J,

The connection between the functions B(i,-q) and jR(z,w), it may be

remarked, is readily obtainable. Noting namely that weha,ve Ot
= i

in~t)mFt ,

it suffices to multiply the 3rd, 4th, . . . nth. rows of the determinant

in (12) by i
m

, i
2m

, . . . £
("_2)m respectively, dividing at the same time the

2nd, 3rd, . . . (n—l)th columns by i
m

, i
2m

, . . . gn~2)m respectively, in order

to obtain the relation

(19) R{k,fi)=^-l)mR{z,v).

Fields. 12
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This relation could also be immediately derived from the properties

which define the functions R(z,v) and R(£,fi). Namely the property that

the coefficients of h
2 "~2

, ... vn in the product F (z, v) . R (z, v) must vanish,

and the property that the coefficients of tf
"~'i

, . . . if in the product

G(£,7\).R(t,ti) = h
mn F(z,v).R(t,ri) must vanish, are one and the same, and,

since this property determines each of the functions R (z, v) and R (I, y\) to

a factor in i, it follows that these two functions can only differ by such

a factor. From the further property that the coefficient of %
n~x in R(z,v)

and the coefficient of ir"
_1

in R (£,•»]) must be unity, it follows that the

latter function is obtained on multiplying the former function by the

factor 4c-1 )"1
.
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CHAPTER X.

Rational functions of unrestricted character for z = oo.

Form of the general rational function of (z, v) which becomes infinite only for

the value z = <x> . General form of a rational function of (z, v) which, in addition to

infinities at oo , may possess an assigned set of infinities corresponding to finite values

of the variable z.

We shall now consider the form of a rational function of (z, v) as re-

lated to the values of the variables for which it becomes infinite.

We have seen that any rational function of (z,v) can be reduced to

the form

hn_1 v
n~1 + kn_2 v

n-2 + +h

where the coefficients h are rational functions of z. By application of the

principle of partial fractions, this again may be written in the form

(i) ah „_p(#i .) +2g^
ft \

z ah) k

where the functions P(z,v) and (p
(t,c)

(z, v) are integral rational functions of

(z, v), supposed as usual to be expressed in their reduced forms, and where,

as indicated by the notation, the function <p
{ih) (z,v) does not involve z to a

power higher than ik
~x

.

The number of elements in the summation on the right-hand side of

(1) is finite, and to any given factor z—ah of which a power appears as a

denominator, we may suppose that only one element corresponds, for if

there were several such elements they could evidently be combined in a

single element with the highest power of z—ah which makes its appearance
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as denominator. Furthermore we may assume that the numerator of an

element is not divisible by the factor z— ak which appears in its denom-

inator.

As a rule a function of the form (1) will become infinite for finite

values of the variable z, as well as for the value 3=00. For the moment

we shall occupy ourselves with the determination of the most general form

of the function which becomes infinite only for the value 0=00.

The function v as defined by the equation (I, 3) is an integral alge-

braic function of z, so that the integral rational function P(z,v) will always

be finite for finite values of z. A finite value of z for which the function

H (z,v) becomes infinite can then only be one for which some one of the

elements in the summation becomes infinite, and this can only be the

value z= ak for which the denominator of the element in question vanishes.

Also if an element of the summation becomes infinite for the value z= ak

the function H(z,v) too will become infinite, for the remaining elements of

the summation will be finite for the value of the variable in question.

As regards finite values of the variable g then, a function of the form

(1) can only become infinite for a value z= ak corresponding to an element

of the summation, and for such value it will or will not become infinite

according as the corresponding element does or does not become infinite

for this value. To determine under what circumstances the form (1) will

represent an integral algebraic function of z, it will therefore suffice to de-

termine the conditions under which the individual elements

ffiW (z, v)

(z— a)*

will represent such functions.

In order that the element (2) may not become infinite for any one of

the branches of the fundamental curve corresponding to the value z= a, it is

necessary and sufficient that the orders of coincidence of these branches

with the numerator of the element should each be equal to or greater

than i. Now it has already been pointed out in Chapter VII that the

largest value of an integer i, such that the orders of coincidence of an

integral rational function <p(z,v) which is not divisible by z—a with the
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branches of the several cycles corresponding to the value 3 = a are all

equal to or greater than i, is the largest of the integers Qi^], . . . [\>.r] cor-

responding to this value of the variable. All of these integers however

are equal to except in the case where the value g= a belongs to the

category (C), in which case the r integers include among them ones which

are >1. In the representation of an integral algebraic function of 3 in the

form (1) therefore, the summation can only involve elements corresponding

to values 2= ah which belong to the category (C). In other words, to

the values 3= ak with which we here have to do, must correspond, among

other points on the fundamental curve, at least one multiple point.

I^et us now suppose that the element (2) has reference to a value

3= a which belongs to the category (C). Employing for the moment M to

represent the greatest of the integers QjJ, . . . [|Ar] this will be the greatest

value which the integral exponent i may have, consistent with the finite-

ness of the element for all the branches of the curve corresponding to

z= a, on the assumption that the numerator is not divisible by 3— a. If

in the element (2) we have i<M we can, by multiplying numerator and

denominator by a power of 3— a, express the element in a fractional form

with (g— a)M as denominator, the numerator in this case then being divi-

sible by a power of 3— a. In the case where (2) is supposed to represent

an element of an integral algebraic function of 3, we may always assume

therefore that we have i= M.
In order that an element

(6) (z-a)M

may be finite for all the branches of the curve corresponding to the value

z= a, it is necessary and sufficient that the order of coincidence of the

numerator with each one of these branches be >Jf . Now in Chapter VIII

we have employed the notation lA to indicate the number of the linearly

independent functions <p
m

(3, v) corresponding to the system of integral ra-

tional functions <f{s,v), whose orders of coincidence with the n branches

of the curve are none of them less than M. This then is also the num-

ber of the linearly independent functions of the form <?
{M)

{3,v), whose or-

ders of coincidence with the n branches of the curve are none of them
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less than M, since the genera] integral rational function <p {z, v) may be

written in the form

f (*, v) = ?
( J/)

(*, w) + U— a)*" ((*— a, t>))

,

where the function y
{M)

(z,v) alone on the right-hand side of the identity

is affected by an order of coincidence M relative to a branch of the curve

corresponding to the value z= a. In Chapter VIII we have further seen

that the number lA is equal to A, the number of the adjoint conditions

corresponding to the value 3= a. The number of the linearly independent

functions v(M) (z,v) which can serve as numerator in the element (3), sup-

posed to be finite for all the branches of the curve corresponding to the

value z = a, is then given by

1
r

1

(4)
^ =22 (P. — 1 + -)v

Representing by
<f[

M)
(z,v), ^(^v), . . . <p^(.?,v) a complete system of

linearly independent functions of the form <p
{M)

(z, v), whose orders of coin-

cidence with the n branches of the curve are none of them less than M,
the most general function which can serve as numerator in the element

(3) may be written in the form

(5) <?
m

{*, v) = §! ?[
m

(«, v) + S2dmU ,v) + + 8a <?T& v)

where the A coefficients § are arbitrary constants.

Employing an extra index k to distinguish expressions corresponding

to the value z= ak , it is evident that the most general rational function

of (z, v) which is infinite only for the value z = 00 can be written in the form

where P(z,v) is an arbitrary integral rational function of {z,v), where the

summation extends to all values z= ak which belong to the category (C),

and where the indices Mk are equal to the greatest integers in the several

sets of integers [\>-[
k)
], . . . [y™]* a function <p

{Mk) (z,v) being the most general

function of the form implied in the index Mk , whose orders of coincidence

with the branches of the several cycles corresponding to the value z= ak

are none of them less than Mk .
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The number of arbitrary constants involved in the function f
{Mjc)

(z, v) is

^^i(i4*>-i+4)v<*>

— the number of adjoint conditions corresponding to the value z=ak
— and the

total number of arbitrary coefficients involved in the essentially fractional

portion of the form (6) is given by the sum

0) 2^»-s2 2(^>-i + iHk)

k Z h s=l s

where the summation with regard to 1c is supposed to extend to all values

z = ak which belong to the category (C).

It may be remarked that the limitation just made on the values of

z to which we extend the summation in (7), is superfluous — for it has already

been pointed out in Chapter V, that the numbers \l
x
— 1 h— . . . . jtr

— 1 -f
—

are all equal to for finite values of g other than those belonging to the

category (C). We might therefore say that the number of arbitrary coef-

ficients 3 involved in the essentially fractional portion of the form (6) is

given by the double summation on the right of (7), where the summation

may be conceived to extend to all finite values ak of the variable z.

We may also note that the number of arbitrary constants involved

in the essentially fractional portion of the form (6), is just equal to the

number of conditions which must be satisfied by the coefficients of the

general integral rational function of (z,v) in order that it may be adjoint

for all finite values of the variable z. For the expression on the right-

hand side of (7) is equal to the sum of the numbers of conditions requi-

site to the adjointness of an integral rational function of (z,v) relative to

the individual finite values of the variable, and in the case of an integral

rational function of (z,v) of degree n — 1 in v and of sufficiently high

degree in z, it is evident that the conditions of adjointness relative to the

individual finite values of the variable are independent of one another.

Namely by imposition of a number of conditions, including those requisite

to adjointness relative to the values z= a x , z= a
% , ... z=ak_1 , we can reduce

the general integral rational function of (z,v) to the form {z—a^Ml
...

. . . (z—ctk_i)
Mk-1(?(z,v), where the coefficients oi'<p(s,v) are arbitrary, and
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the requisition that our function be also adjoint relative to a further value

z= ak , demands the imposition on the coefficients of the factor <p(z,v) of

the full quota of conditions requisite to the adjointness of an integral ra-

tional function of {z,v) relative to the individual value of the variable

z= ak — consequently the conditions of adjointness relative to a given

finite value of the variable z are independent of the conditions of adjoint-

ness relative to any number of other finite values of the variable.

Turning now to the consideration of the case in which we have to do

with a rational function of (z,v) which may become infinite for finite val-

ues of the variable as well as for the value z= oo , we shall first deter-

mine the general form of such a function which becomes infinite in a cer-

tain way for a given set of finite values of the variable, its conduct for

the value #= oo being for the moment unrestricted.

We have seen that an element of the summation in the representation

of a rational function H(z,v) in the form (1), will not be finite for all the

branches belonging to the corresponding value z= a except in the case

where this value belongs to the category (C), in which case it may happen

that the element is finite for all n branches. In the representation of a

function which is to become infinite for certain finite values of the variable

z then, it will suffice to extend the summation in (1) so as to include

these values as well as those belonging to the category (C). Representing

the aggregate of these values by au a2 , a 3 , ... we shall employ the sym-

bols of', af\ ... a™ to indicate the orders* to which the function which we

propose to construct is to become infinite for the branches of the rk cycles

corresponding to the value z= ak .

In so far as the numbers af, af\ . . . a* are different from they

are assumed to be integral multiples of the fractions -7*7 JM, • • . ~w, re-
v
l J

v2 vrk

spectively, where v
(

/
c)

, 4
A)

, ... vj.*
1 are the orders of the rk cycles into which

are grouped the n branches of the curve corresponding to the value z = ak .

* Where the development of a rational function of (z,v) corresponding to a branch of a

cycle of order v commences with a term in (z— a)—o, we shall say that a is the order to which

the function becomes infinite for the branches of the cycle, without regard to whether a is inte-

gral or fractional. At the same time however we shall also say that the function possesses va

infinities corresponding to the branches of the cycle in question.
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The notation here employed, it is to be remarked, takes no account of

whether the function in process of construction does or does not become

equal to for the branches of a cycle for which it does not become in-

finite, but simply takes as the value of the number aUc) corresponding

to a cycle for which the function is not to become infinite. If the value

z= ak belongs to the category (C), it may or may not happen that the

numbers af, af\ ... o<.*> in the case of the function proposed for construc-

tion are all equal to 0. When the value of the variable in question does

not belong to this category however, one at least of the r
]c
numbers

a
i

e)

, a2
C

\ • •• °r£ wul be different from if the summation in the form (1)

is to contain a corresponding element.

The infinities of a rational function of (z,v) for a value z= a will be

the same as those of the corresponding element in the representation of

the function in the form (1). In order then to prove the existence of

a rational function of (z,v) having an assigned set of infinities for given

finite values of z, and in order to construct the most general rational

function having such infinities, it will be sufficient to prove the existence

of elements having the required infinities for the corresponding values of

the variable z and. to determine these elements in their most general

form.

We shall now examine more closely the form of an element (2) sup-

posed to become infinite to certain orders — which we shall indicate by

c
x , a2 , . . . ar respectively — for the branches of the r cycles corresponding

to the value z= a. Such an element for example may be constructed with

a numerator which is not divisible by z—a, and with a denominator in

which the exponent i is equal to the greatest of the integers

[>l + °lL [\h + ai\> ••• [\>'r
+ ar],

as may readily be shown. Representing, for the moment, by [^+o] the

greatest of these integers, we see that the r differences

[[t + a]— ai , [[JL + o]—

o

2 > • [|i + a]— a,.

must constitute a set of adjoint numbers corresponding to the value z= a,

for they are evidently not less than the respective numbers
Fields. 13

www.libtool.com.cn



98 CHAPTER X.

Ol + °l]— °1, [(la + Oo]— C52 , . . . [{!,. + 0,.]— 0,.,

and these again are equal to or greater than the numbers

Hi— 1 +— , fc>
— 1 +—> ••• V-r— 1 + —r ' Vj *

' v2
'

'
V,.

respectively. We can therefore construct an integral rational function of

(z,v) having [ji + a]— Oj, . . . [ft + a]—

o

r respectively as its orders of coinci-

dence with the branches of the several cycles. Also these orders of coinci-

dence do not require divisibility of the function by the factor z— a, for

the numbers
[i>. + ]— °i, . . . [jjl + o]— a,, are not simultaneously greater than

the corresponding members of the set of numbers ^ , ... fv This follows

namely from the fact, that one at least of the former set of numbers is

equal to the corresponding number in the system [^ + o^— Oj, . . . [(ir + o,.J

—

ar>

and the numbers in this latter system are evidently equal to or less than

the corresponding members of the set of numbers jn> ... \ir .

We can therefore construct an integral rational function of {z,v), which

is not divisible by z—a and whose orders of coincidence with the branches

of the several cycles corresponding to the value z= a are equal to the

numbers Qi + a]—

o

1; ... [jj. + o]— a,, respectively. The quotient of this func-

tion by (z— af, where i= [\L + a], will be infinite to the orders a1} ... ar re-

spectively for the branches of the several cycles, and the same will evi-

dently also be true of the fraction obtained on dropping terms in the

numerator which are divisible by (z—af. The fraction so obtained will be

an element of the form (2) — supposing the original numerator to have

been arranged according to powers of z—a and v.

It is possible then to construct an element of the form (2), which be-

comes infinite to the orders a1} ... or respectively for the branches of the

several cycles corresponding to the value z= a, and in which the exponent

i is equal to [\t +- a], the greatest of the r integers [[% + aj, ... \$.r + or], while

the numerator is not divisible by z— a. Furthermore, in an element of the

form (2), which becomes infinite to the orders a
1 , ... or respectively for the

branches of the several cycles, it is impossible that we should have i>[[>. + o]

unless the numerator is divisible by z

—

a. For suppose that we have

i= [(j. + o] + X, where X is a positive integer, and assume that the element
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does not become infinite to orders which are higher than a1} ... ar respec-

tively for the branches of the several cycles. It follows that the numera-

tor must have orders of coincidence with the branches of the several cyc-

les which are not less than the numbers [|x + o] + X— o1; . . . [jl + o] + X— ar

respectively, and which are therefore also not less than the numbers

[[J4 + OjJ + X— ol5 ... Qj.r + aj + X— or , The members of the latter set of num-

bers however are evidently greater than the numbers ^X + X— 1, ... [1,, + X—

1

respectively and the numerator — in accord with the theory developed

in Chapter V — must therefore be divisible by (z— a)^. On dividing nu-

merator and denominator of the element in question by (z— aft, it then

reduces to a form in which the exponent appearing in the denominator

has the value [^ + a].

Also in the case where we have to do with an element in which the

exponent i is less than [[x + a], it suffices to multiply numerator and de-

nominator by a power of z—a in order to bring it into a form in which

the exponent in the denominator is equal to [{J. + a]. In all cases then

where we have to do with an element of the form (2), supposed to become

infinite to the orders a
x , a

2 , ... a,, respectively, — or to orders which are not

higher than these — for the branches of the several cycles corresponding

to the value z= a, we may assume that the exponent i is equal to the

greatest of the r integers [m + aj, ... [tv + ar].

We shall then assume that the exponent i in the element (2) has the

value [^ + a]. In order that the element may not become infinite to orders

which are higher than those indicated by the numbers o
x , o2) ... ar respec-

tively for the branches of the several cycles corresponding to the value

z= a, it is necessary and sufficient that the orders of coincidence of the

numerator with the branches of these cycles should not be less than the

numbers i— alt i— a
t , . .. i—ar respectively. Now these numbers, as has

already been pointed out, constitute a set of adjoint numbers relative to

the value z= a. The number of conditions then which must be satisfied

by the coefficients of the general integral rational function <p(z,v), in order

that it may have the orders of coincidence i— o1} i— o2) ... i— ar with the

branches of the several cycles, will be obtained on replacing by these num-
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bers respectively, the numbers \l\, \t.'2 , ... fj/r which appear in the formula

(VIII, 6). The number so obtained is

r

2(*'-°.K— A-
s-l

This then is evidently also the number of conditions which must be satis-

fied by the coefficients of the general function of the form <p
w (z,v), in or-

der that its orders of coincidence with the branches of the several cycles

may not be less than the numbers i— ol5 i— o2 , ... i— ar respectively. Sub-
t-

raction of this number from iw = 2»\ — the number of terms involved

in the expression of the general function of the form y
{i)

(z,v) — gives us

the number of arbitrary constants involved in the expression of the most

general function of the form <p
{l)

(z,v), whose orders of coincidence with the

branches of the several cycles are equal to or greater than the numbers

i— au i— a% , ... i— ar respectively. Indicating this number by the letter

I we have

(8) Z= 2°.v. + 4.
s-l

This formula then gives us the number of arbitrary constants involved in

the expression of the most general function <p
{i)

(z,v), which can serve as

numerator in the element (2), supposed to become infinite to orders not

exceeding Oi,o2 , ... ar respectively for the branches of the several cycles.

In other words I is the number of linearly independent functions <p
{i)

(z,v)

which can serve as numerator in the element (2). On representing by

fl'^z.v), v (

2
l)
{z,v), • • • ?l

i]
{%,v) a complete system of linearly independent func-

tions y
U)

{z,vY, whose orders of coincidence with the branches of the several

cycles are equal to or greater than the numbers i— ol9 i— o2 , ... *— ar re-

spectively, the most general numerator will have the form

<?
ii)

(z,v) = 8l ti
i)
(z,v) + d2 <p

i

2
i) (z,v)+ •• +dl f\

i)
(z,v)

where the coefficients 8 are arbitrary constants.

Since, for special forms of the numerator at least — as we have al-
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ready seen — the element actually becomes infinite to the orders a
1
,a2: . . . a,

respectively for the branches of the several cycles, it will also become in-

finite to these orders excepting for conditioned values of the arbitrary

constants S. It would be necessary, for example, to impose a condition

on the constants S, in order that the order of coincidence of the numera-

tor with the branches of the sth cycle may be greater than i— o„ and

therewith that the order of infinity of the element for the branches of

this cycle may be less than o
s
— so long that is as we have a

g>0.

In this connection a remark may be made in regard to the orders of

coincidence of the numerator in an element, which actually becomes in-

finite to the orders ol5 a2> ... a
r respectively for the branches of the several

cycles. The order of coincidence of such numerator with the branches of

the sth cycle must evidently be just equal to i— o
s in the case where we

have as>0, whereas this is not required in the case where we have o
s
= 0,

so that we may say of the orders of coincidence of the numerator with

the branches of the several cycles, that they are not less than the num-

bers i— alt i— o
2 , ... i— ar respectively, but not in general that they are

equal to these numbers, excepting in so far as the quantities a appearing

in the expression of these numbers are different from 0. It may even

happen that it would be impossible to construct a function of the form

<p
(I)

(z,v) whose orders of coincidence with the branches of the several cycles

are just equal to the numbers i— o
x , %— o2 , ... i— ar respectively, in the

case where certain of the o's have the value 0, so that in an element of

the form (2), supposed to become infinite to the orders ols o2 , ... a,, respec-

tively for the branches of the several cycles, the order of coincidence of

the numerator with the branches of a certain cycle might necessarily be

greater than i in the case where the corresponding a has the value 0, in

other words in the case where the element remains finite for the branches

of the cycle in question.

This will best be illustrated by a simple example. — Let us suppose

that the n branches corresponding to the value z= a are made up of a

cycle of odd order vx >l and of n— v
x isolated simple branches. Further-

more suppose that the equation to a branch of the cycle of order v, has

the form
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JL J-

v—b=*aa i-(z— a)*i + a3 i
3 (z—a) vi+ ...

where e is a v^h root of unity and where we have a^O. The number of

the cycles with which we here have to do is r= n— Vj + 1 , where as usual

each of the simple branches is regarded as constituting a cycle of order 1,

and where the numbers j^, \l
2 , ... \>.r corresponding to the branches of the

several cycles evidently have the values —— -, 0, ... respectively.

If now we would construct an element of the form (2) corresponding

to the value z = a and becoming infinite to the orders o
1
= 0, a2

= l» • • • °r= l

respectively for the branches of the several cycles, we should have 1 for

the value of the exponent i, this being, by the general theory given above,

equal to the greatest of the integers [i^ + oj, ... [ji,. + or] — all of which,

as it happens in the present case, have the common value 1. Our element

then will have the form (z— a)
_1

f
(1)

(z,v), where the orders of coincidence

of the numerator cp
(1)

(z,z;) with the branches of the several cycles are not

less than the numbers i— o1} i— a2j ... %— ar respectively, and where in fact

its orders of coincidence with the branches of the last r— 1 cycles — other-

wise said, with the r— 1 simple branches — must all be equal to 0.

The order of coincidence of <p
(1)

(z, v) with the branches of the cycle of

order v
:
however cannot be equal to 1, as may readily be shewn, and must

therefore be greater than this value. A function of the form <p
w (z,v)

namely will, as indicated by the index (1), involve only terms in v and

may therefore be regarded as a polynomial in this variable of degree n— 1.

It may further be expressed in the form of a product (v— b)^h(v) where X

is or a positive integer and where h (v) is a polynomial in v which is not

divisible by v— b. The order of coincidence of h (v) with the branches of

the cycle of order v
t
will then be equal to and the order of coincidence

2
of the factor v— b with these branches is evidently equal to -, so that the

order of coincidence of <p
(1)

(z, v) --= (v—b)lh(v) with the branches of the cycle

2X
will have the value — - The order of coincidence of <p

{l)
(z,v) with the

branches of the cycle of order Vj is then an even multiple of — and cannot

therefore have the value 1 since by hypothesis v
x

is odd.
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The smallest value of X for which we have —>1 is X = ^-4Li and this

then is the smallest value which X can have in the product (v—b)^h(v),

whose order of coincidence with the branches of the cycle of order v, is

supposed to be >1. In an element (z—a)~l
t?

(1) (z,v) corresponding to the

value z= a and becoming infinite to the orders 0, 1, . . . 1 respectively for

the branches of the several cycles, the numerator y
m (z,v) may therefore

Vl+l

be expressed in the form (v— b)
2 hx {v), where hi{v) is a polynomial in

I
I Q

v of degree n—~— which may or may not happen to be divisible by

v— b, and the most general element of the character in question will evi-

Vj+l

dently be represented by (z— a)
_1

(v— 6)
2 h^v), where h

1 (v) is a polyno-

mial of the degree just stated, with arbitrary coefficients, excluding how-

ever such conditioned sets of values for the coefficients as would imply

that the polynomial has an order of coincidence with a simple branch

which exceeds 0. The number of arbitrary constants in the numerator of

Vi + 1
the element will evidently be equal to n „— , the number of terms in

the arbitrary polynomial ht (v) , and the order of coincidence of the numer-

ator with the branches of the cycle of order v
1

is >1 H— , while its orders

of coincidence with the remaining n— vx branches are all equal to 0.

In an element of the form (2), corresponding to the value z= a and

becoming infinite to the orders o
x , o2

;

.
.

, o,. respectively for the branches of

the several cycles, we see then that it may happen to be impossible for the

orders of coincidence of the numerator with the branches of the several

cycles to be just equal to the numbers i—

o

l9 i— o
2 , ... i—ar respectively.

Namely in the case where a number of the o's have the value 0, it may

be that the orders of coincidence of the numerator with the branches of

the corresponding cycles, or of certain of these cycles, are necessarily

greater than i.

To shew how this is compatible with the fact that we can construct

an integral rational function of (z,v), whose orders of coincidence with the
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branches of the several cycles are just equal to the numbers i—au i—a2 < • • i— °»-

respectively, it is only necessary to write such a function in the form

<p (z, v)
'-=

<p
(i)

(z, v) + (z—aY((z— a,v))

when we see that the order of coincidence of <p
li) (z,r), like that of y(z,v),

with the branches of the sth cycle is just equal to i— a
s in the case where

we have o
s>0, but that if <j

s is equal to 0, the order of coincidence i of

<p(z,v) with the branches of this cycle is compatible with a higher order of

coincidence on the part of <p
{i)

(z,v) with these branches on account of the

element (z—aY((z— a,v)), whose order of coincidence with the branches in

question may happen to have the value i.

We shall now return to the consideration of the most general rational

function H (z,v) whose infinities — apart from those at oo — are included

in a certain set of infinities corresponding to finite values of the variable

z. Our function we shall suppose to be represented in the form (1) where,

as already indicated, the values a x , a2 , a z , ..., to which elements in the

summation correspond, are made up of all those values of z for which the

function is to become infinite, and of all those values of the variable which

belong to the category (C) whether the function is to become infinite for

them or not. If the function H (z,v) is to become infinite to orders not

exceeding oj
11

, o^>, . . . a£> for the branches of the rx cycles corresponding to

the value z= a lt to orders not exceeding aj
2)

, a
2
2)

, ... a^> for the branches of

the r2 cycles corresponding to the value z= a 2 , ... to orders not exceeding

af\ o {

2
k)

, . . . oj.*' for the branches of the rk cycles corresponding to the value z=ak ,

. . . the exponents i
lc
— in accord with the theory developed in the present

chapter — are to be taken equal to the greatest integers in the several sets of

integers [[*{*' + ai'
c)

J, . . . [[4-* + °*J- Also the numerator in the Wa. element of

the summation must have orders of coincidence with the branches of the rh

cycles corresponding to the value z^ak , which do not fall short of the

numbers ik— af\ik—

a

2
k)

, . . . ik— o<*» respectively. On employing the symbol

lk to indicate the number of the linearly independent functions (p
(i*' (z,v)

which possess such orders of coincidence, and on representing by

fi
k\z,v),^jk) {z,v), ... tffjf(z,v) a complete system of linearly independent
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functions of the character in question, the most general function which

can serve as numerator in the Mh element will have the form

(9) ?«*> (z, v) = Sf <p<^» (z, v) + S<*> T
«*> (z,«)+•+ 8}*> ?i**» (z, v)

where the coefficients 8 <7|:) are arbitrary constants.

In accord with formula (8) we shall have for lk the expression

(10) 4=2^v«« +A

and for the total number of the arbitrary coefficients 3 involved in the

essentially fractional portion of our representation of the function H(z,v)

in the form (1), we shall have

rk rk Tk

(ii) S^-SS^^ + S^-SS^vW + iss^w-i + i)^
k k s=\ k h s=l ^ k s=l 's

where the summations are extended to all those values of z for which the

function is supposed to become infinite, and to all those values of the

variable which belong to the category (C). It evidently amounts to the

same thing to say, that the former of the two double summations appear-

ing on the right of this formula is extended to those values z for which

the function is supposed to become infinite, and the latter to those values

of the variable which belong to the category (C).

In the special case where the summation in formula (1) is extended

only to values of the variable z which belong to the category (C), and

where at the same time the numbers a corresponding to these values are

all equal to 0, the formula in question represents the most general rational

function of (z, v) which becomes infinite only for z= oo , and coincides with

the formula (6), while the number of arbitrary constants involved in the

fractional portion of the function and given by formula (11) identifies

itself with the number given in formula (7).

Fields. 14

www.libtool.com.cn



106 CHAPTER XI.

CHAPTER XI.

Rational functions which are restricted for all values of z.

Consideration of the character of a rational function of (z,v) for the value z==go.

Conditions which must be satisfied by the coefficients in a rational function of (s,"v)

which may possess certain infinities corresponding to finite values of the variable z and

which at the same time must have a specified character for the value z= 00 . Reduc-
tion of the equations of condition to a form more convenient for interpretation.

We shall now impose restrictions at infinity on the general rational

function considered in the last chapter and there left unrestricted for the

value 2=00. To study the effect of such restrictions on the coefficients

of the function, it will be necessary to modify the form of representation

given in formula (X, 1). We shall begin by expressing in convenient form

an individual element of the type (X, 2). Such element may evidently

be expanded in the form

(1) j^=w~^ + ^ + + ^ + ---

where the coefficients B are polynomials in v of degree <_n— 1. The forms

of these polynomials may readily be obtained in terms of the coefficients

of the function <p
w

(z, v). Namely on transferring to the left-hand side of

the identity (1) the first s— 1 terms on the right, and on multiplying

through by z
s~1

(z— a)*, we arrive at the identity

(2) z
s ~1 ^ i) (z,v)-(z— a)4 (B^-2 + B2 z

s~3 + + B$_1 )
= (z—a)i (^ + %*+ ...).

The expression on the left-hand side of this identity is a polynomial in z

and the same must therefore hold good in regard to the product on the

right, when the multiplication by the factor {z— af has been effected. The
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degree in z of the expression on the right is evidently *— 1 and the coeffi-

cient of the term of highest order in z — that is of the term in z
1"1 —

is Bs . This then will also be the coefficient of (z— a)
1"1 on arranging the

expression according to powers of z— a. It follows that Bs is the coeffi-

cient of (z—a)*
-1

in the expression on the left-hand side of (2), on arrang-

ing according to powers of z— a, and therefore also the coefficient of

{z— af"1 in the development of the function z
s~l

<p
w

(z, v) in powers of z— a.

We may therefore write

and the element in (1) will now assume the form

Here we have found it convenient to make use of the notation of the

differential calculus. We may remark in passing that formula (3) can also

be very easily obtained by application of the methods of the differential

calculus. Namely we evidently have

1 /JM
i_1

<P
W {z, v) — <p

w (a
,
v) _

i — 1 ! \d a] z— a

since the expression under the sign of differentiation, regarded as a func-

tion of a alone, is a polynomial of degree i— 2. We immediately derive

therefrom

<pW (z, v)

(z— a)z i -l\\dal z— a ^i-ll\da (
" * ^

a ' 0,z

a formula which coincides with formula (3) above.

In the formula (X, 1) we shall now replace each of the elements in

the summation on the right-hand side by a development of the type given

in formula (3). We thus obtain for the rational function H(z,v) a repre-

sentation in the form

(4) h (z,v)=p (z, v) + 22r\ \(rT
rl

*rl^ {z
'
v)

\

z
's
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We shall find it convenient for the moment to suppose the function

H(z,v) to be expressed in terms of the variables £ = z~ , t\= z~m v already

introduced in Chapter VIII, where we saw that vj was an integral algebraic

function of £ defined by the equation G(£,-q) = 0. The function H (z,v)

will then be represented as a polynomial in t] of degree n—1, with coeffi-

cients which are rational functions of £. On developing these coefficients

according to positive and negative powers of £ the number of terms involv-

ing negative exponents will be finite, and the function may evidently be

represented in the form

(5) H(*,t,)--*^ + (M )

where ?
(ioo)

(£, "i) is a polynomial in (£,yj) of degrees ?'«,— 1 and n— 1 respec-

tively in these variables and where ((£,»])) represents a polynomial in rj of

degree n— 1, in which the developments of the coefficients according to

powers of £ involve no negative exponents. Here we have distinguished

a number corresponding to the value £ = — i.e to the value z=oo — by

attaching to it the symbol oo, and this device we shall continue to employ

in what follows. The introduction of the minus sign in formula (5) is

merely intended to secure greater uniformity in the expression of certain

formulae with which we shall have to do a little later on.

If the function H(z,v) is to become infinite to orders not exceeding

O
i°

o)
> a2°° )

j ••• ar£ respectively for the branches of the r^ cycles of the equa-

tion F(z,v) = corresponding to the value z=oo, the same also must be

true of the orders of infinity of the function, transformed to terms of £

and 7), for the branches of the r cycles of the equation Ct(£,t]) = corre-

sponding to the value £ = 0. Furthermore — in accord with the theory de-

veloped in the last chapter — the exponent i x in formula (5) may be as-

sumed to be equal to the greatest of the integers

(6) [m(n— 1) + ri°°> + <%**], [m(n— 1) + (4*> + 4"'], . . . [m(»— 1) + n£> + o£>]

for the orders of coincidence of the branches of the several cycles of the

equation 6r(£,^) = corresponding to the value £= 0, each with the product

of the other n—l branches, are equal to the numbers
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m{n— 1) + ^ 00>
, m(n— 1) +^ , ... m(n— 1) + [4^>

respectively — numbers with which we have already had to do in formula

(VIII, 11) but to which we now attach the symbol oo. These numbers

from the very nature of their definition can none of them be negative.

In fact they must evidently be equal to or greater than the numbers

1
f^y,

1 j—:, ... 1
j^j respectively. Of the integers in (6) too one at

V
l

V
2

V
roo _

least must evidently be >1 unless the o's are all equal to 0. If the o's

all have the value the exponent im will be equal to the greatest of

the integers

(7) m(n— lJ + W], m(n-l) + [|4" )

], •• m(w-l)+[^'].

These r ro integers it may happen all take the value 0, in which case

we have io,= and the fractional element in (5) reduces to — in fact

the numerator <p
(0)

(£, •/;) by definition represents something non-existent,

namely a polynomial in (6,yj) of degree less than in £ and is therefore

to be replaced by 0. This case Avill only present itself in connection with

a class of curves F(z,v) = of a very special form.

In the fractional element on the right-hand side of formula (5), the

orders of coincidence of the numerator
<f

(8oD)
(£, tj) with the branches of the

several cycles will of course be equal to or greater than the numbers

ix— o^
00
', ix— o^"', . . . ?'„— <4"' respectively — numbers which are adjoint

relatively to the curve G(t,r\) = for the value £= 0.

The form (5) has been constructed with reference to the infinities

only of the function H (z, v) corresponding to the value z= oo and is not

adapted as it stands to a discussion of the zeros which the function may

possess for this value of the variable. We shall find it convenient how-

ever on occasion to consider both the zeros and the infinities of our func-

tion for the value z= oo. To this end then we shall represent our func-

tion in the modified form

(8) H (ZfV)„s!!^ + tf(M )

where for j we may choose or any positive integer, as it happens to
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suit our convenience. Here as before the exponent ix is supposed to be

taken equal to the greatest integer in the set of integers (6). Also the

orders of coincidence of the numerator <p
(i °°+-> ) '^r\) with the branches of the

several cycles will be equal to or greater than the numbers im— a[
c" )

,
?'»— 4°°'>

• • •

... ?„— a|£' respectively. That the function H(z,v) can be represented in

the form (8) follows immediately from the possibility of its representation

in the form (5).

If now we were to characterize the function H (z,v) for the value

z= oo , by saying that its orders of coincidence with the branches of the

several cycles corresponding to this value of the variable are equal to or

greater than the numbers t^
00
', z^, ... % l

r°£ respectively — where these num-

bers may be positive, negative or zero — we would choose for j an inte-

gral number which is not negative and which also is not less than the

greatest of the numbers t
(00)

. If no one of the numbers t
(00) happens to

be positive we can put j equal to 0; otherwise j will be a positive inte-

ger. If t^
00

' is negative we have ^= — a£°° )

; if v^ is or positive we have

Oj
0o) = 0. In any case the orders of coincidence of the numerator <p

Ha>+j)
{t,r})

of the fractional element in formula (8) with the branches of the several

cycles corresponding to the value z = oo will be equal to or greater than

the numbers ?«, + tJ"', im + 4°°', ... im + t<£> respectively. Furthermore these

numbers constitute an adjoint set of numbers relatively to the curve G(i,t]) =
for the value 4= 0, since this was true of the set of numbers i^— a[

x)
,

," a<°°> A a(°°)
?oo °2 > • • • *ao a

roo -

Now the number of conditions which must be satisfied by the coeffi-

cients of the general integral rational function of (i,ri), in order that it

may have the set of adjoint orders of coincidence ia + 4
00)

, ?„ + t^
go)

,.. im + t<£>

relatively to the equation 6t(£,vj) = for the value £= 0, will be obtained

— in accord with formula (VIII, 6) — on subtracting from the total num-

ber of the coincidences in question, the number of the conditions requisite

to adjointness for the value 6 = 0. The number so obtained is

(9) 2(»- + T*-') v*-»—
12 (m(w— 1) + |4°°>-1 + ^)v«->.

This then must evidently also be the number of conditions which must
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be satisfied by the coefficients of the general function of the form

<p
{i™+j) (£,i\), in order that it may have orders of coincidence with the

branches of the several cycles corresponding to the value £ = 0, which do

not fall short of the numbers i^ + ^i^,
»'

a, + 4°° ,

)
•••*'<» +4™' respectively, for

none of these numbers exceeds the index *'«, + ;". The number of arbi-

trary coefficients involved in the expression of the most general function

ip
(ic°"h?)

(£,7]), whose orders of coincidence are as here required, will therefore

be obtained on subtracting the number given in formula (9) from {i^+j)n —
the total number of terms involved in the general function of the form here

in question. On indicating the number so obtained by the symbol 1&

we have

(10) L^lij-i^)^ + ll(m(n-l) + ^-l +-lj)v'

The number of the linearly independent functions of the form

¥
(ic°+j)

(£,-q), whose orders of coincidence with the branches of the several

cycles corresponding to the value £ = are equal to or greater than the

numbers i^+t 1^, i^+^K ••• *'«> + 4"' respectively, is then Z„, and on re-

presenting by ^°°+i)
(£,7j), <pg<*>

+' )

(£, Yj) ... $£+J)
(£,vi) a complete system of such

linearly independent functions, we have for the most general function which

can serve as numerator in the fractional element in formula (8)

(11) T
«.+i)(

ej1j)
a=8(«)

?
(«.+i)({

>1 ) + §(->^co+;)(£;Y] ) + ...
-f s\2ffc+»(l,il )

where the coefficients S
(00) are arbitrary constants — except in so far as

they are limited by the character attributed to the function H(z,v) for

finite values of the variable z.

The most general rational function H (z, v), whose orders of coincidence

with the branches of the several cycles corresponding to the value z = oo

do not fall short of the numbers t^', x[
x)

, ... 4"' respectively, must there-

fore in terms of (£,tj) be representable in the form (8), where the func-

tion (p
(ico+i)

(?,y]) has the form given in (11) with arbitrary coefficients S
(co)

,

while the most general rational function H (z, v) whose conduct is unrestricted

for the value z = oo and whose infinities corresponding to finite values of

the variable are included in an assigned set of infinities may be repre-
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sented in the form (4), where the double summation is extended to all

the values z = a
!:
for which the function may become infinite or which be-

long to the category (C) — the indices ik and the functions <?
{ik)

(z, v) hav-

ing the values and the forms respectively already assigned to them at the

close of the preceding chapter.

If therefore a rational function H (z, v) is to have orders of coincidence

with the branches of the several cycles corresponding to the value z = oo,

which do not fall short of the numbers t[
x)

,
4°°'

, . . . *<£> respectively,

and if at the same time it is to become infinite to orders not exceeding

"i
1
'* 4" » ••• °ri for the branches of the rx cycles corresponding to the value

z= a 1 , to orders not exceeding o<
2)

, of1

, . . . o<.
2) for the branches of the

r2 cycles corresponding to the value z= a , to orders not exceeding

a[
k)

, a
2
k)

, ... oj.*' for the branches of the rk cycles corresponding to the value

z= oh , ... where a lf a 2 , ... ak , ... include all finite values of the variable

for which the function may become infinite or which belong to the cate-

gory (C) — then must the function be simultaneously representable in the

forms (4) and (8) and to determine the conditions which must be satis-

fied by the coefficients in either of them separately, we identify the two

forms and investigate the resulting relations which involve the coefficients

of both forms conjointly.

Before identifying the forms (4) and (8), we shall find it convenient

to arrange the fractional element in the latter form according to powers

of I. The coefficient of t
icc+s in the function <p

li™+j)
(£, yj) is the same as the

coefficient of 6
io°+i-1 in the function t

i
~s~1

(p
Ha,+i)

(£,-q), and since for —ij<s<.j— 1

this function involves no negative power of i, we can evidently write

(12) *«-+'> (i,fi)=2
,•, + ;_!

i

[(wij^'

1

e*—

V

+" (e,vj
e
_ e*-+-

and for the formula (8) we have

(13) H(z,v) = -j| ^-^4—n [(^f
+
'~V-Y^' (€,l)]

e
_

4* + 6*(M)

Identifying this expression with that which has been given for the

function H(z,v) in formula (4), we obtain
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(14) 2i^[^/~w*>Mi *-

s loo

Now to bring into evidence the relations between the coefficients of the

functions ^ (z, v), ip
w»+J'>

(£, •»]) and P (z, v) implied in this identity, we shall

find it convenient to represent these functions more explicitly in the forms

n—1 n—1 n—

1

(is) ?<**>

(

Z , v) =2 p^'
(
z

) v'> <p
(ioo+' ) & i) = 2 ^°° +i>

(£) tf» ^ (z, «) = 2 -P*

(

z
) v'-

*=0 «=0 <=0

Substituting these forms in (14) and replacing yj by i
m
v, terms involving

the same power of v in the resulting identity must evidently cancel, so

that the identity (14) is equivalent to the n identities

(^li^rHif'^pf^z)} z-°

ft s=i
l
7s

1 •^ azl J*=«ft

+'2
ix + )-u [(^f"

+'" 1^"1^,"-+fl
(«)].-o

e
,+w'=---P*(*) + ^mt m)t

t= 0, 1, ... (n— 1)

where ((£))* represents a series in positive integral powers of £.

Our assumptions with regard to the integer j have heretofore been

that it is not negative and that at the same time it is not less than the

greatest of the numbers ti
00
', 4

00
'. ••• T^'- The latter assumption evidently

includes the former save when none of the numbers t
(co)

is greater than

— 1. From this on we shall find it convenient to assume that the integer

j is in no case less than 2 and at the same time that it is never less than

the greatest of the numbers t
(co)

. We shall also find it convenient to

replace — »„, where it appears as lower limit of a summation in the iden-

tities (16), by — (i^ + mt). This is admissible since each additional term so

introduced into the summation evidently vanishes identically. It implies

therefore only a convenient change in our notation of summation when we

write the identities (16) in the form

Fields. 15
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4= 0, 1, ... (w— 1).

On replacing £ by z
-1 and separating terms involving negative powers

of z from the remaining terms, these n identities evidently split up into

the two sets of identities

Z

—Ht+S' + J
— 1! iydV h=o

—mt

(19) pt (z)+ 2 ?^^^[(A)
#^"l6^lp^+

^>]
e-0

a!
^ ,,*-

* = 0, 1,... (n-1).

Multiplying each of the identities in the latter set by the correspond-

ing power v* and adding, these n identities may be embodied in a single

identity which can evidently be written in the form

(20) p (z, v) =-2 2 ctt^h [(IP^
1

6'+^*-1
Pi

l-+fl
(€)]^.

s=0 r

This of course is nothing more than the statement that the function

P(z,v) constitutes that portion of the element — 4~icD
y
(ico+-?>

(S,^) transformed

to terms of (z, v), which does not involve negative powers of z — in other

words P(z,v) is the integral portion of the function —zicc
<p
{icc+j) (z~1,z~m v).

To indicate this fact we might conveniently make use of the notation

(21) P (z, v) = — [z*« <f

{i ">+i) (z~\ z~m v)\

That P(z,v) must be identical with the integral portion of the element

— £-»'»
y

(*'»+fl
(g, tj) , transformed to terms of (z,v), is of course immediately

evident, on comparing the representations of the function H(z,v) in the

forms (4) and (8).
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We see that the degree of P (z, v) in the variable z is equal to or less

than in, and that its coefficients can be expressed in terms of the coeffi-

cients S
(CB)

in yUn+fl
(€, 7j) as represented in formula (11), no matter what the

values of these coefficients may be. No condition then is imposed on the

l„ constants S
(co) because of the existence of the identity (21), and there-

fore also none by virtue of the equivalent set of identities (19). It follows

that all the conditions to which the constants §
(00) are subject, as well as

all those which must be satisfied by the constants S
(7c) in the functions

f
{ik)

(z, v) — as represented in formtila (X, 9) — are involved in the set of

n identities (18). With these identities therefore we shall now occupy

ourselves.

An identity of the set (18) in which the right-hand side is tt
+mt

{{i)) t ,

implies simply that the left-hand side must be representable by a series

in 6 beginning with the power i
j+mt — that is, by a series in - beginning

with the power (-) .In each of the identities (18) then, equating to

the aggregate of terms in which the exponents of - are less than j + mt,

we obtain the set of to identities

t= 0, 1, ... (TO— 1)

which we may evidently also write in the form

(22) tfZ^U^WU]^

* = 0, 1,... (TO-1).

Eqtiating to the aggregate coefficients of the individual powers of

% in each of these identities, we obtain the equivalent system of equations
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(23)

CHAPTER XI.

s=l, 2, ... j + mt—1; t = 0, 1, ... (w— 1).

In these n(j— 1) + -m«(»i- 1) equations then are involved all the condi-

tions which must be satisfied by the constants S
(ft) and 6

<a,)
in the functions

f
llk) (z,v) and <p

(ia>+
',)

(€,»]) respectively. To interpret the equations however

we shall find it convenient to write them in a modified form.

Introducing the C-functions corresponding to the functions <p
(i
*>(z, v)

and <p
iia>+j)

(£,»]) and defined in accord with the formulae (IX, 6) and (IX,

13), we write

(24)
C"*>

(
Z, V) = TSi-l fc"

-1
+ I n-2 V

n~2 + + To *'

|

C
(ioo+i)

(£)Y])
= Jtf.+» ^-i + -T-K.+/) rr-2 + ... + J«°>+J)\

After the analogy of the congruences (IX, 10) and (IX, 17), we

then have

(25)

tk) (z, v) ss 2 (
FnJfk) + F^Jfil+ + Ft+iTSli)*, [mod. (z -a*)'*]

<=0

9
(.-.+»

(€i1 )
s 2 (£„T^+i) + GUTO" +.•• + Gt+1vttj)

)yf, [mod. ?--"]
<=0

and consequently also

(26)
p«.+,i

(|) s Q!,,
jw-+i» + (?„_T<« + • • + 0,+1Th+i>

, [mod. ?»+>].

From these latter congruences we derive

Ur
1

>°-lpi
<
k) <4~*-W'

1

'^ (^.Tiw (*>

+ *V-iT# (z) + • + *Vn"ra (*))]
z=«h
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[(|p
+
'-V^-ip<-+;>(S)]

5=o

and as a consequence we can replace the n(j— 1) + „«wi(to— 1) equations

(23) by the system of equations

Sj~Yl [(rf'

1

z"1 (f*~VP (
z

) + ^«-iTS1 (*) + ••• + JmTO Or))],

+ guW (6) + • + Gh-iT^ («)]
5
_o
= o

s=l, 2, ... j + mt—l; t= 0, 1, ... (»— 1).

l«=o/£

(27)

These equations again may readily be shewn to be equivalent to the

system of equations

(28) S^[(A/-V.TS*<*)L

s=l, 2, ... j + mt— 1; £= 0, 1, ... (n— 1).

To shew this we shall make use of the method of induction. We
shall first suppose the equations of the former system corresponding to

the pairs of values

8=1, 2, ... j + mt— I; t= t1 + l, ... (n-~ 1)

to be equivalent to the equations of the latter system corresponding to

these pairs of values, and shall then prove that the equations of the for-

mer system corresponding to the pairs of values

8=1, 2, ... j + mt—1; t=tu h+1, ... (n—1)

may be replaced by the equations of the latter system corresponding to

these same pairs of values.

For brevity we shall employ the notation Bst , Cg>t to designate the
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expressions on the left-hand side of the equations (27) and (28) respec-

tively. Let us then assume the equivalence of the sets of equations

(29) I'
= \s=l,2, ... j + mt-l;t= t l + l, ... (»-l)

and on the assumption that these equations hold good consider the equa-

tions

(30) B*,t= s=l, 2, ... j + mt— 1; t= t
x .

Bearing in mind that we have Fn= On= 1 , these latter equations may
evidently be written in the form

5=1, 2, ... j + mt
1
— l.

Recurring to the notation employed for the coefficients of F(z,v) in (I, 4)

and remembering that we have On_^= i
m
'(Fn_^, we shall write

P>T P>T

where it is to be noted that the exponent p will in no case exceed m.

The equations (31) will then assume a form which is linear in the con-

stants a$>n__.
(
, the aggregate multiplier of a constant ap,„_

T , in any one of

these equations where it presents itself, being evidently of the type

lz=ak

7=n IW"'"' £'«'*<'-^T!s.r
1
(«)],.„

+
+ ;-

where we have to note that tx + 7 has one of the vahies ^ + 1, ... (n— 1)

and that s + p must then certainly be included among the numbers

1,2, ... j+m(tx + -()—1, since s is included among the numbers 1,2,... j+mty—l

and p does not exceed m. The expressions C,+p,t1+T here in question then,

are included among those which are equated to zero in the equations (29).
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By aid of the equations CM = in (29) the equations (31), and therefore

also the equations (30), reduce to the set of equations

(32) CS:t
= s=l,2,...j + mt— l;t=tl .

If then the two sets of equations in (29) are equivalent to each other, it

follows that the equations Bst = in (29) combined with the equations (30)

are equivalent to the equations CSit
=0 in (29) combined with the equa-

tions (32). From the equivalence of the two sets of equations in (29)

therefore, we conclude also the equivalence of the two sets of equations

1, 2, ... j + mt— 1; t=U, h+l, ... (n— 1).

On comparing the equations corresponding to the value t= n— 1 how-

ever in the two sets of equations (27) and (28), we see that they are the

same. The two sets of equations in (29) are therefore equivalent in the

case where we have tx + l = n— 1, and by successive induction we can then

also arrive at the equivalence of the two sets of equations

= 1, 2, ... j + mt—1; f= 0, 1, ... (n— 1)

that is the complete system of equations (27) must be equivalent to the

complete system of equations (28). These equations are evidently linear

and homogeneous in the constants 8 and give the aggregate of conditions

which must be satisfied by these constants in order that the function

H (z,v) may be simultaneously representable in the forms (4) and (8),

where the functions y
{ik) {z,v) and <p

lia>+j)
(£,ri) have the forms given in for-

mula (X, 9) and in formula (11) of the present chapter.

On representing by <$*>(z,v), $k) (z, v),... ^\z,v) and ^+j)
(!, -q), $°>+J\Z, ri) ...

••• Qi£
+j)

(^' 7
i) *ne se*s °^ C-functions corresponding to the sets of func-

tions <p^> (z, v), flf*» (z, v), ... $*> (z, v) and $*+*> {i, yj),
$«**>

(£, tj), . . . ?£»+» (6, -q)

respectively, and on noting the expressions for the functions <p
(i;c)

(z, v) and

fpdca+J) (^ .q) given in the two formulae just referred to, we see that for the

corresponding C-functions we must have
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(33)
jc
« .+*>

(| ; ,) = g{-) #.+/>
(^^ + g(-> c^+i) (€,,)+.-. + 8}->Zt+j)

(€, ij) •

Also on writing

P («,v) =T^i^"-1 + TttUv"-
2+ + TO

|C
jj«+i)(6

>,)=T^V-1 + Tii^r-'+ • +TO+i)

we evidently have

(35)
lT«'-+i) (e)=8i' )

TS!r
+
^(6) + 8i"

,TsJr
+i) (6)+ - + *£Tii-?' ,

(e)-
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CHAPTER XII.

The equations of condition. The complementary theorem.

The question of the linear dependence of the equations of condition on one

another? The function ty(z,v). The number of the dependent equations is equal to

the number of the arbitrary coefficients in ty(z,v). Expression for the number of the

arbitrary constants involved in the general solution of the equations of condition.

Bases of coincidences. The complementary theorem.

We shall now endeavor to interpret the equations (XI, 28), and to

that end we shall first ask whether they are or are not all independent of

one another. Our notation in what follows will shape itself more neatly

if we replace t by n— t in these equations. We shall therefore represent

the system of equations (XI, 28) in the form

'ak
W ?,^n[(srW!H<4_„

s=l, 2, ... j + m(n— t) — l; t=l, 2, ... n.

Now these equations in the undetermined constants 8 are not or are

linearly independent of one another, according as it is or is not possible

to find a system of multipliers — not all of which are — such that the

sum of the products of the expressions on the left-hand side of the equa-

tions, each by the corresponding multiplier, is equal to independently

Fields. 16
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of the values of the S's — and therefore such that the coefficients of the

individual S's in the sum in question are all equal to 0. On employing

the notation

(2) a
s_ht^ s=l,2,...j + m(n-t)-l;t=l,2,...n

to designate a system of multipliers for the expressions in the several equa-

tions, a statement equivalent to that of the preceding sentence evidently

is — that the equations (1) are not or are linearly independent of one

another, according as it is or is not possible to simultaneously satisfy

all the equations

s,t

s,t

for arbitrary values of the constants S, and by values of the quantities

v-s-i.t-i n°t all of which are equal to 0.

Constructing the integral rational function

(5) +(z,«)=S«.-i,*-i»-
1
t^-

1
,

s,t

multiply it by the function

n

t=l

and arrange the product according to powers of z

—

ak and v. The coeffi-

cient of (z— ak)
ik~1 vn

~1 in the product is evidently an expression such as

appears on the left-hand side of (3).

The equation

s^[(irv»^--'Tffi <*>]„„,=<>

then simply states that the coefficient of (z— akfk
~1 vn

~1 in the product

<[> (z, v) . e
(i*> (z, v)
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arranged according to powers of z— ak and v, is equal to 0. Since the

equation is to hold good for arbitrary values of the constants §(*), S[
k
\ .

.

.
8}*'

involved in the expression of the function C
(i

'c) (z, v), it follows that the

vanishing of the coefficient in question is equivalent to the vanishing of

the coefficients of (z

—

a kYh
~l vn

~l in the lk products

t(z,v)q*>(z,v) (x=i, 2, ...y.

In the vanishing of these lk coefficients however, we have the necessary

and sufficient conditions in order that the function
ty (z, v) may be comple-

mentary adjoint to the order ik to the system of functions ®(z, v), whose

orders of coincidence with the branches of the several cycles corre-

sponding to the value z = a k are not less than the adjoint numbers

ik— o(*), ik— o(*), . . . ih—o™ respectively. This follows namely from the theory

which has been developed in Chapter IX. The satisfaction of the above

equation then for arbitrary values of the constants Sf), 8(
fc

), . . . S\f expresses

the necessary and sufficient conditions that the function <j>(z, v) may

have orders of coincidence with the branches of the several cycles corre-

sponding to the value z=a k which are complementary adjoint to the num-

bers ik— a[
7c)

, ik— a {

2
C)

, ... 4~~ a«> and the satisfaction of the system of equa-

tions (3) therefore expresses the necessary and sufficient conditions that

the function <|» (z, v) may have, for the various values z = ak and for the

several branches of the cycles corresponding to these values, orders of coinci-

dence which are not less than the corresponding members of the sets of

numbers

(6) <4» + i4
w -i +

s-{ft.
°P' + ri*

) -i +
v-J5

,...«4j?+i^-i + jB,(*-i,2 f 3...).

Constructing the integral rational function of (i,t\)

(7) i>
(€, ii) =1] «s-m-i

^'+m<"-"-s-1 r/-1= e
y+»<»-ij-*

<[,
(
Z> „)

s} t

multiply it by the function

n

C
(>=o+i) (6j7))=2T^' ) (s)vr

e
-
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In the product arranged according to powers of S and i), the term in

4
ix+-'~1 Y

l~1 evidently has as coefficient the expression which appears on the

left-hand side of the equation (4). This equation is then equivalent to the

statement that the coefficient of |
i»+>-1

tj"
-1

in the product

$(fi,i]). C"-4" (6,ii)

is equal to 0. The equation however is supposed to hold good for arbi-

trary values of the constants S^', S^, ... Sj"* involved in the expression

of the function C
(
*'

a>+',

'

, (£,Yj). It follows therefore that the vanishing of the

coefficient in question is equivalent to the vanishing of the coefficients of

£*c*+j-i
Tj
»-i m the In products

$(£,!))CU-^M (X=l,2, ...y.

By the theory developed in Chapter IX however, the vanishing of

these lm coefficients furnishes just those conditions which are necessary and

sufficient in order that the function <J>(£,tj) may — with reference to the

equation G(£,t]) = — be complementary adjoint to the order i^ + j for

the value i = 0, to the system of functions <p (5, yj) whose orders of coinci-

dence with the branches of the several cycles are not less than the

numbers im + z[
m)

, ix + z[
m)

, . . . im + *<."> respectively, for the functions

£<»'<*>+»
(g ,7]), £#°°+-' )

(g,?}), . . . C^ +Jl\£,ij) are the C-functions corresponding to the

functions tp[
ia>+j) (Z,r

t ), <p2°>+i) {£,vi), . . . <p^+i!
(^' Y

i)> obtained on dropping terms

divisible by £'°°"h; in the system of functions y (S, tj) in question. The satis-

faction of the equation (4) then for arbitrary values of the constants

3[
a)

, 8 (

2
W)

, . . . S\2\ expresses the necessary and sufficient conditions that the

function <j»(£, ij) may have orders of coincidence with the branches of the

several cycles corresponding to the value g = 0, which are complementary

adjoint to the order ix + j to the numbers %„ + 4°° >
, ix + 4°°', ...*„ + 4^'-

In other words, the equation (4) represents the necessary and sufficient

conditions which must be satisfied by the coefficients of the function <{>(i,i)),

in order that its orders of coincidence with the branches of the several

cycles corresponding to the value 6 = 0, may not be less than the numbers
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(8) j- x["> + m{n-l) + vJ°»-l + -L, ...
?

'_
t(-) + TO

(
w -l) + p«-»-l + -lj

V
l Voo

respectively. This however is evidently equivalent to saying, that the

equation (4) represents the necessary and sufficient conditions which must

be satisfied by the coefficients of the function <]>(z, v), in order that its or-

ders of coincidence with the branches of the several cycles corresponding

to the value z = oo , may not be less than the numbers

(9) - t(-) + 2 + ri-
) -l + -i-)

, ... -4:'+ 2 + ^-1+^j

respectively.

The aggregate conditions imposed on the coefficients of the function

ty{z,v) by the simultaneous satisfaction of the equations (3) and (4)
—

supposed to hold good for arbitrary values of the S's — are then stated,

when we say that the function must have as its orders of coincidence with

the branches of the several cycles corresponding to a finite value z= ak ,

numbers which are not exceeded by the respective members of the corres-

ponding set of numbers (6), and as its orders of coincidence with the

branches of the several cycles corresponding to the value z = oo , numbers

which are not exceeded by the respective members of the set of numbers

(9). The finite values z=-a h here referred to, are those for which the func-

tion H(z,v) may become infinite and those belonging to the category (C).

We may however, if we will, suppose our statement to be made with

reference to all finite values of the variable, since for a value of the variable

other than one of those just mentioned, the members of the corresponding

set of numbers (6) would evidently all be equal to 0.

If then the quantities a
s_M_;L in (2) are to serve as multipliers for the

equations of the system (1) — supposed to be linearly connected — the

necessary and sufficient conditions thereto are stated, when we say that

the quantities as_M_i in question constitute the coefficients of an integral

rational function ty{z,v), whose orders of coincidence with the branches of

the several cycles corresponding to a finite value z = a
lc
are not less than

the respective members of the corresponding set of numbers (6), while its

orders Of coincidence with the branches of the several cycles corresponding
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to the value z= oo are not exceeded by the respective members of the set

of numbers (9).

Since the equations (1) are not or are linearly independent of one

another according as it is or is not possible to find a system of multipliers

a,_
lit_i, not all of which are 0, they will not or will be linearly indepen-

dent of one another according as a function <|>(z, v) of the character just

described does or does not exist. Let us now suppose a certain number

of the equations (1) to be linearly independent of one another, while each

one of the remaining equations is connected with these by a linear rela-

tion. To each such linear relation will correspond a distinct function

ty(z,v), and the number of the dependent equations in the system (1) will

evidently be just equal to the number of the linearly independent functions

<1> (z, v) of the description here in question. In other words, the number of

the dependent equations in the system (1) will be just equal to the num-

ber of arbitrary constants involved in the expression of the most general

function
<C (z, v) of the character described in the foregoing. To, find how

many of the equations (1) are linearly independent of one another then,

we should first determine the number of the arbitrary constants involved

in the expression of the most general function if (z, v) of the character here

in question, and this number we should subtract from the total number

of the equations.

We might here take notice of the limitation on the degree of the func-

tion ty(z,v) implied in the fact that its orders of coincidence with the

branches of the several cycles corresponding to the value z = oo do not fall

short of the respective numbers in (9), and must therefore, as we readily

see, be greater than the numbers

(io) ^»-x, tir-x, ...^:>-x

respectively, where we employ the letter X to designate the greatest integer

which is less than the greatest of the numbers z[
x)

, z[
m)

, . . . *{£'. — If,

for example, t^ be the greatest of these numbers we shall have

X=L<»>___I — On referring to the results obtained in Chapter VI
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namely, we see that the degree of our function must be <JV + X— 2 and

that the degree of the element involving v"^ must be <n + \— 2. The

function can therefore be represented in the form

(11) <b(z,v) = 2l
*
s_1:t_l z

s-1 vl-\ s + t<N + X,s>0,t = l,2,... n

where at the same time we also have s + t<n + X for t = n. Every term

in the form (11) may readily be shewn to be included in our earlier form

(5) where the summation was extended to all terms for which

s=l, 2, ... j + m(n— t)— 1; t= 1, 2, ... n.

Remarking the inequality N<m + n— 1 and noting that we have ?>X
— since by hypothesis j is not less than the greatest of the numbers

tJ
00

', z^, . . . tj."' — we will compare the greatest value which s may take

in the form (5), for a given value of t, with that which it may take in

the form (11), on subtracting the latter greatest value from the former.

For t<|w— 1 the subtraction gives us j + m(n— t)— 1 — (N + X— f)>

; + m(n—t)—l—(m + n—1)—X + t>m(n—t)—(m + n— 1) + t=(m—1) (n—t—1)>0

and for t = n we have s<X</— 1. All the terms in the form (11) are

therefore included in the earlier form.

The number of the equations (1) which are linearly independent of one

another is then obtained, on subtracting from the total number of these

equations the number of the arbitrary constants involved in the expression

of the most general function ty(z, v) of the form (11), whose orders of co-

incidence with the branches of the several cycles corresponding to the finite

values z = a
Jc

are not less than the respective members of the sets of num-

bers (6), while its orders of coincidence with the branches of the several

cycles corresponding to the value z = oo are equal to or greater than the

numbers (9) respectively. Our reference in this statement to the form of

the function $(z,v) is superfluous, inasmuch as a rational ftinction of

(z, v) possessing orders of coincidence such as those here in question, must

necessarily be of the form (11). Because of its orders of coincidence for

finite values of the variable z namely, the function is adjoint for all such
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values of the variable and must therefore be integral, and because of its

orders of coincidence for the value z = oo the integral function must, as we

have seen, be of the restricted form (11).

Since in any linear relation which may happen to exist between the

equations (1), the multipliers of the several equations must be the coeffi-

cients a
a_M_i in a function ty{z,v) of the form (11), it follows that those

equations, at least, corresponding to pairs of values (s, t) which do not

appear in the summation in (11), are linearly independent of one another

and of the remaining equations of the system, for their multipliers must

have the value 0. Unless the number of the equations (1) which are

linearly independent of one another is less than the number of the constants

S involved, these constants must all have the value and the rational

function H (z, v) to which the system of equations is supposed to correspond

must itself be identically. If however the number of the equations (1)

which are linearly independent of one another is less than the number of

the 8's, the number of arbitrary constants involved in the solutions of the

equations will be obtained on subtracting from the total number of the

S's the number of the linearly independent equations. The number of ar-

bitrary constants so obtained will also be the number of the independent

arbitrary constants involved in the expression of the most general ratio-

nal function H(z,v), which does not become infinite to orders exceeding

°i
(l>

> a2
k)

, • • • °rA
) respectively for the branches of the several cycles correspond-

ing to the various finite values z= ak , and whose orders of coincidence

with the branches of the several cycles corresponding to the value z = oo

are equal to or greater than the numbers t^
00
', 4

00
', ... -cj."' respectively.

To assure ourselves of the truth of the last statement, we shall sup-

pose the number of the arbitrary constants involved in the solution of the

system of equations (1) to be r, employing at the same time the notation

8j, 82 , . . . Sr to indicate a complete system of such arbitrary constants. The

constants 8
<a,) involved in the form (XI, 8), as also the coefficients of P (z, v)

and the constants 8(4) involved in the expression of the functions 9
(i*> (z, v)

in the form (X, 1), will then all be linearly expressible in terms of the

constants 8
X , 82 , ... Sr .
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The function H(z,v) may then be represented in the form

(12) • t
1 U1 + t

t Ut
+- + Sr Ur

where Ulf U2 , ... Ur are rational functions of (z,v), which we have to prove

are linearly independent of one another. — If these functions are not

linearly independent we can find a set of multipliers d
x
,d2 , ... dr , not all

of which are 0, and such that the function

d1 U1 +d2 U2 + --- + dr Ur

is identically equal to 0. On giving to the constants 8lf 82 , ... 8,. then the

values d1 ,d2 , ... dr respectively, and on solving the equations (1) for the

remaining constants 8, we should have a system of values for the constants

8
(i) and S

(00)
, not all of which are 0, and such that the corresponding func-

tion H (z, v) is identically equal to 0. This however is impossible, for if the

function H(z,v) is to vanish identically, the element 6
-ic

*<p
(ir'j4i)

(£,7j) in the

form (XI, 8) and therewith also the constants 8
(00) involved in the expres-

sion of this element must vanish identically, and at the same time the in-

dividual elements of the summation in the form (X, 1), and therewith the

constants S (4) involved in the numerators of these elements, must evidently

also vanish identically. We conclude therefore, that the r arbitrary con-

stants Sj , S2 , ... 8,. which appear in the solution of the system of equations

(1), must likewise present themselves as independent arbitrary constants

in the representation of the general function H(z,v) in the form (X, 1).

On reducing the several elements in the form (X, 1) to a common

denominator, the function H (z,v) may evidently also be represented in

the form

(13,
' Bh.)-^

where the numerator is an integral rational function of (z,v), and where

the denominator is an integral rational function of z alone which may be

represented as a product in the form

(14) 0(a) = 11(2 -«*)**•
k

Fields. 17

www.libtool.com.cn



130 CHAPTER XII.

Here factors of the product correspond to all those values z= ak for

which the function H(z,v) may become infinite, as also to all those values

of the variable which belong to the category (C). The numerator G(z,v)

is evidently linear and homogeneous in the arbitrary constants 8lt 82 , ... 8,..

Its orders of coincidence with the branches of the several cycles correspond-

ing to the various values z = a k are equal to or greater than the numbers

ik— o[
k)

, . . . ik— a**' respectively, and its orders of coincidence with the

branches of the several cycles corresponding to the value z = oo are not

less than the numbers — i + x['*
)

, ... — i + 1[^ respectively, where the letter

i is employed to indicate the degree of the denominator g{z). Since an

exponent i,, is equal to the greatest integer in the corresponding set of

integers Of + a[
k)

], ... [ji^ + oj.*'], we see that 0(z, v) and g(z) are both

adjoint for all finite values of the variable z. On employing the symbol X

to designate the greatest of the integers

[^'-41 + * + 1, . .
. [^<:

) -4:)

] + * +

1

the orders of coincidence of 0(z,v) with the branches of the several cycles

corresponding to the value z = oo , will evidently be greater than the numbers

n Ai, . . . fy,*, a

respectively and its degree, in accord with Chapter VI, must therefore be

<N + l-2.

On adding the numbers given in formulae (X, 11) and (XI, 10), we

obtain for the total number of the constants 8 involved in the equations

(1) of the present chapter, the expression

l 1 f*
1 ,

rk Tec,

(15) S/, = 2
m«(»-l) + jn + sS S (Vi.

k) -l + + v«) + 2 2 <**'^ ~2^ vi"»

where the accented summation with regard to k is supposed to extend

only to finite values z = ak , whereas the summation without the accent

extends also to the value z = co . The number of the equations which are

linearly independent of one another is obtained, on subtracting from their

total number (j — 1) n + xmn(n— 1) the number of the arbitrary constants
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involved in the expression of the most general function <Jj(z, v), whose or-

ders of coincidence with the branches of the several cycles corresponding

to any finite value z= ak are not less than the respective members of the

corresponding set of numbers (6), while its orders of coincidence with the

branches of the several cycles corresponding to the value z = oo are not

exceeded by the respective members of the set of numbers (9). Employing

the symbol Nq to designate the number of the arbitrary constants here in

question, we have for the number of the linearly independent equations

the expression

(16) (j—l)n + £mn(n— l) — N$.

Now in a system of equations, linear and homogeneous in a number of

undetermined constants, the number of the equations which are linearly

independent of one another cannot exceed the total number of the con-

stants, and the number of arbitrary constants involved in the solution of

the system will be obtained on subtracting the number of the linearly in-

dependent equations from the total number of the constants. The number

of arbitrary constants involved in the solution of the system of equations

(1), will then be obtained on subtracting the number (16) from the num-

ber (15). This gives us the expression

t'l- '"£

(17) N^ + n + ltt G4*
1- 1 + 4) vf + 2 SW'-Jti-"Olyt 00

)

for the number of the arbitrary constants involved in the solution of the

system of equations (1), and the same expression therefore also represents

the number of independent arbitrary constants involved in the coefficients

of the most general rational function H(z,v), which becomes infinite to

orders not exceeding o[
Ic)

, a^, ... o'*
1 respectively for the branches of the

several cycles corresponding to the various finite values z= ak , while its

orders of coincidence with the branches of the several cycles corresponding

to the value z=oo do not fall short of the numbers t^', 4°°',
• • • 4^

respectively.

We may, if we will, define Ny in the foregoing as the number of the
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arbitrary constants involved in the expression of the most general rational

function of (z,v). whose orders of coincidence with the branches of the

several cycles corresponding to the various finite values z= a k exceed by

a[
k)

, jF )

, . .. a<.*> respectively the orders of coincidence requisite to adjointness

for the values of the variable in question, while its orders of coincidence

with the branches of the several cycles corresponding to the value z = oo

exceed by — i[
7) + 2, — 4

a) + 2, . . . — t<.*> + 2 respectively the orders of

coincidence requisite to adjointness for this value of the variable — for

the orders of coincidence here in question already imply that the function

must have the form given in (11).

Instead of speaking of the zeros and infinities of a rational function

of (z,v) we might speak of its positive and negative orders of coincidence.

On replacing the symbols — o[*> , — ol
k)

, . . . — 4*> in the preceding by the

symbols t\'
!)

, zi
k)

, ... tJ.*' respectively, the expression (17) takes the form

(is) #.j + n + * 2 2 <y»-i + 4) v«*»-2 2W
k s-1 « k s-1

where the summations with regard to k may be supposed to extend to all

values of the variable z, the value z = oo included, and where the numbers

T<
/f) corresponding to a finite value z= a k are zero or negative, whereas

the numbers z
i/ ) may be positive, zero or negative. The expression (18)

then represents the number of arbitrary constants involved in the expres-

sion of the most general rational function H(z,v), whose orders of coinci-

dence with the branches of the several cycles corresponding to the values

z= a k are equal to or greater than the corresponding members of the sets

of numbers t{
4)

, ip, ... t,
(*'.

The symbol N.i in terms of the new notation represents the number

of arbitrary constants involved in the expression of the most general

rational function, whose orders of coincidence with the branches of the

several cycles corresponding to the various finite values z= a k exceed by
— t[

k)
,
— 4

A'»
, . . . — tj*' respectively the orders of coincidence requisite to

adjointness for the values of the variable in question, while its orders of

coincidence with the branches of the several cycles corresponding to the
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value z=oo exceed by — 4
co> + 2, . . . —4*' + 2 respectively the orders of

coincidence requisite to adjointness for this value of the variable. Other-

wise said, the symbol Nq represents the number of arbitrary constants in-

volved in the expression of the most general rational function <j> (z, v), whose

orders of coincidence for every value z= a
lc

are complementary adjoint

to the corresponding orders of coincidence t}*', 4*', . . . tj.*' which we have

attributed to the function H(z,v), and whose orders of coincidence for

the value z = oo are complementary adjoint to the order 2 to the orders of

coincidence 4
00
', 4°°', ... 4?-

For brevity we will name a system of numbers 4
7c>

>
4*' » • • • 4* asso-

ciated with the different values of the variable z= a k a Basis of Coinciden-

ces for the building of a rational function. We may conceive a set of

numbers to be associated with each value of the variable, the numbers

however being all save in the sets associated with a finite number of

values of z. When we specify the sets associated with a finite number of

values of the variable only, it is then to be understood that the sets asso-

ciated with the remaining values of the variable are all made up of zeros.

By the most general rational function built on a given basis of coinciden-

ces, we shall mean the most general rational function whose orders of coin-

cidence with the branches of the several cycles corresponding to the various

values of z do not fall short of the corresponding numbers mentioned in

the basis. A proposed basis might of course be an impossible one, or

in so far impossible that the function built on it would have to be identi-

cally 0.

In the foregoing we have assumed the numbers 4
4) corresponding to

finite values of z to be zero or negative, and incident thereto we saw that

the function ty{z,v) had to be an integral rational function. We shall now

remove this limitation. — Consider any arbitrary basis of coincidences in

which the numbers 4*'» 4
k\ • • 4* corresponding to a value z= a k may

be positive, zero or negative, We shall briefly refer to this basis of coin-

cidences as the basis (v). A basis (i) defined by a system of numbers

i[
k)

,
4*', •• 4t

! which are connected with the numbers 4* )

»
T*> • • • xn by

the equations
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(19) r**> + i<*> =
[
,<*>-l + J,, (*=1, 2, ... rk )

s

for all finite values of the variable z= ct k , and for the value 2=00 by

the equations

(20) tj>> + i<"' = ri-' + 1 + ^-,. (5=1,2,... r„)

we shall call the basis complementary to the basis (z). The basis (t)

will then evidently also be the basis complementary to the basis (z).

Otherwise said, two bases of coincidences are complementary to each other

when the orders of coincidence which define them are complementary

adjoint for all finite values of the variable z and over and above this are

complementary adjoint to the order 2 for the value z = 00

.

Representing by H(z,v) and H(z,v) the most general rational functions

which can be built on the bases (t) and (z) respectively, we shall employ

the symbols Ns and Ng to designate the numbers of arbitrary constants

involved in these respective functions. Any pair of functions respectively

included in the forms H(z,v) and H{z,v) we shall say are complementary

to each other.

If for every value of the variable z we subtract the actual orders of

coincidence of a given rational function B(z, v) from the corresponding

numbers in the basis (z), we obtain a new basis on which the most

general rational function which can be constructed is evidently the quotient

o . , . Also the most general rational function complementary to this

quotient we readily see to be the product R (z, v) . H (z, v). Now let us

choose some rational function of the variable z alone, a definite polynomial

P(z) say, such that on subtracting its actual orders of coincidence for the

different values of z from the corresponding numbers in the basis (t), we

obtain a new basis (t) in which all the numbers corresponding to finite

values of the variable are zero or negative. Since the aggregate sum of

the orders of coincidence subtracted from the numbers of the basis (t) in

order to obtain the basis (t) is 0, we evidently have
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(2D 2 2«>=22«)
.

k s=l lc s=\

The general rational function built on the basis (t) will be the quo-

tient p
' and the general rational function built on the complementary

basis will be the product P(z).H(z,v). This product we shall designate

as the function ty(z,v) — it is adjoint for all finite values of the variable

z and must therefore be an integral rational function of (z, v).

The case here in question is that already considered, in which we

obtained the expression (18) for the number of the arbitrary constants

involved in the representation of the most general rational function built

on a basis, all of whose numbers corresponding to finite values of the

variable z are zero or negative. The number of arbitrary constants in-

volved in the quotient p
' ®' — and therefore the number of arbitrary

constants involved in the function H(z,v) — will then be given by the

expression

rk ! __ rk_

I,

v1
r
'c

1
rh

tf* + n + \2 2 (^ ^ i + ii) *?' ~2 2 e> v</>

k s=l s k s=l

where we evidently have Nq= Ng, since the number of arbitrary constants

involved in the function ty (z,v) = P (z) . H(z,v) is the same as the number of

arbitrary constants involved in the factor H(z,v). On noting the equality

(21) we shall have, for the number of arbitrary constants involved in the

general function H(z,v) built on the basis (<), the expression

1 ' ft I -K

(22) v^ + »+22(^-i +^-22^«(*)

2
jc s=i 'a

'

A s=l

In like manner, on interchanging the complementary bases (z) and

(t), we obtain, for the number of the arbitrary constants involved in the

general function H(z,v) built on the basis (t), the expression

(23) Ng=Ns + n + l22(^-l + ±)^-2 2?«v«
k s=l » ft »-l
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The formulae (22) and (23) are equivalent, for on adding the corre-

sponding sides of the two formulae and taking account of the relations (19)

and (20) existing between the numbers of the complementary bases, we

evidently obtain an identity. On equating the differences of the corre-

sponding sides of the formulae (22) and (23), we obtain a relation to which

each of these formulae is equivalent and which may evidently be written

in the form

.(*) ,,<*>
>(24) 2(ns-ns)=2 2w-2 2*

k s=\ It s=\

This formula again may be written in the more symmetrical form

(25) N3+l22 rj*> w = N-s +l 2 2W-

In words this formula states, that the number of arbitrary constants

involved in the expression of the most general rational function built on a

given basis of coincidences, added to half the sum of the orders of coinci-

dence explicitly required by the basis, is equal to the like number con-

structed with reference to the complementary basis. We shall refer to the

theorem here stated as the Complementary Theorem — the formula itself

we shall call the Complementary Formula.

We might regard the content of the complementary theorem from a

somewhat more general standpoint. Employing the notation mf\ m'2
k)

, . . . wj*>

to indicate the actual orders of coincidence of any definite but arbitrarily

selected rational function R(z,v) with the branches of the several cycles

corresponding to a value z= ak , we shall designate the aggregate system

of numbers

(26) mi»-l +^, <-'-l +1 ... m<«-l + ~
'l v

2 rk

for all finite values of the variable z, together with the numbers

(27) mP + 1 + ±, mf > + 1 + ~, . . . <> + 1 + ±12 J-qo
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corresponding to the value z = oo , as the level furnished by the function

B{z,v). Employing furthermore the respective notations xf\ 44,
> ... 4j

and z[
k)

, t^ !

, . . . T^to indicate those numbers of two bases (-u) and (t) which

correspond to the value z= a
]c , we shall say of these two bases that they

are complementary with regard to the level furnished by the function R (z, v),

in case their numbers satisfy the system of equalities

(28) T(*) + ^) = m(*>_i + _l, (a =i,2,...r4)

s

for all finite values of the variable z= ah , and for the value z=oo the

equality

(29) t{-> + ;(-> = „,<.> + i +
_l_

f
(s=l,2, ...r.).

s

Now on referring to the equalities (19) and (20), and remembering that

the orders of coincidence of the function F'v (z,v) with the branches of the

several cycles corresponding to a value z= ak are given by the numbers

(j.[
&)

,
[4*', ... (4*' respectively, we see that the bases (t) and (t) which we

have heretofore considered and for which we have proved the complement-

ary theorem, are complementary with regard to the level furnished by

the function F'v {z,v). The complementary theorem however may readily

be shewn to hold good also for a pair of bases (t) and (t) which are

complementary with regard to the level furnished by the rational function

R(z,v). If we suppose (t) to represent the basis complementary to the

basis (t) with regard to the level furnished by the function F'v (z, v) , we

evidently have

tW- /<*> = W*- (4*>, (S = 1, 2 , . . . Th)

for all values of the variable z, and therefore

(30) SSW-SS'W
Jc s-1 k s=l

since the aggregate sum of the numbers mik)— [4*° must be — represent-

Fields. 18
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R(z v)

ing as they do the orders of coincidence of the rational function ,-,»
,

' »

with the branches of the several cycles corresponding to the different

values of z. Furthermore, on representing by h(z,v), H(z,v) and H(z,v)

respectively the most general functions built on the several bases (t), (t)

and (i), we plainly have

(31) H(z,v) = y^.h(z,v)

and consequently also Ng=Nh . By the complementary theorem proved

in the case of the level furnished by the function F'v (z, v) however^ we have

tf* + 52 2«*> =^ + *- 2 2 n
k)

v
*

ft s=l ft s-1

and on replacing in this formula Nh by Ns and taking account of the

equality (29) we arrive at the formula (25). The complementary formula

(25) then holds good where H(z,v) and H(z, v) are the most general ratio-

nal functions built respectively on bases (t) and (x), which are comple-

mentary with regard to a level furnished by any rational function R{z,v).

The form for the general Complementary Formula corresponding to

the form given in (22) will evidently be

(32) Nx-Ns+n + l^l <>- 1 + i)^-2 2^ v»
ft »-l > V

* ' ft s-l

The aggregate sum of the orders of coincidence of a rational function

is equal to 0. We therefore have 2 2mi
k) = and can consequently also

ft 8=1

write the general Complementary Formula in the form

1
• K- ' K

(33) Nn = NH + n-\"Z 2(vf }-D-2 2«>-
ft s=l ft s=l

Now reverting to the fundamental integral algebraic equation F (z, v) =
with which our argument has concerned itself throughout, and to the alge-

braic equation f(z,u) = from which the integral equation was derived by
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the transformation v = gu at the beginning of the first chapter, we see that

the general Complementary Theorem as embodied in the formulae (25),

(32) and (33) has as much reference to one equation as to the other. For

the two equations have the like cycles for any given value of the variable

z and the orders of coincidence of a rational function with the branches of

a cycle are the same whether the function be expressed in terms of (z,v)

or in terms of (z, u). We shall therefore regard the more general equation

/ (z, u) = as our fundamental equation and shall suppose the general com-

plementary theorem as stated in the above formulae to have reference

to this equation. The statement of the theorem contained in formula

(25) for example, will then read as follows: — If (t) and (t) be two

bases of coincidences which are complementary with regard to the level

furnished by any rational function R(z, u), then will the number of arbi-

trary constants involved in the expression of the most general rational

function built on the basis (t), added to half the sum of the orders of

coincidence explicitly required by this basis, be equal to the like number

constructed with reference to the complementary basis {z).

If we select the level furnished by the rational function f'u (z,u), the

symbols m[k)
, mik)

, . . . m™ in formula (32) will represent the orders of coinci-

dence of this function with the branches of the several cycles correspond-

ing to the value z=^ak , or — what evidently amounts to the same thing

— these symbols will represent the orders of coincidence of the branches

of the several cycles corresponding to the value z= ak , each with the pro-

duct of the remaining n— 1 branches corresponding to this value of the

variable. If instead of employing the symbols \>\
k)

, j4
fc)

, ... i4*' to designate

the orders of coincidence of the function F'v {z,v) with the branches of the

several cycles corresponding to the value z= a
lc , we should make use of the

symbols to designate the orders of coincidence of the function
f'u (z,u) with

the branches of these cycles, the formulae (22) and (23) would then have

reference to the equation f(z,u) = 0. Also the numbers [4
fc)— 1 + -^, . .

.

l4*
)— 1 + -JTI would define the orders of coincidence requisite to adjoint-

ness for the branches of the several cycles of the equation f(z,u) = cor-

responding to the value z=a
Is

.
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Though our argument in the preceding has implicitly assumed a mul-

tiplicity of branches corresponding to a given value of the variable z,

thereby implying on the part of the fundamental algebraic equation a degree

in the dependent variable which is greater than 1, we can readily verify

that the complementary formula still holds good in the case where we

have n = 1. In this case the fundamental equation has the form u—P(z) =
and rational functions of (z, u) are simply rational functions of z. Here

we have /'„ (z, u) = 1 and the formulae (22) and (23) evidently assume the

forms

«
(34) Nb= Nb+\-2^,N-b=Nh+\-^A

where (t) and (z) are complementary bases with regard to the level fur-

nished by the constant f'u (z, u) = 1 — in other words, where the numbers

t and t satisfy the equalities

,») + ?
x
*> =

for finite values z = a
Jc , and for the value z=oo the equality

^») + ^o.) = 2.

Now we know that we can construct a rational function of z posses-

sing any arbitrary combination of zeros and infinities, so long as the num-

ber of the former is equal to that of the latter. We can therefore con-

struct a rational function H(z) on the basis (t), so long as we have

2^<4) <0. At the same time however we shall evidently have 2^(7l!) >2
k k

and consequently H{z) = 0. So long then as we have 2 tW<0 the for-
k

mulae (34) take the form

(35) NB=l-2 <<*> = -1 + 23'" •

k k

Otherwise said — the number of arbitrary constants involved in the

expression of the most general rational function of z which possesses a

certain system of infinities and whose zeros include among them certain
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specified zeros, is greater by 1 than the difference between the total num-

ber of the infinities and the number of the specified zeros. This however

is the statement of a well-known theorem in the elementary theory of the

rational functions of a single variable z. The formulae (34) are then

equivalent to this elementary theorem, for in these formulae we must

evidently have either 2 T
i

7c) >l or 2^</c) >l and consequently either Ns=
k k

or Nx=0. We shall have both Ns=0 and N-g=0 when, and only when,

k k

If, instead of employing the level furnished by the constant f't,,(z,u) = 1,

we should make use of the level furnished by any arbitrarily chosen ratio-

nal function R (z) in constructing the basis (t) complementary to the basis

(?), we readily see that the complementary formula in any of its forms

(25), (32) or (33) is still equivalent to the elementary theorem just stated.

The general complementary formula is then true in the case »=1 as well

as in the cases where we have n>\. The general complementary theorem

as embodied in the various forms of the complementary formula then

holds good in all cases without exception. In deriving the complementary

formula we have put no restrictions on the basis of coincidences. It may
be that the most general rational function which can be built on a given

basis is identically — in such case we shall call the basis in question

an impossible basis. According as our fundamental algebraic equation is

reducible or irreducible we shall say that a corresponding basis is redu-

cible or irreducible. A reducible basis is evidently made up of a number

of irreducible bases corresponding respectively to the several irreducible

equations whose aggregate constitutes the reducible equation in question.

A reducible basis is evidently impossible if its several constituent irredu-

cible bases are impossible for the corresponding irreducible equations, and

conversely the constituent irreducible bases are severally impossible for the

corresponding irreducible equations if the reducible basis is impossible for

our fundamental algebraic equation.

If the aggregate sum of the orders of coincidence required by a given

basis be zero or negative the basis may or may not be an impossible
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basis. In the case of an irreducible basis however if such sum be posi-

tive the basis in question will certainly be an impossible one. For by an

elementary theorem in the theory of the algebraic functions we know that

the number of the infinities of a rational function of (z, u) is equal to the

number of its zeros — or what amounts to the same thing that the sum

of its orders of coincidence for all values of the variable z is — where

u is defined as an algebraic function of z by an irreducible algebraic equa-

tion. If then the aggregate sum of the orders of coincidence mentioned

in a given irreducible basis be greater than zero, it follows that no ratio-

nal function can be built on the basis, for the sum of the actual orders

of coincidence of any rational function built on a given basis cannot be

less than the aggregate sum of the orders of coincidence mentioned in the

basis. With reference to an impossible basis we may express ourselves,

as we find it convenient, by saying either that no rational function can

be built on the basis, or that the most general rational function which can

be built on it is 0.

An irreducible basis (%), in which the aggregate sum of the orders

of coincidence mentioned is equal to zero, we shall call a complete irredu-

cible basis. A reducible basis we shall say is complete if its several con-

stituent irreducible bases are all complete for the corresponding irreducible

equations. A complete basis may be a possible basis or it may be an

impossible basis. If our fundamental algebraic equation is irreducible the

most general rational function which can be built on a basis which is at

the same time complete and possible involves one arbitrary constant, for

by a well-known theorem in the theory of the algebraic functions the func-

tion is determined to a constant factor bv its zeros and infinities.
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CHAPTER XIII.

The genus and the y-functions.

The representation of rational functions corresponding to a reducible algebraic

equation. The genus of an algebraic equation. The (p-functions. The adjoint functions.

The independence of the conditions of adjointness. The. p dependent coincidences in

the definition of the <p-function. Complete sets of 2p— 2 (p-coincidences. No coinci-

dence common to all complete sets. No rational function possesses but one infinity

in the case of an irreducible equation of genus other than 0. Criterion for the redu-

cibility of an algebraic equation and determination of its genus.

From the general complementary theorem we can immediately deduce

a number of the more important theorems in the theory of the algebraic

functions. Before considering these theorems however it will be convenient

to make a remark or two with regard to the case in which the funda-

mental algebraic equation is reducible. We shall suppose the fundamental

equation to be equivalent to p irreducible equations. It will then have

the form

(1) f(z, u) = /i (z, u)

f

a (z, u) ... fp (z, u) =

where the factors /x (z, u) , /2 (z, u), .:. f?
{z, u) are irreducible polynomials in

u with coefficients which are rational functions of z. The exponents of

the highest powers of u which present themselves in the several polynomi-

als we shall represent by n1( 7i 2 , ...np
respectively. Also we may assume

that the coefficient of the highest power of u in each one of the polynomi-

als is unity.
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We shall now define p functions Qi{z,u),Q2 (z,u), ... Qp
(z,u) by the p

identities

(2) hQi = f, f2Q2 = f,...f P QP
= f-

It may then be readily shewn that the reduced form relative to the

equation f(z, u) = of any rational function H(z,u) may be expressed in

the form

(3) H1Q1 + H2Q2 + ••• +H
pQ p

where the functions H1,H2> ... H
p
are reduced forms relative to the equa-

tions f1 (z,u) = 0, f2 (z,u) = 0, ... fp
(z,u) = respectively. If namely for

Hly H2 , ... H
p
we substitute the reduced forms relative to these equations

of the functions

(
A\ H

(z > U )
H

(g» U ) H
iZ >

U)

K> &(*,«)' 0, (»,«)'
•"

QP
(z,u)

respectively, the expression (3) will represent the function H(z,u) for each

of the irreducible equations fi(z, u) = 0, .

.

. fp (z, u) = and therefore also

for the equation f(z,u) = 0. For the irreducible equation f1 (z,u) = 0, for

example, all the elements in (3) save Hx Q^ reduce to and this element

is evidently equal to H(z,u) for f1
(z,u) = 0. The difference between the

function H(z,u) and the expression (3) is then equal to for /(z,it) =
and is consequently divisible by f(z,u) on regarding it as a polynomial in

u with coefficients in z. The function H(z,u) is therefore represented by

the expression (3). Also the form of this expression relative to the equa-

tion f{z,u) = is a reduced form, for the degrees in u of the polynomials

Qi,Q2,...Q P
are n— n 1,n—n 2,...n—n p

respectively and the respective

degrees of the functions Hx , H2 , . . . H
p

in the same variable are less than

n 1 , n 2 , ... n
p
by our original hypothesis in regard to these functions. The

degree in u of the expression (3) is then less than n and this expression

is therefore a reduced form relative to the equation f(z,u) = 0.

It is to be remarked that any element HS Q„ which actually presents

itself in the expression (3) is linearly independent of the remaining p—

1
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elements, for each of these p — 1 elements is divisible by fs (z,u) which is

not a factor of the element in question.

In the case of an irreducible equation f{z,u) = a rational function

of (z, u) which nowhere becomes infinite is, as we know, necessarily a con-

stant. In the case of- a reducible equation a rational function of (z, u)

which nowhere becomes infinite will have a constant value for each one

of the constituent irreducible equations /a (z, u) = 0, f2 (z, u) = 0, . . . /p
(z, u) = 0.

The function however will in general have a different constant value for

each one of the irreducible equations in question. Suppose the function

to have the values clf c2 , . . . c
?
respectively for the several irreducible equa-

tions — we may readily obtain its expression in the form (3). Repre-

senting namely by Pl9 P2 , ... P
p
the reduced forms relative to the equations

/1 (z,'w) = 0, f2 (z,u) = 0, . . . fp (z,u)
= respectively of the functions Q^1

, Qjl

,

. . . Qj
1 the expression

(5) c1
P

1 Q1 + c2 ¥2 Q2 + •• +c
p
Pp<9p

will have the values clt c2 , ... c
p
for the respective equations here in ques-

tion. The expression (5) is a reduced form relative to the equation /(z,it) =
and for arbitrary values of the coefficients c1; c2 , ... cp

evidently represents

the most general rational function of (z,u) which possesses no infinities.

The most general rational function of (z,u) which possesses no infinities

then involves p independent arbitrary constants since the several elements

in (5) are linearly independent of one another.

The basis of coincidences (z) in which all the numbers z have the value

we shall call the 0-basis of coincidences. The most general rational

function which can be built on the 0-basis then involves p arbitrary con-

stants. The number p is evidently also the number of the arbitrary con-

stants involved in the expression of the most general rational function

which can be built on a complete basis, which is at the same time a pos-

sible basis for each of the irreducible equations which go to make up our

fundamental algebraic equation. For on representing such general function

in the form (3) we see that each one of the p elements is determined to a

constant factor. This of course is equivalent to saying, that p is the number

Fields. 19
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of the arbitrary constants involved in the expression of the most general

rational function, whose orders of coincidence are the same as those of a

specific rational function which does not vanish identically for any one of

the irreducible equations whose aggregate constitutes the fundamental alge-

braic equation. A basis such as that here in question, we shall briefly refer

to as a basis furnished by an actually existent function — meaning thereby

however that the function actually exists for each one of the irreducible

equations which go to make up the fundamental algebraic equation. By a

basis furnished by an existent function then we simply mean a complete

basis, which is at the same time a possible basis for each one of the irre-

ducible equations which are included in our fundamental algebraic equation.

Turning now to the general complementary formula as stated, for

example, in (XII, 33), we shall suppose the basis (t) there in question to be
rk

furnished by an existent function. We shall then have 2 2 Ti*)vi*
) = 0»

7c s-1

NB = p and the complementary formula furnishes us with an expression

for Nh, the number of the arbitrary constants involved in the represen-

tation of the most general rational function which can be built on the

complementary basis (t). The number so obtained is a fixed number with

reference to the fundamental algebraic equation. We call it the genus of

the fundamental algebraic equation and represent it by the letter p. For

the genus of the fundamental algebraic equation then we have the expression

(6) P = -n + P +l2i(vM-l).
k s-1

In like manner we should obtain from (XII, 32) for the genus p,

the expression

i
Tlt

i

(7) p=-« + p-22«-i+ivfl

h s=\ 'a

and in particular corresponding to the form (XII, 22) we should have

(8) P— n + P-liSd^-l+^e
k s=l 'n
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To recapitulate: — If the basis (t) be furnished by any existent ratio-

nal function and if the basis (%) be complementary with regard to the level

furnished by an arbitrarily chosen rational function, then is the number

of the arbitrary constants involved in the expression of the most general

rational function which can be built on the basis (t) a fixed number with

reference to the fundamental algebraic equation, which we call the genus

of the equation and for which expressions are furnished as in (6), (7) and

(8) above by the complementary formula.

From formula (6), for example, it is evident that the genus of a redu-

cible algebraic equation is equal to the sum of the genera of its constituent

irreducible equations. It follows also from this formula that the sum
'7s

2 2( v«*> — 1) must be an even integer. Furthermore, if none of the cyc-
k s=l

les be of an order greater than 2 the number of the cycles of this order

will evidently be 2p + 2n — 2p, a number which is >2n— 2p since p from

its signification cannot be a negative number.

On introducing the number p we may evidently write the complement-

ary formula in the form

(9) Ns + ? = NB +p + 2 2^^-
h s=l

For the basis (t) let us now select the 0-basis. The function H is

then the most general rational function which is nowhere infinite and

therefore involves p arbitrary constants. We consequently have NH= p and

from the complementary formula we then have Ns=p. Here H is the

most general rational function which can be built on the basis (t), which

basis is complementary to the 0-basis with regard to the level furnished

by any arbitrarily chosen rational function. Let us select the level fur-

nished by the rational function f'u (z,u). The formulae (XII, 28) and (XII,

29) then give us for the orders of coincidence t required of the function H.

^=[4*>-l + -L
(
S =l,2,...r.)

s

for all finite values of the variable z = ak , and for the value z=oo
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ti-'-ri-'l- l+^-,,(«=l, 2,... rj.
s

The orders of coincidence here in question are those which are requisite

to adjointness relative to the equation / (z, u) = for finite values of the

variable z, while for the value 2 = 00 they exceed by 2 the orders of coin-

cidence requisite to adjointness for this value of the variable. A function

possessing such orders of coincidence we call a <p-function, The general

•p-function corresponding to our fundamental algebraic equation then involves

Njj= p arbitrary constants — in other words the number of the linearly

independent <p-functions is p.

The representation in the form (3) of the general <p -function corre-

sponding to the equation f(z, u) = may readily be shewn to be

(10) $iQi + $2 Q2+ +*p<9 P

where <fr1} <&2 , ... 4>
p

represent the general f-iunctions corresponding to the

irreducible equations fx (z, u) = , /2 (z, u) = , . . . fp
(z, u) = respectively.

That the expression (10) represents a <p-function is evident, for the order

of coincidence of a branch of the equation f1 (z,u) = 0, for example, with

the function represented by this expression is the same as its order of

coincidence with the element 4>i#i, since the p— 1 functions Q2 , ... Qp con-

tain fx(z,u) as factor. Now the order of coincidence of the branch in

question with the function $x is equal to the sum of its orders of coincid-

ence with the remaining t? x
— 1 branches of the equation fi{z,u) = 0, minus

1—- or plus 1 + -, according as the value of the variable in question is

not or is z=oo, where v is the order of the cycle to which the branch

belongs, while its order of coincidence with the function Q^ is equal to the

sum of its orders of coincidence with the n—

n

x branches of the p— 1

equations f2 {z,u) = 0, . . . f?
(z,u) = 0. The order of coincidence of the

branch in question with the product ^Qt is therefore equal to the sum

of its orders of coincidence with the remaining n— 1 branches of the

equation f(z,u) = 0, minus 1— or plus 1+-, according as we do not or

do have to do with the value z = 09 . This order of coincidence however
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is that which is necessary to a <p-function corresponding to the equation

f(z, u) = 0. It follows therefore that the expression (10) represents a

<p-function corresponding to the equation f(z, u) = 0.

Conversely any <?-function corresponding to the equation f(z,u) = Q

is included in the form (10). For on expressing the <p-function in the form

(3) its order of coincidence with a branch of the equation f1 (z,u) = 0, for

example, will be the same as the order of coincidence of the element H1 Q x

with this branch. The order of coincidence of this element with the branch

in question will therefore be equal to or greater than the sum of the or-

ders of coincidence of this branch with the n— 1 conjugate branches of the

equation f(z,u) = 0, minus 1— r or plus 1 + -, according as the value of

the variable with which we have to do is not or is the value z = oo . The

order of coincidence of the factor Qx with the branch is however equal to

the sum of the orders of coincidence of the branch with the n— n
l
corre-

sponding branches of the p— 1 equations f2 (z,u) = 0, ... /p
(z, it) = 0. The

order of coincidence of the branch with the factor H^ must therefore be

equal to or greater than the sum of its orders of coincidence with the

n 1
— 1 conjugate branches of the equation fl (z,u) = 0, minus 1— or plus

1 +-, according as the value of the variable in question is not or is z = oo.

The order of coincidence of the function H1 with a branch of the equation

f1 (z,u)
= is then that which is necessary to a <p-function corresponding

to this equation. The function H1 is therefore a <p-function corresponding

to the equation fx
{z, u) = 0, and in like manner it may be shewn that

the functions H2 , ... H
p

are ^-functions corresponding to the equations

f2 (z, «) = 0, ... fp
(z, u) = respectively. It follows therefrom that the form

(10) represents the most general <p-function corresponding to the equation

f(z,u) = 0.

Similarly it can be proved that the most general adjoint function cor-

responding to the equation / (z, u) = is represented by the form (3), when

for H1 ,H2 , ... H
p
we substitute the general adjoint functions corresponding

to the p irreducible equations /j(z,w) = 0, f2 (z,u) = 0, . . . fp
(z,u) = re-
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spectively. — By adjoint function, in the case of the general algebraic

equation f(z,u) = Q, as in that of the integral algebraic equation F (z, v)=0,

we mean of course a function which is adjoint relatively to the equation

in question for all values of the variable z, the value z = oo included. From

its representation in the form (3), we see that the number of arbitrary

constants involved in the expression of the general adjoint function cor-

responding to the equation f(z,u) = 0, is equal to the sum of the numbers

of the arbitrary constants involved in the expressions for the general ad-

joint functions corresponding to the several irreducible equations /x (z, u) = 0,

/2 (z,it) = 0, ... /p
(z,tt) = 0.

From the complementary formula we may readily deduce an expres-

sion for the number of the arbitrary constants involved in the general

adjoint function corresponding to our fundamental algebraic equation. To

this end we select a basis (
T

) in which all the numbers corresponding to

finite values of the variable z are equal to 0, while each of the rx num-

bers t^' has the value 2. The function H built on the basis (t) must

then evidently be identically 0, and in the formula (9) we shall have

2) 2 T»*)v
i*

:) = 2», Ns=0. We consequently have Ng= p + 2n— p, where
k »-i

H is the most general rational function which can be built on a basis

{%), which is complementary to the basis (t) with regard to the level fur-

nished by an arbitrarily chosen rational function. Selecting the level fur-

nished by the function f'u (z,u) and substituting their values for the num-

bers of the basis (t) in the formulae (XII, 28) and (XII, 29), we obtain

for the numbers of the basis (z) the values

tw = ^)-l+-l, (s=l,2, ...rh)

for all values of the variable z, the value z = oo included. These numbers

however give the orders of coincidence requisite to adjointness and the

function H built on the basis (z) is therefore the general adjoint function

corresponding to the fundamental algebraic equation. From what we have

just seen then, the general adjoint function involves p + 2n— p arbitrary
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constants — in other words the number of linearly independent adjoint

functions is p + 2 n— p . From this result it is evident that the number of

arbitrary constants involved in the expression of the general adjoint func-

tion corresponding to a reducible algebraic equation, is equal to the sum

of the numbers of the arbitrary constants involved in the expressions for

the general adjoint functions corresponding to the several constituent ir-

reducible equations, what we have already seen to follow also from the

representation of the function in the form (3). Since p + 2n— p is the

number of the arbitrary constants involved in the expression of the

general adjoint function, while p is the number of the arbitrary constants

involved in the expression of the general ^-function, we derive the general

<p -function from the general adjoint function on subjecting the coefficients

of the latter to 2n— p independent conditions.

In like manner if we increase by 2 the orders of coincidence of the

general adjoint function with the several branches of the fundamental

equation corresponding to an arbitrary value z = a, we subject the coeffi-

cients of the general adjoint function to 2n— p independent conditions,

for the function so obtained, by virtue of its coincidences, must evidently

be the product of the general <p-function by the factor (z— a)
2 and will

therefore involve just p arbitrary constants.

Suppose (t) to be a basis of coincidences in which no number exceeds

the corresponding order of coincidence required by the general <p-function

and in which one number at least, corresponding to each of the irredu-

cible equations which constitute the fundamental equation, falls short of

the order of coincidence required by the general ^-function. The general

rational function H built on the basis (t) will then involve a certain num-

ber of arbitrary constants. If now we adjoin further coincidences to the

basis in question we at the same time impose a number of conditions on

the coefficients of the function H, and for every extra coincidence required

from the function we impose a further condition on its coefficients, so

long as the basis (t) retains its character as described above — that is so long

as the orders of coincidence required of the function do not in any case

exceed those involved in the definition of the general <p-function and so

long as one at least of the orders of coincidence in question, for each of
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the irreducible equations constituting the fundamental equation, falls short

of the corresponding order of coincidence involved in such definition. The

proof of this theorem follows immediately from the complementary

formula. —
Selecting namely the level furnished by the function fi(z,u), the

numbers of the basis (t), which is complementary to the basis (t) with

regard to this level, will be given by the equations

^> + T»' = |4* ,-l + -ij, (« = l,2,...r
fc )

for finite values of the variable z = ak , and for the value z=oo by the

equations

,(•> + ^) = ^) + l + _L,
(
S= l, 2 , ... rj.

From these equations then, by virtue of the values given to the numbers

in the basis (t), it follows that the numbers in the basis (t) are none of

them negative and that one of them at least is positive for each of the

irreducible equations which constitute the fundamental equation. The

basis (t) is therefore an impossible basis and the most general function

which can be built on it is identically 0. As a consequence we have

Ns=0, and the complementary formula as stated in (9) gives us for the

number of the arbitrary constants involved in the general function H built

on the basis (t), the expression

(ii) N^p-p + 22^^-
k s=l

This expression for 2Vg holds good so long as the basis (z) retains the

character indicated above. For every extra coincidence added to the

basis (i) however a coincidence is subtracted from the basis (v) and the

sum on the right-hand side of (11) is diminished by 1. For every extra

coincidence required from the function H then a further condition is im-

posed on its coefficients, so long at least as the basis (t) on which the

function is built involves no numbers which are greater than the corre-
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sponding orders of coincidence required by our definition of the general

'/-function, and so long as it involves one number at least for each of the

irreducible equations constituting the fundamental equation, which falls

short of the corresponding order of coincidence required by our definition

of the general <p-function. In particular if H be the most general rational

function built on a basis (t) none of whose numbers exceeds the corre-

sponding order of coincidence requisite to adjointness, we see that for

every extra coincidence required from the function a further condition

is imposed on its coefficients. In the case of such a function then the

conditions requisite to adjointness for the various values of the variable z

are evidently independent of one another.

Reverting for the moment to the integral algebraic equation F (z, v) =
we shall prove the independence of the conditions of adjointness for a

polynomial in (z, v) of degree N— 1 . It would be possible to give a proof

depending directly on the principles enunciated in the preceding paragraph.

We shall find it more expeditious however to proceed as follows. —
In formula (VIII, 19) we have obtained an expression for A, the

number of the conditions which must be satisfied by the coefficients in

the general rational function of (z,v) of degree N— 1 in order that the

function may be adjoint for the value z = oo. The number of the condi-

tions requisite to the adjointness of the general polynomial in (z, v) of

degree N— 1 relative to the value 2 = 00 cannot be greater than A. Nor

can the number of conditions requisite to the adjointness of the general

polynomial in (z, v) of degree N—l relative to any finite value z = ak be

greater than

l2(vF-i + i>)W,
=1

the number of conditions to which the coefficients of the general integral

rational function must be subjected in order that it may be adjoint rela-

tively to the value of the variable in question.

For the number of conditions which must be satisfied by the coeffi-

cients of the general polynomial in (z,v) of degree N— 1 in order that it

Fields. 20
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may be adjoint for all values of the variable z, the value z = oo included,

we shall then evidently have an expression

k s=l
V
s

where the summation with regard to k is extended to all finite values

z = ak and where s is or some positive integer. Subtracting this ex-

pression from nN— j.n(n— 1), the total number of coefficients in the

general polynomial in (z, v) of degree N— 1 — we obtain, for the number

of arbitrary constants involved in the general adjoint function, the ex-

pression

* * k ,-1 V*

Replacing A by its value given in (VIII, 19), we have

rk

n-|22(l«i* , -l+i)v.w + «

k s=l v*

for the number of the linearly independent adjoint functions, the summa-

tion with regard to Tc being here supposed to extend to all values of the

variable z, the value z = oo included. This gives us p + 2n— p + e for the

number of the linearly independent adjoint functions, as we see on refer-

ring to the expression for the genus furnished by formula (8) of the

present chapter. We have proved however that the number of the linearly

independent adjoint functions is p + 2n— p. As a consequence we have

e = 0, and for the number of conditions which must be satisfied by the

coefficients of the general polynomial in (z, v) of degree N— 1 in order

that it may be an adjoint function, we have the expression

a + \ 2 2(^-1 + 4)v?>.

www.libtool.com.cn



THE GENUS AND THE ^-FUNCTIONS. 155

Now this expression is equal to the sum of the number of conditions

which must be satisfied by the coefficients of the general rational function

of degree N— l in order that it may be adjoint for the value z = oo, and

the numbers of the conditions which must be satisfied by the coefficients

of the general integral rational function in order that it may be adjoint

for the different finite values of the variable z. It follows therefore that

the number of conditions requisite to adjointness relative to the value

z = oo is the same in the case of the general polynomial in (z, v) of degree

N— 1 as in that of the general rational function of this degree, and also

that the number of conditions requisite to adjointness relative to any

individual finite value of the variable z is the same in the case of the

general polynomial of degree N— 1 as in that of an arbitrary polynomial

of higher degree. It furthermore follows that the conditions of adjointness

for the different values of the variable z are all independent of one

another in the case of the general polynomial in (z, v) of degree iV— 1

.

Coming back to the equation / (z, u) = and to rational functions of

(z, u) considered with reference to this equation, — we have seen that an

increase of 2 in the orders of coincidence of the general adjoint function

with the several branches of the equation corresponding to any arbitrary

value z = a, subjects the coefficients of the general adjoint function to

2 to— p independent conditions. Of the 2n extra coincidences so imposed

on the general adjoint function then some 2n— p are independent of one

another. The p dependent coincidences consist of one coincidence for each

of the irreducible equations included in the fundamental equation and we

can readily shew that a coincidence may correspond to any one of the

cycles of its irreducible equation. — Select for example a basis (t) so that

the coincidences which it requires are precisely those which are required by

the definition of the general ^-function, save for p coincidences which are

lacking and one of which corresponds to each of the p irreducible equa-

tions. The complementary basis (t) then consists of p coincidences, one

for each of the irreducible equations. We consequently have Ns=0 and

formula (11) gives us N^= p. The general rational function H built on

the basis (t), which lacks p of the coincidences required by the definition

of the general <p-function, then involves the same number of arbitrary con-
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stants as the general ? -function; from which it follows that the p coinci-

dences lacking in the basis (?) are already implied in the coincidences

explicitly required by the basis.

The aggregate sum of the orders of coincidence required by the defi-

nition of the general <p-function is evidently

2^ + 2 2(^-1 +iKc)
.

It s=l V
«

This expression as we see from formula (8) is equal to 2p— 2p, which is

not in general a positive number. For the moment we shall suppose the

fundamental algebraic equation to be irreducible. The sum of the orders

of coincidence required by the definition of the general <? -function will in

this case then be equal to 2— 2p — a number which is positive only

when the genus p of the irreducible equation is 0.

A <p-function does not exist in the case of an equation of genus 0.

In all other cases ^-functions exist. Confining our attention then to the

case in which we have p>0 and remembering that the aggregate sum

of the orders of coincidence of any rational function must be equal to 0,

we see that any particular ^-function must possess 2p—-2 coincidences

over and above those implied in the definition of the general <p-function.

We shall call such a set of 2p— 2 coincidences a complete set of f -coinci-

dences. A complete set of <p-coincidences evidently determines a <p-function

to a constant factor. Since however the general <p-function involves just

p arbitrary constants, a complete set of ^-coincidences imposes p— 1 con-

ditions on the coefficients of the general <p-function. It follows that a

particular <p -function is determined by some p— 1 coincidences out of its

complete set of 2p— 2 coincidences. The 2p— 2 coincidences in a com-

plete set of 9-coincidences are then always determined by some p— 1 of

their number.

Still confining our attention to the case of an irreducible equation

whose genus is greater than 0, we shall prove that no coincidence is

common to all the different sets of 2p — 2 coincidences which define the

various individual <p -functions within the general ^-function, In other
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words we shall prove that no further coincidence is implied in the system

of coincidences which define the general <p -function. We shall find it con-

venient to employ the letter c to indicate a coincidence corresponding to

some cycle of our fundamental equation and shall suppose if possible that

s further coincidences cl5 c2 , . . . cs are implied in the possession of the

coincidences which define the general ^-function. — We do not say that

these s coincidences are different from one another.

Selecting for basis (i) the coincidences required by the definition of

the general <p-function together with the additional coincidence cu the

most general rational function H which can be built on this basis is evi-

dently the general ^-function and in formula (9) we therefore have N#=p.
Selecting at the same time for (t) the basis which is complementary to

the basis (t) with regard to the level furnished by the function fi(z,u),

we see that the basis (t) consists of a single infinity which we shall indi-

cate by the notation cf
1

. We also have P = l for the case here in ques-

tion, and for the number of arbitrary constants involved in the most

genera] function which can be built on the basis (t) the formula (9)

evidently furnishes us with the value Ns= 2.

Since the general rational function H built on the basis (t) involves

two arbitrary constants, it would evidently be possible to construct a

rational function which actually possesses the single infinity cf
1

. Em-

ploying for the moment the notation H (cf
1
) to indicate such function,

while we make use of the notation ^{clf c2 , ... cs ) to indicate the general

<p-function, we see that the product H (c^
1
) . <p (cu c2 , . . . cs ) possesses the

orders of coincidence required by the definition of the general <p-function.

The product however evidently lacks the coincidence c1} which was sup-

posed to be one of the s coincidences cl5 c2 , ... cs common to all the ?-func-

tions. The assumption that the "p-functions possess a certain number

of coincidences in common over and above those mentioned in the defini-

tion of the genera] ?-function then leads to contradiction. It follows

therefore that no coincidence is common to all the different sets of 2p— 2

coincidences which define the various individual ^-functions within the

general ^-function,
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From the complementary formula we can also prove, in the case of

an irreducible equation of genus other than 0, that a rational function

which is not a constant must possess at least two infinities. For suppose

if possible, that a rational function actually possesses a single infinity

cf
1

. On multiplying such function by an arbitrary constant and on

adding an arbitrary constant, we evidently obtain the most general rational

function which involves no infinity other than the one in question. Se-

lecting the single negative coincidence cf
1 for basis (t) in the complement-

ary formula (9), the number of arbitrary constants involved in the most

general function H which can be built on this basis is therefore Ns=2.
The formula (9) then gives us Ng=p, where we may suppose H to re-

present the most general rational function built on the basis (t), which

is complementary to the basis (t) with regard to the level furnished by

the function f'u (z,u). Such basis (i) however is made up of all the co-

incidences required by the definition of the general ^-function together

with the extra coincidence cx . The function H built on the basis (t) must

therefore be a <p-function, and since it involves p arbitrary constants it

must coincide with the general ^-function. Over and above the coinci-

dences involved in the definition of the general f-function then such func-

tion would further possess the coincidence clt contrary to what has been

proved in the preceding. It follows therefore that a rational function

does not exist which actually possesses but one infinity.

Earher in the chapter we have seen that the general y-function is

obtained from the general adjoint function on imposing 2n— p conditions

on the coefficients of the latter function. This should furnish us with a

criterion for the reducibility or irreducibility of the fundamental algebraic

equation. — Supposing the fundamental equation to be transformed to

the integral form F(z,v) = 0, we shall write

U A ir~ l + A 1 ifi
~2 + + An-t

where the degree of the numerator in (z,v) is N— 1. First impose on

the coefficients of the numerator the conditions that are necessary in or-

der that it may be adjoint for the various values of the variable z. In
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order that it may be adjoint for the value z = ak , it must have with the

branches of the several cj^cles corresponding to this value of the variable

the orders of coincidence

P-i L +
v <*>'

••• ^ 1 + jM

respectively. Since the orders of coincidence of the function F'v (z,v) with

the branches of the same cycles are [4*', . . . [4* respectively, the fraction

U can evidently only become infinite for a value of z to which corre-

sponds at least one cycle whose order is greater than 1. All such values

of z are of course included among those which make the discriminant of

F(z,v) vanish identically. On representing the product of all the distinct

linear factors of the discriminant of F (z, v) by P{z), the conditions that

the numerator of the function U should be adjoint for all finite values

of the variable z are evidently all embodied in the requirement, that the

product P (z) .U should become zero for every branch of the fundamental

equation corresponding to every value of the variable z which makes

the discriminant vanish. Also the condition that the numerator in the

function U should be adjoint for the value z = oo is evidently em-

bodied in the requirement, that the function z
_1 U should become zero

for every branch of the fundamental equation corresponding to the value

z = 00.

Eliminating v between the equation

U.F'v {z,v)-{A a v
n-1 + A,vn~ 2 + + An_1 )

=

and the equation F (z, v) = 0, we obtain an equation of degree n in U which

we shall indicate by the notation

]x {U,z,Az,A x , ... An_1 )
= 0.

On writing P(z).U=V this equation transforms to an equation

F1 (V,z,A ,A 1,...A n_1 )
=
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and subjecting the polynomials A , . . . An_x to the conditions necessary in

order that this equation may be not only an integral algebraic equation

in V, but also in order that every value of V which corresponds to a

value z which satisfies the equation P(z) = may be 0, we have the con-

ditions necessary to the adjointness of the function

Aov'
1'1 + A.v'1-2 + • + A,-i

for all finite values of the variable z. Again on writing z
_1 U =Vi the

function Vx is determined by the equation

fi(z v i, z, A , A lt ... .<4„_1 ) = 0,

and on subjecting the polynomials A 0> ... A n_x to the conditions neces-

sary in order that all the values of Vi corresponding to the value 2 = 00

may be zero, these are also the conditions which are necessary in order

that the numerator of the function U may be adjoint for the value z = 00

.

Furthermore on writing z U = V2 the function V2 is determined by

the equation

fi\z >'2> Z)A ,A 1 , ... An_1 ) = 0,

and on subjecting the polynomials A 0) . . . A n_1 to the conditions neces-

sary in order that all the values of Vt corresponding to the value z = 00

may be zero, these additional conditions are evidently also those which

are necessary in order that the numerator of the function U may be a

'^-function. Noting the actual number of these conditions, which we
otherwise know to be 2n— p, we thus arrive at the value of p, determin-

ing therewith the reducibility or irreducibility of the fundamental equation

and the number of its constituent irreducible equations.

At the same time the number of the arbitrary constants remain-

ing in the expression of the function U gives us the genus of the funda-

mental equation, the numerator represents the general f-function and

the fractional form itself the integrand of the general Abelian integral

of the first kind.
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CHAPTER XIV.

Riemann-Roch theorem. Related theorems.
Plucker's formulae.

The reciprocity theorem of Brill and Nother. The Riemann-Roch theorem. The
Weierstrassian gap theorem. A theorem of Hurwitz. The genus of an algebraic equa-

tion remains unaltered by a birational transformation and a complete set of ^-coin-

cidences transforms into a complete set of ^-coincidences. Generalization of Plucker's

formulae. Theory of the coresiduals.

In the case of a reducible fundamental algebraic equation any par-

ticular y-function which actually exists for each of the factors of the funda-

mental equation must possess 2 p— 2p coincidences over and above those

implied in the definition of the general tp-function. Such a set of 2p— 2p

coincidences we shall call a complete set of ^-coincidences relative to the

reducible algebraic equation. A complete set of ^-coincidences relative to

a reducible algebraic equation is evidently made up of complete sets of

•^-coincidences corresponding to the several constituent irreducible algebraic

equations. The most general <p-function corresponding to a given complete

set of 2 p— 2 p ^-coincidences involves p arbitrary constants and a complete

set of 2p— 2p ^-coincidences is evidently determined by some p— p of

their number.

Let us now suppose the complete set of 2p— 2p coincidences corre-

sponding to a given function <p to be arbitrarily subdivided into two sets

of Q and Q' coincidences respectively. The coincidences of these sets we

shall represent by cu c2> ... cQ and c[ c,'2 , ... cq respectively. On repre-

Fields. 21
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senting by <pe the most general ^-function which includes in its complete

set of ^-coincidences the Q coincidences c and by <f& the most general

^-function which includes in its complete set of ^-coincidences the Q' coin-

cidences c, we see that ©c and <pc
, are the most general rational functions

built on certain bases (t) and (if) respectively. The basis (t) is made up

of the coincidences implied in the definition of the general ^-function and

of the Q coincidences c, and the basis (t) is made up of the coincidences

implied in the definition of the general <p-function and of the Q' coinci-

dences c'. Also the bases (t) and (t) are complementary with regard to

the level furnished by the rational product <p . f'u , for on representing by

rr.f*, nf*, ... rr<
{® respectively the orders of coincidence of the given func-

tion <p with the branches of the several cycles corresponding to the value

z = ok , we evidently have

t«*> + ;f> = mf + (4*>-l + 4, (*= 1, 2, . . . rh )

for all finite values of the variable z, while for the value z=» we have

t«-> + ti-» = mi-> + ri-> + 1 + ±, (s= 1, 2, . . . ra ).

The complementary formula, as given for example in the form (XII,

25), then holds good with regard to the bases (t) and (t) here in question,

and we therefore have

rk rk

N<?„ +
1 2 2 tS*' v<*> = Nv, + 1^2^ vf»

/„• »=1 k s=l

where N<?c and N^ represent the numbers of the arbitrary constants in-

volved in the respective functions
<fe

and <pc,. Also we evidently have

rk rk

22W=G + 2» + 22(ri7c,-i + i)^»
& s=l /.- s=l '»

22W" -Q 1

+ 2n +22(^-i + i)v«
k s=\ k s=l Vs
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and from the formula immediately preceding we derive

(1) * Q-Q' = 2(Nfc,-N9e).

This is the Reciprocity Theorem of Brill and Nother*.

We shall employ the expression ^-strength** to indicate the number

of the conditions imposed on the p arbitrary coefficients of the general

<P -function by the requisition that it possess a certain set of coincidences

cl5 c2 , ... . The <p -strength of a complete set of 2p— 2p ^-coincidences is

then p— p. Also the <p strength of any set of coincidences can never be

greater than p, for the <p -strength p already makes the <p-function vanish

identically. For the moment we can replace the expression <p-strength by

the single word strength without fear of ambiguity.

The strength of the set of Q coincidences cx ,c2 , ... cQ above is evidently

p— JV<p
c

, while that of the set of Q' coincidences c\, c'2 , ... c'q, is p—N^.
On employing for brevity the letters q and q to indicate the strengths of

the sets of Q and Q' coincidences respectively, the reciprocity theorem of

Brill and Nother may evidently also be represented in the form

(2) Q-Q' = 2 (q-q).

If we have Q = Q' = p— p it follows from the reciprocity theorem that

we must also have q = q. Now since p— p is the strength of a complete

set of 2p— 2 p ^-coincidences, this also will be the strength of some set

of p— p out of the complete set of 2 p— 2 p <p -coincidences. We can there-

fore evidently subdivide the 2p— 2p coincidences of a complete set of

<p -coincidences into two sets of p— p coincidences each having the common

strength p— p. Neither of these two sets can contain more than # coinci-

dences of a set of ?>-coincidences of strength q, since in a set whose strength

is equal to the number of its coincidences every coincidence must make

its contribution to the strength. It follows that the two sets combined,

that is the complete system of 2p— 2p <p -coincidences, cannot contain

* Math. Annal. VII, p. 283.

** The use of the word strength in this connection is borrowed from H. F. Baker's treatise

on the Abelian functions,
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more than 2q coincidences belonging to a set of strength q. We conclude

therefore that the number Q of a set of ^-coincidences of strength q cannot

be greater than 2q*. That we may actually have Q = 2q we know, for

a complete set of 2p— 2p ^-coincidences has p— p as its strength.

Let us now consider an arbitrarily chosen set of coincidences cuc2 , ...

cQ , in which the same coincidence may appear any number of times and

where Q may be any positive integer. Corresponding to these coincidences

we shall have a set of negative coincidences or infinities which we shall

indicate by the notation cf
1

, c^"
1

, ... Cq 1
. The repetition of a negative coin-

cidence indicates the order to which the corresponding infinity is to be

considered, while in the set of positive coincidences the repetition of a

coincidence indicates the order to which the corresponding zero is to be

considered.

We shall employ the notation H(c^, c^1
, ... Cq 1

) to indicate the most

general rational function of (z, u) whose infinities are all included in the

set of Q infinities here in question. The function H is then the most

general rational function which can be built on a basis (t) in which all

the numbers are negative, and the complementary formula as given in

(XIII, 9) will, for the case here in question, evidently take the form

(3) Ns + ?=NH + p-Q,

where H may be supposed to be the most general rational function built

on a basis (i) which is complementary to the basis (r) with regard to the

level furnished by the function /«. The basis (v) is then made up of the

coincidences requisite to the definition of the general <p function together

with the Q coincidences clt c2 , . . . cQ . As a consequence the function fi

built on the basis (t) is a f-function, and in fact the most general y-func-

tion which possesses the set of coincidences cx , c2 , ... cQ . On employing

the letter q to indicate the 9-strength of this set of Q coincidences we
have N#= p— q, and formula (3) may evidently be written in the form

* We may also say that the number Q of any arbitrary set of coincidences of strength q
cannot be greater than 2q so long as we have Q<2p. For if the Q coincidences in question

do not constitute a set of ip-coincidences their strength must evidently be p.
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(4) NH=Q-q + p.

We see then that the most general rational function of (z, u), whose in-

finities are included under a certain set of Q infinities cr
1

, c2

l
, ... Cq 1

, de-

pends upon Q— q + p arbitrary constants where q is the strength of the

set of Q coincidences c1} c2 , ... cQ , This is the Riemann-Roch Theorem

stated for an equation reducible or irreducible.

In regard to the infinities which actually present themselves in the

general function H (cf
1
, c2

Y
, • • • Cq

1

), we may be a little more precise.

Namely it is readily seen that a given infinity c
_1

will or will not present

itself according as the omission of the corresponding coincidence c from

the set of coincidences c1} c2 , ... cQ does not or does diminish the strength

q of the set. For example the infinity Cq 1 will or will not actually present

itself in the general function -ff^cf
1
, c2

l

, ... Cq 1
), according as this function

does or does not involve one more arbitrary constant than the general

function H(e[~l
, c~l

, ... CqIj) — also the numbers of arbitrary constants

involved in the two general functions here in question are not or are the

same according as q or q— 1 is the strength of the set of coincidences

d, c2> ... Cq_15 as we see on referring to the formula (4). The infinity

Cq 1 then does or does not actually present itself in the general function

#(cf\ c2

l
, ... Cq 1

) according as q or q— 1 is the strength of the set of

coincidences cx , c2 , ... Cq_1} that is according as the omission of the coincid-

ence Cq from the set cu c2 , ... cQ does not or does diminish the strength

of the set.

The Riemann-Roch Theorem may then be stated in the following

form: — The general function H{c^1
, c2

x

, ... Cq) depends on Q— q + p ar-

bitrary constants where q is the strength of the set of Q coincidences

c1 , c2 , ... Cq, and the general function actually becomes infinite for a given

one of the indicated infinities when and only when the omission of the

corresponding coincidence from the set cx , c2 , . . . cQ does not diminish the

strength of the set.

The strength of a set of coincidences can evidently not be greater

than the number of coincidences in the set. If the strength of a set of

coincidences cl5 c2 , ... cQ be just equal to the number of coincidences in
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the set, we see from the Riemann-Roch theorem that the general function

H(c^1
, cj"

1

, ... Cq 1

) can possess no infinities and must therefore reduce to

an arbitrary constant *
. If the strength of the set be less than the num-

ber of its coincidences the general function in question will actually pre-

sent a number of infinities.

It is evident that the strength of a set of any number of coinciden-

ces can never be greater than p, for the strength p is already sufficient

to make the p arbitrary coefficients in the general <p -function vanish. It

follows that it is always possible to construct a function of the type

H(cy 1

, C2
1

, ... CpU other than a constant, since the number of the co-

incidences c1; c2) ... Cp+1 is certainly greater than their strength. Also if p
be the strength of this set of p + 1 coincidences and if the strength remain

the same after the omission of any arbitrary one of the coincidences from

the set, the function must actually possess the p + 1 infinities in question,

for its infinities cannot be included in any set of p out of the p + 1 in-

finities, since the strength of the corresponding set of p coincidences is

equal to their number. This remark has a significance only in connection

with an irreducible algebraic equation, for in the case of a reducible equa-

tion it is readily seen that the omission of a coincidence from a set of

p + 1 coincidences of strength p diminishes the strength of the set ex-

cepting where the omitted coincidence corresponds to a certain definite one

of the constituent irreducible equations. — For other than special sets of

infinities then, in the case of an irreducible algebraic equation, a function

of the type H (e^
1

, c?
1

, . . . Cp+i) which is not a constant must actually

possess each one of the p + 1 indicated infinities.

In the case where p = we may construct a rational function possess-

ing a single infinity or any arbitrary combination of infinities. Here we

have no <p-functions, but on regarding as the strength of any coincidence

or set of coincidences this case may evidently also be included in the

reasoning above.

In the statement of the Riemann-Roch theorem above, the number

P of the irreducible equations into which the equation / (z, u) = resolves

* In the case of a reducible algebraic equation the constant may of course have a different

value for each of the constituent irreducible equations.
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itself appears explicitly. We might also state the theorem without ex-

plicit reference to the reducibility or irreducibility of the equation f(z, u) = 0,

on introducing* what one may call the adjoint strength of a set of coincid-

ences. By the adjoint strength of a set of Q coincidences namely, we

shall mean the number q of conditions which we impose upon the coeffi-

cients of the general adjoint function in attempting to add the Q coincid-

ences in question to those already implied in the definition of the adjoint

function.

The general "p-function corresponding to the equation / (z, u) = is

derived from the general adjoint function on adding 2 to the order of

coincidence of the latter function with each of the n branches at oo . This

implies the addition of 2n coincidences to the coincidences at oo possessed

by the general adjoint function. These 2n coincidences in what follows

we shall simply refer to as the In coincidences at oo. In Chapter XIII

we have seen that in order to obtain the general y-function corresponding

to the equation / (z, u) = from the general adjoint function, we must

subject the coefficients of the latter to 2n— p independent conditions. The

adjoint strength of the set of 2 n coincidences at oo is therefore 2n— p.

If q be the ^-strength of the set of Q coincidences c
x , c2 , ... cQ and

q the adjoint strength of the set of Q= Q + 2n coincidences made up of

these Q coincidences and of the 2n coincidences at oo, we shall evidently

have q = q + 2n— p and consequently

Q— q + P = Q— q.

To the Riemann-Roch theorem we may then give the following for-

mulation. — The general function of the type H{c^x
, cj

1
, ... Cq 1

) depends

on Q— q arbitrary constants, where q is the adjoint strength of the set of

q = Q + 2n coincidences made up of the Q coincidences cx , c2 , . . . cQ and of

the 2n coincidences at oo. Furthermore the general function in question

does or does not actually possess a given one of the Q indicated infinities,

according as the omission of the corresponding coincidence from the set of

Q coincidences does not or does diminish the adjoint strength of the set.

Consider a set of Q infinities arranged in any arbitrary order cf\ c^"
1

,

... Cq 1
. The ^-strength of the set of k coincidences c1} c2 , . . . ck we shall
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indicate by qk , so that
q<z
= q is the strength of the complete set c x ,c2 , ...

cQ . From what we have seen in the foregoing it will or will not be pos-

sible to construct a function of the type H{c^'l
,cj

l

, ... cj1
) which actually

possesses the infinity cjx
, according as we have qk

=
<lk-i or Ik = Sk-i + 1 •

The latter case however will present itself for q values of h, for we evi-

Q

dently have ^(qk— <li.~i)
= Q- Corresponding to the arrangement cf

1

, cj1

,

. . . Cq 1 of our Q infinities then there are just q values of 1c for which it

is impossible to construct a function of the type H(c~x
, cjr

1

, ... ck
x

) which

actually possesses the infinity ck
l

. The number of such impossible func-

tions corresponding to a given arrangement of a set of any number of

infinities can never be greater than p, for this is the greatest value which

the strength of a set of coincidences can have.

Suppose the fundamental algebraic equation to be irreducible. The

strength of a complete set of 2 p— 2 coincidences is p— 1 , for these co-

incidences determine the <p-function to a constant factor. As a conse-

quence the strength of any set whatever of 2 p— 1 or more coincidences

must be p. Corresponding to any arrangement cf\ c£~S ... Cq of a set of

Q infinities, where Q is > 2 p— 1 , then it follows that there are just p
values of k for which it is impossible to construct a function of the type

H{Ci l
, cv

1
, . .. ci;

1
) which actually possesses the infinity cj1

. This is in

effect Nother's generalization * of the Weierstrassian Gap Theorem.

To derive the latter theorem from the former it is only necessary to

suppose the c's to be all the same, and we see that there are just p val-

ues of lc for which it is impossible to construct a rational function of (z, u)

which possesses a given infinity c
_1

to the hth. order and which has no

other infinities.

In this connection we might prove a theorem of Hurwitz relating to

the gaps of the gap theorem. The p gaps namely in the series of pos-

sible functions H(ci x
, c^1

, ... c^1

) occur, as we have seen, for the values Jc

for which qk =q k_x + 1 . Here we may evidently assume k<2p— 1 and we

shall consequently also have k— \<2qk_1 for, as has already been pointed

* Crelle, Bd. 97, P. 228.
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out, if q is the strength of a set of Q coincidences we have #< 2q so long

as we have Q<2p. For the sum of the numbers indicating the places

of the gaps we therefore have

(5) 2&< 2 (2 ft_1 + l) = l+3+ ••• +(2p-l).--
*k-i

=0

In particular on supposing the c's to be all the same, we conclude that

the sum of the values k which represent the orders of the infinity c
_1

for

which it is impossible to construct a rational function possessing no other

infinities, is <p2
. This theorem is due to Hurwitz*.

In the generalized gap theorem we see that the gaps are transformed

into gaps by a birational transformation, so that the genus of our funda-

mental algebraic equation is not altered by such a transformation. The

same thing is also evident from the Eiemann-Roch theorem. — If, for

example, c1 , c2 . ... cP constitute a set of p coincidences of strength p cor-

responding to the equation / (z, u) = 0, we know that a function of the

type H (c^
1
, . . . Cp

l
) other than a constant does not exist, whereas it is

always possible to construct a function of the type H (of
1
, . . . e~\ c~+j)

which actually possesses a number of the indicated infinities. Supposing

the equation / (z, u) = to be transformed by a birational transformation

into the equation g(^,ti) = 0, and supposing at the same time that the p

coincidences c1} . . . cp go over into p coincidences Yi> ... y associated with

the transformed equation, we see that a rational function of (£,t]) of the

type H (?r\ • • • fp
1
) cannot become infinite, as otherwise it would trans-

form into a function of the type H (cT
1
, . . . c"1

) which is not a constant.

It follows that the genus of the equation g(t,-q) = cannot be less than

p, the genus of the equation f(z,u) = 0. In like manner it may be shewn

conversely that the genus of the equation f(z,u) = cannot be less than

the genus of the equation g(i,fi) = 0. The genera of the two equations

must therefore be the same.

By a birational transformation the quotient of two ^functions trans-

forms into the quotient of two <J>
-functions. To prove this we first prove

* Cf. Hurwitz, Math. Annal. Bd. XLI, p. 410 and H. F. Baker, Abelian Functions, p. 42.

Fields. 22
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that any system of 2p— 2 y coincidences transforms into a system of

2 p— 2 <p coincidences by a birational transformation. — Let c, , ... c
2i,_2

be

a system of 2p— 2 ^-coincidences corresponding to the equation / (z, u) = 0.

These 2p— 2 9 -coincidences will be completely determined by some p—

1

among them, — say by Cj, ... c^. By a birational transformation the

equation / (z, w) = transforms into an equation g (£, rj) = and the set of

<p coincidences Ci, .

.

. c2jJ_2 goes over into a set of 2p— 2 coincidences vl5 ...

l2P-2- This latter set of 2p— 2 coincidences we shall prove to constitute

a complete system of ^-coincidences for the equation g(t,vi) = 0.

Since p— 1 is the strength of the complete system of 2p— 2 coincid-

ences cl> ... c2p-2 as also of the set of p— 1 coincidences clt ... cp_x> it is

possible to construct ftinctions other than constants of the types

ti (Cj , . . . Cp_!, C,
p ), ti (Cj , . . . Cp_x, Cp+1 ), . . . ti (Ci , . . . Cp_i, C2P—2)

whereas a function of the type H (c^
1
, . . . c^) must be a constant. It

follows therefore that it is possible to construct functions of (£, /]) other

than constants of the types

" (Ti » • • "tp—1> ?i> )> " (Yi > • • • tp—i) Ifp+i)? • " (Ti > • • • Tp—1» Tf2p—2)

whereas a function of the type H(i^1
, ... y"^) must be a constant. We

derive therefrom that the 2p— 2 coincidences Yi> ••• T2.P-2 constitute the

complete system of coincidences of a <? -function corresponding to the equa-

tion g(i,fj)'=0, this system of coincidences being determined by the p— 1

coincidences fl , ... Yp-i- A complete system of ^-coincidences c1} ... c
2i,_2

corresponding to the equation / (z, it) = is therefore transformed by a

birational transformation into a complete system of y -coincidences corre-

sponding to the transformed equation g (£, -q) = *

.

We can now prove that the quotient of two tp-functions corresponding

to the equation / (z, u) = transforms into the quotient of two <p-functions

* By a transformation birational for a reducible equation then a complete system of

2p— 2p ^-coincidences corresponding to this equation will be transformed into a complete

system of ^-coincidences corresponding to the transformed equation. Also the quotient of two

ip-functions corresponding to a reducible equation will be transformed into the quotient of two

^-functions corresponding to the transformed equation.
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corresponding to the equation ^(€,ij) = 0. A y-function is determined to a
constant factor by the system of its 2p— 2 ^-coincidences. Employing
then the notation <?(cu , . . c2p_£ to indicate a y-function possessing the

system of ^-coincidences cl5 . . . c
2jP
_2) the function is designated to a constant

factor by this notation. — Suppose cl5 . . . c2„_2 and c[, ... c2j_2 to be two
complete systems of ^-coincidences corresponding to the equation / (z, u) = 0,

which by the birational transformation go over into the two systems of

^-coincidences -

tl , . .

.

-(2p_2 and ?!, ...i'2p_2 corresponding to the equation

gr(S,Y]) = 0. The quotient

y(c t , ••• c
2ll
_2)

?(c[, ... c'2p_2 )

will then transform into a quotient

?(?!, ... Y2J_2 )

?{'h, ••• T
2i)
_2 )

for the former quotient will evidently transform into a function of (£,/])

whose zeros and infinities are those of the latter quotient, and since a

rational function is determined to a constant factor by its zeros and in-

finities we may write

y(ci, ... c2p_2 ) = <p(7i, ... T2i,_2 )

?(c'i, ... e'
2i,_2 ) 9(7;, ... i2p-2 )

on taking account of the constant factor in the <p-functions <p(Tx , ... T
2i,_2 )

and f(t[, ... r^_2).

In particular a transformation to tangential coordinates is a birational

transformation. The genus p of the curve / (z, u) = is therefore also the

genus of the curve referred to tangential coordinates.

Representing the equation of our curve transformed to tangential co-

ordinates by g (£, /]) = and regarding yj as the dependent variable, we shall

indicate the degree of the transformed curve in this variable by n. The

n branches of the curve corresponding to a value i = o-
lc
we shall suppose

to consist of rk cycles of orders v['
c)

, v2
k)

, • . . v^ respectively, and the orders

of coincidence of the branches of these cycles each with the product of
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the remaining n— 1 branches of the curve we shall indicate by ^.[

!c)

, ... yf£

respectively. Furthermore by m[k)
, m£\ . . . n J.*'

we shall indicate the orders of

coincidence of an arbitrarily chosen rational function H(z,u) with the

branches of the several cycles of the equation / (z, u) = corresponding to

a value z = a k , and by m[
k)

, mf\ ... m-}. the orders of coincidence of any

arbitrary rational function H&>t\) with the branches of the several cycles

of the equation g{i,i\) = Q corresponding to the value £ = aA .

Now the aggregate sum of the orders of coincidence of a rational

function of (z, u) with all the branches of the curve / (z, u) = correspond-

ing to the different values of z, is 0. We therefore have

rk

22»W=o.
k s~l

Also from (XIII, 6) we have the formula

i

r
'cp— » + i + s22(*i* , -D.

k s=l

Similarly corresponding to the equation g(£,ri) = we have the formulae

22»? , 2* > =
k 5=1

and

p = -n + l +^22(^-1).
k 5=1

From these four formulae eliminating p we obtain the three formulae

rk

22»»i*>vi*
> = o

k 5=1

rk

(6) 22«i"vi* , = o
k s=l

rk *k

22(vi*}-D-22(V ) -l) = 2(n-n).
k s=l k 5=1
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These three formulae from the point of view of the theory of the alge-

braic functions may be regarded as the generalization of Phicker's for-

mulae.

In particular selecting for H (z, u) and H (£, vj) respectively the functions

f'u (z,u) and <7^(£,tj), the formulae (6) become

22tW==o
k *=1

~
rk

(7) 22iW=o
k s=l

22(v«-i)-22(vf )-D = 2(W -^).
k s=l k s=~\

Suppose now that the equation / (z, u) = is integral of degree n and that

it possesses only the simplest point and line singularities, namely double

points and double tangents and ordinary cusps and stationary tangents.

Furthermore assume that neither the equation / (z, u) = nor its trans-

formed equation g (£, -q) = presents any singularity at oo . We shall evi-

dently then have

v<->=1, ^=-(n-l), (s = l, 2, ... r„)

vi-'^l, ^-» (»— 1), (5=1,2, ...rj

and the formulae (7) take the forms

rk

— n(n— l) + 22p-?,vi*
, =

k s=l

^k

(8) — »(n— D+S'S^vi** =
k s=l

ik
__

~
rk

2'2K7£) -D-2'2(vf ) -i) = 2(n- w).

k s=l k s=l

Considering the first of these three formulae we see that any term in

the double summation which has a value other than must correspond

to a double point, a cusp, or the point of contact of a tangent parallel
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to the axis of u. To a double point evidently correspond two terms in

each of which we have i4
A> = 1> vi

k) = 1- To a cusp corresponds a term in

which we have
\>-i

k) =%, vf = 2, and to the point of contact of a tangent

parallel to the axis of u corresponds a term in which we have |4
ft) = L v<*> = 2.

The increment in the double summation due to a double point is then

2, that furnished by a cusp is 3, while every tangent parallel to the axis

of u gives an increment 1 to the summation. Now the number of the

tangents parallel to the axis of u is equal to n the class of the curve.

On indicating then by S and % the number of the double points and the

number of the cusps respectively, the first of the three formulae in (3)

assumes the form

— n(n— 1) f 2S + 3/. + w = 0.

On indicating by t and i respectively the number of the double tan-

gents and the number of the stationary tangents, the second formula in

(8) will in like manner assume the form

— n{n— l) + 2t + Bi + n = 0,

while the third formula evidently takes the form

(» + *)— (w-t i) = 2(n— n).

For the three formulae (8) then we have

n = n{n— 1)— 28— 3x

(9) » = n(n — 1) — 2t— 3i

i— v. = 3 (n— n)

and these three formulae we know to be equivalent to Pliicker's formulae.

We might here make reference to the theory of the coresidual sets of

points on an algebraic curve* — not so much with the purpose of in-

troducing the modified notation which we shall find it convenient to em-

ploy, as with the object of recalling the theory in association with the

increased precision which we have given to the conception of adjointness.

* See Brill and Notber, Math. Annal. Bd. VII, p. 272; H. F. Baker, Abelian Functions,

p. 136; Salmon's Higher Plane Curves (3rd. ed.) p. 137.
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— Instead of speaking of »sets of points* we shall employ the expression

sets of coincidences in that which follows.

Suppose (" to be a basis of coincidences whose numbers for cycles

corresponding to finite values of the variable z are all equal to or greater

than the corresponding adjoint numbers — such a basis we shall say is

adjoint for finite values of the variable z. Furthermore assume the basis

(t) to be a possible basis for each of the irreducible equations included in

our fundamental algebraic equation, and let M (z, u) and N (z, u) be ratio-

nal functions existent for each of the irreducible equations in question,

and built on the basis (t) by the addition of coincidences all of which

correspond to finite values of the variable z. The sets of coincidences

possessed by the functions M (z, u) and N (z, u) over and above those re-

quired by the basis (t), we shall indicate by P and Q respectively. Each

of these sets of coincidences we call a residual of the basis (t) and the

two sets we say are coresiduals relative to this basis.

If the sets of coincidences P and Q are coresiduals relative to the

basis (t), and if either of these sets is a residual of a second basis (t)

which is adjoint for finite values of the variable z, then are the two sets

also coresiduals relative to this second basis. For supposing the rational

function M(z, u) to be built on the basis (t) by the addition of the coin-

cidences of the set P to those already required by the basis and con-

structing the function

(10) x^ u ) =m0tY li^)>

we see that the function N(z,u) is built on the basis (t) by the addition

of the coincidences of the set Q, and that as a consequence the sets P

and Q are coresiduals relative to the basis (t). If then, two sets of coin-

cidences corresponding to finite values of the variable z are coresiduals

relative to a basis of coincidences which is adjoint for finite values of the

variable, and if either of the sets be a residual of another such basis,

then are the two sets also coresiduals of this second basis. We may then

simply refer to the two sets of coincidences as coresiduals.

If the fundamental algebraic equation / (z, u) = is integral the func-
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tions M (z, u), N (z, u), M (z, u) and N (z, u) which appear in the preceding

are all polynomials in (z,u), for rational functions which are adjoint rela-

tively to an integral algebraic equation for finite values of the variable z

are, as we have seen, necessarily integral.

If the zeros and infinities of a rational function H (z, u) correspond

to finite values of the variable z, it is readily seen that they constitute

coresidual sets of coincidences. For on constructing a rational function

M(z,u) which is adjoint for all finite values of z and which over and

above this includes among its coincidences ones corresponding to the in-

finities of the function H(z,u), we see that the product

H (z, u) .M(z,u) =N (z, u)

is also adjoint for all finite values of the variable z and that its coincid-

ences are the same as those of the function M (z, u), save that among

these latter the coincidences corresponding to the infinities of the function

H (z, u) are replaced by the zeros of this function. From this it follows

that the infinities of the function H(z,u) are coresidual to its zeros. It

is furthermore evident that the rational function H (z, u) may be represented

in an infinite number of ways in the fractional form

tj , \ N(z,u)
v ' M{z, u)

where numerator and denominator are adjoint relatively to all finite values

of the variable z, for the function M (z, u) as characterized above may be

chosen in an infinite number of ways. — Here of course we do not re-

gard as distinct, a representation obtained on multiplying numerator and

denominator in a given fractional form by the same rational function of z.

In what precedes, coresidual sets of coincidences correspond only to

finite values of the variable z. We may readily extend our definition

however so that the value z = oo will not be excluded. — Suppose (t) to

be any basis which is a possible one for each of the irreducible equations

included in the fundamental algebraic equation. Let M (z, u) and N (z, u)

be rational functions existent for each of the irreducible equations in

question and built on the basis (t) by the addition of coincidences which
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correspond to cycles for each one of which the basis is adjoint. The sets

of these coincidences possessed by the functions M (z, u) and N (z, u), over

and above those required by the basis (t), we shall indicate by P and Q
respectively. Each of these sets of coincidences we call a residual of the

basis (t) and the two sets we say are coresiduals relative to this basis.

If the sets of coincidences P and Q are coresiduals relative to the

basis (t) and if either of these sets is a residual of a second basis (t),

which is at the same time adjoint for all the cycles to which the coincid-

ences of the other set correspond, then is this other set also a residual

of the basis (t) and the two sets are therefore coresiduals relative to this

basis. For supposing a rational function M(z,u) to be built on the basis

(t) by the addition of the coincidences of the set P to those already re-

quired by the basis, and constructing a function N(z,u) as in formula (10),

we see that this function is built on the basis (t) by the addition of the

coincidences of the set Q, and that as a consequence the sets P and Q
are coresiduals relative to the basis (t). With regard to any basis (t) then,

which is adjoint for all the cycles to which the coincidences in the sets

P and Q correspond, and which is possible for each of the irreducible

equations included in the fundamental algebraic equation, we may say

that the two sets are either coresiduals relative to the basis or that neither

set is a residual of the basis, in the case where the sets have already been

seen to be coresiduals relative to some one basis (t).

With the generalized definition of coresiduals it is readily seen that

the zeros and infinities of any rational function H(z,u) constitute core-

sidual sets of coincidences. For on constructing a rational function M (z, u)

which is adjoint for all those cycles to which zeros or infinities of the

function H (z, u) correspond, and which over and above this includes among

its coincidences ones corresponding to the infinities here in question, we

see that the product

H (z, u) .M (2, u) = N (z, u)

is also adjoint for the cycles just referred to and that its coincidences are

the same as those of the function M(z,u), save that among these latter

the coincidences corresponding to the infinities of the function H(z,u) are

Fields. 23
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replaced by the zeros of this function. It immediately follows that the

coincidences corresponding to the infinities of the function H (z, u) and

those consisting of its zeros are residuals of a basis (t) which is adjoint

to all those cycles to which these coincidences correspond. The sets of

coincidences in question are therefore coresiduals according to our definition.

From the above it evidently follows that any rational function of

(z, u) can be represented as the quotient of rational functions which are

adjoint for all those cycles to which zeros or infinities of the function

correspond. It is however also readily seen that any rational function

can be represented as the quotient of rational functions which are adjoint

for all cycles save p, which may be otherwise arbitrarily chosen so long

as one cycle corresponds to each of the p irreducible equations included

in the fundamental algebraic equation.
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CHAPTER XV.

The Abelian integrals.

Existence of p linearly independent Abelian integrals of the first kind. Existence

of the elementary Abelian integrals of the second and third kinds. Reduction of the

general Abelian integral. Periodicity of the Abelian integrals.

The theory of the algebraic functions developed in the preceding

chapters furnishes an algebraic basis on which to build up the theory of

the Abelian transcendents. The existence of the Abelian integrals of the

three kinds immediately follows from our theory of the rational functions

of (z, u). — For example, the general Abelian integral of the first kind

evidently has as integrand the most general rational function of (z, u)

built on a basis (z), in which the numbers corresponding to a finite

value z= ak are

_
1 + MV — 1 + Uk)> • • •

—
1 + M)>v

l
v
2

v
rk

while for the value z -= oo its numbers are

1,1 ,1
1 "*"

v<°°)'
* +

v(0°''
" '

V
(<»)•

'1 2 Vex,

These numbers represent the orders of coincidence which must be pos-
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sessed by the integrand if the integral is to remain finite for all values of

the variable z.

If the basis (t) be complementary to the basis (z) with regard to the

level furnished by the function f'u {z,u), the numbers of the basis (t)

will coincide with the orders of coincidence of the function f'u {z, u)

corresponding to the various values of z, the value z = oo included. In

the complementary formula as stated in (XIII, 9) we shall then have

k 8=1 k 5=1

At the same time we shall also evidently have Nff = p, for H here re-

presents the most general rational function which possesses the same

orders of coincidence as the function f'u (z, u). It follows then from the

formula in question that we must have N^=p. The most general function

H built on the basis (t), that is the integrand of the general Abelian

integral of the first kind, will then depend on p arbitrary constants.

The same result is also otherwise apparent on recalling the orders of

coincidence which define the general <p-function and the orders of coincid-

ence possessed by the function fu (z, u) . For from these orders of coin-

cidence it immediately follows that the integrand of the general Abelian

integral of the first kind must be represented by the quotient of the

general ^-function by the function
f'u (z,u), and the general <p-function as we

have already seen involves p arbitrary constants. The general Abelian

integral of the first kind we might then represent by the notation

fi^L dzJ i'u{z, u)

where ? (z, u) is the general 9-function.

Suppose now that we introduce an extra infinity — an extra negative

coincidence as we shall call it — into the basis (t). The modified basis

we shall indicate by the notation (tj). At the same time a corresponding
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positive coincidence is introduced into the basis (t), giving us a modified

basis which we shall indicate by the notation (tj). The numbers of the

basis (tj are the same as the orders of coincidence of the function
f'u (z, u)

for the various values of z, together with an extra coincidence correspond-

ing to some one cycle. The sum of the numbers of the basis (tj) is there-

fore 1 and the basis itself is an impossible basis for some one of the ir-

reducible equations whose aggregate constitutes the fundamental algebraic

equation. On indicating by Hl and Hx the general rational functions built

on the bases (tj) and (tj) respectively, we shall then have NSl = p— 1 and

from the formula (XIII, 9) we derive Nff1
—p. The number of arbitrary

constants involved in the general rational function Hi built on the basis

(ti), is then the same as the number of arbitrary constants involved in

the general rational function H built on the basis (t). The functions Hi

and H then are one and the same, and the extra infinity introduced in

the basis (tx ) is not actually possessed by the function Hi- It follows that

a rational function of (z, u) cannot possess a single infinity of. order 1, all

its other infinities being of lower order. An Abelian integral which pos-

sesses a single logarithmic infinity and no other infinities therefore does

not exist — what, for the rest, we know from the elementary theory of

the residues of a rational function.

We shall now introduce two extra negative coincidences into the basis

(t), indicating the modified basis by the notation (t2). Introducing at the

same time the two corresponding positive coincidences into the basis (t)

we indicate the modified basis so obtained by the notation (t2). The

formula (XIII, 9) then assumes the form

where H2 and H2 represent the most general rational functions built on

the respective bases (t2 ) and (t
2). If the two extra negative coincidences

introduced into the basis (t) , and consequently also the two extra positive

coincidences introduced into the basis (t), correspond to the same irredu-

cible equation, included in our fundamental algebraic equation, we evi-

dently have NE,
= p— 1 and from the formula above we derive Ng

2
=p+l.
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If the two extra coincidences introduced into either of the bases above

correspond to different irreducible equations, included in the fundamental

algebraic equation, we have NSi — p— 2 and therefore Ng
a
= p = Ns.

The most general rational function H2 built on the basis (t2 ^ will then

involve one more arbitrary constant than the most general rational func-

tion built on the basis (t) if the two extra infinities involved in the for-

mer basis correspond to the same irreducible equation, included in our

fundamental algebraic equation. The two extra infinities in question may
or may not coincide. In the case where they are distinct the rational

function H2 possesses two distinct infinities of the order 1 and the integral

lfS2 dz therefore possesses two logarithmic infinities and is an elementary

Abelian integral of the third kind. In the case where they coincide the

rational function H2 possesses an order of coincidence — 1 ^ for the

branches of a cycle of order v<
ft) corresponding to some finite value z = ak ,

or an order of coincidence 1—^ for the branches of a cycle of order

v'
00

' corresponding to the value z= oo. In this case then the integral

fB2dz possesses a single algebraic infinity and is therefore an elementary

Abelian integral of the second kind. That it does not at the same time

possess a logarithmic infinity evidently follows from the principle of residues.

Let us now introduce an extra negative coincidence i + 1 times over

into the basis (t), indicating the modified basis by the notation (t8+1 ). In-

troducing at the same time the corresponding positive coincidence i + 1

times over into the basis (t), we indicate the modified basis so obtained

by the notation (im). The formula (XIII, 9) then assumes the form

Ns + p =NH + p + i + 1

.

Here we evidently have NH = p — 1 and consequently Ns = p + i.

The function H will have an order of coincidence — 1—^ with the

branches of some one of the cycles corresponding to a finite

value z = ak , or an order of coincidence 1

—

~ with the branches of a
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cycle corresponding to the value z=oo. The integral fUdz will then

have an infinj^y of order ^ for a cycle corresponding to the value z = ak
8

or an infinity of order ^ for a cycle corresponding to the value z = oo.
s

Also we may evidently so dispose of %— 1 out of the p + i arbitrary con-

stants involved in the expression of the general function H that a term
-Jl. m L.

in (z—a,
c )

v
» — or \z/,

v
« — is the only term of negative exponent which

appears in the development of the integral fUdz for a branch of the

cycle of order v<
J) — or v*,

00
' — corresponding to the value z= a&

— or

z = oo — . The function H so restricted will then depend onp + 1 arbitrary

constants and the corresponding integral fudz may also be called an

elementary Abelian integral of the second kind.

In the foregoing we have proved the existence of p linearly indepen-

dent Abelian integrals of the first kind, as also the existence of the ele-

mentary Abelian integrals of the second kind corresponding to any arbi-

trarily chosen cycle of the fundamental algebraic equation. We have at

the same time proved the existence of elementary Abelian integrals of the

third kind possessing logarithmic infinities corresponding to two arbitrarily

chosen cycles of the fundamental algebraic equation, and we have further-

more seen that the integrand of an elementary Abelian integral in its

most general form depends on p + 1 arbitrary constants.

It is evident that any Abelian integral can be represented as the sum

of a number of elementary Abelian integrals. Also if we in any manner

particularize the elementary Abelian integrals so that they involve no ar-

bitrary constants, the general Abelian integral can evidently be represented

as a linear expression with constant coefficients in such elementary Abelian

integrals of the second and third kinds, together with an Abelian integral of the

first kind. Again if clt c2, ... cp be a set of p coincidences of strength p — that

is an unconditioned set of p coincidences — we know from the Riemann-Roch

theorem that we can construct a rational function of (z, u) which actually

possesses any arbitrarily assigned infinity or combination of infinities,

together with some or all of the infinities CT
1
, cj"

1
, . . . c"

1
. If then fH (z, u)dz
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be an Abelian integral presenting any combination of algebraic infinities,

it evidently follows that we can construct a rational function Bx (z, u) pre-

senting the same combination of infinities together with some or all of

the infinities cf
1
, c~

l
, . . . c~x and furthermore that the constants in this

function may be so chosen that the only algebraic infinities presented by

the difference

fH (z, u)dz—H1 (z, u)

are included among the p infinities cf
1
, cr

1
, . . . c" 1

. It follows that any

Abelian integral can be represented in the form

fH{z,u)dz=Hx {z,u) + l+d l U{cT1)+di U{c7')+ ••• +d p II (cj
1
) + III

where 77, (z, u) is a rational function of (z, u), where I and III are Abelian

integrals of the first and third kinds respectively, where the coefficients

d are constants, and where II (cr
1

) , ... II (c"
1
) represent assigned elementary

Abelian integrals of the second kind possessing respectively the infinities

cf
1
, . . . c~ x

. The Abelian integral of the third kind III is of course repre-

sentable as a sum with constant coefficients of a number of elementary

Abelian integrals of the third kind.

If we would consider the Abelian integrals with reference to their

periodicity we might, from an arbitrarily selected point O in the z-plane,

construct a number of closed loops about those points for which cycles

of order greater than 1 exist, the number of loops corresponding to a

cycle of order v being v— 1 . In all we should then have

22(v<'£) -l) = 22> + 2(ra-l)
k 8=1

loops. Any closed path circuiting a number of the branch values of the

variable z may for our purpose be regarded as made up of a number of

the loops in question, with repetitions it may be of the same loop and

with descriptions of a loop in either sense. If we set out from the point

with a certain value of the variable u and on completing the circuit

of a number of the loops return to our point of departure with the value

of u with which we set out, we shall call the circuit a complete circuit.
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It is evident that an Abelian integral which is not itself a rational

function of (z, u) must possess periods. Apart from the periods due to the

presence of logarithmic infinities in an Abelian integral of the third kind

a period will evidently be the result of effecting the indicated integration

about a complete circuit. Now it might be shewn as in the treatise of

Clebsch and Gordan*, that all complete circuits can be reduced to terms

of some 2p complete circuits and we may therefore regard 2p as the

number of the periods of an Abelian integral, apart from logarithmic

periods.

That the 2 p periods of the general Abelian integral are linearly inde-

pendent of one another may readily be shewn. For let Ix , T2 , . . . Jp represent

a complete set of linearly independent integrals of the first kind and let

II (cf
1

), II (c^
1
), ... II (Cp

1
) be a set of p elementary Abelian integrals of the

second kind. In the event of a like linear relation holding between the

corresponding periods of these 2p integrals we could so choose the coeffi-

cients d in the expression

dJI (cr
1
) + • • • + d, II (c-

1
) + dp+i Ii + • • • + d2p Ip

that the periods of the Abelian integral represented by the sum would

all be equal to 0. In such case the sum in question would have to re-

present a rational function of (z, u) — what is evidently impossible if the

set of p coincidences cx , . . . cp
have the strength p. If then the corre-

sponding periods of the 2p integrals here in question are not connected

by a like linear relation it is certainly impossible to assign a specific linear

relation which holds for the periods of an arbitrary Abelian integral or of

an arbitrary Abelian integral which presents no logarithmic infinities. In

particular such a specific linear relation with integer coefficients does not

exist. It follows therefore that no assigned combination of 2p— l periods,

can be equivalent to the remaining period or to an assigned multiple of

the remaining period for all Abelian integrals simultaneously or for all

Abelian integrals which do not present logarithmic infinities.

* Theorie der Abelschen Functionen, p. 85,

24
Fields.
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186 CHAPTER XV.

A more detailed consideration of the periodic properties of the Abelian

integrals and the treatment of their other transcendental properties do

not lie within the scope of the present volume. Our object has been

simply to develop an algebraic theory of the algebraic functions of a

complex variable and there leave it to be utilized as may be found

convenient in connection with the theory of the Abelian transcendents

or elsewhere.
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