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a—3r)? _2(2a-56r)r __m
S R
S(l-—‘rs/B)‘r’ =*1r«/3.r’_
b (:_,_)2 ’ Pe (ﬂ—f)’ ’

(2) when r=}a, then p, =0, pa=4, p3=1%,
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2 (a—1r)2"’ s (a—r)2 "’
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—2 2 r?
n= (a_aTr)_” s -?’: (2a—3r)%, py =—

and py, ps 88 in (1) ;

a*

2 3 3./3
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inscribed in the tetrahedron, touching each face at its centroid, and having:
its centre at the centroid of the tetrahedron, are the roots of

Be B gy B s Vg,
2¢.3 24,3 8.3

6664. (Professor Matz, M.A.)—Find the centroid, (1) of the arc

of a leaf, (2) of the surface of a leaf, of the curve whose polar equation

is p=m?(1—sin 20) (1 +8in26)-1 .....coveeerrerennens 137
6788. (C. B. 8. Cavallin, M.A.)—Find the position in space for

a triangle of given dimensions, in order that the sum of the times required
for particles to descend down its sides may be a minimum............... 138



x CONTENTS.

6871. (J. L. McKenzie, B.A.)—The three sides BC, CA, AB of a
triangle are cut by a8 straight line in L, M, N; and lines drawn through
A, B, and C,'parallel to'EMN;,-cut the clrcumscnbmg circle of the triangle
ABCin P, Q, and R; prove tlmt the lines PL, QM, RN all cut the circle
ABC in the same pm.nt ............................................................ 109

6680. (For Enunciation, see Question 4865)

6885. (H. Fortey, M.A.)—Find the number of different rows that
can be made with r, indifferent balls of one oolour, rs of another
colour, r of a third colour, &c. (all the balls being used in each row), in
which no two balls of the same colour are in contact ..................... 139

7026. (Sir James Cockle, M.A., F.R.8.) — Find sets of values (for
example, z, y, £ = 3, 4, 6) which shall make each of the expressions

B+ (z+1)y, 22+ (z+1)(y+2), 2¥+(z+1)xs, (z—1)(z—y),
(zy +2)*—2 (z—1)2 yz a rational square. ............... 52

7132. (N. Nicolls, B.A.)—A van of hel%lt b open in front is moved
forward with a given uniform velocity V; if the rain descendin
vertically strike the floor of the van at a distance & from the front, fin
the velocity of the rain as it strikes the floor..............oceevvuiiirirnnnees 141

7161. (The detor) .—A coin is thrown at random upon a plane which
is divided 1nto equilateral triangles by three systems of pnra.ll lines ; find
the respective probabilities of the coin’s resting on 0, 1, 2, 3, 4, 6 6 of
the triangles. ..ec.ccceiieriiiiiiiiiiiiiiiiiiiii e s e 72

7212. (For Enunciation, see Question 4685)...........0..... esecessnrnase 56

7254, (Professor Matz, M.A.) — Given the axes CA = 24 and
CB = 2) of an elhgtlc quudrant APP,P,B; also the ZACP, = w = 30°,
LPCPy=¢ =15° LP,CPy=0=30°: find (1) D,P,, D,Ps, CD,, CD,,
where P,D,, P,D, are perpendicular to CP,; also (2) these values for
B=0=1,0 =0, couiriiiiiirriitiiiriitiiiirieriere e e resneneaes 112

7337. (H. L. Orchard, M.A.)—P is a particle moving with uniform
angular velocity, w, in the circumference of a circle of radius 4 and
centre C. If O be any pomt in the plane of the circle such that
CO = asin 46°, find the maximum angular velocity of P with regard
7 2 ON 141

7435 (Satish Chandra Basu.)—Find the general value of z from

a+dbte=a3+P+ =B +P+S =a¥*+ P+ =0, ...... 34

7436, (fhﬁtosh Mukhopidhydy, B.A., F.R.A.8.)—Is the expression

6"",", where #? = — 1, real for any values of A, m, n? If so, discriminate

£he CABEB. .....iveieniiririniiene tieretttieniiruetiieeitetieisrtersnisensransanones 142
7462. (The Editor. )—Through two given points draw a circle such
that its points of intersection with a given circle, and a third given pomt
shall form the vertices of a triangle of given area ........................ 120
7463. (W. J. C. Sharp, M.A.)—If 8, denote the sum of the stt
powers of the roots of ar™—p,z"- '+p,.t""—p,z" 3+ &c. =0,
(=1y- ’( a ) (m )
2% — 5
prove that 8, = =11 Pt p’dp + &c. =)

N

[
]
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7609. (Professor Wolstenholme, M.A., Sc.D.)—In any tetrahedron
ABCD, if s, sy /33,9y be the sums of the lengths of the edges respectively
meeting in A, B, C, D,and §,, 8,, Sy, S, the sums of the dihedral angles
at the same points ; prove that, if s, > 83> 83> 34, then 8,>8;>8,>8,. 39

7610. (J. Edward, M.A., B.Sc.)—Draw a straight line EF termi-
nated by the sides AB, AC of a triangle ABC, so as to make CE-EF=F1536

7614. (R. Tucker, M.A.{-—The base and vertical angle of a triangle
being given, prove that the locus of the point de Grebe (i.c., * Symmedian *
point) and therefore also of the ¢ Triplicate-centre,” 1s an ellipse, which,
in the former case, if A-1 = 4—cos?A, can be put into the form

2 ycosectA _
PN aiA? )

7618. (C. Leudesdorf, M.A.) — The triangle of reference being
equilateral, prove that the envelope of the director-circles of the conic
whose trilinear equation is kz-1 = y-1+2z-1, for different values of %, is
the curve :
dyz(z+y+2P=[y+ys+ 3+ 6(yzs +32+ 2y)][3(¥ + yz + 2%) — (y2 +zz+zy)19.

T e Veenes 4

7620. (Rev. T. C. Simmons, M.A.)—If A, B, C, D, E, F are six

collinear points such that the thrze ranges ACDE, ABCE, ACEF

are all harmonic, show that the ranges ABDF, BCDF, BDEF are also
BATINONIC .eruiviirinireiereenieeniiiiierneeenencesrassnsensessessncacsnsensense 45, 117

7716. (J. J. Walker, M.A., F.R.8.) — Find the conditions that,
in the working of the suction pump, the water shall rise in the
suction tube in the second stroke higher than, just as high as, or not
80 high as, it rose in the first stroke. b

7717. (R. Tucker, M.A.)— The circles about AEF, BFD, CDE
cointersect in O, and those about AE'FY, BF'DY, CD’E’ cointersect in O’ :
also the triangles formed by joining the centres of the two sets of circles
are similar to the primitive triangle ABC, and equal to one another.
Find the ratio of similitude in terms of Brocard’s angle. .........ccc...... 31

7719. (Asfitosh Mukhopadhydy, B.A., F.R.A.8.) —Show that, if

brtay—cz _ cy+bz—az - tez—by
al+ 53 b3+c3 ¢ +ad
then (1) x (a3—bc) +y (®—ac)+ 2 (*—ab) = 0,
. . T+y+z _az+by+es,
implying at+b+e ab+boteca’

and (2) (ab+bc+ca) (2 +4t+2Y) (+20—at) (Baat—yh) (2h+ yi-sd)
= (a2 +by+02)? .oiiiinniiiiiiiinnininieee, 107
7724. (B. Hanumanta Rau, M.A.) — Given two sides of a triangle in

position, and the perimeter, prove that the locus of the mid-point of the
third side is an hyperbola. ........cceeivuiiiiiiniiiiiienennereeniieenecnee ceees 68

7726. (J. W. Russell, M.A.)—Prove geometrically that, at the inter-
section of two confocal conics, the centre of curvature of either is
the pole with respect to the other of the tangent to the former at the
IDLETBOCLION. ......ivueiiiiiiiiiiniiiiiiiieeiinri et re e eeans le.. 30

..........................................
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7729. (B. Reynolds, M.A.)—Show that the number of shortest routes
from one corner of a chess-board to the opposite one, along the edges
of the squares; is 128707/ il cseesessaconrosasaassasasaneasnnsas 114

7760. (Morgan Jenkins, M.A.) — Give a geometrical construction
for proving independently (and not as a deduction from a case)
that the locus of a point which moves so that the tangents drawn from
it to two given circles are in a constant ratio, is a coaxal circle.......... 29

7762. (Rev. T. C. Simmons, M.A.) — Assuming the wear and tear
of a gold coin in circulation during a given time to be proportional to the
area of its surface, and considering a sovereign as a plane-faced circular
disc whose diameter is approximately 15 times its thickness, find what this
multiple ought to be in the case of the half-sovereign to make the per-
centage of loss (1) the same, (2) 1'8 times as much, as for the sovereign. 26

7766. nsW . J. McClelland, B.A.)— Prove that, for any point P
on & cho B of a circle, AP.BP+O0P? = 2CO . PL, where C is the
centre of the circle, O the limiting point, and L the radical axis. ...... 46

7778. (Professor Hudsun, M.A.) — A Galileo’s and a common tele-
scope have the same object-glass, and their eye-glasses have equal
focal lengths ; also the uniformly bright field is of the same extent in
both : prove that the diameter of the stop in the common telescope should

be half the difference of the breadths of the eye-glasses. .................. 40
7782. (W. J. C. Sharp, M.A.)—If the lines ]omm% point to
the vertices of a triangle be similarly divided, prove that the hnes joining

the points of division to the mid-points of the correapondmg- sides are con-
current. If the lines joining any point to the vertices of a tetrahedron
be similarly divided, prove that the lines joining the pomts of division to
the centroids of the correspondmg faces are concurrent. .........ceeeuueee 54

7783. (Rev. T. C. Simmons, M.A.)—Prove (1) that according as
a triangle is obtuse-angled, right-angled, or acute-angled, its nine-point
circle will cut, touch, or lie within its circum-circle ; (2) having given two
circles, of radii R a.ud 4R, not entirely external to each other, an infinite
number of triangles can be constructed having the one for circum-circle
and the other for nine-point circle respectively......c.....cooerrereriennneen. 122
7784. (B. Reynolds, M.A.) — From the vertex A of the triangle
ABG, perpendiculars are drawn to AB and AC, meeting the circum-circle
in D and E. Show that the quadrilateral of ADBE (or ADCE) is equal
in area to the triangle..........ccceevuiiiiiiiiiiiiiicniiiiiiiiii e 51
77856. (Dr. Curtis.)—If a triangular area be 8o sunk in & homo-
geneous liquid, that its Centre of Pressure coincide with the intersection
of the three lines got by joining the mid-point of each side with the mid-
point of the perpendicular let fall on it from the opposite angle; prove
that, H,, H,, H, bemﬁthe depths to which the mid-points of the sides
a, b, ¢ are immersed, Hy:Hy=cotA.cotB:cotC. ...........e 42
7789. (R. Tucker, M.A.)— AD is the bisector of the angle A of
the triangle ABC; ), w are the Brocard-angles of the triangles ABD,
ABC: prove that 2 cot w,—4 cotw = (@b +bc+ca) [ A, the summation
being taken over the six triangles ABD, ACD, &c. ....c.ccccvvnirnnnennnn. 38

7793. (W. J. McClelland, B.A.)— Prove that the angles at the
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centre of the circum-circle of & spherical triangle subtended by the oppo-
site arcs are respectively double.of the dngles of the chordal triangle... 68

7805. (Professor Sylvester, F.R.8.) —If I regresents the deter-
minant @ 5 ¢ and FA (a cubic function of A) is e* (%a+%0) I, ghow that
f f ;. there are two values of A, say A}, A, of the form =, N

a
such that a’Fa, = Q% fSFa; = Qg% M, N, Q,, Q, being rational integer
functions of @, b, ¢, @, €, f...ccccviiniiiiiiiiiiiiiiiiieee e ea e nien 38

7812. (Professor Genese, M.A.) —If CA, CB are semi-conjugate
diameters of an ellipse, and P, Q two points on CA, CB produced such
that AP. BQ = 2CA . CB, prove that BP, AQ intersect on the ellipse.

............ 66, 91

7813. gProfessor Cochez.)—Trouver une courbe telle que ’arc compté
& partir d’un point fixe soit moyenne proportionnelle entre 1’ordonnée
et le double de I'abscisse. .........ccecevueens LRI vee 69

7816. (Asparagus.) —PQ is a diameter of a rectangular hyperbola
and a circle with centre P and radius PQ meets the hyperbola again in
ABC; prove that ABC will be an equilateral triangle. .............ce... 68

7818. (Morgan Jenkins, M.A.)—1. If on the three sides of a tri-
angle ABC there be described any three similar triangles BDC, CEA, and
A}B, eitherall externally or all internally, having their angles in the same
order of rotation, and the angles which are contiguous to the same corner
of the triangle ABC equal to each other, prove that the three straight
lines AD, BE, and CF meet in a point O, which is also the common point
of intersection of the circles BDC, CEA, and AFB.

2. If the homologous sides of these similar triangles be produced to
meet, viz., FB and KC in D/, DC and FA in E/, and EA and DB in F, the
triangles BD’C, CE’A, and AF'B are also similar triangles having their
angles in the same order of rotation, and equal angles contiguous to the
same corner of the triangle ABC ; hence the three circles circumscribing
these similar triangles aud the three straight lines AD’, BE’, CF’ meet in
the same point O’.

36 (;.l'.‘he straight lines DD’, EE’, FF’ are parallel to one another and
to .

4. O and O’ are confocal points with regard to the triangle ABC, that
is, are the two foci of & central conic touching the sides of the triangle, or
O’ may be determined by making the angles CBO’, CAO’ equal to the
angles ABO, BAO respectively in opposite directions of rotation, and then
angle BCO’ is equal to the angle ACO.

5. The sides of the triangle BCD’ or either of the other two similar tri-
angles are proportional to the rectangles AO, BC; BO, CA; and CO,
AB; and in like manner for the sides of the triangle BCD and the two
similar triangles ; that is, in the typical case, if lengths %, &,/ meet at a
point within a triangle and make angles 6, ¢, and y with one another, then
a triangle which has its angles equal to §— A, ¢ —B, and y —C, will have
its sides proportional to ah, bk, und el. .....ocoiiiiiiiiiiiiiiiiiniiinen, 88

7819. (R. Tucker, M.A.) — AD, BE, CF are the perpendiculars

from the angles on the sides of ABC : BD'=CD, CE'=AE, BF' = AF are
taken on the same sides ; prove that AD’, BE', CF’ pusa through a point (),
b
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and that the triangle D’E'F' = ADEF. Also, if perpendiculars to the
gides through/ D’y K’ intersect in)#’, then this point lies on the hne
through the centroid and circumeantre of ABC. ..........ceereererersens
7824. (A. H. Curtis, LL.D., D.8c. Suggested by Quest. 7771. )-—
Given any number of pomtsm space A, B, C, D, &c., find the locus
of a point P which moves so that the length of the resultant of the
translations /PA, mPB, nPC, pPD, &c. is constant, I, m, n, p, &c. bemg

GiVON NUMDETS......ccuuuieiiimeneierinnneiiteneiiierniieeseeiiesennenienes
7827. (B. Hanumanta Rau, M.A.) — Show that the value of z
from the equatlon z**1 =z+1 is 1'4414 nearly. .....cccoeevveniiniininnns 66
7828. (By Asfitosh Mukhopidhyay, B.A., F.R.A.S.)—Prove that the
integral of %’;—c’z‘ly =0

is y= (3'—550:*4-22—(2) Ae“l* (s+§ z*+-§’) Be-boxt,

[In GreGoRY’s Ezamples (1846), p. 346, the integral is given to be
= (2t— 3) Actest, 3t ~Scxt
y (z & ) Aebor * 5 (:v + = ) ot ] .......

7832. (Rev.T. C. Simmons, M.A.)—In a plane triangle prove that
the in-centre, the nine-point centre, the centroid of the perimeter, and
the point midway between the in-centre and the circum-centre, lie at the

four corners of a parallelogram. ...........c.cceeiieeuncrneiieniiiieiieieaienen 66
7842. (Professor Wolstenholme, M.A., 8c.D.)—Two confocal conics
U, U’ have a common chord 00’ dicular to the focal axis),

and from a point of this chord are drawn tangents to U, meeting the
tangent to U at O in P, Q, and tangents to U’ meeting the tangent to U’
at O in P/, Q': prove that (1) PP, PQ’, QP’, QQ’ pass each through one of
the foci ; (2) also, if tangents from any point to U meet the tangent to
UatOingp,gq, and tangents from the same point to U’ meet the tangent
to U’ at O in p’, ¢/, the four straight lines p7’, p¢’, ¢¢', g¢’ all touch a
conic confocal with U, U’; which degenerates into two points when the
&)rot from which the tangents are drawn lies on one of the common chords

ugh O, and which remains the same so long as the point from which
the tangents are drawn lies on a fixed straight line through O.

Generalized by projection, the theorem is as follows :—
'wo conics U, U’ intersect in 0, and tangents drawn from any point to
U meet the tangent to UatOin P Q, and tangenta drawn from ti?amme
int to U’ meet the tangent to U’ 'at Oin P, Q'; the four straight lines
P, PQ, QP’, QQ’ all touch a conic whlch touches the four common
tangents to U and U’; and which remains unaltered so long as the point
from which the tangenta are drawn lies on a fixed straight line through O,
but degenerates into two points (the ends of a diagonal of the qundn]abenl
formed by the four common tangents to U and U’) when this stralght
line is one of the three common chords through 0.] ...........cccovuennnes

7843, (Professor Hudson, M.A.) — A particle moves in an orblt
about a luminous centre of force, and casts a shadow on the inverse of the
orbit with respect to the luminous point; the shadow moves as if in an
orbit about the luminous centre : show that the orbit is a circle, whose
centre coincides with the centre of force..............c..ceveevrniienneeennnenns 30
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7846. (The Father of the Fifteen Young Ladies.)—
From the Lanoashu'e ‘Witches; the'direst [‘And, as odd’s ill in witchery, every one

sppen.r with another times even
The moot da rous twelve of them all
Are bidden in nxes, repeating no ﬁve, K’s tum is the first ; and provident K

For a year, to the Monthly From every one, B of her train,
Fear leaves the nrrsngement to them 8o | Insists on a promise, thut B on her dn.y
Shall choose her k again :
The lot !nr better than fighting, And every month e enchnntmg inviter

To settle the turn of each beauty to choose | Requires of her bevy thus all to requite
Her party, and do the inviting : her
Provided that all, or there would have [ Now, prove by a dozen of sextuplets
been fights, '.l'ha.t no matter who first the turn gets,
Shall dazzle and kill on the first two | And no matter how the turn of the sets
nights ; We ald 3 :'he chosen will pay all their
ebts,

7862. §Professor Haughton, F.R.8.)—A condition of s{nble equi-
librium of heat is produced in a ring, represented by the equation

%’; = a% ; if the temperatures v,, vg, v5, &c., be taken at equal distances

along the ring, show (1) that v + o3 = gvs, vg+0, = gv,, &c.; and (2)
verify the law by means of the following observations :—The bempemtures
observed were as follows, the distance of the pomts being 46°: —

v = 66° v, = unknown; vy = 507;°; v5 = 52°; vy = 44° air=17§°...22

7863. (Professor Wolstenholme, M.A., 8c.D.) — Given a focus
and the corresponding directrix of a conic, a circle is drawn touching
the axis of the conic at the given focus and intersecting the conio
in two points P, Q; prove that, although the straight line PQ de-
pends on two mdepen ent parameters (the excentricity of the conic
and the radius of the circle), it always touches a certain quartic tncusp,
the same curve as is discussed in Quest. 7220 (Vol. 40, p. 114),
where it appears in two different characters as an envelope, both distinct
from its conditions in this question. If the chord PQ make an angle 6
with the axis, the perpendicular upon it from the focus is ¢ tan 6, where
¢ is the given distance of focus and directrix.

[Professor WoLsTENHOLME thinks this a very peculiar result, but believea
that the following fact involves an explanation of it:—Suppose any
straight line meets any two of the circles in PQ, P'Q’, the angles POF,
QOQ’ will be equal ; and the same if it meet any two of the conics in
P, Q; P, Q. Certainly, @ priori it would appear pretty certain that the
equation of PQ must involve both the parameters e and 4, the excentricity
of the conic and the radius of the circle, and might, therefore, be made to
coincide with any straight line. Such argument is generally valid, and
it is interesting to discover the reason of any exception. The curve of
this question is completely defined and its equation found in the answer
to Quest. 7220, but it may also be generated by taking the inverse of a
rectangular hyperbola with respect to a vertex; then the first negative
polar of this inverse with respect to ifs vertex is the quartic tricusp in
question. It may be generated in an infinite number of ways as an
envelope, and perhaps may be taken as Protean a locus.]...........ceuueee 76

7865.  (Professor Hudson, M.A.) — On the sides of any triangle
similar regular polygons are described, and equal masses are placed at all
the corners ; prove that the centre of grawty of the masses coincides with
that of the trm.ngle .................. sesenssensennsene paesasecenssnacanesanone coveese 60



xvi ) CONTENTS.

7866. (Professor Wolstenholme, M.A., Sc.D.)—A parabola has a given
focus 8, and a given direction of-axis; a circle has its centre at a fixed
point O on the latus rectum ‘of the parabola; prove that the points of
intersection of their common tangents lie on a fixed nodal circular cubic
having its node at O, its vertex at 8, and its asymptote parallel to the axis
of the parabolas, and at a distance 250. Explain how there comes to be
a definite locus when we have fwo variable parameters (the radius of the
circle and the latus rectum of the parabola).

{The equation of the locus in 7866 is (1), referred to polar coordinates
with 8 for pole, r = ¢ tan }0 or r = ¢ cot {6, which two equations represent
the same curve ; (2) referred to rectangular coordinates with O for origin,

and OS for axis of @, y* = 2° :%: where O8 = @, This well-known cir-

cular cubic is the inverse of a rectangular-hyperbola with respect to a
vertex, and the pedal of a parabola with respect to the foot of the directrix.

Generalized by Projection, the theorem is as follows:—A conic U is in-
scribed in a given triangle ABC 80 as to touch BC in a fixed Point a, and
@' is the point on BC harmonically conjugate to . On Ad’ is taken a
fixed point O and a second conic V described touching OB, OC at B and
C; prove that the points of interscction of common tangents to any two
such conics lie on a fixed cubic having a node at O, touching Ag at A,
passing through B, C, 4, and whose tangent at ¢ meets AO in a point
which divides O¢’ harmonically to a. Also explain how such points can
have a definite locus when we have ¢wo variable parameters (one for each
conic) to deal with. Of course the whole locus might be obtained from
any one conic U by varying V alone; or from any one conic V by vary-
ing U alone. By reciprocating this, we get an envelope remarkable in
the same way, as depending on {wo varinble parameters.] ............... w

7868. (The Editor.)—In the line joining the centres of two spheres,
find geometrically a point such that the sum of the surfaces of the
spheres visible therefrom shall be a maximum. .......ccceeeeveveencrnnnenns 26

7877. (H. L. Orchard, B.Sc., M.A.) — A heavy particle is pro-
jected with unit-velocity, in a direction of 45° with the horizon. Find
when the radius of curvature of the path will be unity. ..............cccee.. 43

' 7880. (Sarah Marks.)—120 men are to be formed at random into

a solid rectangle of 12 men by 10, all sides being equally likely to be in

front ; show that the chance that an assigued man is in the front is fdy.
............ 30

7885. (J. Brill, B.A.)—If ABCDE be any pentagon inscribed in a

circle, prove that
EA?.BC.CD.BD+EC?.AB.BD.AD

=EB3.AC.CD.AD +ED?.AB.BC. AC.

............ 41

7888. (B. Hanumanta Ran, B.A.)—If A’, B’, C’ be the mid-points

of the sides of a triangle ABC, prove that the in-centre of A’B’C’ is

collinear with the in-centre and centroid of the triangle ABC ......... 124

7894, (Professor Hudson, M.A.)--Prove that, in the steady motion
in one plane of a uniform incompressible fluid under the action of
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natural forces, if u, v be the velocities at x, y, parallel to the axes,

a3 a2 a:  d?
—t— ) % — =0, cvenieeienes I
v d.p’+dy’)“ “(dz-’ d’)o 0. 42

7898. (R. A. Roberts, M.A.)—A variable circular cylinder circum-
scribes a fixed tetrahedron. Show that the locus of a line drawn threugh
a fixed point parallel to its edges is a cubic cone containing the six
parallels to the edges of the tetrahedron. .......cccccovvueuiiiiiiiiiiininnnnnes 37

7900. (R. Tucker, M.A.) — Prove that the diameter of the Bro-
“card and Triplicate-Ratio circle which passes through the circum-ceatre,
passes also through the orthocentre of the pedal triangle. ............... 54

7913. (Asﬁtosh Mukhopadhydy, B.A., F.R.A.8.) — Tangents are
drawn to a parabola, so that the intercepts they make on the directrix are
in arithmetical progression; prove that the trigonometrical tangents
of double the angles of inclination of the tangents to the directrix form a
harmonic ProgreBSiON. ... .i.vieieuiiererirriernereruserassenrnsernrssrnssenssnnanes 68

7915. (Satis Chandra Ray.) — Tangents are drawn to a parabola,
so that the intercepts on the tangent at the vertex are in arithmetical pro-
gression ; prove that the cotangents of the angles of inclination of these
tangents to the tangent at the vertex are in harmonic progression ... 123

7922. (Professor Sylvester, F.R.S.) — Prove that the equation in
quaternions #?—pz = 0 has four roots, and that these roots, if regarded as
belonging to the square of the equation, obey Harriot’s law ............ 106

7923. (Professor Crofton, F.R.S.) — Show that no circle can meet
any given closed convex contour in more than two points, if its radius be
greater than the greatest or less than the least radius of curvature of the
COMbOUT. .uuiveurenenrrenerratironeriniiruieeiesieennreonrersssesaronenasens sessrosennes 69

7928. (Professor Wolstenholme, M.A., Sc.D.)—Prove that the polar
circle of a triangle ABC intersects the circum-circle and the nine-point
circle, each at the angle cos-1 (—cos Acos Bcos C)b. .....cvvvvrnnnennnes 67

7931.  (Professor Wolstenholme, M.A., Sc.D.) —If the sides of a
spherical triangle ABC be bisected in a, b ¢, and a, B, vy be the arcs be,
ca, ab, and E the spherical excess, prove that

cosa _ C08B _ CO8Y _ . omm
fows ga cos il ") o8 b v cos L1E. .ooiiiiiiiinnnens 69

7932. (The Editor.)—If «, B, v, 3 be the angles subtended by the
sides of a square at an internal point not situated in a diagonal,
prove that
(tan « + tany)-! + (tan B8+ tan 8) ~1=(cot a + cot y) =1 + (cot B + cot 3)-! = 1.

............ 116

7934. (W. 8. McCay, M.A.) —Prove that the locus of a point at
which a given system o four points can be placed in perspective with
another fixed system of four points is & conic (in a plane). ............... 79

7935. (G. Heppel, M.A.)—Three lines, no two_of which are parallel,
are given by their equations. Express the condition that the origin
may be within the triangle formed by them ..........cceoivurrieriniirniines 108

7938. (R. Tucker, M.A.)—ABC is a triangle of which DEF, D’E'F

(D, D’ on BC, &c.) are the pedal and medial triangles respectxvely,
prove that the six Simson-lines, taken from each vertex with reference



Xviil CONTENTS.

to the other triangle, the circum-circle being the nine-point circle
of ABC, pass thrmﬁ? a point on the line mentioned in Quest. 7900,
and is the centre/of Mr. H(M. Taylor'sicircle......ccoveerreierninniinnenas 103

7939. (H. Ll. Smith, M.A.) — A district containing 2 Liberal and
n Conservative voters is divided into three equal wards, each returning
one member. Show that, if n be odd, the chance of one Conservative be-
ing returned i8 3 (n+3) /4 (B +2). .ieereririiiiinii e 80
7943. (Rev. T. C. Simmons, M.A.)—Prove that the mean value of
the nt® power of the distance between two points taken at random
within a given circle is, according as # is an even positive integer, or an
odd integer not less than —1,"
24 1.3.6...(n+1) , gn+s 2.4.6..(n+3) .,
n +2° 2.4.6...(n+4) ' x(n+2)(n+3) 1.3.5...(n+4)
............ 120

7946. (W. J. McClelland, B.A.)—If through any point P on the
surface of a sphere three great circles be drawn cutting the sides of a tri-
angle at angles X, Y, Z; X,, Y,, Z,; X,, Y, Z,; prove the determinant
relation co8X, co8Y, COBZ | =0. coecvererninrcennnnen 76

cos X;, cosY,, cosZ,
cos X,, cos Yy, cosZ,

7946. (Rev. T. R. Terry, M.A.)—An inextensible string has one
end fixed at the vertex of a cycloid and is wrapped round the out-
side of the curve, being just long enough to reach as far as a cusp. If
the string is unwrapped from the curve and turned round (being con-
tinually kept stretched) until it is wrapped round the other half of the
cycloid, find the area included between the cyecloid and the curve traced
out by the moveable end of the string ..........ccoveeiiniiiiiicinins 118

7947. (Asiitosh Mukhopidhydy, B.A., F.R.A.8.) — Prove that the
locus of points (H), from which tangents drawn to two given circles
are in the ratio of their radii, is a circle passing through the centres
of similitude as the extremities of a diameter. ............ccoccevenriniennns 92

7948. (:&sﬁtosh Mukhopidhydy, B.A., F.R.A.8.)—Tangents are drawn
to any central conic, so that the squares of the intercepts on the minor axis
are in arithmetical progression; show that the squares of the sines of
the angles which the tangents make with the minor axis are in harmonic
progression’.\ ........................................................................... 81

7951, (Asfitosh Mukhopddhydy, B.A., F.R.A.S.)—Tangents are drawn
to a parabola, so that the intercepts they make on the latus rectum
produced are in arithmetical progression: prove that the sines of double
the angles of inclination of the tangents to the axis are in harmonic pro-
g T T U RN ON 81

79564 (W. J. C. Sharp, M.A.) —In a triangle ABC, if p; be the
perpendicular from A upon BC, r the radius of the inscribed circle and
r, that of the escribed circle touching BC; show that (1) —:-— 1 -3—;'

1 1
(2) the same equation holds if , be the perpendicular from the vertex A
of a tetrahedron upon the opposite face, and » the radius of the inscribed
sphere, and r; that of the sphere touching BCD and the other faces pro-
duced. [This may be easily proved without assuming the values of =, &c.]
............ 71
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7956. (Aslitosh Mukhopidhydy, B.A., F.R.A.8.).—Prove that (1) the
-locus of points from ;whieh |tangents-drawn to two fixed circles are in
-any -given ratio, 18 a circle; and (2) for all values of this ratio, the
locus of the centre of this locus-circle is the straight line that joins
the centres of similitude of the fixed circles. ........... seeressssencesansen 92

7957. (Rev. T. C. Simmons, M.A.)—Show that, from the equations
2—yz = a3, yl—sr = 3, ¥ -zy = 3, the values of z, y, ¢ are

at— %2
rs= -,
(a8 + 88 + 08— 3a2036%)}
#—ase? A—atps

= g= .
y (a8 + 8% + = 3ar2c)V’ (a® + 88 + 8 — 3a%%0%)}
7968. (Rev. T. R. Terry, M.A.)—Solve (1) the equation
Wysa = [3+ (—1)'%] Wzl — Wz,

and hence (2) show that, if ., and v, both satisfy this equation, and if
th=1,0,=1, 4y = 4, 95 =3, then (+1) the = 2002, ..oocevvrirviirinnnns 42

7960. (The late Professor Clifford, F.R.SV.)—Assuming that
¢ ()= (n+1)2a+2(n+4f) z+ngni, and 6 (2) = 2e*™,

the summation extending from # = —o to #» = + «, find expressions for
6] (z + kpxi + 1¢a) in the two forms A6 (z + B) and C6j (). ..c.cvevenne. 69
7661. (For Enunciation, see Question 7716). .........cccoervrrerniennns 69

7967. (Professor Hudson, M.A.) — Find the mass of a ship that
would attract an equal ship at a distance of one furlong with a force equal
to one pound weight, assuming that the earth is a spherical mass of six
thousand trillion tons of four thousand miles radius.......... (SR 123

7969. (Professor Saradahanjan Ray, M.A. Extension of Question
7865.)—On the sides of any triangle, similar and similarly situated poly-
gons are described, and equal masses are placed at all the corners; prove
f;lml;l the centre of gravity of the masses coincides with that of the tri-
110 L 106

7972. (Rev. T. C. Simmons, M.A. Suggested by Question 7932.)
—1If the angles of a square ABCD be joined with any internal point P,
and the angles PAD, PDA, PBC, PClg be denoted respectively by a, 8,
¥, 8, prove that
(tana + tany) -1+ (tan B8+ tand)-! = (cot a + cot B)-1 + (cot ¥+ cot 8)-1=1.

............ 116

7981. (R. Lachlan, B.A.)—With any point in the plane of a triangle
as centre, three circles can be drawnm, so that the angles 6, ¢, ¢, in
which they cut the sides of the triangle, are connected by the relation
0 4 ¢ 4+ ¢ = 0: show that (1) the radius of one of the circles is equal to
the sum of the other two; (2) the locus of the centres of such circles
having a given radius is a cubic curve whose asymptotes are parallel to the
sides of the triangle .........ccecceiiviiiiiiiiniiiiiiiiii e 119

7998. (F. Purser, M.A., and Professor Haughton, F.R.8.) — Four
points on a quartic lie on a line (A) ; three other points lie on a line (B);
three other points lie on a line (C); there are (of course) two other real
points, lying on (B) and (C) respectively: prove that, for every possible
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uartic passing through the above ten points, the line joining the remaine
ing two real points passes through a fixed point which can be constructed.

............ 101
8001. (Professor Lloyd Tanner, M.A.) Snﬁuted by Mr. Walker's
solution o(t Quest. 4516, Vol. n;., P- 89_.3[ — In a spherical triangle,

rove that, if 3 sides areacute, 2 anglesareacute; if1side is acute and 1side
18 not acute, 1 angle is obtuse and 2 are acute; if 2 sides are obtuse and
1 side is acute, 1 angle is obtuse ; if 2 sides are obtuse and the other is not
acute, all the angles are obtuse. [The converse group of propositions may be
written down by interchnngi:g *‘ angle’’ with “side,’’ and ‘‘acute "’ with
¢¢ obtuse,’’ and may be proved from the original group by a purely logical
process, or by using polar triangle.]........ccccceiiiiiireirenrnneniiiiniinne 70
8006. (Professor Byomakesa Chakravarti, M.A.) — If the tempera-
ture of an infinite solid have different uniform values V, V’ on oppo-
site sides of a given plane, prove (1) that, at any subsequent time ¢, the
temperature is given by the expression
z

’ '’ ot
V+V + V-V s/u’_,.d"
2 vr ),
« being measured from the plane towards the side where the temperature
is initially V'; and (2), if the reasoning be applied to the case of the earth,
supposed to have been cooling for 200,000,000 vears from a uniform tem-
perature, and if the numerical value of ¥ be 400, when a foot is the unit
of length and a year the unit of time, prove that, at any particular instant,
at a depth of about 76 miles the rate ogcooling is test ; and at a depth
of about 130 miles the rate of cooling has reached its maximum value at
that place for all time. .......ccceecrerieiiiiieciiiiieiiniiiiiniinieninne, 88

8008. (Professor Wolstenholme, M.A., 8c.D.) — Two conics are
met by a transversal in the points P, Q; P, Q' respectively, and AA’isa
common tangent ; the straight lines AP, AQ meet the straight lines A'F,
A’Q’ in four points ; prove that these four points and the four common
points of the two conics lie on 016 COMIC. ...ccvcevereeeriennierrerenneeenns 100

8012. (The Editor.)—From any point P in the base BC of a tri-
angle ABC, lines PDR, PEQ are drawn through fixed points D, E to
meet AB, ACin R, Q. Draw DH, EK respectively parallel to AB, AC,
meeting the base in H, K, and produce HE, KD to meet AC, AB respec-
tively in 8, T'; then prove that (1) AAQR is a maximum when QR is
parallel to 8T ; (2) for other positions of P the rectangle 8Q . TR is con-
stant ; (3) hence, or otherwise, give an easy construction for finding the
position (P,) of P for the maximum triangle AQR ; (4) prove also that
AAQR is a minimum when QR is parallel to ST (the corresponding position
of P being denoted by pm) ; (5) the positions of QR in (1) and (4) are equi-
distant from ST and on opposite sides of it; (6) the range HP,Kpns is
harmonic; (7) if [HPPwK] = [KP'P,H), the areas of the triangles AQR
corresponding to the points P, P’ are equal ; (8) for all positions of P, SQ
varies as the ratio of HP to PK ; (9) the ratio of AR to AQ depends only

“on the anharmeonic ratio of KeP'P, where P’ is determined as in (7) and e

is the intersection of AE with BC; (10) hence, or otherwise, find the
relation between the two positions of P corresponding to two paraliel
positions of QR ; and (11) express the ratio of any two values of the area
of AQR in terms of the corresponding positions of P. ........c..c.ceeevuns 96
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8016. (T. Muir, LL.D.)—Show that, if Za stands for a+b+c+d,
the persymmetric determinant
1, 136, }Zab | = §[}Zab—1 (ab+cd)][}3ab—1 (ac+bd)]
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the fixed PIANG. .......cccvvviiiiiiriiiritiiiiiiii e e 92

8042. (Professor Sylvester, F.R.8.)—Let A, B, C, D be the perpen-
diculars upon a plane from the points &, b, ¢, d, the angles of a pyramid
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3 (ab)* (C—D)?—23 (ad)’ (a¢)* (D~ B) (D-O)
+ 2% (ab)? (¢d)?(A—C) (A-D) + (B—C) (B—D) = — 144P3.
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8044. (Professor Haughton, F.R.S.) —The mean distance of Mars
from the Sun is 121 millions of miles, and his periodic time is 687
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8045. (Professor Wolstenholme, M.A., 8c.D.)—Through each point
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8046. rofessor Lloyd Tanner, M.A.)— AP, BP, CP are arcs of
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where r is the radius of the circle inscribed in ABC...........cccce.cuunne. 117

8049. (Professor Hudson, M.A.)—Find the locus of the vertex of a

parabola of which the axis is parallel to that of a given catenary with
which it has contact of the second order ...........cccoeevrirreniriirnnnncs 143
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8062. (Asparagus.) —The locus of the intersection of normals to

a given conic'drawn at(the ends of a/chord passing through a given point
is in general a cubic. Is there any position of the given point (other than
the centre of the given conic) for which the locus tes in degree P
............ 145
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8078. (Proteuomlvester, F.R.8.)—H, in a system of quadr;gl:lnu
coordinates, for which z;+2,+2z,+2, expresses the plane at infinity,
A, A;A A, is the pyramid of reference; show that (1) X (A,A,)zy is
the sphere which circumscribes it ; and hence (2) if p,, p;, 25, p4 are the

rpendicular distances of A;, A, A;, A, from any variable plane, the fol-
owing determinant is a constant, and find its value : —

no 0wy aRr @iy i
noomae U wRr o
s (AgA, 3 (A; 23’ . AlAl)’ 1
Ao WA @AR aar U0 1

8103. (Asparagus.)—Given a system of confocal comics (foci 8,8,
centre C) and a point O, the well-known envelope of the polar of O is a
certain parabola of which CO is directrix : ve that, if OL, OM be the
tangents to this parabola from O, L, M will be the centres of curvature at
O of the two conics of the system which pass through O.................. 146

8123. (Professor Lloyd Tanner, M.A.) — ing the Moon to
move round the Earth at a mean distance of 240,000 miles in 27 days
8 hours, and Jupiter's inner satellite to move round Jupiter at a mean
distance of 260,000 miles in 1 day 18} hours, compare the masses of

Jupiter and the Earth. .......ccceeiiuiiriniiiiiiiiiniinniinininen 146
8124, (Profeesor Cochez.)—Trouver une courbe dont le rapport de
son rayon de courbure & sa normale 80it égal & 1 : g .cocevnnviiernannnnen 147

8127. (Professor Hadamard.) —8i A, B, C sont les angles d’un
triangle, les angles A, u, ¥, que font entre elles les médianes de ce tri-
angle, sont donnés par les formules
cotA = } (cot A—2cotB—2cotC), cotu =} (cotB—2cotC—2cotA),

coty = § (cot C—2cot A—2cot B). .....cuenneennnes 148

8129. (Professor Wolstenholme, M.A., Sc.D.) — Given a point O
and a system of confocal conics (foci 8, 8, centre C), if OP, 0Q be tan-
g:;lts to any one of these conics, and through each point of PQ there be

wn a straight line perpendicular to its polar with t to this conic;
prove that (1) the envelope of all such straight lines is definite (the para-
bola which is also the envelope of PQ and of the normals at P and Q);
(2) the locus of the point where each straight line meets its polar is also
definite (being the circular cubic which is the locus of P, Q and of the
foot of the perpendicular from O on PQ); (3) this locus and envelope
depend only upon the relative positions of O, 8, 8, although there are in
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each case two parameters involved, which we may take to be a /5, the
ratio of the axes\of/thelconic, and h'd /X' where (X’Y’) is the pomt on
PQ through which the perpendicular 18 drawn........c..ccevvuiinniirnnnes 148

8144. (Asparagus.)—Two points P, Q are taken on the coordinate axes
conjugate to each other with respect to a conic U,

@b f,9,h Y 29 1)2=0;

prove that the envelope of PQ is the conic (g +fy +¢)? = 4 (fy—ch) ay.

[This envelope is independent of a4, 4, which seems very singular
It degenerates when ok = fg, that is, when Oz, Oy are conjugate with
respect to .U; is an ellipse when fy/ch>1, an hyperbola when
JOJEA<L] i e s 161
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4118. (By Professor SYLvesTER, F.R.8.) — 1. Given four points in a
circle, find the equations in rectangular coordinates to the two circular
cubics of which they are foci.

2. Find the equations for determining the foci of the two Cartesian ovals
having a given axis and passing through four given points in a circle.

Solution by W. J. C. SmArp, M.A.
I bave shown (Vol. xxxv., p. 47) that, if, when the equation to any
circular cubic is brought into the form
z (2% + %) = az?+ 202y + Uy + 2z + o,
A4+ aA3-2/A34¢cA = (f—0A) ...ccoeereiinnnnn we(1),
then the foci are determined by the equations
AR+ 2Afk~f*+cA =0, (k=0)2+2Ah—A(a+A)=0 ...(2,3),
oo AR+ K7 + 2AKk (f—bA) + 2A%h ~29A2 + 2hfA —2f* + 2cA = 0,
So that concyclic foci correspond to one root of (1) and lie on two para-
bolas which have their axes at right angles. If the origin be removed to
the intersection of these, equation (1) remains unaltered, while those of
the cubic and the parabolas become
z(@2+y?) =az?+ Uy +2 (9 +3) 2 +c+ 2 cunnnnnnnnnnns (4),
A3+ 2Afk—f2+ 2Abf+cA = 0 and A+ 2Ah—A(a+A) =0,
Now the four given points determine two bolas with their axes at
right angles. Let the equations to these referred to their axes be
22+ 2By+C=0 and y*+2Dy+E =0,
which may be identified with the two focal parabolas in two ways. Iden-
tifying the first with the first, and the second with the second,

2 .

B='£—, 0=%"—’-£-__, D=A, E=-A(a+A),

and A4+aA3—2(g+3b6) A%+ (c+ 20 ) A+ /3 =0,

which fully determine the coefficients in (4), and so the circular cubic.
VOL. XLIII. c
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The other may be determined in the same way by identifying the first
focal parabola with the second through the points.

If 7y, 1y, 73, 74 and £, 74, 73, 7 be the distances of the four given points
from the two foci of the Cartesian, the equations

Ir, +mr; =n, lr,+mr; -, lr,+mr; =mn, and lr,+mr: =mn,
must hold by the definition of the curve. Consequently

T Ty e 7|l =0,

T, Tay T3y 74
, 1, 1, 1
and these are the conditions that the foci of the Cartesian should lie on a
circular cubic having the four given points for concyclic foci. Hence the
foci are the points in which the given axis meets the circular cubic, which
is determined by the equations in part 1 of the question. As there are
two cubics, each giving a set of foci, there will be two Cartesians, which
will each have three axial foci (a property of the Cartesian which is thus
deducible from the definition), except in the case when the given axis is
parallel to the axis of one of the parabolas. In this case, one of circular
cubics will only give two, or, when the axis coincides with that of the
parabola, ouly one, focus forthe Cartesian, which degenerates into a central
conic or a parabola (one of those already found).

7862. (By Professor Hauonron, F.R.S.)—A condition of stable equi-
librium of heat is produced in a ring, represented by the equation
g = a% ; if the temperatures v,, vg, v5, &c. be taken at equal distances
along the ring, show (1) that v + v3 = gvs, ¥3+ v, = gvy, &c.; and (2)
verify thelaw by means of the following observations :—The temperatures

observed were as follows, the distance of the points being 45°: —
v = 66° v, = unknown; vy = 50y;°; v; = 52°; vz = 44°, air = 174°.

Solution by Astrosu Muxnoripuviy.

" The equation of the stability of equilibrium of heat in the ring is
d% _
="

where a%is a constant, depending on !, s, 4, ¥,—! being the perimeter of the
section whose area is s, and A, K the coefficients of external and internal
conducibility respectively, viz., we have 43 = ]’,‘T:'

The solution of (1) is v = Me-# + Ne+#s, M and N being the two con-
stants of integration. Suppose that the ring is divided into a number of
equal parts, and let v, v,, vy, ... be the temperatures corresponding to the
distances z,, 3 & ...from the origin. Then, writing e-% = a, and
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v.—2z;=A = distance between two consecutive points of division, we have
v| = 'Ma*%'+ Na-#,"'v; ' = Ma+*a+#1 + Na+2a=n,

Oy = M“+(u-l)xu+z,+N“-(n-l)x¢-¢,,
On+ V.3 = Ma*%ig*™ (g+3 +a~2) + Na-fia="™ (a** + a-*)
= Ops1 (a*? +l")-

If ¢ be the constant value of (a+* + a-2), we have "_":"_'”’ = ¢, which is
n+1

the equation required. Writing for n successively 1, 2, 3 ... &c., we get
U +03 _ V3+0s _ C3+0s
0, o o,
If v, = 66, v, = 6507, v = 44, v; = 52, this gives the two equations
04+5011‘-=66+44 44+52=66+44

44 507 = v, 6075

From (2) and (3) wehave v,=45-10035946, v,=44-145. The difference be-
tween the two values is ‘9549, which is less than unity, and quite
within the limits of experimental errors.

6428. (By W. R. Roserts, M.A.)—Prove that the developable formed
by the tangent lines of the curve of intersection of

U=a?+b3+eP+duid3, V=d3+0yt+d3+dw,
can be written z {(da’)(6¢')(@V —a'T) }‘
+y {(a¥)(ea) 6V —50) P+ 2 { (d) (@) (V=0T } = 0.
[The above form shows that the sections by the principal planes are

double curves, which are easily seen to be Lemniscates, having the ver-
tices of the tetrahedron of reference as nodes. ]

" Solution by W.J. C. Suarp, M.A.
If (¢, 9, ¢, 6) be any point on the tangent to the curve of intersection at
the poi’nt,(x, Y, 2, w), (& m & 0) is a point on the developable, and its
coordinates will satisfy the eliminant of the equations

a? +byd 4 et +dw? =0, d22+¥y3+dB+dwd =0......... 1, 2),
axt +byn + ez + dw = 0, a'zE +¥'yn+z{+d'wo = 0......... (3, 4).
(3) and (4) may be replaced by (da’) xt +(d6') yn + (dc) 2{ =0 ..cun.eee. (6),

and the result of eliminating zy&n, and zw(8 between
@38 + by — 332 — w0 + 2abaytn —2cdsw(d =0,
@323 + b'3y3nd — % (- dPw30% + 246 wyfn — 20 d'2w(® = 0,
ad' 2383 + bb y33 — ' 3(2 — dd' w362 + (ab’ + a'b) aykn— (ed' +dd) 2w (B = 0,
which, when expressed as a determinant, reduces to
(ab')(ad')(ad) 2% + (b) (b) (ba") y?n?
+ (cd’)(ec’) (cb') 233 + (da’) (db') (de”) w36? = 0,
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from which, and the equations (1) and (2),
g1 W (00 () (@) { (6) " + (o) €2+ (do) 2}
: (od")(da’)(ac) {(ab) £+ (V') C*+ (a¥) €'} : &c.,
oras () (ed)(@¥) {a'U—aV} : (cd')(da')(ac) {¥U-5V} : &o.,
and therefore, by substitution in (5),
(@) £ {(8)(e) (') (@' U —aV) P + (@) n { (o) (da) (ac') (U - 5V) }}
+(de) ¢ { (d) (@) (3) (U -cV) P = 0,
or £{(da)(6) @V —a'0) } 40 { (@) (ea) V-4 T) }}
+{{ (@) (ab)(V-¢U)} = 0.
The sections by the principal planes are obtained as in the question.

7842, (By Professor WorsrennoLus, M.A., 8c.D.)—Two confocal
conics, U, U’ have a common chord OO0’ (perpendicular to the focal axis),
and from a point of this chord are drawn tangents to U, mecting the
tangent to U at O in P, Q, and ts to U’ meeting the tangent to U’
at O in P/, Q’': prove that (1) PF, PQ’, QF’, QQ’ each through one of
the foci ; (2) also, if tangents from any point to U meet the tangent to
U at O in p, ¢, and tangents from the same point to U’ meet the tangent
to U’ at O in o', ¢, the four straight lines py’, z¢, ¢¢/, ¢¢ all touch a
conic confocal with U, U’; which degenerates into two points when the
point from which the tangents are drawn lies on one of the common chords
through O, and which remains the same so long as the point from which
the tangents are drawn lies on a fixed straight line through O.

Generalized by projection, the theorem is as follows :—

wo conics U, U’ intersect in (), and tangents drawn from any point to
U meet the tangent to U at O in P, Q, and tangents drawn from the same
int to U’ méet the tangent to U’ at O in P, Q'; the four straight lines
P, PQ,, QP’, QQ’ all touch a conic which touches the four common
.tangents to U and U’ ; and which remains unaltered so long as the point
from which the tangents are drawn lies on a fixed straight line through O,
but degenerates into two points (the ends of a diagonal of the quadrilateral
formed by the four common tangents to U and U’) when this straight

line is one of the three common chords through O.]

Solution by ArTrUR Hiwy Curris, LL.D., D.Sc.

Let AEB, A’E'B’ be two
circles, whose diameters are
D, D’, whose centres are C, C,
and a pair of whose common
tangents, touching them at
E, E,, E, E,, meet at F,;
and let these circles, for pur-
pose of reference, be denoted
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by (C), (C’); let ABA’B’ be any line, denoted by R, cutting them, and
», ¢, the perpendiculars)from| EEjon this line, let AE, B’E’ meet in L;,
..AL;.LE: B'L,. LE'=sinE’sin B":sin Egin A =sin A’sin B’:sin Asin B,
but sin A sinB=AE.BE +D?=pD +D2?=p+D, while sinA’sinB’=p’+D’,
therefore AL,.LE:BL, .L,E' =pD’:»’D =EH.D': EH.D.
Therefore, 80 long as R passes through the fixed point H, the ratio
BL, xL,E : A’L, x I,E’ is constant = %, suppose, and therefore L, lies on
a circle having with the circles (C), (C’) a common radical axis, and if Lg,
Lg, L, be the intersections of the lines BE, B'E’; AE, A’E’; BE, A'E’, the
same i8 true, k being unaltered ; therefore the four points, L;, L, L, Ly
lie on a circle having with the circles (C), (C') & common radical axis...(a),

When H coincides with F, k = 1, and each of the points L,, L, Ly, L,,
either lies on the radical axis of the circles (C), (C’), or goes to infinity...(b).

If we reciprocate the results (a) and (), taking for origin one of the
limiting points of the system of circles, to which (C) and (C’) belong, we ob-
tain from (z) the theorem (2), and from (4) the theorem (1), for parallel lines
reciprocate into points the line joining which passes through the origin,
the second limiting point into the centre of the confocal system into which
the system of circles reciprocates, and therefore the radical axis, as it
bisects perpendicularly the line joining these limiting points, into the
second focus of the confocal system. If we project the system of confocal
conics into a system of conics inscribed in the same quadrilateral, we
obtain the final theorem of the question.

7868. (By the Epiror.) —In the line joining the centres of two
spheres, find geometrically a point such that the sum of the surfaces of
the spheres visible therefrom shall be a maximum.

Solutions by (1) Rev. T. C. Simmons, M.A. ; (2) D. BiobLe.
1. Let A, B be the centres of
the spheres ; R, r their radii; P
any point in AB; and K, N the
points where AB is met by the

two polar planes of P; then we - £ F
require a maximum for
R.KL + r. MN, =
, .. 3,8 .
i.e., aminimum for R. AK +7.BN, or forE+lTl)' Take R:, in the

triplicate ratio of R to r, and let #; be the mean proportional between

R and r, ; then the required point F will be found by dividing AB so that

AF :FB = R:7;. For we have AF2: FB2 = R: 7, = R3:43, go that the
3

minimum is required for %,{%"_ If P do not coincide with F, take

AP .Ap = AF? and BP.Bg = BF?; then, from the fact that the

arithmetic mean between two lines exceeds the geometric mean, we have
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Fp >FP > Fg, showing that Ap + Bg is greater than AB, and consequently

that, when P doss not coincido with F, the value of A5 + BF- 14 always
greater than when it does. AP BP

2. Otherwise.—Let A, B be the tuzcﬁve centres, and CQD, ERF arcs
of great circles in the same plane in which AB lies ; then, since 2xrA =the
superficial area of any segment of a sphers,

2r.AQ.CX [- b (AQ’— ‘I%’)],

and %.BR.EY[-D-(BB’— %)]

are the respective surfaces visible from P. If s and 5 represent the
respective radii of the spheres, A'%' and -B% are the differential coeffi-
cients for these surfaces ; and when they are equal, and a%: 3=AP?: BP?,
or al: 48 = AP: BP, the point P is the point required. On ABdrawa
semi-circle cutting the surface of the spheres in D and F respectively.
Join AD and BF. Draw DG, FH perpendicular to AB, and from A and
B as centres describearcs GI, HK cutting AD, BF in I and K respectively.
Through I and K draw LM, NO at right angles with AB so as to cut the
semi-circle in M and O. Join AM, BO, and produce BO to 8, making
OS = AM. Join SA, and draw OP parallel to SA. Then
AM (= S0): AP = BO:BP.

But, AB being taken as unity, BO = BN%, and BN: BK = BH: BF,
therefore BN = BF?, and BO = BFi. Similarly AM = AD{. Therefore
AP : BP = AD!: BFi = gt : 41, and P is the point required.

.

= ————— ————1

7762. (By Rev. T. C. Stuxons, M.A.)—Assuming the wear and tear
of a gold coin in circulation during a given time to be proportional to the
area of its surface, and considering a sovereign as a plane-faced circular
disc whose diameter is approximately 15 times its thickness, find what this
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multiple ought to be in, the case of the half-sovereign to make the per-
centage of loss (1) the 'same, '(2) 1°8/times as much, as for the sovereign.

Solution by the Proroser ; 'W. G. Lax, B.A.; and others.
Let ¢ be thickness of sovereign, 7 and zr thickness and diameter of
half-sovereign ; then the areas are respectively 15wt? + 5f5 »f2 and

zwrl+ §2° x73, the ratio of which is(—x%;’. Now, in the first case,

]
this ratio ought to = 2, whence, substituting % = (E)', we obtain

226

2ivdr | ad  hioh afterdividingbyz, reducestoz—b6:471st +2 = 0,

256 (112:5)%
giving at = 213, or the required multiple = 9-6.

In the second case, the above ratio must = 42, whence

a2+ 2z 75 . . -
555 & T2y reducing to z—9-858z% + 2 = 0,

whence ot = 3033, or the required multipls = 279,

NoTE (WITH REFERENCE TO QUESTION 7762) oN THE RELATIVE WEAR
AND TraAR oF SovEREIGNS AND HALr-SovVEREIGNS.

By Rev. C T. Simmons, M.A.

This question was suggested by a letter in the Times of May 1, in
which it was pointed out that the percentage of loss due to wear and tear
in the half-sovereign as compared with the sovereign ought, from purely
geometrical reasons, to be as 3/2:1; and that, as the actual relative wear
and tear had been stated by Mr. CHILDERS to be about 2 : 1, the difference
was probably to be accounted for by the large employment of sovereigns
in sto for bullion and other purposes. e following considerations
will make it appear that the first of these statements was erroneous, and
the second, to say the least, questionable.

1. The coins are not, as is generally assumed, similar solids. On
placing & sufficient number of them upon each other, it will be found that
the ratio of diameter to thickness is, in new sovereigns very nearly 15,
and in new half-sovereigns very nearly 18. These data are sufficient for
& comparison of the superficial areas. Taking ¢ to denote the thickness,
r the radius of a sovereign, 7, p corresponding quantities for the half-
sovereign, the areas will be in the ratio r (r+¢) :p(p+7), or
15.16.¢: 18.19. 72 Now by comparing the volumes we obtain 3= 2p3r,
or 226¢% = 64873, whence

area of half.sovereign _ 18.19.7% _ 57 235_)! = -7039...:
area of sovereign 16.16.¢2 40 (648 e
so that, assuming the wear and tear to be proportional to the area of the
surface, and that the roughnesses due to the embossing may be left out of
account, as probably affecting both coins to the same extent, we see that
the wear and tear of the half-sovereign ought, with reference to its
weight, to be twice *7039 or 1°4 times as much as that of the sovereign.
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2. Now, what is the actual proportion of wear and tear ? Mr, Childers
I believe, stated it to beabout 2/51.C/ He ibly obtained the statement
from a Report addressed to the Chancellor of the Exchequer by the
Master of the Mint in 1869 (reprinted in the Journal of the Imstitute of
Bankers for April, 1884), in which the legal lifetime of the average
sovereign is given as 18 years, and that of the ave half-sovereign
10 years. In another part of the same Report the relative wear and tear
is given as 1:024 to *43, or as nearly 2-4 to 1, a discrepancy which will be
alluded to further on. We will for the present take it to be as 1'8 to 1;
and this compared with the above-determined ratio of 1'4 to 1 would lead
us to conclude that the actual wear and tear of half-sovereigns is about 1}
times as much as, from purely geometrical considerations, it ought to be.

3. How then, is this to be accounted for? We will make the same
comparison in the case of shillings and sixpences. The ratio of diameter
to thickness in new m: approximately 14, and in new sixpences
approximately 15. ing as above, this gives the areas in the ratio

*65667... : 1. The actual wear and tear (see Prof. Jevoxs’ Treatiss on
Money, in International Science Series, p. 168) has been found to be as
1-875:1. Comparing 1-876 with 1-31, we conclude, then, that the wear
and tear of the sixpence, considered with reference to the shilling, is rather
more than 1-4 times what it ought to be. So that whatever causes are at
work to increase the relative wear and tear of the half-sovereign (or, which
is the same thing, to diminish the relative wear and tear of the sovereign)
are to be found acting in a still greater degree in the case of the sixpence
as compared with the shilling. There is consequently no need to resort
to the %aullion hypothesis. Or if it be said from 4@ prioré considerations
that this must exert an appreciable influence, then we must conclude
that the rapidity of circulation (or whatever equivalent phrase we adopt)
of sixpences as compared with shillings is much greater than that of half-
sovereigns as compared with sovereigns. Whether this is consonant with
experience, everyone must judge for himself.

4. It only remains to notice the above alluded-to discrepancy between
1'8 and 24 as representing the relative wear and tear of the half-
sovereign. In Prof. Jevons’ Treatise on Money, a.lread? quoted, it is
given as still greater, namely, 32 or more than 3 (p. 158). I have been
unable to obtain any explanation of these inconsistent statements, and
can only, wrongly or rightly, suggest the following. It may be that, in
investigations concerning the legal lifetime of coins, only those are
considered which are still legally current. For instance, a large number
of comparatively young half-sovereigns might be taken, and it might be
found that their average annual loss was 0387 grains, which would give
the average legal lifetime 10 years. But now what would happen if older
half-sovereigns were taken ! The influence of what is known in Political
Economy as Gresham’s Law would have come into play. The least-worn
coins would gradually have gravitated back to the Bank of England ;
the lightest ones would, for obvious reasons, not have been taken there,
but would have remained in circulation. So that, when old half-sovereigns
are included, the average annual wear and tear must almost certainly be
found to be greater than when those of comparatively recent issue are
considered alone.

[Perhaps some of our correspondents may be able to throw light on this
que:ltxioni and, if the above explanation is inadequate or wrong, suggest
another.
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7760. (By Moraan Jenkins, M.A.)—Give a geometrical construc-
tion for provingindeépendently (and)not @sla deduction from a special case)
that the locus of a point which moves so that the tangents drawn from
it to two given circles are in a constant ratio, is a coaxal circle.

Solution by the ProrosEr ; J. McDoweLy, M.A.; and others.

Let A, B be the centres of the two circles ; PM, PN the two tangents;
MH, NK, drawn perpendicular to PA, PB respectively, meet in Q. Describe

o

a circle on PQ as diameter passing through H and K, and meeting AB in
U and V. Draw PO a tangent to this circle at P and meeting AB pro-
duced in O. Draw a straight line ADL parallel to PO, and meeting g’U,
PQ, PV, PB (produced if necessary) in D, L, E, and Z.

Then, PQ being a diameter of the circle HQK (because PHQ is a right
angle), and perpendicular to AZ, the rectangles PH.PA, PU.PD,
PQ.PL, PV.PE, PK.PZ are equal to one ancther, and to the square
on PM. And PK.PB = PN?; hence PK.PZ: PK.PB=42:1, if ¥
be the given ratio. And AO: BO =PZ: PB=42%:1, hence O is a
fixed point. Also AU.AV =AH.AP = AM?; and BV.BU = BN?,
therefore U and V are fixed points, viz., the limiting points of the system
of coaxal circles determinetf by the given circles. And the square on
OP =rectangle OU . OV, which is fixed in magnitude ; therefore the locus
of P is a circle, with centre O, and coaxal with the system of circles
having U and V for limiting points, that is, the system determined by the
given circles. Or, again, PU : PD = OU : AO and PE : PV = AO : OV,
therefore PU.PE: PV.PD=0U:0V; but PU.PD =PV.PE,
therefore PU2 : PV2 = OU : OV, a constant ratio, whence the same result
follows. Also

PM2:PV2=PV.PE:PV2=PE: PV = AO: VO = a constant ratio,
and PM2: PU2=PU.PD: PU*=PD: PU=AO: UO,

a constant ratio, with similar results for PU and PN, and for PV and
PN. Hence for cither of the two given circles we may substitute either
of the two limiting points U and V, or any other circle of the coaxal

VOL. XLIII. D



30

same circle as bel

[Another solution to this question isindicated in McDowELL'S Ezercises
on Euclid and in Modern Geometry, No. 270, foot of p. 237, new edition.]

system, and, by properly altering the value of the given ratio, obtain the
fore:

7843. (By Professor Hunson, M.A.)—A ga.rticle moves in an orbit
about a luminous centre of force, and casts a shadow on the inverse of the
orbit with respect to the luminous point; the shadow moves as if in an
orbit about the luminous centre : show that the orbit is a circle, whose
centre coincides with the centre of force.

Solution by Dr. Curtis ; Professor Nasu, M.A.; and others.
The following equations must hald good : —
r)7d0 = A,dt, ry?do = Ajdt, riry = k3,

therefore —:l- - %1:— = —"'::—, therefore r, is constant, ther;afore &ec.
3 s

7728, (By J. W. RusseLy, M.A.)—Prove geometrically that, at the
intersection of two confocal conics, the centre of curvature of either is
the pole with respect to the other of the tangent to the former at the
intersection.

Solution (communicated by Dr. Cvrris) by the late Prof. Townsenp, F.R.8.

Let C, D be two consecutive points on a conic A, then, as the normal at
the })oint C is the locus of the pole of the tangent CD with regard to all
confocal conics, the pole of this tangent taken with regard to any such
conic B is the intersection of this normal with the B polar of D ; if now
the conic be supposed to be the confocal through D, this polar becomes the
tangent to B at D, and therefore a normal to the conic A ; the B pole of
CD is then the intersection of two consecutive normals to the conic A, viz.,
the centre of curvature.

7880. (By Saram Marks.)—120 men are to be formed at random into
a solid rectangle of 12 men by 10, all sides being equally likely to be in
front; show that the chance that an assigned man is in the front is yg;.
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Solution by D. BiopLe; Rev. T. C. Simmons, M.A. ; and others.
There are 40 'positions Having a/chancé of being in front, 36 having }
chance, and 4 (the corner posmons) having } chance. Hence we have

(36 x})+(4x4) = 11
120 120°

7717. (By R. Tucker, M.A.)—The circles about AEF, BFD, CDE
cointersect in O, and those about AE'F’, BF'D’, CD’E’ cointersect in O’:
also the tna.ngles formed by joining the centres of the two sets of circles
are similar to the primitive triangle ABC, and equal to one another.
Find the ratio of similitude in terms of Brocard’s angle.

Solution by B. HANuMANTA RaUu, M.A. ; E. RUTTER ; and others.
If a, B, v be the distances of P from the sides of the primitive triangle,

e _B_v_ 28
we have a3 0 T arhre
CD =a (a*+5%) [ a*+ 53+ and CE = a% [ a*+ 52+ &%,

The sides BC, CA, AB subtend angles A+B, B+C, C+A at the first-
Brocard-point O [see solution of Quest. 77568, Vol. 32, p. 113];

. 6.0A_5.0B_0c.00 _ abe

** §nB _ ®nC sinA OAsnC+OB. smA+OOsmB
.. GO = a2 . Co _ +834+ 2

o [6*3 + a3+ @’ " 2CE 2[b’o’+c’a’+a’b’]i

= cos§ = cos £LOCA,
therefore EO =EC or £EOC = £ECO = £0OBC = £EDC.
Therefore the circle about CDE gues through O, similarly DO = DB

and FO = 3 FA, or the circles about BDF and AFE pass through the same
B-point

The circles about AE'F’, BF'D’, and CD’E’ cointersect in the second
B-point 0’, .

Again, cot0=cotA+ootB+cot0=--a—+{P’,
therefore cosf _ sind 1

BB+ da 2[00+ B+ a
DE3 = CD?+ CE*—2CD.CE cos C = }a*sec?0,
Let Q, Q, Qg Qgbe the centres of the circles about DEF, AEF, BFD,
ab3
and CDE; then QQ3 =— (cotA+cot C) = 82 cos6
a’c

QQ; = —(cotB+cotC) = $2 0080
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therefore QQ; = iz :0 - (54 + a%?* + 2ad% cos B]t
a 2 _ _a

8Acos0 sin® 2sin26

Therefore the sides of the triangle Q,Q,Q; are proportional to the sides
@, b, ¢, and therefore the triangle Q,Q.Q; is similar to the triangle ABC
and the ratio of similitude is { cosec 26.

[If DEF be any inscribed triangle, the circles AEF, &c. will pass
through the same puint O (Diary for 1859, Question 1934), therefore
LEOF =x- A =B + C, and therefore (as in above proof*, since DEF, ABC
are similar, O is the first B-point of DEF; and similar results hold for
the point O’. In the same Diary qucstion, it is shown geometrically that
Q,Q3Q; is, for any inscribed triangle, similar to ABC.]

7614, (By R. Tucker, M.A.)—The baso and vertical angle of a tri-
angle being given, prove that the locus of the point de Grebe (i.e.,
¢ Symmedian’’ point), and therefore also of tho ¢¢ Triplicate-centre,” is an
ellipse, which, 1n the former case, if A~! = 4—cos¥A, can be put into the
2% yicosectA 1

form
aiA a3

Solution by B. HaNuMaNTA Ravu, M.A.

Let O be the point de Grebe ; then
OP:OM:ON =a:b:e¢
=sinA :sinB :sin C;
and, taking D as the origin ef coordinates,
fa+z =ycotd, and ja—z = ycoto,
sin (B—6) _ ON _sinC
sin 0 OP sinA’

.cot0—cot B = —_ﬂ,c—— = cot A +cot B.
sin A sin B

Hence we have cot@ =cot A+2cotB -“—;ﬂ;
Y

similarly, cot¢=cotA+2wtC=%2—’";

but 4cot A(cot B+cotC)+4cot BeotC=4;

therefore 4cotA(l—cotA) + (i'--;cot.A),-i"'i =4,
2y 2y ¥

or 23+ (4 cosec? A—cot? A) y2—a cot Ay = A3,

. A L34+ A-2cosec? A (y—§an cos A gin A)? = 1a%A-1 +44%cos? A = al,




33

20, yloosectA
a3 a?z?
The centre of the T. R.-circle bisects the line joining the fixed circum-

centre with the point de Grebe. The locus of the T. R. centre is therefore
an ellipse of half the dimensions.

or =1

7463. (By W.J. C. Smarp, M.A.)—If 8, denote the sum of the rth
powers of the roots of ax™—pz"-1 4 paan-2—pya-3 + &c. = 0, prove that

sr"( l)'l(l’l'—*'zpsd +&°) (ﬂ),

(r—1)! a
GV (e By (nm1)p, )
and S-r — (r—=1)! (Mdl’1+(” D dp, +&c.) (pn-l).

Solution by G. B. MaTHEWS, B.A.; J. O'REGAN ; and others.

B.,= l....l_...._,gl’i':_‘; hence, writing z + A for 2,
a B Pn
, 1,1 1 (1 A l) 1
- = — ———+ r = ;
8, “+A+5+A+ " vt (=) i)t (.) 4.

therefore S_,=coefficient of (=)"-1Ar-1in 87,. Now,if ¢ (a, P1sPs ... Pn)
be any rational function of 4, p,, p, ... 2n, then, when z + A is written for z,

21 D3, ... become p —naA, Pg—(n—1)pA+in(n—1)ar3 ....
Thus ¢ becomes

¢—A(m—+(n—l)m ) $HAI(n) = pBoh+ .. say
=o=Np+ 3o+ () X rle
- r-1 __)r 1 Pn-
Hence s-f %T_ZT" ISI Er—-l—)—'v l(l’”])

Moreover, S, is the 8_, of the reciprocal equation
Patt=pu12* 1+ . 4 (=)"a =0,

or 8,={—:—_'1L)l!{np,.dp +(n—=1)pn- ‘dpd +...}'_l(—’;l-)

B ndeme ) (2),

writing the oporation in { } in the reverse order.
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7435. (By Sarisz CHANDRA Basv.)—Find the general value of z from
s4bace BB+ @B +A = o+ 4+ - 0,

Solution by G. B. MaTBWS, B.A. ; Professor Mars, M.A.; and otAers.
0 = (a+b+0)3—(a®+52+6%) = 2 (B0 + 0a +ab),
0wa®+B+0%= (a+b+0)(at+ 83+ c3—=B0—ea—ad) + 3abe.
Therefore So+ca+ab =0 and ado = 0,

therefore a, 5, ¢ are the roots of z% = 0, therefore ¢ = 5 = 0 = 0, and
therefore a3+ 5%+ 63* = 0, for all values of #, of which the real part is

positive.

3269. (By the Eprror.)—Prove that the chord which joins the points
(a1, By 7)» (az Bs, 2) on the conic a4+ mpt+myt = 0 is parallel to
mB "y

+ =0,
[} i Py
a +a B:+B’ 7‘+7,

Note by the EprroR.

1. Mr. Srumons remarks that the solution of this question, given on
P- 47 of Vol. xL., is clearly wrong. For by the same method 1t would
follow that all lines included under the form

la + mB . ny
(1-p)ad+(1+p)al (1-9)Bl+(1+9)8 (1-r)r+(1+n)
are parallel ; which cannot be the case, as by properly choosing p, ¢, r
the above equation may be made to represent any straight line whatever.
The fallacy in the solution is not easily seen at first, and is only apparent
on a close analysis of what is meant by moving a line parallel to itself.
‘When this operation is performed on

la [(9172). +(Byr)!] + mB [(na)t + (a72)'] + 1y [(a18) + (QBI).] =0,
what we tacitly do is to take two new points (aB;7;), (a38;7;) on the .
ourve, so chosen as to ensure the elism of the new chord to the old ;
it follows, by a repetition of what has gone before, that the equation of the
new line is also similar in form to that of the old, and that the similarity
still holds when the two new points coalesce, thus giving the equation of
the parallel tangent. But now let us move the line

la + mB " o
ded e e

T, as before, the new points are so chosen as to ensure the parallelism,
what is there to infer the similarity of the equations? Nothing; the
mboldehof inference in the former case (printed in italics) not being avail-
able here.

If, on the other hand (and this is what the solution seems tacitly to
imply), the new points are so chosen as to ensure the similarity of the

-0
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equations, there is nothing to warrant the inference of parallelism. 8o
that the place’of ‘the 'coalescerice/of the two new points is not the same
for the equation of the chord as it is for the equation given in the ques-
tion, and the solution collapses.

2. Mr. Suarp has also pointed out the inaccuracy of the above-cited
solutioz;, but states the theorem is quite correct, and sends the following
proof of it :—

It (ay, By 11)s (a2 Bor 7o) Lie on the conic it +mg! + 97! = 0,
lim:in= (9172)“(3:‘71)‘ . (71":)"‘(7:“1)’ H (“133)‘- (a,B,)’,

la mB_ 4+ P _ 0, is equivalent to

and the equation -
e Aia Aok

)
e [(3172).— (92‘71)‘][“2 —“:] + Bl(n “z)‘— (‘Yz“n)‘][ﬁt"ﬁ:]

@ —ay Bi—B;
4 Y[@B) = @B I —n] —o.......... SO ¢ )
Nn=7
If (1) be parallel to the chord
a(Biy2—Bam) + B (nag—v3a) +7 (@1 B3—a3 By) = O............ (2),

(1) and (2) must meet at infinity Aa+ BB+ Cy =0, the condition for
which is

(Biva—Bam) (=), [(B179) - (82 11)‘] [“:-“:]: A (o —a)
ma=ra) (Bi—By), [(ne=(re)'1[8-Al, B(B~8)[=0,
(01 Bs—@B) (n—7), [(m B~ (@B -2Y), Cln—m)
and this is fulfilled since the sums of each of the columns vanish for
(m—a3) (B1y2—Bam) + &c. = | a1—ag B1— By ni—72

aj, By, mn =0,
a2y 8By, s
(“.,—' :) [(8179) — (Ba )] + &e. = a: —“:, B: - B:» 7:- 1:
“29 ﬂ:) 7“ = 0,
&% B 7

and Aa, + BB, + Oy, = contact = Aay+ BB;+Cyy.

1640. (By 8. A. Rensuaw, M.A.)—Find the locus of & point P, such
that PA+PB = PO PD, when A, B, C, D, P are points (1) in a plane,
(2) in space.

Solution by AstTosH MUKHOPADHYAY.
1. To investigate the loci in question, we remark that, if four quantities
X, Y, Z, U be connected by the equation X!+ Y!=2+ U}, they are in-
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volved in the rational equation, easily obtained therefrom by transposition
and squaring, , (X3+ Y3+ 22 + Ul—23XY)? = 64XYZU,
which is, én general, of the fourth degree in X, Y, Z, U.

In the plane problem, take the line joining AB as the axis of #, and a
line at right angles to it through A as the axis of y; then the points

A, B, C, D are (0, 0), (@), 0), (as, Bs)s (a3, Bs) ; and, if P be (z, y), ‘the
locus of P is

@+ x[(z—a)?+ 9] = [(z—a?+ (y—B) TP £ [(z—ay)? + (y—B)]}

Now, observing that the expressions under the radicals are of the second
degree, and attending to the lamina, it is easy to see that this reduces to
an equation of the eighth degree, which represents the locus required.

2. The extension to three dimensions is easy enough. Take the plane
through A, B, C as the plane of ry, and 9 as origin; let D be (a3, Bs, 7s),
and P, (z, y, z); then it is obvious that the locus will be obtained by
adding to the expressions under radicals in (1) someo guadratic function
of z. That equation, being simplitied, will be found to be, as before, of
the eighth degree in 2, y, z; therefore the locus is in general an octic.

No simplification is introduced by taking oblique uxes, the axes being
the lines joining A and B, C and D.

[For the question itself, see Vol. 1v., p. xvi,, and for solutions of
analogous questions (2718, 2737), see Vol. x., pp. 106, 107.]

3926. (By the Eprror.)—A circle, whose radius is one foot, rolls from
one end to the other on the outsids of a quadrant of a circle whose radius
is four feet, and then back again on the inside to its former position ; show
the form, and find the length and area of the closed curve described by
that point in the rolling circle which was in contact with the quadrant at
the commencement of the motion.

Solution by Prof. Evans, M.A.; Prof. Marz, M.A. ; and others.

According to ordinary notation, if ¢ and 4 be radii, equation to epicycloid
is given by z = (a+5) cos 6—5 cos 9%6‘0, y = (a+d)sin o-bsin“—:—b 0,

where z="5cos@—cos 60, y = bsin §—sin 50.
ir -
Area = -}:l‘ (zdy—ydz) = —g—r [6(cos 8 + gin 6) — & (cos 50 + sin 56) + 5]d6
0 0
=@

Area of hypocycloid is got by writing — & for 4, or in this case 3 for 5 ;
hence area of hypocycloid = (3)?w, and whole area = 28x = L.
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As, with the/usual notation, (¢)=thel angle of
deflection, and AQ = s, we have

—=® in% o in % _.

¢—0 w P (a+2b)sm26 (¢+2b)smm,
ds _ @p_4b(a+h . ap |

therefore —— = p+ o 5 mn.+—u,

45 agp
= —— (a+b ( 1— .
therefore ] ” (a+8) cos Py

The limits of ¢ are » to 0, therefore

85 (a+5) (,—cos _ax 4 2x 5 Lo

Hypocycloid = 3[1—cos 2x] = 3; therefore whole = 3 ft,

7898. (ByR. A. RoBerTs, M.A.)—A variable circular cylinder circum.
scribes a fixed tetrahedron. Show that the locus of a line drawn through
a fixed point parallel to its edges is a cubic cone containing the six
parallels to the edges of the tetrahedron. :

Solution by J. P. JoENsTONE ; Professor CHAXRAVARTI, M.A. ; and others.
Taking the fixed point as origin, let the coordinates of the vertices of
the tetrahedron be (r,y,2,), (¥s¥s%), (£s¥s%s), (Z(v4z,) Tespectively, and let
I, m, n be the direction cosines of the axis of a circumscribing circular
cylinder. The lines passing through the vertices, whose direction cosines
are /, m, », will lie on a circular cylinder, if they pass through the inter-
section of the plane whose equation is (1) with the sphere whose equation
i8(2), lz+my+nz=0, 23+y2+22+2ax+2by+20z+d=0...... 1, 2),
where a, b, ¢ are connected by the relation /a + mb +ne=0, i.e., the centre
of the sphere lies in the plane.
Solving Petween the equations Z=% m ¥=¥1 = 2771 of one of these
lines and equation (1), we get n »
z=2—-L! y=y—Lm, z=2—-Ln, where L, = z+my+mn3s.
Substituting these values for zyz in (2) and remembering /a + mb + ne=0,
wo get r3—L,3+2az, + 20y, + 202, +d = 0, where 72 =23+y3+2?
Eliminating @, 8, ¢, 4 between this, the three similar equations, and
la +mb+ne = 0, we get
rlz_ Ll,r Zn Y %5y
ré=Lg, x5 43 2
r’—Lg, 73 ¥ 2
ré=Ld 76 Yo %
0 I m n
VOL. XLII. E
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Multiplying 7,3, &c., by /2 +'m? + #3=1, we have a homogeneous relation of
the third degree in '}, m,'w, ‘which ts a cubic cone. If we sub-
tract the second row from the first and substitute for z, —z,, ¥, —ys, :L—:,,
froportionlhtol, m, », we put the first row the same as the last, there-
ore the edges of the te are parallel to generators of the cone.

7789. (By R. Tucxzr, M.A.)—AD is the bisector of the angle A of
the triangle ABC; w,, » are the Brocard angles of the triangles ABD,
ABC: prove that 3 cotw,—4 cotw = (ab+8c+ca) /4, the summation
being taken over the six triangles ABD, ACD, &c.

Solution by B. HaNuMaNTA RaU, M.A.; J. O’'Rroax; and others.

Let £ADB = 6, and let w;, w; be the Brocard angles of the triangles
ABD, ACD; then we have cot @ = cot A + cot B +cot C,

cot ey = cot §A +cot B +cot 8, cot ey = cot A + cot C + cot (x—0),
o Cotw; +cotwy = 2cot A +cot B+cot C = 2cosec A+cot A+cotw;
.'.},:eot.,-z(eosecA+coaecB+oooecC)+ootA+eotB+eot0+3eot-,
therefore 37 cotw,—4 cotw = 2 (cosec A + cosec B + cosec C)

be  cs c_b_bo+o¢+¢6.

==+
A A A A

7805. (By Professor SyLvesrer, F.R.8.) —If I represents the deter-
minant H b5 ¢ and FA (a cubic function of A) is &* (%+2) I, ghow that

de M N
cef there are two values of A, 8ay A;, A,, of the Yorm il

such that a3Fa, = Q,2, =Q M, N, Q being rational integer
functionaofo,nb,c,dl,c,.j;.FM '\ M, N, Q Q,

Solution by W. J. C. Saare, M. A,
- Bince I is the discriminant of the expression
az? + 2bzy + 2exs + dy? + 2eys + fz* = U say,
therefore (by TavLor’s theorem) F (A) is the discriminant of
azd+2bzy + 2 (c+21) + (d+A) y? +2eys +f23.
Now (az + by +¢z)*—aU = (8*—ad) & + 2 (be—ae) ys + (32— af) 53,
and this is the product of two rational factors, if, and only if, —al be a
perfect square (and of two real factors, if, and only if, —aI be positive, so
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that this is the condition that the tangents from y =0, ¢ =0 to U= 0
should be real);\ Hence -aF)(A) is/a perfect square when, and only when,
[B*—a@+A)]y*+2[b(c+27)—ae]yz + [(c+ 2A)*—af] 23,

or [by + (e + 2A) £]2—a [(@ +A) Y2 + 2eyz + f23]
is a product of rational factors, ¢.e., if it can be expressed as a difference
of squares; therefore f(d+A) =t and A =2=18 _5,
Then —aF (A;) is the discriminant of

) 5 1
(#-e5) s+2(5 0+ 2-31id) —as) e ( A+ 2-2iP—af) 2,
or 75 [ (S + 28— YdP - 20ef (f + 20— ) + ]

= 5 [eof + 268 2fd— 4,

and therefore  f°F (A) = — [0of + 26— 2¢fd—bf?]3,

by symmetry,  &'F (A,) = — [abo+269— 2abd —a%]?,
$—ad

where A=

.

7509. (ByProfessor WoLsTENHOLME, M.A., Sc.D.)—In any tetrahedron
ABCD, if s, 8, 85, 8, be the sums of the lengths of the edges respectively
meeting in A, B, C, D, and 8,, 8,, 8;, 8, the sums of the dihedral angles
at the same points ; prove that, if s, > &3> 83> s, then 8,>8;>8,> §,,

Solution by W. J. C. Suare, M.A,

Let ABCD be the tetrahedron, and let
DBC = a5, BCD = @y, CDB =4q,; DAC =5;, ACD =J;, CDA =3},;
BAD =¢,, ABD=y¢;, ADB=¢,; BAC=d), ABC=d;, ACB =d,;
and B, 0}, D;; O, Dy Ag; Dy, Ag, Bg; A, By, C, the angles of the
spherical triangles determined by the solid angles, so that

B,=A; C=Ay, D=4, C;=B; D,=B, D;=C,,

and g+ a3+a,=by+b+b =+t =y +dy+dy = 7.
Now, if E, be the spherical excess of the spherical triangle whose sides
are b, ¢;, d;, and E; that of the one whose sides are ¢;, dg, ag,

0818, = sin }E, = ’inf"s_lﬂx,in B,
co8 {8, = sin }E, = w,mh,
cos §a
Hence 8, <= >8, according as !
sin? §c, sin? }d, cos? §a,> = < sin? }¢, 8in? §d;, cos? 35,.
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Now, by Plane Trigonometry,
sin? de, ; sin? §op = AB+BD-AD  AD+AB-BD

AD BD ’

and sin?}d, : sin? 4, = AB+:((}J—CA:AB*gg—Bc'
08t g = (BD+DC+§I§3?(:(I})+BC—DC)'
cos? 5, = (AC+CD+%).(23+ DA-DC)

Therefore 8, < = >8,, according as

(AB + BD—AD)(AB + BC - AC)(BD + DC + BC)(BD + BC—DC)is > = <
(AD + AB—BD)(AB + AC—BC)(AC+ CD + DA)(AC+ DA—DC),
according as (sy— AD —BC)(s, —AC~BD)(s; + DC—AB)(¢;— DC— AB)

is > = <(5;—BD—AC)(s;—AD—BC)(s; + DC~AB)(s,—AB-DC),

that is, according as s,> = < 4,, and hence by symmetry the proposition
follows (since each of the factors on each side of the inequality are
positive),

[The Proroser remarks that he has not yet been able to discover the
law for ¢y, g3, 03, o, the sums of the plane angles at A, B, C, D, but has
found that they are not always in the same order of mugnitude as 8,, 8,
8;, 8,, which indeed follows from the theorem that when s, = s;, then
8, = 8, since o, is not then = 0,. At the same time (excluding cases
where &, = &), he has only found six out of about 150 in which the order
of magnitude of the ¢’s is different from that of the S's. In each of these
cases, two of the o’s are nearly equal and the two corresponding 8's also
nearly equal, and the orders of magnitude differ by one displacement :
such as 8,> 8;>8;>8,, ¢; > 03> 75 > 04, Where 8;, S; are nearly equal, and
also o3, 03.]

7778. (By Professor Hubson, M.A.) — A Galileo’s and a common
telescope have the same object-glass, and their eye-glasses have equal
focal lengths ; also the uniformly bright field is of the same extent in
both : prove that the diameter of the stop in the common telescope should
be half the difference of the breadths of the eye-glasses.

Solution by B. HANUMANTA Ravu, M.A. ; SArAH MARKS ; and others.

Let F, f be the focal lengths of the object and eye-glasses, and z, b, a,
@’ the half-breadths of the stop, object-glass, and eye-glasses ; then in
the astronomical telescope

a=2.fb+o:F, therefore z = Fo-fb

F+f'
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therefore angular radius of field of view = % = j%'_% .............. (1),
= field of view in Galileo’s = ﬁ;f}') .................. @).

From (1) and (2), %-F_fj;'_”'_%",

therefore z =a—a, or 2z=2a-2a.

3372. (By Professor GENEsE, M.A.)—Two similar ellipses are placed
so that the major axis of either coincides with the minor of the other;
prove that the lines joining the common centre to the common points are
perpendicular to the common tangents.

Solution by the Rev. T. C. Simmons, M.A,

Let the semi-axes be (CA, CB), (Ca, Cb),
where CA : Ca = CB :Cb = m, and letthe
diameter C4D be perpendicular to the com- D
mon chord CR ; then, since CR makes with d
‘CA the same angle as Cd makes with Ca,
and the ellipses are similar,

CR:CA =Cd:Ca or CR=m.Cd;
and in a similar manner we obtain
CD = m.CR; hence CR?*=CD. Cd; also
CD =m?.Cd. Draw now the common
tangent PQ and the parallel diameter C2'D*
to which PF is perpendicular; then .
PF.CD’=AC.BC and PF.Cd = aC.bC, whence by division CD’ =m*.Cd’,
therefore CD:Cd = CD’: Cd, i.e., CD’d’ coincides with CDd, whence it
follows that CR is at right angles to PQ.

7885. (By J. Briii, B.A.)—If ABCDE be any pentagon inscribed
in a circle, prove that

EA3.BC.CD.BD+EC?.AB.BD.AD
=EB2.AC.CD.AD+ED*.AB.BC. AC.

Solution by Asbrosn MukmoripmYiy.

The theorem holds for any pentagon four of whose vertices lie on a
¢ircle, as is evident at once from the following theorem, due to Dr.
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BaLMoN (Conics, § 94), which has been extended in the Messenger of Mathe-
matics, Vol. xur., pp-:167,1605—

“If A, B,C, D be any four points on & circle, and E any fifth point
taken arbitrarily, then EA*. BCD + EC*. ABD=EB?. ACD + ED?. ABC,
when BCD denotes the area of the triangle BCD."”

Now, since BCD = § BO.CD.sinC, ABD = { AB.AD.sin A, &c.,
this may be written,

EA?.,BC.CD.sinC+EC?.AB.AD .sinA
=EB*.AD.DC.sinD + ED*. AB.BC.s&inB......... (1).
Again, we have, in any circle, chord = diameter x sin (angle subtended
at circumference). Therefore, if d be the diameter of the circle, we get
BD = d.sinA, AC=d.sinD;
hence, remembering that &in C =sin A, and sinB =sin D (since the
opposite angles are supplementary), we have the relation,
BD __BD _ AC _ AC
sinC sinA sinD &inB’
and, substituting for sin A, &inB, &c., in (1), we have the identity in
question.

7958. (By Rev. T. R. Terry, M.A.)—Solve (1) the equation
Wsss = [§+ (1) 3] wen1—w,;
and hence (2) show that, if . and v, both satisfy this equation, and if
th=1,v=1, 43 =4, v; =3, then (z+1) 4y = 2zv,.

Solution by R. KNowLes, B.A. ; NILxANTA SARKAR, B.A.; and others.
I v, =w,[§+(—1)*§]}, then (Hyurr’s Cal., p. 66),
w’ —2w ,+w, =0, and the roots of m3—2m +1 = 0 are each = 1.

oy = (0 0 ) [ (=1 DD, Dby = 1 m gy g = 2 (e 4 20,
therefore te =z [§+(~1)" 3]

Similarly, from ¢, = 1, v, = 3, we have
9y = § (1 +2)[§+(—1)*3]t, therefore (z+1)u. = 220,.

%785, (By Dr. Curris.)—If a triangular area be so sunk in a homo-
geneous liquid, that its Centre of Pressure coincide with the intersection
of the three lines got by joining the mid-point of each side with the mid-
point of the perpendicular let fall on it from the opposite angle; prove
that, H,, H;, H; being the depths to which the mid-points of the sides
@, b, ¢ are immersed, H, : Hy : Hy = cot A ; cot B : cot C.

Solution by Rev. T. C. Simmons, M.A. ; and B. HaNumanTa Rav, M.A.
The lines joining the mid-point of each side with the mid-point of the
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perpendicular on. it from: the opposite angle, meet at a point whose dis-

tances #, y, s from the sides are such that —-is—nk and by hy-

pothesis 2H, = Ag+ Ay, 2H, = Ay +A;, zn, - A,+l.,, therefore
Hi+Hs+Hy=h+hg+hy;

hence, substituting these values in the expressions for z, g, 5, given in
the solution to Quest. 7706 (Vol 42, p 21), we have

H|+H2+Hs m p ¢ d

Hy+H, _ HorH o _Hi+H H,+H,
cot B +cot C 2k (H, + Hy + Hy) = CotA+cotB  cotA+cot O

Adding two numerators and subtracting the third gives the result.

7877. (By H. L. OrcHArD, B.Sc., M.A.)—A heavy 1cle is ﬁr:
jected with unit-velocity, in a direction of 45° with the d
when the radius of curvature of the path will be unity.

Solution by A MuknoripHYAY; Rev. T. C. Snn(ons, M.A.; and others,

Tak'mg the point of fmjectlon as origin, let z, y be the horizontal and
vertical coordinates the particle at any time; then y = z—ga?,

therefore % - 1-2gz, oy

— == 29 ’
= W\ [y _ By _ 4 el
therefore p *{1+(dz)}/dz¢—*wo 7 2%’
where 6 is the angle which the direction of the particle’s motion makes
with the horizon at the time; hence p numerically = 1 when sec® § = 2g.
If a foot and a second are taken as units, this gives cos =% nearly, or
0 = —75°26’ nearly, and the required point lies delow the horizontal
plane through the point of projection, and on the other side of the parabola.

1194 & 4009, (By the Eprror.)—(1194.)—If P be a point in the
plane of a triangle ABC; a, 8, ¥ the angles BPC, CPA, APB; a, 5, ¢
the sides of the triangle ; and z, y, s the lines PA, PB, PC: show that

sin?(a—A) _ sin? B+am ¥ :h2smpsm-yooa(a—A)
N 3] I bo ’

o3
sin? ‘Bz—B) - ain:¢ + uin’-y:h 2 gin a 8in y cos @—B),
y @ o3 ao
lin’('y-C)_ain’a_'_ sin’B:bZSinasinﬂoos('y—C)
v? a2 b ab '

+ or — according as P is inside or outside the triangle ABC.
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(4009.) Show that the values of z, ¥, s, from the equations
42322y + 4y% = 81, 8274 11zs+ 823 = 242, 433+ Tyz + 423 = 100, are
51/15 4420472 ' V45V 15% 330/2 140v/15 -120/2 |
23910+ 2700030 23910 +2700 = 4/23910 + 2700v/30
or, in decimals,  4-02345674, 3-25832046, 1-89362154.

Solution by D. BippLE; BELLE EASTON ; and others.

(1194.) We bave
8in? (a— A) = sin? (ABP + ACP) = (sin ABP ., cos ACP +sin ACP . cos ABP)#
= gin? ABP + sin? ACP—2sin? ABP . sin? ACP ’
+28in ABP . 8in ACP.cos ABP .cos ACP;
but cos (a— A) = cos(ABP + ACP) =cosABP.cos ACP—sin ABP.sin ACP,
gin? (a— A) =s8in? ABP + 8in? ACP + 2 sin ABP sin ACP cos (a— A).

Now sin ABP : z =siny : ¢, and 8inACP : z = ginB8: 5,
therefore sin? (a—A) = z’sic?’7+r’s;:|’8+2z’ sin y sin B oos (a—4);

whence we obtain the first equation in the question; and the other two
equations follow in the same way.

[If P be an internal point, and ABP=9, ACP=¢, wehave 0+¢p=a—A;
also sin? (0 +¢) = sin3 0 + 8in? ¢ + 2 8in O sin ¢ cos (6 + ¢), and from the tri-

angles APC, APB, %= e, 4l oy,

theret gin? (a—A) - sin‘8+sin’1+2sins sin Icos(a—A).
22 b I b ¢

The other two formuls follow by symmetr{;‘ If P be an exzternal point,
it may be readily shown that the formule have, as stated in the Question,
the last term of each negative.]

(4009.) Writing the equations in the form
212 toy+yi=5L, 2342 .} oo+ 23=1fL, ¢34 2.fys+22=26...(1, 2, 3),
it will be found that their solution may be at once deduced from the
formulse in (1194) ; for, from the relations of the figure, we have

23 +y?—2co8y.2y =%, 2%3+422-2c088.28= bl........ (4, 6),
) y3+:22—-2coBa.ys m a® i (6).
‘We have alsp a+ 8+ = 360°; thus, comparing (1), (2), (3) with (4),
(5), (6), it will be found that, if —3} and — % be the cosines of two angles,
then } will be the cosine of 360° minus their sum.
ahfuelﬁg?e?h:pfgl o:g«;gfi?i;liz 1:::(:009) to the equations (1), (2), (3), we
coBa = —1, co88 =—}}, cosy=1%, sina= }\/ﬁ,
sin 8 = &+/16, siny=3v15; also, a=5, b=12, c=§;
whence cosA = }f, cosB=1¢, cosC =,
sinA = $8,/2, sin B =$./2, sinC = &./2;
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and therefrom we readily find
cos (a—A) '&\334(2047802119), Taif (a— A) = gz (174/16—140,/2),
08 (B—B) = 2 (6+/30—11), sin (8—B) = 2 (3v/16 + 22,/2),
c08 (y—0) = 2 (6+/30+7), sin (y—0) = 2 (7V15-6,/2).
By substituting these results in (1194), we obtain the result stated.

7765. (By W.J. McCrLeLLAND, B.A.)—Prove that, for any point P
on a chord AB of a circle, AP.BP+0P? =2CO. PL where C is the
centre of the circle, O the limiting point, and L the ra.dxcal axis.

Solution by J. BriLL, B.A.;
A MukHOPADEYAY ; and otlun

Draw PN perpendicular to CO ; P
then we have

AP.PB+OP? = CD?*-CP?+ OP?

A \
= (CM*-MO?) +CO2—-2CN.CO GN o /D M

= CO(CM +MO +CO-2CN)
= 2CO.NM = 2CO . PL.

7620. (By Rev. T. C. Sruxons, M.A.)—It A, B, C, D, E, F are six
collinear points such that the three ranges ACDE ABLE ACEF

are all harmonic, show that the ranges ABDF, BCDF, BDEF are also
harmonic.

Solution by B. HANUMANTA Ravu, M.A.; N. Sarkar, M.A.; and others.
Let AB, AC, AD, AE, and AF =, ¢, d, ¢, f; then

1. 1 2 1.1 2 1 1 2
=S =2 —_—— = — 1, 2,3).
cteT @ v te a'&nd o+f e 4,23
Adding, ;_+;T.=. %, i.e., ABDF is an harmonic range ............ ).
Again, from (1) and (2) = "—b dﬂ;c,
f=% 2f d e=b d- e
and from (4) oF 7N whence oy oy

that is, BCDF is harmonic. Similarly for the third range.
VOL. XLIII. b3
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2931, (By the Eprror.) — Construct a quadrilateral geometrically,
having given the angles A, B, and the sums of the sides ¢ +4, b +¢, ¢ +d.

Solution by D. BoDLE.

Lot AE=a+d, EF =b+¢, AG=c+d, LEAG = A, AEF = B.
Then it is evident that C must be on EH, which bisects AEF.

Let EH be unity, and on it describe the semi-circle HI¢gE, join EI or
draw it pe?endicnhr to AG, and through H draw KO el to EF;
also draw FL parallel to AE, and make LO = HL, and, producing AG,
make HP = HO; also make HN = HI, and EQ = 2HI. Then draw
QR parallel to HK, and make EV = ER (= QR,; also ES = HYV, and
ET = ES. Join EG, and draw T% parallel to AP, and 4 parallel to EH ;
also join E/, and making Em=GP (= 2HL~HG), draw mn parallel to AP,
Also make Eg = NK and draw g4 parallel to AP, and make Ee = HL,
and draw ¢f parallel to AP. Next, make Ep = ¢f+¢k, and with E as
centre describe the arc pgq, cutting the semi-circle in ¢ ; then draw g¢r

erpendicular to EH, and make rs = mn. Draw st at right angles with
%H, to meet the semi-circle in ¢, and again with E as centre describe the
arc tu ; also make uv = Ep (= ¢f+gh). Finally, join HS, and draw vw,
1C parallel to EH, AE respectively. C will be the point required in EH,
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and by drawing BM through it, parallel to EF, and making CD = CM
(= EF - BC);/\we\/maké (AD + D0 =AG, and the quadrilateral is con-
structed upon the given conditions.
For, retracing the foregoing steps—we easily see that
EH(=1):HC=ES;wC=ET :Ev=HV : Ex+Ep
=1-2HI.HK: Est +¢f+gh;
and, since Es = Er + mn = Ep*+mn = (¢f + gh)? + mn,
therefore 1:HC = 1-2HI.HK : [(¢f + gh)? + mn]d +ef + gh
=1-2HI.HK: [{(EF- HK)HI + (HK-HI)HG}’
+HG {2 (EF-HK)-HG} (1-2HI.HK)}}
+(EF—HK) HI + (HK —HI) HG,
which is the exact ratio obtained by observing that
CD = DG = CM = EF-BC,
and that accordingly GC? = 2GU . CM, which resolves itself into
HC!*+ HG*+2HG .HI .HC = 2 (HG + HI . HC)(EF-BC)
= 2 (HG + HI. HC) [EF - (1-HC) HK],
whence 1:HC = 1—-2HI. HK : &ec.

ON THE APPLICATION OF JOACHIMSTAHL'S METHOD OF STUDYING SURFACES,
AND OF AN EXTENSION OF IT TO SURFACES DEFINED BY QUATERNION
EQUATIONS, INCLUDING THE SOLUTION OF QUESTION 7821.

BY W. J. C. Smarp, M.A.

I. I1 ¢, and ¢, be the vectors of two points Pand Q, and ¢= M;':ﬂ’; gis

n
the vector of the mean centre of A at P and u at Q, and therefore of the
point in PQ where it is divided in the ratio of u : A.

Similarly, if ¢;, g3, and ¢ be the vectors of three points P, Q, and R, and
g= M—‘Ai:—q’ﬂb; q is the vector of the mean centre of A at P, x at Q, and

"y

v at R, i.e., of that point in the plane of PQR of which the areal coordi-
nates, referred to this triangle, are A, u, ».

And if g;, ¢, g3, and g, be the vectors of four non-coplanar points P, Q,
R,and S, and qa'%f :" + 794, q is the vector of the mean centre

ptv+w

of Aat P, uat Q, » at R, and x at S; i.c., of the point whose tetrahedral
coordinates, referred to P, Q, R, S as tetrahedron of reference, are
Ay iy ¥y T ’

II. Let S.q¢q = 1 represent a central quadric, ¢q being a self-conju-
gate linear and vector function of g (Tarr’s Quaternions, p. 173); and

for g substitute A_L_Q_QA:# 3,
®
A(8.q1pq1—1) +22u (8. q1pge—1) +4? (8.q3¢9s—1) =0

is the equation which determines the ratios in which the line joining the
two points ¢, and gy is cut by the surface.
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Now, (i.) if ¢, be on the mr!aoe,onenheof—i;- is zero, and the other is

obtained from 2A (S.¢,¢9;—1)+x (S . ¢ga9gs—1) = 0, and, that thesecond
may vanish, it is necessary and sufficient that 8. ¢,¢gs—1 = 0.

But, when this is the case, ¢, is any point on the tangent planeat ¢,, the
equation to which is therefore 8 .g,¢¢ = 1 or the equivalent Sg¢g, = 1.

(ii.) If ¢, be not on the surface, the condition for contact is

(B.q300,—1)* = (8.0,90¢,- 1) (5 .¢30g5—1).

Consequently (8 .g¢g,—1)? = (8.¢,09,—1) (8. g¢g— 1) is the equation to
the system of tangent lines from ¢, to the surfaces, s.c., to the tangent
cone whoee vertexisat ¢,. Also, the line joining ¢, and ¢, is cut harmonic-
ally by the surface if 8. ¢,¢g;—1 = 0; that is to say, the fourth harmonic
of the gointa in which any line through ¢, is cut by the surface lies on the
plane 8.¢,¢g—1 = 0, or, what is the same thing, 8.g¢¢,—1 = 0, which
therefore is the polar plane of ¢,, and this meets the surface along the
curve of contact of the tangent cone. From the form of the equation, the
relation between ¢ and ¢, is reciprocal.

(iii.) If the line joining ¢, and g, lie entirely on the surface, i.c., if it be
a generator, the equation must be satisfied by all values of u : A, therefore
8.0:991 =8.9:¢¢, = B.¢1¢6¢; = 8.¢:¢¢; = 1. Now let g3—¢,=er, 50
that » is a vector parallel to the line, then

2?8 .xpx = 8.(9:~9) (23— )
=8S.0:¢¢;-8.0,00,-8.01¢0:+8. 4109, = 0,

and 8.¢¢g = 0 is the equation to a cone the generators of which are
parallel to those of the surface and having its vertex at the centre, t':c.,
to the asymptotic cone; as also appears by putting ¢, = 0 in the equation
to the tangent cone. .

Atput
the resulting equation in A, u, » will be the equation in areal coordinates
to the section of the surface by the plane through g,, ¢5, ¢s, those points
being the angular points of the triangle of reference. The result is
AXB.gq100,—1)+4* (8. g3 09,—1) +v2 (8. g3 645—-1)
+2ur (8. 930¢5—1) + 21 (8.0260,—1) + 24 (8.9, ¢g,—1) = 0;
and, if this be the tangent plane at g¢,, it reduces by the last article to
K (8.2:00:—1)+» (8. g3 pg3—~1) +2ur (8 . g3 095—1) = 0,
which represents two straight lines, the generators through ¢, ; and these
are real and different, coincident or imaginary, according as
(B.9spg3—1)*~(8.939¢5—1) (8.2 905—1)
i8s positive, zero, or negative.

The corresponding condition in the case of ordinary coordinates is, that
the generators are real and distinct, real and coincident, or imaginary,
according as the discriminant is positive, zero, or negative; and hence, if

B.qioq1=1, S.¢;001 =1, and B.g9q, =1,
B8.2:0¢:-1)*- (8. ¢, 09,—1) (8. g3 095~1)
is a quaternion equivalent of the discriminant.

IIL It A—q-!'“‘q—f:w'be substituted for ¢ in the same equation 8.¢¢g=1,
wty
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The condition that the plane through g¢,, gs ¢; should touch the

8.q190,—-1, B.q190:—-1, B.g9g—1 .
B.001—1, S.q00—1, 8B.g0-1|=0
B.g30q1—1, B.gs¢q:—1, B.g¢q-1

the discriminant of the equation in A, u, ».

IV. The equation in tetrahedral coordinates, referred to a tetrahedron
of which the vertices are ¢, ¢5 g3, and g, is obtained by substituting
)‘—q%ﬁ%ﬂtforq in the equation to the surface ; and hence it ap-

ptv+w
gean that, if the resulting equation only contain the squares of the tetra-
edral coordinates, the following equations must hold :

8.0190:=8.01¢0;=8.0,00; = 8.¢: 903 =8.9,0¢, = B. g3 0q4=1,
and, by II., the tetrahedron must be self-conjugate.
If ¢), g5, g3 be 80 chosen as to be rectangular vectors of lengths a, 5, and
¢, and bex, cay, abs, and ade (l— Z . -%- —%) be substituted for A, u,
a

v, = in the resulting equation, this will give the rectangular equation to
the quadric.

V. Similarly in the case of any surface, when the equation is reduced to
the form S.»g =1 (HamiLtoN’s Lectures, Art. 576), or given in any

scalar form, the substitution ¢ = M,l&:—"q? will give the ratios in which the

line joining ¢, and ¢, is cut by the snrface’: and as, when the surface is of the
nth order the equation in A : u is of that order, » will be of the (n—1)t» order
in ¢; also the coefficients of the various powers of x will, when equated to
zero, be the equations to the successive polars of g, just as in ordinary
Geometry. (SALMON’s Geometry of Three Dimensions, p. 209.) Also, the
substitution g = ’W}‘#zf’_ﬁ will give the equation, in areal coordinates,
wt+v

to the section made by the plane through ¢, ¢, g5, and, as before, it will
appear at once that the point of contact is a double point on the curve of
section by the tangent plane, and that consequently the condition, that the
plane through ¢;, ¢;, ¢ should touch the surface, is that the discriminant
of the equation in A : u should vanish, while the nature of its contact is
determined by the nature of the node, and the two inflexional tangents
are those to the plane curve at the node.

The substitutions of IV. will give the equation to the surface in tetra-
hedral or rectangular coordinates.

7618. (By C. Leupesporr, M.A.)—The triangle of reference being
equilateral, prove that the envelope of the director-circles of the conic
whose trilinear equation is kz-! = y-1+35-1, for different values of %, is
the curve

dyz(z+y+2P=[y+ys+22+5(yz+ 22+ 2y)|[3(¥* +yz + &) — (yz + =z +2y) ]o
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Solution by B. HANUMANTA Ravu, M.A.; G. G. StorR, B.A.; and others.

The equation, of the pair of tangents drawn from the point (%, ¥, 2°)
to the conic' —kyz'+ zy 2z =0, i8

[z +2)+y (& —k?) +2 (& = ky)? = 4 (zy + 25— Rys)(z'y' + &7 —ky'Z). .
The two lines represented by this equation will be at right angles, pro-
vided (¢ +2)* + (&' — k&) + (&' = ky')2 4 (4 —2k) (&Y + 2’2’ = ky')
— (¢ +2)& =)~ (' +2) (¢ = hy/) — (& = k') (& —ky/) = 0.
Suppressing the accents, the equation to the director-circle is
KB +yz+2%) -k (Bry+ 322+ 2yz—y3—sN) + (z+y+2)3=0.

The envelope for different values of % is the same as the condition of
equal roots of k; or (3zy+3rz+2yz—y2—e?)? =4 (3 +ys+2%)(x+y+2)3
which is equivalent to Mr. LEUDESDORF’S result.

7610. (By J. Epwarp, M.A., B.Sc.)—Drawa straight line EF termi-
nated by the sides AB, AC of a triangle ABC, so as to make CE=EF =FB.

Solution by A. H. Curtis, LL.D., D.Sc.; E. Rurrer; and others,

Suppose EF drawn as required ; complete A
the parallelograms BFGC, CFGH ; draw CG,
make /KCB = GCE; take CK = CB, and
draw KG. As EC = EF, £ECF = EFC,
similarly, / EBF=BEF; hence

LECF + EBF = EFC + BEF,
and is therefore known; but ¢EBC and
£ FCB are known, therefore

LCLF = LBC+LCB

= (EBC + FCB) - (EBF + ECF)
is known, or its supplement £ ELF, or £ GCE,
or £KCB is known ; the point K is therefore
known, and comparing the triangles CBE,
CKG@, in which BC, CE, and contained angle
= KC, CG and contained angle, 2/ CKG = CBE, and therefore known,
therefore K@, one locus of &, is known. Again CH=FG=BC ; hence a
second locus of G is HG parallel to AC through H, got by taking 1
CH = BC: the intersection of these two loci gives G; inflect CE and ‘
then EF each = C@, and EF is found. {

7865. (By Professor Hupson, M.A.)—On the sides of any triangle
similar regular polygons are described, and equal masses are placed at all
the corners ; prove that the centre of gravity of the masses coincides with
that of the triangle.
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Solution by Rev. T. C. Smumons, M.A. ; N. SARkAR, M.A.; and others.
Let D, E, F\bé/the mid-points A Q
of the sides, P, Q, R the centroids
of the respective polygons: then
we evidently require the C. G-. of s )
three equal masses at P, Q, R, F < N
+where PD, QE, RF are perpen- \
dicular to the sides, and are equal
respectively to ua, ub, uc. Takeeg, BT 4 pl q [

Jr the projections on BC of EQ,
FR; then ¢g=EQsinC = ubsin O
= uc sin B = fr, therefore

Bg + Br = Be + Bf or BD + Bg+ Br = BD + Be+ Bf;
i.c., the projection of the C. G. of three equal masses at P, Q, R on BC
coincides with the projection of the C. G. of the triangle ABC on BC, and,
since the same thing follows for the projections on CA and AB, the two
centres of gravity must themselves coincide.

7784. (By B. RevnoLps, M.A.)—From the vertex A of the triangle
ABC, perpendiculars are drawn to AB and AC, meeting the circum-circle
in D and E. Show that the quadrilateral of ADBE (or ADCE) is equal
in area to the triangle.

Solution by G. G. Morrrcr, B.A.; R. Knowres, B.A., L.C.P.; and others.
Since ECand BD are diameters, - EBC=DCB
= a right angle; hence EB is parallel to DC;
and if a straight line HAK be drawn through A,
parallel to BC, cutting BE in H and CDin K
(both at right angles), the sum of the areas
AEB, ADC=4EB.AH +}CD.AK=}EB. BC
(since EB = CD and HK =BC) = area of EBC ;
therefore AECD = AEBCD-EBC
= AEBCD—-AEB—-ADC = ABC.

[If from A, B, C we draw perpendiculars to
each of the sides (9 in all), then 3 of these will meet at the orthocentre O,
and the other 6, in pairs, on the circum-circle, at D, E, F'; and, since
AAEB =AQB, and so on, all round, the wholehexagon AEBFCD = 2AABC;
but BD, CE, AF, being all diameters intersecting at the centre G of the
circle, it is clear also that AAGD = ABGF, and so on, all round ; hence
the quadrilateral AEBD (or AECD) = half the hexagon = AABC.]

4569, (By Professor SyLvesTER, F.R.8.)—If any unicursal cubic be
given, and an arbitrary conic, having its asymptotes parallel to two of
those of the cubic, be drawn through its double point, and from this point
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rays be drawn to meet again the conic and the cubic, and ifjin any ray
the intercepted segmernits be(called p/and o, and in that ray a length R be
measared the double point such that R = p+ A, where A is any
arbitrary constant : prove &t the locus of the extremity of R will be the
most general cubic which can be drawn so as to have a node at the given
point, subject to the condition that its three asymptotes are parallel re-
spectively to the asymptotes of the given unicursai cuabic. .

Solution by W. J. C. Smare, M.A.

Let zy (z+ my) —(a23+ 2bxy +cy?) = 0 be the equation to the given
cubic, referred to axes parallel to two of the asymptotes through the double

. d - - o 4 20y 4o
point, and let 2z = ou, y = o», therefore o -E——p(‘*_m) H
and let 2y—2(fy+9z) = 0 be the conic, therefore

p= 2—‘-!&—"","), therefore R = p 4 Ac = 2(gn+fo) A (au+ 2buy + ov7)
w w By (B + mp)

therefore RPu» (u+m») = 2 (g +/v)(u+mv) R3+ A (ap? + 20u» + 0¥) R?,
or  zy (24 my) = (29 + ar) 234 (2f + 29m + 2BA) zy + (2mf +cA) v?,
is the equation to the locus, which may be identified with any cubic ful-
filling the conditions @y (z + my) — (Az*+ 2Bzy + Cy*) = 0, by solving the
equations 2g +aA = A, f+gm+OA = B, 2mf +cA = C, which determine
J» 9, and A uniquely.

7026. (By Sir Jauss Cocxie, M.A., F.R.8.) —Find sets of values (for
xample, z, ¥, s = 3, 4, 6) which shall make each of the expressions

F+(@+l)y, 2+(z+l)y+s), P+(z+1)as, (2-1)(—y),
(2y +£)*— 2z (z—1)?ys & rational square.

Solution by the PrOPOSER.
Let A and u be arbitrary ; then
=3, y=A(A+3), s=3a(r+1);
s=1,  y=i0-D, s=i(ns-1);
g=—1 y=j@Al+pd), s=an;
z=-3, yw=4, s=0;
are systems of solutions, for the first of which the squares are
(22 +3)3, (4x+3)3, (6A+3)% (2A)% (6A).
‘When A3 + 42 i8 & square, another system is
2=0, y=2A'+ul, 5=
The first set gives 23+ (2 + 1) (:—2y) = (2A—3)2.
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GRrAPHICAL CONSTRUCTION (1) FOoR CuBINGA/NUMBER, BY R. Tucker, M.A.,
wITH (2) NOTE THEREON, BY ProFEssor J. NEUBERG.

1. DEF is the al triangle, EG
perpendicular on DI, EH = HG,

(DEH = 2A -},
therefore £ DHG = ¢ + 2A —§r,
and from A DEH,

___sing _ EG _sin2A
cos(2A+¢) 2DE 2
- sin[A—(A+¢)]
cos[A+(A+¢)])
whence tan (A +¢) = tandA.
This gives a graphical construction for cubing any number (» = tan A).
2. La formule (1) revient & ceci :—
Si BE est 1« médiane, BD la bissectrice dans le
triangle rectangle ABC, on a: tg¢ = tg38.

Considérons d’abord un triangle quelconque
et ABC, AE = EC. S8i I'on méne EF, EG per-

pendiculaires sur AB, AC, on a: €
EF _ BEsinz _ AEsinA D
EG T BEsiny ECsinC’ ~\
dod sinz+siny _sinA+sinC [N

ginz—siny sinA—sinC’
ted(r+y) _tg} (A+0) 8
st e-y) tg1(A-0) &

Mais tg} (¢ +y) = tg B, tg} (A+C) = cot{B; e
donc tgi(r—y) = tg?4Btgi (A-C). r
Si A=jw ona: tg¢ =tg*}B. A :

4481. (By Professor SYLvEsTER, F.R.8.)—Show how to obtain from
its equation those points in a general cubic curve at which the angles be-
tween the four tangents drawn from it to other pointe of the curve taken
two and two together ure equal, and prove that the number of such points
is in general 18.

Solution by W. J. C. Suarp, M.A.
If a lipe (y = mz) be drawn from the origin (a ui):int on the curve) to
cut the cubie, whose equation in Cartesian rectangular coordinates is
a3 + 3622y + 3exy3 + dy + 3ea? + 6fzy + 3gy? + 3ha 4+ 3ky = 0,
theequation (a + 36m + 3em? + dm3) 23+ 3 (¢ + 4fm + gm?) 23+ 3 (h + km) =0
YOL. XLIII. G
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determines the points of intersection, and, if two of these coincide (i.c.,
if the line be\a/tangent),

4 (h +km) (a + 35m + 3em® + dm®) — 8 (¢ + 2fm + gm7)? = 0,
and the equation to the tangents from the origin is
(4dk — 3g%) y' + 4 (3ck + dh— 3fg) zy3+ 6 (20k + 2cA—2f3— og) 23y*
+4 (ak + 30A~3¢f) 2% + (4ah—¢’) x' = 0 ............... 1).
Now, if the tangents are inclined as required, the equations to these referred
1o the bisectors of the angles between corresponding tangents (t.c., to a
system of rectangular coordinates) are y + Az = 0, y—Az = 0, y + ur = 0,
¢y —uz = 0, and (1) must be reducible by an orthogonal transformation to
the form An'+6Cn?! + Ef*=0. Now, writing (1), (a, B, 7, 3, €1fy, 2)4=0,
and putting y = Af+un, z = uf+An, where A?+u? =1, the reduction
will be possible if
Bud+ (a=3v) uA + 3 (3~ B) A%u?— (e—37) A%u—3A¢ = 0,
and —BAY+(a—39) A%u+3(B—3) A%l —(e—~39) Apd + 3t = 0,
from which and the equation A2+ u? = 1 it follows that
(a—¢) [3y (B +3)—2a8—2Be]—4 (B—3)(B+3)? = 0............ (2),
the condition that the tangents from the origin should be inclined as
required.
If Az*+ 3Ba%y + 3Czy?+ Dy? + 3 (Er*+ 2Fzy + Gy?) + 8(Hz + Ky) + L=0
be the rectangular Cartesian equation to any cubic, and if this becomes
64+ 3h2y + ...+ 3 (ha+ ky) = 0,
where the origin is changed to a point (¢, #) on the curve, then
AP+ 3B +3Ct*+ D + 8 (EE?+2Ffn + Gy + 3 (H} +Kn) + L = 0,
and a, b, ¢, d are equal to A, B, C, and D respectively, and independent
of 5 and y, while ¢, f, and g are linear functions of those variables, and A
and ¥ quadratic functions ; hence, when these values of the coefficients
&, B, v, 8, e of (1) are substituted in (2), each will be of the second order
in { and 5, and the equation (2) will me that of a sextic locus on
which the required poiuts must lie—these points being the intersections
of this locus and the cubic, and therefore in general 18 in number.

7782. (By W.J. C. Suanp, M.A.)—If the lines joining any point to
the vertizes of a triangle be similarly divided, prove that the lines joining
the points of division to the mid-points of the corresponding sides are con-
current. If the lines joining any point to the vertices of a tetrahedron
be similarly divided, prove that the lines joining the points of division to
the centroids of the corresponding faces are concurrent.

Solutions by (1) W. E, Hear, M.A.; (2) Rev. D. THoMAs, M.A.

1. Let a, b, ¢ be the mid-points of the sides of the triangle ABC, and
let OA, OB, OC be divided at D, E, F in the ratio of 1:#; then the
centre of gravity of W, W, W, nW, placed at A, B, C, O, will divide
each of the lines Da, Eb, Fc in the ratio of 2 : # + 1, and, since there can
be only one centre of gravity, Da, E, Fc are concurrent.
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In the case of a tetrahedron, 8
suppose equal\Wweights )W (placed (3
at the angular pointsand a weight o
nW at the point O. The centre of
gravity of the system will divide G
the given lines in the ratio of £ [

n+l:3.

2. Otherwise :—Xfa, B, y,8b0 ° D A
the vectors of the vertices of the tetrahedron ABCD measured from the
point O, the vector of the centroid of BCD will be } (6+++3), and the
line joining it to the point on OA will be p = ma (1—2) + 342 (8 + 7 +3),
and the other lines will be p = mB(1—y)+}y (y+3+a), &. At the
point of intersection of these lines,

3m m
s *™ P~ oo
The symmetry of this result shows that the four lines are concurrent.

By a similar method the result for the triangle can be obtained, but in
this case the three lines are evidently those joining the corresponding
vertices of copolar triangles.

=Y =

(a+B+y+3).

7812, (By Professor GeNkse, M.A.)—If CA, CB are semi-conjugate
diameters of an ellipse, and P, Q two points on CA, CB produced such
that AP. BQ = 2CA . CB, prove that BP, AQ intersect on the ellipse.

Solution by W. G. Lax, B.A.; R. KNowLes, B.A. ; and others.

Let CA, CB be taken as oblique
axes of coordinates, and let coordi-
nates of H be z, y, where AQ, BP
intersect in H, so that

BQ.AP = 2.BC. AC.
Let AC, BC = q, 5.

a—z a a
Now = =tq~mse’

by b _ b .
i aials Aalry v X
hence we have

BQ_ vy _ %

4« a-z af, _-.AP-BQ- zy +1_.§.,_’_-l,._y_.
AP z a ab (a=2)(b~y) 6 b—y b a-z
T Th-y b
therefore 2= 2y -0 2y

@209 a0-9) t@-2
whence  ab(6—2)(3—y) = abzy—bz.b(a—2)—ay.a (b—y),
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from which :—:+§ « 1, which is the equation to ellipse referred to con-

jugate diameters) ' Therefore' H(is on'the ellipse of which AC, BC are
conjugate di

4865, 6880, 7312. (By the Eprror.)—Find (1) a general expression
for the Jocus o a point O in the plane of a curve that rolls on a given
straight line, and apply it to the cases of (2) a parabola with O as focus,
(3) a circle with O on the circumference, (4) a rectangular hyperbola, (5)
a lemniscate, (6) a cardioid, (7) the curve »™ = a™cosm8; also show
(8) that if s, be the length of a loop of the O-locusin (7), and s, the length

of the loop of the original curve, then 015-2(% +l):a’.

Solution by Astrose MuxnorApnyiy ; N. SARAR, M.A.; and others.

1. Let 2 = ¢ (p) be the p and r equation Q

of any plane curve QP, referred to any point °
O in the plane of the curve as pole; then, if
the curve rolls on the given line AT, the
locus of the pole is easily found as follows : —
Let Q be the point on the curve which was 4 LA T
initialliy;coinmdent with A. Draw ON perpendicular on AT, and join
OP. t AN=2z, ON=y, OP = r, 8 = arc of the locus of O. Then, re-
garding P as the instantaneous centre, it is easy to see that the tangent
to the curve-locus at O is at right angles to OP ; hence

onro = e = ()= 1+ (£))

But » = ON = gy, therefore ¢ (y) = y’{ 1+ (%)’} , which is the dif-
ferential equation of the required locus.

2. Here, r = -’;—’- , therefore :—f = %, which is the differential equation
to the catenary. [Otherwise proved in Vol. 25, p. 93.]

3. Here r* = 2ap, therefore :—: = (%)‘, which is the differential
equation to the cycloid.
4. Here pr = a? therefore :—f = %; and, since
£ _ing, y= [soan
. e s . . ds a 1
the intrinsic equation to the locus is — = — ———.
“ ¢ 2 (sing)
6. Here r® = a%, therefore %‘ = ("'l)'; hence the intrinsic equation

to the locus is d _ 3?“ (sin ¢)}.

g
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6. In the cardioid, which is the inverse of a parabola with respect to
N qx y\¢ s ps e
== ! — = -——
its focus, we have's3 =/2ap? therefore 7 ( 2a) , and the intrinsic
equation to the locus is ? = 6asin? ¢, or s = 3a (p—=sin ¢ cos ¢), which

is, for its finite part, a curve of the cycloidal kind.
7. In the curve r™ = a™ cos m@, we have r»+1 = g™p, therefore

dz _ (¥\nel
ds ( a ) ’
and the intrinsic equation to the locus of the pole is

:—; = a(l+%) (sin.p)i.

8. The length of a loop of the curve in (7) is easily found to be
1 ‘11 1
= — ) =t - —).
8 a(l+m)r !‘(2+2’”)+l"(1+2m)
But, if 2, be the length of the loop of the original curve, we have
- far(L)er(Led).
2 m n.r 2m * !‘( 2 +2m

Hence it follows that s;s, = 24%» (1 + —l”-‘)

7900. (By R. Tucker, M.A.)—Prove that the diameter of the Bro-
card and Triplicate-Ratio circle which passes through the circaum-centre,
passes also through the orthocentre of the pedal triangle.

Solution by CHARLOTTE ANeas Scorr, B.Sc.

Let O be circumcentre; P or- Y]
thocentre ; K Symmedian point;
H N.P.C.-centre; a, b, ¢ mid- F,
points of E'F, &c.; G, G’ the P ,
centroids of DEF, DEF. G  “F £
is centre of gravity of three equal e £

icles at D’E'F’. When these e

ve translations D'D, E'E, F'F, 3 a4
G’ becomes G, therefore G’'G is e
parallel to translations com- 8 ' c
pounded of D'D, E'E, F'F; .., if we have forces acting at a point
parallel and proportional to @'d, ¢'e, ff, their resultant is parallel to G’G.

Now d’ais equivalent to D’a and @'D’, G'G is therefore parallel to resul-
tant of six forces represented by D'z, E'd, F'¢, and 'DY, ¢/E’, f'F’, acting
at a point. Take them to act at O. D’a, E’4, F¢ are themselves in
equilibrium. The remaining three are completely represented by the six
aD’, D'D, ¢E/, E'E, fF', F'F; i.e., resultant of the two groups (¢, ¢E’,
JF), (D’'D, E’E, F'F) passes through O, and is parallel to G(g? . But we
have shown that the resultant of the group (D'D, E'E, F'F) passes through

N
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0 and is parallel to GG’; therefore the resultant of the group (dD’, ¢E’, fF’)
must also pass through/O and be parallel to GG'.

Now dD’, ¢E’, fF meet in K ; therefore the resultant must pass through
K, i.e., OK is parallel to GG’.

Now OK is the specified diameter; and GG’ is parallel to the line join-
ing the orthocentrs of DEF, D'E'F’; the orthocentre of D'E'F” being O,
this line must therefore be OK—i.e., the specified diamcter passes through
the orthocentre of the pedal triangle.

7816. (By Asparacus.)—PQ is a diameter of a rectangular hyperbola,
and a circle with centre P and radius PQ meets the hyperbola again in
ABC; prove that ABC will be an equilateral friangle.

Solutions by Prof. WoLsTENHOLME, Sc.D.; W. T. Mrrcunir, M.A. ;
and others.

1. Bisect QA in A’and join
OA’; then AQ, BC, being com-
mon chords of a circle and
hyperbola, are equally inclined
to the axes, and OA’ is the
diameter conjugate to chords

el to AQ, hence OA’ will

at right angles to BC. But
AP is parallel to A’O; hence
AP is at right angles to BC,
and similarly BP is at right
angles to CA, and P is the
orthocentre of the triangle
ABC. But P is also the cir-
cumcentre of the triangle
ABC. Hence the triangle
must be equilateral.

2. Otherwise :——rLet zy =
be the equation of the hyper-
bola, (¢m, em-1) the point P,
then the equation of the
circle will be

(x=cm)d+ (y—cm-1)?
d = 4¢% (m3 +m-3).
Let (e, ou-1) be a point where this circle meets the hyperbola again, then
()P (u-1=m-1)? = dm? 4=,

or (u+m) (p—=3m) +(u ' +m-) (u-'~3m-1) = 0;
or, rejectingthe fact or u+m, which gives the point Q, we get for the
points A, B, C, the cubic in x,

3 iz, _o
3= 3mp 3m+~ »
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whence, if m,, mg, m; be the three roots,

my g Hing'= St mpll sl mst = 3m-,
which equations prove that the centroid of the triangle ABC is the point
P; or the centroid coincides with the circum-centre, and the triangle is
equilateral.

[Or, we have also the equation m mamg = — m-1, which proves that P
is the orthocentre of the triangle ABC, so that the orthocentre and
the circum-centre coincide, and the triangle is therefore equilateral.]

Hence, the three equations

my+mgtmy=3m, mIlemilemil = 3m-l, mmmemy = — 1,
must be equivalent to the three,
1 1
—my)2 - Ty —
(mg —mg) ( 1+ m,’m,’) 12 (m + m‘-')’
and the two similar equations ; the proof of which is a rather nice alge-
braical exercise.

7813. (By Professor CocHez.)—Trouver une courbe telle que l’arc
eo:ln;{;té & partir d'un point fixe soit moyenne proportionnelle entre
’ordonnée et le double de 1’abscisse.

Solution by A. Gorbon, M.A.; W. T. MircHELL, M.A.; and others,
The condition gives s—! = Vv ZT;/ put p = :—:, therefore
*(2y - a%) — 2pzy = ¥~ 20y, therefore p = ¥ 4 YW =2,
p*(20y —a%) = 2pzy =y - 20y, ore P = et (oy—a) 75
By the substitutions y = vr, v20+1 =¢§ = ( l+v2?v),

dz _ __ kdt _ ore — —)+ L log VV*EVZ_ const.
i.r -7 therefure —§ log (= y)+2/2108Jy—Jx const.,

or ¢ = (@—yVi(Vy— /2

7716 & 7961. (By J. J. Warkee, M.A., F.R.8.)—Find the condi-
tions that, in the working of the suction pump, the water shall rise in
the suction tube in the second stroke higher than, just as high as, or not
80 high as, it rose in the first stroke.

Solution by the PROPOSER.

Suppose H to be the height of the water barometer in centimetres, & the
height of the bottom of the working barrel above the surface of the water
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in the well ; A, a the sections of the barrel and suction tube in sq. cms. ;
« the length of first stroke which will raise the water 4 cms. in the tube,
y the length of second’stroke necessary to-raise it A cms. higher; i.c., to
a total height of 24 cms., 24 being not greater than 4. The following
conditions hold : [Arx+a (b—h)] (H=A) = abH,
[Ay +a (6—2A)] (H—2A) = a (6—A) (H-2),

or(l) Ar=ah[l145/(H=-4)], Ay=ah(1+(—1)/H--24)] (2).
Hence y will be > =or <2, a8 (b—A)(A—H) is > = or < 5(H-254),
viz., 88 h i8 > = or < H—%; or, what is the same thing, the two strokes
of the piston being, as usual, of the same length (a), the rise of water in
the suction tube produced by the second will be < = or > that resulting
from the first stroke as 4 is >=or <H-5. Put 4 = H-b+4, then,
from (1), b[Aa—2a (H —6)] = k[Aa +a (26—k)], 8o that & must be of the
same affection as Aa— 2a (H~$), since, if positive, it must be <¥.

3733. (By R. Tucker, M.A.)—Triangles are inscribed in a circle (O),
P is the orthocentre, and Q the inscribed centre; prove that the area of
the triangle OPQ varies as sin § (A—B) sin § (B—C) sin § (C—A).

Solution by Rev. T. C. Siumoxs, M.A.

On OP take OG = §OP; A
then G is the centre of mean
position of the points A, B, C ;
and we have

A0PQ = 3AGPQ
=} (AAPQ + ABPQ + ACPQ),
each triangle being considered
positive or negative according
as it lies on one side or the other of PQ.
Now, £PAQ =/BAQ- /BAP = }A—(90°-B) = } (B—C);
AP =ccos A cosecC = 2Rcos A, AQ = rcosec }A.
Hence }AAPQ = }AP. AQsin PAQ = }Rrcos A cosec $A sin § (B—C)
= 2R?cos A sin { B sin {C sin } (B—C)
= 2R?[cos A sin? { B sin {C cos §C—cos A sin? {C sin § B cos { B]
= R?[sin? {B sin C c0s A —sin®*{Csin B cos A].
Adding this and two similar expressions, we obtain
R? [8in? { B sin (C — A) +siu? }C sin (A — B) +sin® } A sin (B—C)]
= }R?[sin (C—A) +sin (A - B) +8in (B—C) +cos (C + A) sin (C—A)
+cos (A +B)sin (A—B) +cos (B+C)sin (B-C)]
= }R?[sin (C~ A) +8in (A~ B) +sin (B—C)]
= R3[8in 4 (C—A) cos } (C—A)—sin ;(C—A) cos } (C+A-2B)]
= —2R%sin } (A-B) sin} (B—()sinl (C-A), .
the expression for the arca of OPQ.
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7845. (By the FaTeER oF THE FIFTEEN YoUNG LADIES.)—

From th:l Lancashire Witches, the direst
ivi
The mosteasngemu.s twelve of them all
Are bidden in sixes, repeating no tive,
For a year, to the Monthly Ball.

Fear leaves the arrangement to them ; so

they use 3
The lot, far better than fighting,
To settle the turn of each heauty to choose
Her party, and do the inviting :
Provided tuat all, or there would have

been fights
Shall dazzle and kill on the first two
nights ;

And, as odd’s ill in witchery, every one
Shall appear with another times even or
uone, :

K'’s turn is the first; and provident K
From every one, B, of her train,
Insist: on a promise, that'B on her day
8hall choose her good K back in;
And every month the enchanting inviter
B»quirei of her bevy thus all to requite
er.

Now, prove by a dozen of sextuplets
That, no matter who the first turn gets
And no matter how the turns of the sets
We ll&c;, ht'he chosen will pay their
ebts,

Solution by the PROPOSER.
This question is a riddle which has been found worthy of the steel of

bright and sharp bodkins.
There are only two solutions.
faces of the regular 12-edron.

collaterals, @ with its collaterals, &c.

Let A and 4, B and b, &c. be opposite
For one solution, write A with its

For the second, write A with the

collaterals of @, @ with the collaterals of A, &c.

7828. (By AsOTosm MuxHOPADHYAY.)—Prove that the integral of

Yty o

prct 3"ty =0
i _(A_3.4 _:?'_) 4 ( 3 _3_) —Boat
is gy (z 55 55 Ao 4 "+6cd+260’ Be .

[In GreGORY’S Ezamples (1846), p. 345, the integral is given to be

y = (z}— iﬁ) Atm’+
be

(g ]

Solutions by (1) RoBerT Rawson, F.R.A.8.; (2) Prof. WiLLIAMsON, F.R.8.

(1) Assume

Py = j‘tl.w [T S ¢ )

where P, Q are given functions of z; A, # constant quantities. The
definite integral (1) can be evaluated when (n) is a positive integer.
Differentiate (1) with respect to (z), and the result with respect to z, then

dPy d! A

do +;Q = J_.'Q‘ (S L7 RN ¢ ) §
4 (dPy, dQ) _dQ * —
dag{ dz Tdz )~ dx J_A'Q' (B=e)Bat............ weeren(3),

VOL. XLIII.

H
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(1)x » Q_(3) gived

Q dPy  dQ dQ "
;.sp E;J'...a —j_ (Rl ).
Integrate (9) by parts, then
(zuz)%'!
ap . @440,
VL of e L8
from (4), which reduoesto
"+{2P'+(zu+2) }y+{-—+(2»+2)§8—'-1¥%-M(Q’)'}y

The evaluation of the definite mtegml (1) depends, therefore, upon the
solution of (5). And the differential equation (5) depends upon the
evaluation of the definite integral (1). Equation (1) is only a putlcuh.r
solution of (5), but equation (6) is not altered by changing the sign of Q ;
hence another particular solution of (5) is

Py = ]” O N L ().

Several important and historical differential equations are included in (6),
whose geneml solution is represented by (1) and (6).

If P--;,Q-Bu, h =1, n =2, then (5) becomes

which is the equation in the Txectlon, and whose general solution is the
sum of the two particular solutions (1) and (6), each multiplied by an
arbitrary constant ; then, by integration,

y - le eseatt (1 _ gy gy

-ﬂ(:‘ 31‘ 3 ) Bcz*+A:B( +8_:r*+ M ).'m*,from(l),

P) Bo ' 268 e 250
and y-zjl e=vextt (1 _ gy
-1
__A—B(z, 34 _a_) —8ezt _A—B 3, 3 ) sext
=" + o toea) +=3 ("‘E*W- , from

(6). The sum of these integrals gives the general mtegral in the question,
which i8 quite correct, and the integral in GREGORY’S Ezamples is in
error. It may be stated that the latter part of the question in GurEGoRY’S
Examples is correct when (r) is a positive integer.

If P = 2P, Q = az2", then (5) becomes
s/'+2p+(2”:l!r+l.y'+ {p|p+si:+l!|'—h’a*r’.t""}y=0...(8),
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whose general integral is

oPy = j‘_. {c.“'t.q-c,c-u"t} (M=)t oo o),

which is always integrable when () i8 a positive integer. In equations
(8) and (9), put, for (») and (r), p=0and (2n+1)r+1 = 0, then

y = J" Tl WL L (10)
-A
_inee
is the general solution of y” = A%a%3z M+l gy .. iivieiiiiiininnnes «.(11).
In (8) and (9) substitute the values p = —1 and (25 +1) r+1 = 0, then
y=- z"' (ot s 00"t} (Matrd ... vee(12)
-A

n
is the general solution of y” = Aa%r3z” 1. y........... rereressrassenns(18).
Equations (11) and (13) are known as Ricoarr’s.

In (8) and (9), put r = 1 and p = — n~1, then

y - "””Jt. {06 40— 09} (Bl .o (14)

is the general solution of GaskiN’s differential equation, viz.,

Y Mty = H:’Llly ....... reeeeesesrasssens a8).

dz .
In (8)and (9) put r =1, 4 =4/—1, A= 1,and 2p+2n+1 = 0, then
""‘"Jl {eetV ootV =1} (1—opdt .........(16)
-1
is th i Py 1y, (i (1 _o.......
is the general solution of itz et {l }y 0 (1),
which is the well-known equation of Besser’s functions.

In (8) and (9), put p+2s+1 =10 and 2p +(2n+1)r+1 = 2m, from
which p = -~ 2n—1 a.ndr-2—'”+—4"+l, then

2n +1
y = ginel j" {1 o= aTE) (Bondt ... (18)
-h
d(m+n)
is the general solution of %;JL" ‘:—Z = Matis Wy — (19).
z

See BoovLr’s Differential Equations, p. 458, Ex. 4.

(2) To find the integral of %’ -oz~ty = 0, multiply by 23, then
the expression is readily transformed into

{-£(-4-1)-o) =0

Let z =2, and it is easily scen that z 4 =
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Hence we get 2D (zD—5)—a%?]y = 0,
where D stands for {-, and @ = 5¢.

Now, by a transformation analogous to that of BooLe [Differential
Equations, p. 418], we assume y = (zD—1)(zD-3) «,
and the transformed equation is readily seen to give

[2D (zD—1)—a%2] u = 0, hence u = Ae** + Be-*,
Therefore y = (zD—1)(zZD—3)u = (22D3—3:D+3) u
= Ae¢®* [a%3—3az + 3] + Be-42 [a%3 + 3az + 3].

This agrees with the answer given by the Proposer. I may add that
the method can be readily applied to RiccaTr’s equation when written in

dly
the f¢ ™y = 0.
e form +az™y
- [The solution of all differential equations of the form

4in
@ e \? “axi (n.ntl—m.m+1)2-3
zdz"i(Zn:l;l) g @nxi) jy=o,

with special reference to the particular case here mentioned—the incom-
pleteness of GrEGORY’S solution, —and the deduction of the true integral,
will be found fully developed in Dr. CtrTis’ paper, published in the Cam-
bridge and Dublin Mathematical Journal for November, 1854.]

7819, (By R. Tucker, M.A.)—AD, BE, CF are the perpendiculars
from the angles on the sides of ABC : BD’=CD, CE'=AE, BF'=AF are
taken on the same sides ; provethat AD’, BE’, CF' pass through & point (=),
and that the triangle D'E'F' = ADEF. Also, if perpendiculars to the
sides through D, E’, F’ intersect in #’, then this point lies on the line
through the centroid and circumcentre of ABC.

Solutions by (1) Rev. D. Tuomas, M.A.; (2) Rev. T. C. Smumons, M.A.

If a, B, ¥ be respectively the vectors of
A, B, C measured from a point O, the
vectors a, 8, 9’ of D/, E', F’ will be respec-
tively

ccos BB+5cosCy acos Cy+ccos Aa
a ’ [ ’
bcosAa+acos BB
—
¢
and p the vector of the point of intersection of AD’ and BE’

= (1—-z)a+Z (¢BcosB+bycosC) = (1—y) B+ "Z’—(a-ycosC+cacosA).
a

2n3

i and p =2 (bccos Aa+ca cos BA+abcos Cy),

Hence « =

— -
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and we ses, from the symmetry of the value of p, that AD’, BE', CF’ are
concurrent.\/\/Also
2 area D'E'F'=TV (8'y +7a’ + a’8’) =2 cos A cos B cosC. TV (By + ya + aB)
= 408 A cos B cos C area ABC = 2 area DEF,
therefore area D’E'FY = area DEF.
The vectors of O,, #/, and centroid are respectively
(4 8in A sin B sin C) -1 [a &in 2A + Bsin 2B +v8in 2C] ......... (1),
(2sin A sin B sin C)-! [(sin 2A —2sin A cos B cos C) a
+ (sin 2B — 2 8in B cos A cos C) B + (sin 2C —2 sin C cos A cos B) y] ...(2)
F(a+BHy)eereiiiiiiiiiiiiniiiinnn, veeee(3)5
and because (1)—(2) = [(2) —(3)] x scalar, O, »’, and centroid are on the
same right line,

2. Otherwise :—Since AD, BE, CF are concurrent, therefore
AE.CD.BF = EC.DB.FA; thatis, CE. BD".A¥F = AE’.CD’. BF';
therefore AD’, BE’, CF’ are concurrent. Again, let

CD or BD’=17.BC; AE or CE'=m.AC; AF = BFV'=1#.AB.
Then it can easily be shown that the triangles DEF, D’E'F are each to
the triangle ABC in the ratio of (1—?) (1 —m) (1 —n) + lmn to unity, whence
ADEF = AD'E'F’.

Lastly, it is evident that «’ will be the orthocentre of the triangle (L)
formed by drawing through A, B, Cparallelsto B!", CA, AB respectively :
and that the circumcentre of ABC will coincide with O, the orthocentre of
the triangle (M) formed by joining the mid-points of AB, BC, CA. But
G, the centroid of ABC, isthe centre of similitude of (L) and (M) ; therefore
«'GO is a straight line.

[From this second solution, it will be seen that the first two parts of the
Question hold when AD, BE, CF are any three concurrent lines drawn
from A, B, C to meet the opposite sides.]

7833. (By Rev. T. C. Simmons, M.A.)—In a plane triangle prove that
the in-centre, the nine-point centre, the centroid of the perimeter, and
the point midway between the in-centre and the circum-centre, lie at the
four corners of a parallelogram.

Solution by Dr. Curmis ; B. HANUMANTA Rau, M.A. ; and others.

If two similar triangles, M, N, the ratio of whose corresponding sides
is m : n, be situated in a plane, a being the angle at which any corres-
ponding pair of sides are inclined, and any two points, C, I, being assumed,
two other ;ioints, ¢, i, be found, geometrically related to N in the same
way a8 C, I are to M ; then obviously the line CI is inclined to ¢i at the
angle a, and CI : ¢i ::m : #n. As a particular case, if M be any triangle
and N the triangle obtained by joining the middle points of the sides of M,
m:n::2:1,a=w, Clisparallel to ic, and CI = 2ic; therefore, if CI be bi-
sected in L, it follows that L, I, ¢, ¢ are the corners of a parallelogram. This
includes the case in which C, I are the circum-centre and in-centre of M,
and ¢, ¢ the circum-centre and in-centre of N, but the circle circumscrib-
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ing N is the nine-point. circle of M, while the centroid of the perimeter of
the triangle M/is/\the in-centre of theltriangle N.

[Let C be the circum-centre, I the in- g,
centte, N the mid-centre, G the centroid
of the triangle, and g the centroid of its
perimeter ; then, since G is the centre of
similitude of the original triangle and that
formed by joining the mid-points of the
sides, and ¢ is the in-centre of the latter, 1
therefore GI =2Gyg, also GC=2GN, there-
fore CI = 2Ny, and is parallel to Ng ; hence, if CI be bisected in L, LINg
is a parallelogram.]

7827. (By B. HANUMANTA Rav, M.A.)—Show that the value of z
from the equation z°*! = z+1 is 1-4414 nearly.

Solution by D. BippLs. .
z**1 =z + 1, therefore (z+1) (log z) = log (¢ +1).
Now loge (z+1) = a—}2%+ §2*- ¢ 24 +..,,
and log,z = (z=1)—=} (z=1)2+ % (z—1)p—...

By carrying each of these series to an indefinite number of terms and
utilising the results in the given equation, we could with immense labour
obtain the approximate value of z. But the Tables of Logarithms enable
us readily to arrive step by step at the following approximate values :—
1<z<2; l'4<o<l'6; l44<z<146; 1'44l<2<1'442; and finally
x = 1°4414 nearly.

7824. (By A. H. Curtis, LL.D, D.Sc. Suggested by Quest. 7771.)
—Given any number of points in space A, B, C, D, &c., find the locus
of a point P which moves so that the length of the resultant of the
translutions /PA, wPB, sPC, pPD, &c. is constant, /, m, n, p, &c. being
given numbers.

Solution by B. HANUMANTA Rau, M.A.; N. SBarxaRr, M.A. ; and others.

Divide AB in a such that A
Aa:aB=m:l %
Then step

!.Pa=l(PA+Aa) =1.PA+1.Ag,
and step m. Pa = m . PB +m . Ba,
but {.Aa+m.BA =0, ®
therefore (I+m) Pa = !.PA+m.PB. B
Again, take B in aC such that ¢
ab:C=n:m+l,
((+m+n)Pb=(l+m)Pa+n.PC=! ,PA+m.PB+n.PC.
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Similarly for, all the translations.  Thus, if G is the centre of gravity of
weights [W', mW, »W' .. “placed'at-A, B, C, D, then PG ({+m+n+...)
= resultant of all the translations. The locus of P is therefore a circle
with centre G.

7928. (By Professor WoLsTeNHOLME, M.A., Sc.D.)—Prove that the
polar circleof a triangle ABCintersects the circum-circle and the nine-point
circle, each at the angle cos-! (—cos A cos Bcos C)}.

Solution by D. Epwarpes; Rev. T. C. SiMmons, M.A. ; and others.
The radius of the polar circle is 2R (—cos A cos Bcos C)i, and the
distance between the orthocentre and circumcentre is
R(1—-8cos A cosBcosC) ;
1—8cos Acos BcosC—1+4cosA cosBcosC
therefore 0086 = 4 (—cos A cos B cos C)t
= (—cos A cos BcosC)i.
The distance between the orthocentre and the nine-point centre is
3R (1-8cosA cos Beos C)i ;
—4cosAcosBcosC+4—%(1-8cosA cos Bros C)
2 (—cos A cos B cos C)i
= (—cos A cos Bcos C)i,

Since cos A cos B cos C is negative, we always obtain real values for 6 and
¢, so that the circles always intersect.

hence cos¢p =

5708. (By the Eprror.)—Parallel to the base BC of a triangle ABC
draw a straight line DE, cutting the sides AB, AC in D, E, such that the
"squares on BD and CE shall be together equal to the square on DE.

Solution by Rev. T. C. Siumons, M.A.

Draw AT parallel to BCand of A
. length equal to that of the hypo- F
tenuse of a right-angled triangle

whose sides are AB, AC. Then 0 £
FC will meet AB in the required
pointD. For,drawing DE parallel B ¢

to BC, we have
DB?: AB®* = CE?: CA? = DE3: AF3,
. CE2+DB?: DE? = CA3+ AB?: AF? or CE?+DB?= DES.
Again, if FB be joined and produced to meet AC in E’, a second parallel
D’E’ can be drawn satisfying the same condition.
[For the ProrosEer’s solution of this Question, see Vol. xxxiii., p. 89.]
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7724, (By B. H.. Rav, M.A.) —Given two sides of a triangle in
position, and the 'perimeter, prove the locus of the mid-point of the
third side is an hyperbola.

Solution by R. KnowLrs, B.A. ; Professor Marz, M.A.; and others.

Take AB, BC as axes, and put Pm =y, B = 2, £ABC = w, peri-
meter = 2¢; then AB = 2y, BC = 2z, and, from triangle ABC,
ACi=4 (23 +y*— 22y cosw) = 4 (c—2—y)?;
hence the locus is the hyperbola )
2(1+cosw)zy=2¢c(zx+y)+c?=0.

7913. (By AsOrosH MuxHorApHYAY.)—Tangents are drawn to a
parabola, 8o that the intercepts they make on the directrix are in arith-
metical progression ; prove that the trigonometrical tangents of double
the angles of inclination of the tangents to the directrix form a harmonic
progression.

Solution by R. Kxowres, B.A.; W. J. GREENSTREET, B.A.; and others.

The equation to the tangent at angle a to the axis is

wcosla+ysinacosa+m = 0,
and this meets the directrix z + 2m = 0, and makes intercept
—m + 2mcosta
sinacosa
hence cot 2a, cot 2a’, cot 2a” are in arithmetical progression, and tan 2,
tan 24/, tan 2a” in harmonic progression.

= 2m cot 2a;

7793. (By W. J. McCLeLLAND, B.A.)—Prove that the angles at the
centre of the circum-circle of a spherieal triangle subtended by the oppo-
site arcs are respectively double of the angles of the chordal triangle.

Solution by B. HANUMANTA Ravu, M.A.; the PRoPoSER; and others.
Let ABC be the triangle, and O the centre

of the ciroum-circle, then £ OAB=S—C, g0
and  cos AOX =cos }¢sin (S—C)...... (1). 3
‘We have, if C’ be the angle of the chordal @
triangle at C,
l1+cosc—cosa—cosd
0080’ = 4 8in }a sin 45 A £ 8
= 6 (S=A)C08J¢ .ovunrnna(2). & x 3

Equate (1) and (2), hence cos AOX = cos(’, therefore £AOB = 2C’;
similarly £ BOC = 2A’, and £ COA = 2B".
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7931. (By Professor WoLsTENHOLME, M.A., Sc.D.)—If the sides of a
spherical triangle\ ABObebisected in'g, 5, ¢, and a, B, 7y be the arcs bs,
ca, ab, and E the spherical excess, prove that

cosa LcosB -0y cos *E,
cosjs cos}d cosjo
Solution by Professor TaANNER, M.A.; J. McDoweLL, M.A. ; and others.
From the spherical triangle AB’C’ (where B’, C’ are points of bisection),
cosa = o8 }b cos {¢ +8in }J sin ¢ cos A = cos {E cos {a.
[ToouunTER’s Spherical Trigonometry, Chap. viii., Ex. 14.]

7960. (By the late Professor CLirrorp, F.R.8.)—Assuming that
¢ (n) = (n+1)2a+2(n+1f) 2+ ngwi, and 6] (z) = 2™,
the summation extending from # = —a to # = + o, find expressions for
¢/ (# + tpwi + §ga) in the two forms A9 (z + B) and C6] ().

\

Solution by Professor Lroyp TANNER, M.A,
The general terms of 6/ (z + {hxi +4ga), A8 (a+B), C6] (v) are
¢| n+3f)2a+2(n+1f)(z+ towi + dga) + ngwi |,
e|logA+n*a+2n(z+B) |,

and ¢ |logC+ (n+4r)2a+2 (n+}r) 2+ nswi | respectively [e | z | for e*].
These are equal for all values of n (and, thercfore, the 6 functions are
equal), if 2B = (f+¢q)a+ (p+g)wi, 4logA = fla+4fz+2f (pxi+qa),
r=f+q, 8=p+g, 4logC = —ga*—49z + 2fpxi. These seem to be the
simplest forms, but there are an infinite number of solutions.

7923. (By Professor Crorron, F.R.8.)—Show that no circle can meet
any given closed convex contour in more than two points, if its radius be
greater than the greatest or less than the least radius of curvature of the
contour.

Solution by Rev. T. C. Siumons, M.A.

Let P, Q, R be three successive points
common to the contour and a circle which
meets it more than twice.

Then at Q the curves either do, or do
not, cross.

If they cross, then, of the two inter-
cepted areas, one such as PQ lies wholly
within, and the other QR wholly without,
the circle.

Move the circle in its plane so as to

VOL. XLIII. I
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oontinuously diminish the area PQ, P and Q thereby approaching each
other. The/area/will finally vanish, (and P and Q coalesce at some point
P’ between P and Q. The circle will now here lie wholly within the con-
tour, showing that at P’ the length of the radius p of curvature is >r.
In a similar way, the circle may be moved so as to make Q and R coalesce
at a point Q' whose radius of curvature will be <r.

If the curves do not croes at Q, then either both the areas lie within,
or both without, the circle. In the first case, it will be evident, by the
same method of proof, that for points to the ns t and left p is >r, while
at Q itself p is <r; and vice versd in the second case.

Hence, in order that a circle may meet the contour in three points, its
radius must be intermediate between the greatest and least values of p.

8001. (By Professor Lroyp Tanner, M.A.)—[Suggested by Mr.
‘WavLker’ssolution of Quest. 4516, Vol. xli., p. 89.]—In a spherical triangle,
ve that, if 3 sides are acute, 2 anglesareacute; 1f1side 1s acute and 1 side
18 not acute, 1 angle is obtuse and 2 are acute ; if 2 sides are obtuse and
1 side is acute, 1 angle is obtuse ; if 2 sides are obtuse and the other is not
acute, all the angles are obtuse. [The converse group of propositions may be
written down by interchanging ‘¢ angle’’ with “side,”” and ‘‘acute ” with
¢‘ obtuse,” and may be proved from the original group by a purely logical
process, or by using polar triangle.]

Solution by ExiLy PerrIN.

Let a, 3, ¢, and therefore A, B, C, be in descending order of magnitude ;

then, by Narme’s analogy, tanA—;B - 2‘%——(—” (“:: cot—;—; and, as
a

co8 } (a—B) and cos }¢ are essentially positive, tan } A+B§a.ndcos-} (a+8)

have the same sign.

Case 1.—1f a, b, ¢ are all acute, cos}(a+d) and cos } (a+¢) are both
positive, 8o therefore tan} (A+B), tan}(A+C) are also positive,
A+B < xand A+C < x; therefore the two smaller angles, B, C, are
acute.

Case II.—1f a { }x, and , ¢ are each < }, then cosa is negative, cos 3,
coso are positive; from cosas = cosdcosc+sinbsinocos A, cos A is
negative, therefore A is obtuse. Similarly, from cosb=cosc cos g +sine
sina cos B and cos c=cos a cos b + sin 4 sin 4 cos C, cos B, cos C are positive ;
therefore B, C are acute.

Case III.—a, b are both>}wrand ¢ < }x; therefore cos} (s+3) is
negative, therefore tan (A + B) is positive, therefore A+B > x, there-
fore A is obtuse.

Case IV.—a, b both > }» and ¢ 4, cos} (e +5) and cos} (+¢) are
each negative ; therefore A +B > x and B + C > =, as above; therefore A,

cos c—cosa cos b . .
B at least are obtuse, and cos C = —smemnd _ —° negative quantity,
a 81n
28 co8 @, cos b, cos ¢ are all negative, therefore C is also obtuse.
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7954, (By W.J. C. Smare, M.A.)—In a triangle ABC, ifp,bo the
perpendicular from A upon BO,# the radius of the mlcnbed and

r, that of the escribed circle touching BO; show that (l) — - 'L - -2—;

(2) the same equation holds if p, be the perpendicular from the verbe'x A
of a tetrahedron upon the opposite face, and r the radius of the inscribed
sphere, and r, that of the sphere touching BCD and the other faces pro-
duced. [This may be easily proved without assuming the values of r, &c.]

Solution by W. J. GRRENSTRERT, B.A.; G. G. SToRR, B.A.; and others.
1 s—a a a 2

1
—_—— — = —_——— - - —— =
r

8
n 8- 8 8 tap, o,

6413 & 7151, (By the Eprror.)—(6413.) A coin of radius r is thrown
at random (every possible position being supposed to be equally pro-
bable) upon a rimmed table whose top is a regular hexagon of in -radius 4 ;
show that, if p, be the probability of the coin’s resting on n of the tri-
angles into which the top of the table is divided by its diagonals, then
#3 = 0 (always) ; and (1), when r < }a, then we have

- (a=3r = 2(2a—6r)r -
h (a )3’ s (a-r) ° # (a=n?*
I L 22RO 2% P o
(a—r)2 ' s = (a=ry ’
(2)whenr-§¢; then p=0, ps=14, p3=1%,
2= % (1—3=+/3) = -0233 = Jg nearly,
P = 47 ~/3 = "2267 = } nearly;

(38) when r > }s and < §q, then p, = 0,

J(:—;’Jl’, Q——?}%ﬁ—_) and p,, g 88 in (1);

4) when r=4a, then p, =p;=p3 =p; =0, p=1—}xv8 =4
( ) =}r/3=3%; ( ’5)whenr> }:z and < 2(2— 4/3);,58, < ¥, that
S aﬁ}a and 5 Ha, then (putting &, for a—r), ps = 1—2¢; 21 P2 I3, 25
P = V3 (—-—1) + «/3( s sec'l-r—) ok
{6) when » > f:a, the coin must rest on all six of the triangles ;
(7) if the table be rimless, the probabilities in (1), and the like in other
cases, will be . . "
p,=§9—3}1. pa= 0 (20=3r)% py=_
r’( /3 x34/3

n=5(1-Fn) n=Tg
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(7161.) A coin is thrown at random upon a plane which is divided
into equilateral triangles by three systems of parallel lines; find the
respective probabilities-of 'the coin’s resting on 0, 1, 2, 3, 4, 6, 6 of the
triangles.

Solutions of (6413) by the Proroser; (7161) by D. BmopLe.

(6413.) Around the centre O of the top ABCDEF of the table, draw
a circle RTS of radius r, and draw tangents thereto parallel to the
diagonals of the hexagon, and GH parallel to AB at a distance r there-
from.

Then, confining our attention, as involving all possible variations, to
the several probabilities while the coin’s centre takes every permissible
position on the triangle AOB, that is to say, while it moves over the tri-
angle OGH, we see at once that there is no position in which the coin can
rest on b triangles, and that the respective probabilities of resting on 1, 2,
3, 4, 6 triangles will be the several ratios to the triangle OGH of the
following areas: ALMQ, Trapezoids GLQN + MHPQ = 2 Trap. GLQN,
AQNP, Mixtilinear triangles NTR + TPS = 2ANTR, Sector ORS.

(1) Now the equilateral triangles in the figure are to each other as the
squares of their perpendiculars ; hence we have
o= Qv: _ (a=3r)? _ GOH - (LMQ +20NP)
1TO0VE T ey P GOH
= OV —(QV2+20T?) _ (a—1)?—[(a~—8r)2+2r%) _ 2(2a—br)r
ov: (a—r)? (a—r) "’
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QB _ .~ ~(1—ix/3)92 _ixv8rt
P Tovar (a=%)? &e (a—r)7 ’ Ps (a=r3’
and the sum of these five fractions is, of course, unity.

(2) When r = }a (as shown on the triangle OAF), the point Q coin-
cides with V, the p,-triangle LMQ vanishes, and then ‘and thereafter the
coin cannot rest on one triangle, but, with stated probabilities, must rest on
3, 8, 4, or 6 triangles.

.(3) When r > }a, the limit-line GH crosses the p,-triangle NQP at a
distance (3r—a) inside its vertex (as shown on the triangle OFE), the
values of p, ps Temain unchanged, their sum being 72 / (6—r)3, and the
values of p,, p; will be as hereunder :—

o 2aLHP _ 2TV? _ 2(a—2r)*
AOGH OV (a—r)* ’
LMNP _ QT?—-QV? _ (a—2r)(4r—a)
AOGH ov2 @—rp

(4) When # = }a, the limit-line GH or NP touches the arc STR
(a8 shown on the triangle OED), the values of p,, p, vanish, and the coin
can only rest on either four or six triangles, the probabilities of which are

24 = 1—}x+/3 = 0932 = % nearly,
P = }x+/8 = -9068 = 3§ nearly.

(6) When r > }a, the limit-line GH will cut the arc RS in two points
X, sRag, as shown on the triangle OCD) until it has moved up to the
chord RS, which will take place when r+ QY = a, or r+1r+/8 = q, that

is to say, when r = 2 (2— +/3) 6 = 6364 = ;4 nearly. So long as ris
between these limits, we have )

« Space RGZ o= AOYZ + sector ORZ

Py

h-

24 which (puttings—r = a;)

,a0GY ’ A0GY
3 i x EAYS
(6) When G moves up to R, then
RIS SN S =1
860 o e o 860 8 73 and pg=1.

(7) I the coin be thrown upon & rimless table whose top is a
hexagon of in-radius 4, one half of the coin may rest over the edge of the
table, and the probabilities will be obtained by putting, throughout, in
the foregoing results, (& +r) in place of a.

(7161,) Let 4 =side of triangle, and # = radius of coin. Then, as
there will be no possibility of the coin’s resting on 0 triangle, unless the
plane (or that portion of it which is scored? be limited, we have p, = 0.

Moreover, it is impossible for any -circular disc to rest on five triangles,

ed as in the question, without including the apex of a sixth; for all
that the disc covers must lie on one side of a line tangential to it, and no
such line, however limited, can be drawn between the first and fifth tri-
angles, in the case before us, without crossing a sixth, unless we take a
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series of five in a row, when the disc could not possibly extend to the re-
quired limits without éncompassing other, triangles, therefore p; = 0.

There is a possibility with regus to'each of the other sets of triangles
named, but only within certain limits. Thus, for one triangle, the disc
must not ex in radius that of the inscribed circle, or one-third of the
height of the triangle = }4; for 2 and 3 triangles, r must not exceed 14 ;
for 4 triangles, r must not exceed $4; and for 6 triangles, r must not
exceed 5. Indeed, toinsure a coin resting on no more than on 6 triangles,
r must not exceed }A.

If r < 35, Fig. 1 will repre-
senttheseveralspacesin which
the centre of the coin can lie
in order to cover 1, 2, 3, 4, 6
triangles respectively. The
size of the coin on the
occasion is apparent from the
fact that the spaces marked

6) are each exactly a sixth of
area. 2 2

The space marked (1) will '

correspond with the triangle

LMQ in the foregoing, and,
a8 before, we shall obtein \/:\’/ e \3ﬁ\/
f= (0—2;/31'[’. -
@

/\

Fig. 1.
Again, the area of each trapezoidal space marked (2) is
[(av/8—4r)3—(av/3-61)%] 43,

3[(av/8—4r)3—(av/3—6r)7] _ 12r (a+/3—5r)
3a% 3a? ’

provided (a,/8—6r) have a positive value.

Aud here we may observe that, in regard to probabilities, no term
whose value is below zero is counted ; in other words, changes of sign are
not allowed. Thus, in the foregoing equation, if 6r > a+/3, then
(a+/3—6r) is reckoned as 0 ; and if 4r > a+/3, then the whole becomes
nil; for the spaces cease to be trapezoidal when the coin is larger than the
inscribed circle, and finally vanish when r > $+/3 a.

The probability as to 3 triangles is the ratio borne to the total area
of the given triangle by the sum of,the triangular spaces marked (3).
‘When, however, 6r = a+/3, these spuces meet in the centre of the tri-
angle; and when 6r > a+/3, they overlap, and the portions overlapping
cease to belong to the three-triangle spaces, and become part of the four-
triangle territory (see Fig. 2). Now the area of any one of these smaller
triangles is) $72+/3, and of the central overlapping portion, when it exists,
(6r—a+/3)3/44/3,

- - 2./3 _ - b}
therefore p, = 3147° gs:/aa./s)q L@ L 3[4 (g:2 a+/3)%],

therefore p, =
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‘When the coin rests on 4 triangles, its centre, except under the circum-
stances just/\alluded)to) isCsituated) on one of the spaces marked (4).
The area of this space is 2r3(2—~4x+/3) /4+/3. Butaccount must be taken
of the central space which developes when 6r > a+/3. In Fig. 2 it is
seen in a partially developed condition ; in Fig. 8, when the two-triangle
and three-triangle spaces are wholly eliminated. The area of the central

Fig. 8.

space when it forms part of the four-triangle territory, we have seen to
be (6r—&+/3)2/44/3. Therefore

6r3(2—}x+/3) + (6r—a+/3)3 + a*v/3 _ 6r3(2—}x+/3) + (6r—a /3
43 4 3a !

Py=

The six-triangle space, which is found at each corner of the triangle,
is exactly one-sixth the area of the coin. The three spaces together,
therefore, equal onevhalf the coin. Therefore

@3 _ e/
4 323
Consequently, placing the several probabilities side by side, we find go=0,
(a+/3—6r)3 25 3[(a+/3—4r)3—(av/3—6r)3]
.3 = L]

Pc"%:"'

H=—7s 3a3
3[4r3— (6r—a+/3)%] 672 (2—4x+/3) + (6r—a+/3)?
Py = 343 y Pg™= 3a3 4
2rix /3
2=0, ps= 33

And, if wediscard all those compound terms which in a given instance
have no real value (a rule to be always observed in the estimation of prob-
abilities), then 3p = 1, as it ought to be.

It is assumed, in this solution, that the coin may be any size, provided
r < $A.

‘When 47 > a+/3, the four-triangle territory declines in area; but,
together with the six-triangle spaces, it makes up the whole given tri-

3a2—2r3x /3 Consequently the

angle. Therefore, when 4r > a4/3, p, = 34

equation to suit all cases should be

673 (2—{w ~/3) + (6r—a+/3)3—~12r (4r—a+/3)
o= 343
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7945, (By W.J. McCreLLAND, B.A.)—If through any point P on the
surface of a sphere three great circles be-drawn cutting the sides of a tri-
angle at angles X, Y, Z; X, Y,, Z,; X,, Y,, Z;; prove the determinant
relation cosX, cosY, cosZ | =0.

cos X;, cosY,, cosZ,
co8 X, cos Y, cosZg

Solution by Colonel CLarxe, C.B., F.R.8.
From P draw perpendiculars, as in the figure, on the
sides BC, CA, AB of the triangle; and, denoting by a
the angle made by Pa with an arbitrary ini line
Pq; 0 the angle ¢Pp, determining the t circle
through P which cuts the sides at angles X, Y, Z, we
have cos X = sin (§—a) cos Pa, with similar equations
for each of the other two great circles which are deter-
mined by 6, and 6,.
Put now cosacos Pa = 4, —sinacosPa =19,
then the three equations for X, X,, X, are transformed
to %Bin@+vcosd =cosX, usin 6, +vcosf; = cos X,,
4 8in 63+ v cos 8, = cos X,.
From these eliminate u, v, and we get the first of the following set of
equations, the second and third being provided by the sides C, AB :
cos X sin (63— 6,) + cos X, sin (8—6,) + cos X, 8in (6, —6) = 0,
cos Y sin (6;—6,) +cos Y, sin (0 —0,) + cos Y, 8in (6,—6) = 0,
cos Z sin (83— 6,) + cos Z, 8in (6—6,) + cos Z, sin (6, —6) = 0,
and, eliminating from these the three sines, we get the required result.

7863 & 7866. (By Professor WorsrenHOLME, M.A., Sc.D.)—(7863.)
Given a focus and the corresponding directrix of a conic, a circle is drawn
touching the axis of the conic at the given focus and intersecting the
conic in two points P, Q; prove that, although the straight line PQ
depends on two independent parameters (the excentricity of the conic
and the radius of the circle), it always touches a certain quartic tricusp,
the same curve as is discussed in Quest. 7220 (Vol. 40, p. 114),
where it appears in two different characters as an envelope, both distinct
from its conditions in this question. If the chord PQ make an angle 6
with the axis, the perpendicular upon it from the focus is ¢ tan {6, where
¢ is the given distance of focus and directrix.

[Professor WorsTENEOLME thinks this a very peculiar result, but believes
that the following fact involves an explanation of it :—Suppose an;
straight line meets any two of the circles in PQ, P'Q/, the angles POF’,
QOQ’ will be equal ; and the same if it meet any two of the conics in
P, Q; P, Q. Certainly, @ priors it would appear pretty certain that the
equation of PQ must involve both the parameters ¢ and 4, the excentricity
of the conic and the radius of the circle, and might, therefore, be made to
coincide with any straight line. Such argument is generally valid, and
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it is interesting to discover the reason of any exception. The curve of
this question 'is ‘completely defined 'and its equation found in the answer
to Quest. 7220, but it may also be generated by taking the inverse of a
rectangular hyperbola with respect to a vertex; then the first negative
polar of this inverse with respect to i¢s vertex is the quartic tricusp in
question. It may be generated in an infinite number of ways as an
envelope, and per{nps may be taken as Protean a locus.

(7866.) A parabola has a given focus 8, and a given direction of axis;
a circle has its centre at a fixed point O on the latus rectum of the parabola ;
prove that the points of intersection of their common tangents lie on a -
fixed nodal circular cubic having its node at O, its vertex at S, and its
asymptote parallel to the axis of the bolas, and at a distance 280.
Explain how there comes to be a definite locus when we have two variable
parameters (the radius of the circle and the latus rectum of the parabola).

[The equation of the locus in 7866 is (1), referred to polar coordinates
with 8 for pole, r = ¢ tan }6 or r=¢ cot '} 6, which two equations represent
the same curve; (2)referred to rectangular coordinates with O for origin,

and OS for axis of 2, §? = 4 2=, where O8 = 4. This well-known cir-

cular cubic is the inverse of a rectangular-hyperhola with respect to a
vertex, and the pedal of a parabola with respect to the foot of the directrix.

Generalized by Projection, the theorem is as follows :—A conic U is in-
scribed in a given triangle ABC so as to touch BC in a fixed point @, and
a’ is the point on BC harmonically conjugate to a. On A4’ is taken a
fixed point O and a second conic V described touching OB, OC at B and
C; prove that the points of intersection of common tangents to any two
such conics lie on a fixed cubic having a node at O, touching Aas at A,
passing through B, C, a, and whose tangent at ¢ meets AO in a point
which divides Oa’ harmonically to a. Also, explain how such points can
have a definite locus when we have ¢wo variable parameters (one for each
conic) to deal with. Of course, the whole locus might be obtained from
any one conic U by varying V alone; or from any one conic V by vary-
ing U alone. By reciprocating this, we get an envelope remarkable in
the same way, as depending on ¢wo variable parameters.

Solution by Arrrur Hirt Curris, LL.D., D.Sc.

F being the focus of the conic
in Question 7863, let PR, Q8, and
FG be the perpendiculars from
P, Q, and F on the directrix RG,
let PQ intersect the %‘irectrix in

PT _PR P
T, then QT — Q8 ~ FQ
fore FT is the bisector of the
external vertical angle of APFQ,
therefore

LPTF = } (L FQP - LFPQ),
or, as FG is tangent to the circle
circumscribing APFQ,

= }(¢FQP - LQFG) = } £ QDF,

VOL. XLIII. K
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and therefore p, the perpendicular from F on PQ,
=\TF sin}0)= TF cos 0/tan }6, = ctan }4.
The equation of PQ therefore is z8in 8+ ycos6—ctan}6 =0............ 1),
or 2z tan }8 + ¥ (1 —tan®}6) —c tan}6 (1 + tan? }9) = 0; or, putting tan }0=p,
y4+u(2z—c)—p*y—pudc = 0; or, changing origin, by substituting 2z for
2z—¢,y + 2ur—uly—udo=0. Nowthe envelope of L + uM + u’N + 43R = 0,
is 4 (N?— 3RM)(M?*~—3LN) — (MN - 9LR)?=0, and therefore the envelope
required is 4 (y2+ bex) (422 4 3y") —y? (9¢—2x) = 0. The curve referred
to can be identified with the above by putting 6 = —}e.
uation (1) shows that the line PQ depends on only one parameter 6,

and does not vary with the excentricity of the ellipse, and that the enve-
lope will be the same whatever conic of the system is selected as defining
it. This also appears thus—Let any other conic of the system cut the line
PQ in P, Q) then, as FT is the common bisector of external vertical angle
in A’s PFQ, P'FQ/, £ PFP = £ QFQ/, and therefore (as circle circumscrib-
ing APFQ touches FG, and consequently £QFG = £QPF), £/ Q'FG
= £ Q'P'F, and circle circumscribing AP’FQ’ also touches FG ; or thus—
it is plain that, if P be assumed anywhere, the conic of the system passing
through P is determinable, and the corresponding point Q on it is then
found by the condition £ PQF = £PFV ; so that the line PQ cannot be
any straight line—involving two parameters.

Again, as p = ctan {6, the envelope considered is the negative pedal of
the locus r = ¢ tan §6, which gives

z=1rging = 2csin’—;=c(l-—cos0) nc(l—%),

or o~z = "’_—", or (c—z)2= z:’:;,, or (c—2)iz = (2¢—2) ¢,
or, putting ¢~z = X, thereby changing origin from F to 0’, through dis-
tance ¢ along axis of 4,

s _ X2(=X

X3(o—~X) = g?(c+X), or y*= (oiX) ),

which may also be written ¢(X3—y?) —X (X*+4?%) = 0, a circular cubic,
whose vertex is at origin and whose equation In polar coordinates is
(cos® ¢ —sin? ¢) — —g— cos ¢ = 0, which can easily be identified with the
pedal of a parabola (parameter = 4¢) with regard to foot of directrix, and
the inverse of which is  cos? ¢p—sin? ¢ — LY =0,

or

ie K\2 A2\
3 3 - _——) —2 =

or X3—y 0X 0, or (X 2¢) % (20),
an equilateral hyperbola, wh(:se vertices are at O’ and at the point along
axis of X distant from O’ by 6_ that is, the inverse point to F.

As p is defined by p = ctan 36, theinverse of the locus of the extremity
of p, which is also the reciprocal polar of the envelope of the line PQ, will

2 3

have for equation r= il kT cot % = acot %, which may also be
written r = a tan ¢, where ¢ is the supplement of 8,—the circular cubic
already considered c, and 6 being replaced by a and ¢, while, by recipro-
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cating the theorem,|this curve-will, be the locus of the intersection of the
common tangent to a circle whose centre is on FG at the point O where

FO = -]:i, and into which the ellipse reciprocates, and a parabola whose

focus is at F and whose axis is perpendicular to FO, and into which the
circle touching FO at F reciprocates. Now, when » = o« in the curve
r = atan ¢, = x, and, if for ¢ = x we obtain the corresponding value
of P, the perpendicular from origin on tangent, by the formula

po _ T _ 1
[dr3 + r2ded) {1 L) }’+ 17¥
de ( r r?
As the line PQ, in 7863, really depends only on the parameter ¢, so the
point into which it reciprocates, and whose locus is sought in 7866, only
3
depends on -k;—, or a. The letter F in the figure corresponds to 8 in

Question 7566.

we obtain P = 2¢ =2FO.

7934, (By W. 8. McCay, M.A.)—Prove that the locus of a point at
which a given system of four points can be placed in perspective with
anuther fixed system of four points is a conic (in a plane).

Solution by Rev. T. C. StMmons, M.A. ; J. O'RBGAN; and others.

Let the fixed system be ABCD, and
let AC, BD meet in O. Then, if
A’, B, ¢, D’ be corresponding points,
in the other system, take P in CA pro-
duced and Q in BD produced, so that

[COAP] = C'0’ : O'A’
and [BODQ] =B'0’: 0D,
and let BA, BC meet the line PQ
in R and S. In any plane through
PS describe on PQ, RS circular seg-
ments containing angles respectively 2 ¢ s
equal to A’O’D’ and A’B’C’; the intersection V of these segments will be
one position of the required point.

Also, drawing VM perpendicular on PS8, it is evident that, for all positions
of the plane, M is fixed and VM constant. °

Therefore the required locus is a circle.

The Proroser remarks that the above is a solution to the question
“To find the locus of the centre of projectivity of two homographic
systems, one being in a fixed plane,” whereas the proposed question was
intended to mean, “ Given two sets of four points in a common plane, one
set being fixed in position, to find the locus of a point at which the second
set could be put in simple perspective.” 'There is, of course, a unique
point in the plane at which they are projectives (see SaLmoN’s Higher
Curves, § 330, and TownseND’s Modern Geometry, Vol. 11., p. 336.]
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7939. (By H. Lr. 8urrr, M.A.)—A district containing 2n Liberal and
n Conservative 'voters is) divided (into. (fhree equal wards, each returning
one member. Show that, if n be odd, the chance of one Conservative be-
ing returned is 3 (n + 3) /4 (n + 2).

Solution by the PROPOSER.

Consider one of the wards. It may contain 0, 1, 2, ... n Conservatives.
And number of ways in which it may contain r Conservatives = number
of ways in which the remaining (n—r) may be divided between the other
two wards = (s—r+1); hence the number of ways in which the Conser-

vatives can be distributed in the first ward=3 (n—r +1) =} (n + 1)(n+2);

and the number of ways in which they may be in a majority is
Simey(B=r+1) =F(m+1)(n+3);

hence the chance of a Conservative being returned in the given ward is

4——?"132 j ; therefore the chance of a Conservative being returned in one of the
three wards is 3(%+3),
4(n+2)

7957. (By Rev.T. C. Simuons, M.A.)—Show that, from the equations
2—yz = a3, y3—or = b3, 23 - 2y = %, the values of z, y, z are

‘= at— 5%
(a8 + b5 + o8 — 3a203c2 )Y
H—at oA —a%?

y= P * vt
(ad + 88 + 8 — 3a3b3c3) (a8 + 5 + ¢8— 3a34%3)

Solution by (1) G. G. Storr, B.A., and others; (2) the Proroser.
1. Multiplying &c., we obtain a’y+8%2+c% = 0, 4% +dir+c%y =0,

2 Y ___Z -_-_l-(sa)-
e Rl e > Rl ey Rl N

and, substituting in any equation, we find A? = a8 + 46 + ¢8— 342523, whence
Z, y, z are known.
2. Otherwise: we have 4% + 8%y + c% = (a— %) z-),
Br4cy+a’2=0, Ar+ady+b%=0;

therefore

therefore al—(at—833) 22, 4%, | =0,
2, P
e, a‘3: b3
giving (04~ 82633 2-3 = a8+ 18 + S — 342623,

and similarly for y and . (See Vol. xvu., p. 43.)

[At the end of the Appendix to Vol. xrz., there is another solution
of this question, which, though every equation is correct, arrives at
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the false conclusion that z, y, z are variable. The error, however, no-
wise invaliddtés/the rmethod which/ the solution was intended to illustrate.
For, substituting in a’ + 3% +¢3%z = 0 the values y = z—(a?—5%) /8,
gz = z—(a2—¢?) [ S, we at once obtain
2 _ = 1 =_Y =% b .

AP B@rRTA) P T Agp 7 Tmmeby;
after which thé solution may be completed as in the first method given
above.]

7948 & 7951. (By Astrosn MukHoPADHYAY.) — (7948.) Tangents
are drawn to any central conic, so that the squares of the intercepts on the
minor axis are in arithmetical progression ; show that the squares of the
sines of the angles which the tangents make with the minor axis are in
harmonic progression.

(7951.) Tangents are drawn to a parabola, so that the intercepts they
make on the latus rectum produced are in arithmetical progression :
prove that the sines of double the angles of inclination of the tangents
to the axis are in harmonic progression.

Solution by Rev. J. L. Krrcuin, M.A.; R. KnowLrs, B.A ; and others.

(7948.) Take the ellipse, the tangent is %’ i”-b,i' S S ¢
B ) »
then tan 0 = F iy therefore 1+ » tan?6 = .'/_1”

4
b3+ a3tan3 6 = b—, = squared intercept of (1) on minor axis, therefore
1
squared intercepts are 42 + 4* tan? 6, 5% + a2 tan’ 6y, 5% + a3 tan? 6;, &c., there-
fore tan? @, + tan? §; = 2 tan? 6, therefore sec? §, + sec? 93 = 2 sec” 63, whence
cos* 8, cos?8;, cos® @y are in H. P., &c., or, if ¢,=}w—0,, 8in? ¢,, sin? ¢y,
sin® ¢ are in H. P.
(7951.) This follows in precisely the same way.

Sur LEs CercLEs DE Tuckkr. By Professor NEUBERG.

Soient ABC un triangle quelconque, AD, BE, CF les hauteurs qui se
coupent en P, O le centre du cercle ABC, A,B,C, le triangle que forment-
les tangentes menées en A, B, C au cercle O. On sait que les droites
AA,, BB,, CC, se coupent au point de Lemoine K du triangle ABC.

1. 8% les cités du triangle A’B'C’ sont paralléles d ceux de ABC et que les
sommets sont sur les symédianes AK, BK, CK, les siz points X, Y, X/, Z,
Y, Z', o se coupent les cités des deux triangles ABC, A’B’'C’, appartiennent
a un cercle T dont le centre est sur la droite KO, au milieu de la distance des
centres des cercles ABC, A’B'C’. (BC coupe A’B’en X et A’'C’ en X’; CA
coupe B'C’ en Y et B'A’ en Y’; AB coupe C'A’en Z et C'B’ en Z'.)
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Cette proposition a été signalée par M. Lemome au Congrés de Lyon
(1873) dans une/Communication intitdlée ¢¢ Sur quelques propriétés d’un
point remarquable d’un triangle” (voir spécialement le No. x11.). Nous
T’avons également fait conmaitre dans Mathesis, t. 1. (1881), pp. 15, 59,
187. M. Tvcker I’a trouvée de son cOté, sans connaitre les travaux
antérieurs ; voir ““ .4 Group of Circles,” Quarterly Journal (Vol.xx., No.77).

Nous proposons d’appeler lea cercles T ‘¢ Cercles de Tucker.”” Ils sont
susceptibles de deux autres définitions. '

2. Les droites ZY’, X’Y, XZ’ sont paralltles aux cOtés des triangles
DEF, A;B/C), et forment un triangle afy dont les sommets sont sur les
symédianes de ABC. Donc:

8i les cbtés d’un triangle aPy sont paralleles 6 ceur du triangle ortho-
centrigue DEF de ABC et que les sommets sont sur les symédianes de ABC,
les cbtés non homologues des triangles ABC, By se coupent en siz points d’un
cercle de Tucker.

Cette maniére de considérer les cercles de Tucker, indiquée dans notre
note *“ Sur le centre des médianes antiparalléles” (Mathesis, 1881, p. 188),
a été étudide par M, Lemoine (Mathesis, 1884, p. 201).

3. Les six points X, X/, Y, Y’, Z, Z’ d'un cercle de Tucker sont les
sommets de deux triangles XYZ, X'Y’Z’, égaux entre eux et semblables &
ABC. Par conséquent :

Si d un triangle ABC, on inserit dewz triangles ZXY, Y'Z'X', semblables &
ABC et tsls que les cotés font avee leurs homologues de ABC le méme angle ¢,
les sommets des triangles XY Z, X'Y'Z’ appartiennent 6 un cercle de Tucker.

Les cercles AZY, BZX, CXY se coupent en un méme point o tel que les
angles ZowX = AwB = #—B, XowY = BwC = x—C; donc w est le premier
point de Brocard de ABC et ZXY. Dem8me, les triangles ABC, Y'Z'X’ ont
méme deuziéme point de Brocard o'.

Ces propriétés, indiquées, en partie, par M. TarrY et nous (Mathesis,
1881, p. 187, §12; 1882, p. 73), ont été étudiées & un point de vue général
par M. Tavror. [Voir aussi « The Triplicate-Ratio Circle,”* by R. Tucker,
dans I’ Appendir to the Proceedings of the London Mathematical Society, Vol.
x1v., No. 214, p. 319, (21).] MM. TavLor et LEMOINE ont trouvé la
propriété remarquable que I enveloppe des cercles de Tucker est la conique qui
touche les cbtés de ABC aur pieds des symédianes et qui a pour foyers les
points de Brocard. (“ The Relations of the Intersections of a Circle with a Tri-
angle” by Mr. Taylor, dans les Proceedings of the London Mathematical
Society, Vol. xv.)

Appelons faisceaur de Brocard les deux triples de droites (wA, wB, »C),
(0’A, &'B, &’C). Le troisiéme mode de génération des cercles de Tucker
peut alors &tre énoncé ainsi :

8i Pon fait tourner les deux faisceaur de Brocard autour de leurs centres
d'un méme angle ¢ et on sens contraires, les rayons rencontrent les cbiés
correspondants de ABC en six points d’un cercle de Tucker.

Nous n’insisterons pas sur les conséquences importantes qui peuvent se
tirer de la considération de tels faisceaux de trois rayons égaux, que I’on
fait tourner autour de leurs centres.

4. A ces définitions des cercles de Tucker correspondent trois cas
particuliers remarquables.

Dans le §1, si les droites XY’, YZ’, ZX' passent par K, le cercle T prend
le nom de cercle de Lemoine, du nom du géomdtre qui 1’a étudié pour la
premiére fois. (Congrés de Lyon, 1873 ; Congrés de Lille, 1874 ; Nouvelles
Annales, 1873, p. 264 ; Mathesis, 1881, p. 189.) M. Tucker a également
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trouvé les propriétés; principales de ce cercle qu’il a appelé Triplicate-
Ratio Circle.

Le centre du cercle de Lemoine est au milieu de KO ; les droites By, ya,
a8 passent par les milieux de AK, BK, CK; I'angle ¢ ou YXC est égal &
Pangle de Brocard.

5. Si les droites By, ya, aB passent par K, le triangle A'B'C’ est

étrique de ABC par rapport & K. Le centre du cercle XYZ est en

, ot ’angle ¢ = }=. Ce cercle a été également signalé par M. LemoINe
(loc. eit., et Nouvelle Correspondance, t. iii., p. 188, Brocard). M. Casey (4
Sequel to Euclid) attribue la découverte de ce cercle 8 M. McCay; il propose
la dénomination de ¢¢ Cosine Circle,” parce que les droites XX', YY', ZZ’
sont proportionnelles & cos A, cos B, cos 0.

6. Les symédianes AK, BK, CK passent par les milieux a, 8, y des c6tés
du triangle orthocentrique DEF. Les cdtés du triangle aBy étant
paralleles & ceux de DEF, ils rencontrent (§2) les cotés de ABC en six
points ¥, E, D”, E”, E”, D" d’un cercle, que les géometres anglais
appellent cercle de Taylor. (By coupe AB en D” et AC en D*; ya coupe
B(g:n E” et BA en E’; a8 coupe CA en F ¢t CB en F”.)

Les cotés de ABC étant les bissectrices extérieures des angles de DEF, il
est facile de voir que aF' = aE = aF = aE’; donc le cerclequi a pour dia-
métre EF passe par E’ et ¥/, et EE’, FF' sont perpendiculaires 3 AB, AC.
Par conséquent, les pieds des hauteurs des triangles AEF, BDF, CDE don-
nent siz points d’une circonférence. Ce dernier théordme, démontré dans les
¢ Théordmes et Rroblémes, par Catalan’’ a été proposé aux lecteurs du
Journal de Vuibert ; nous ignorons & qui il est ddt. [Comparer aussi Nouvells
Correspondance Mathématique, t. vi. (1880), p. 183.

Le centre 1 du cercle de Taylor coincide avee le centre du cercle tnserit a
afBy, point qui est le centre de gravité du périmétre du triangle DEF.
Cette propriété a méme lieu dans le cas général du §2.

Soient P, P”, P/, J les orthocentres des triangles AEF, BDF, CDE,
DEF. Le point 1 est au milieu des quatre droites DP', EP”, FP", OJ,
ainsi que nous I’avons fait remarquer dans Mathesis, t. 1., pp. 14 et 190.
En effet, des parallélogrammes PFP’E, PFP”D, PDP"”'E, on conclut
facilement que les triangles DEF, P’P”P'” ont leurs c6tés égaux et paralldles,
et admettent un centre de symétrie I'. Les droites AP, BP”, CP", per-
pendiculaires aux cotés des triangles DEF, P'P”P"”, se coupent en un
point qui est & la fois I’orthocentre de P'P”P” et le centre du cercle cir-
conscrit 3 ABC; I’ est donc aussi au milieu de la distance OJ des ortho-
centres J, O, des triangles DEF, P'P”P”, Enfin, I coincide avec I ; car
les lignes al’, BI’, étant paralléles & FP”, FP’, sont les bissectrices des
angles a, 8 du triangle aBy. (Comparez Ed. Times, Question 7900.)

7. La figure précédente peut étre envisagée & deux autres points de vue.
8i I’on considére aBy comme étant le triangle primitif, on'a le théordme
suivant que nous avons proposé aux lecteurs de Mathesis (1881, p. 14):
On prolonge lss cOtés des angles a, B, y &’ un triangle aBy des quantités

P (N, | T By, BD"= BF' = ay, 7Em_ 1D"'= aB;
démontrer que les points ¥/, B/, D", ¥/, B, D" sont sur une méme circon-
JSérence concentyique avec le cercle inserit @ ay.

8. Regardons maintenant DEF comme étant le triangle primitif. Les

points A, B, C seront les centres des cercles exinscrits 3 DEF. Soient A’
le pied de la hauteur AP’A’, et m, n les points de rencontre DF, DE avec
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E'F'. De ce quel’angle AF'E = AF'E'= nF'E, et FEA’= DEC = F'En,
on conclut facilement que (A5 est(perpendiculaire & DE ; par analogie, Am
est perpendiculaire 8 DF. Donc mmn est la corde des contacts de 1'angle
FDE avec le cercle exinscrit A.

De 12 le théordme suivant :
Les polaires des sommets d’um triangle DEF par rapport auz cercles
ezinscrits opposés remconirent, respects ¢, les bissectrices extérieures des

angles de DEF en siz points d’une méme circonférence. Ces polaires forment
un triungle o'B’y dont le centre du cercle circonscrit coincide avec Iorthocentre
J de DEF.

La dernigre propriété résulte de ce que DD/, DD” sont perpendiculaires
3 a’'D"”, a’D”, et que, par suite, a’D est perpendicuiaire & DD’ et 3 FE.

8i’on observe que la ligne DD’ est équidistante des points a’ et A, et
des points D et A’, on trouve Da’= AA’. Donc les distances Da’, Eg’, Fy’
sont égales auzx rayoms des cercles exinscrits 3 DFE,

Ona Jod’=JD+Dd'= P'O+AA'= AO+P'A’.

Mais PYA’ est égal & la distance de P & FE, PFP'E étant un parallélo-
gramme; par conséquent, le rayon du cercle circonscrit dé o’B'y’ est égal d la
somme du diamétre du cercle circonscrit @ DEF, et du rayon du cevcle inscrit
a DEF.

Les propositions du no. 8 ont fait I’objet du concours d’agrégation des
Lycées Francais en 1873. On en trouve une démonstration trigonométrique
par M. GaMBrY, dans les Nouvelles Annales, 1874, p. 43 ; une démonstration
géométrique par nous dans la Nowvelle Correspondance, t. 1., p. 44, et une
démonstration analytique par M. GREINER dans les Archives de Grunert-
Hoppe, t. Lx1., p. 226.

M. TayLor a donné des expressions remarquables du rayon du cercle
D"E"'F’ et de I'angle ¢ = D"F'A :

ID” = R [sin? A sin? B sin? C + cos? A cos? B cos®C]t,
tgp = —tgAtgBtgC = —(tg A+tg B+tgC).
La 17 peut se déduire de ce que D’'D" est égal au demi-périmétre de

DEF, et que la distance de I & D”D"’ est égal & la moitié du rayon du
cercle inscrit & DEF.

9. Dans une Note insérée dans 1’ Appendiz to Proceedings of the London
Mathematical Soctety, Vol. xv., M. Tucker indique le théordme suivant :

Si Dy, E,, F, sont les milieux des cités d’un (triangle ABC, les drostes de
Simson de ces points relatives au triangle orthocentrigue DEF passent par le
centre I du cercle de Taylor ; les drostes de Simson de D, E, F par rapport
au triangle D\E\F, passent par le méme point 1.

Cette proposition avait déja été trouvée par M. EpM. VAN AUBEL
(Mathesis, 1881, p. 207), et elle a été démontrée par M. L1&narp (Mathesis,
1845). Elle peut étre établie par des considérations géométriques trés
simples. Soient Dy, E,, F; les milieux de AP, BP, CP. La droite D,D,
est perpendiculaire au milieu a de EF : BC étant la bissectrice extérieure
de I'angle FDE, la droite de Simson de D, par rapport au triangle DEF
passe par a et est perpendiculaire & BC ; donc elle coincide avec al, etc.
[See Miss Scort’s solution of Quest. 7938.]

La droite de SmMsoN du point D par rapport au triangle D,E,F, passe par
le milieu de la hauteur AD (projection de D sur E,F)) et par le milieu de
DO (O étant I’orthocentre de D,E,F)); par suite, elle est parallele &4 AO
et passe par le milieu I de DF, etc.
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M. Van AuBeL a aussi considéré les droites de Simson des points
D,, E; Fy par ra%)ort awtriangle DEF. Ces lignes passent par a, B, y ot
yont par a BC, CA, AB; clles forment un triangle dont 1 est I ortho-
mzrg ot dont le centre de similitude par rapport a ABC est le contre de gravité
de ABC.

4139. (By Professor SyLvesTer, F.R.8.)—Given
ztyu =a(z+tu), zu+y=>5u+t), z+yv =c¢ (s+tv),
w+y=d(w+t), z+ty=e(z+1?);
determine the relation between a, b, ¢, d, ¢; and hence prove that the
condition of a quintic (a, 8, v, 3, ¢, 0) (¢, ¥)5, being linearly transformable
into a recurrent equation, is expressible by a homogeneous symmetric func-
tion of the 18th order in the coefficients a, 8, v, 3, ¢, 6.

Solution by W.J. C. Smarp, M.A.
The given equations are the conditions that a, &, ¢, d, ¢ should be
linearly transformable into #, —'l‘—, v, %, 1 respectively, and, by eliminating

u and v, they lead to
Y —23—(ly —2z) (a +b) +ab(3~2%) =0,
. P (ty—32) (c+d) +od (P=s) = 0,
y2-23— (ty —22) 26 + 62 (3—2%) = 0,
1, a+b,ad
1,0+d, cd
1, 2, ¢

‘While e is still transformed into 1, two similar conditions are
necessary to meet the cases where (1) a and ¢, and 4 and 4 transform into
remslroeals, and where (2) ¢ and 4, and & and ¢ do 8o. So that the
condition that the quintic whose roots are a, b, ¢, d, ¢ should transform
into a recurring quintic (¢ transforming into 1) is of the 9th order in the
roots, and the full condition is the 45th order in the roots, and of the
3x2+12 = 18th in each rvot, and therefore in the coefficients. As it is
of an odd order in the differeuces of the roots, it changes sign with the
modulus of transformation, and, as it is a symmetrical function of the
differences of the roots, it is a skew invariant, viz. I. (See SaLmon’s
Higher Algebra, p. 189.)

Tt is interesting to pursue Professor SyrvesTer’s hint as to how to
determine the conditions which must be fulfilled, in order that an equation
me be transformable into a recurring equation.

f z2+yu =a(z+tu), au+y=>(zu+t), 2+yv=c(z+tv), 20+y =
d(so+t), z+yw = ¢(z+tw), zw+y = f(zw +¢), these are the conditious
that a, b, ¢, d, ¢, and f should be linearly transformable into «, —:j, 0, % ,
w, and %, by the same transformation, and eliminating «, v, and w,

y2—a3— (ty—22) (64 b) + ab (82 —2%) =0,

y3—a2—(ty—3z)(¢+d) +cd (B—5) =0

yi—ad— (ty—zx) (e+f)+ef (=49 = 0,
VOL. XLIIL L

=0, or (b—¢) (d—¢) (c—a) + (a—¢) (c—¢) (4—5) = 0.
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1,a+85,ab
1,e+d, cd | = 0; or(a—0e)(b—re) (@) +(a=f) (b—~d)(c—€) =0,
lLe+f, ef
and, ¢ and 5 still transforming into reciprocals, there will be two similar
conditions, three in all, while @ and & transform into reciprocals, as many
for ¢ and ¢ and 80 om, in all five sets of three, so that the symmetrical
condition that the sextic equation whose roots are 4, &, ¢, d, ¢, and f should
transform into a recurring equation, is of the 45th order in the roots and
15th order in each root, and therefore in the coefficients, and, being of an
odd order in differences of three roots, it is a skew invariant. It is, in
fact, Prof. CaYLEY’s invariant E, the vanishing of which is the condition
that the roots should form a system in involution, as is indeed necessary
from the above equations, which involve the condition that one of the sys-
tems of equations of the type z?+ (a+4)z+ab =0, 2*+(c+d)z+cd =0,
and 23 + (¢ +f)  + ¢f = 0 should hold good.

In all cases the conditions that a binary equation should be linearly
transformable into a recurring equation, will be obtained by forming the
symmetrical conditions for the vanishing of

.
a’e

1, 1, 1 1, 1, 1
a+b, c+d, 2| orof |a+b, c+d,l+m |,
ab, cd, B ab, ed, Im

according a8 the equation is of odd or even degree, and in general the
conditions are #n— 2 in number for an equation of the (2n— 1)th or 2nth order.
For the septic, if « and 4, ¢ and d, ¢ and f transform into reciprocals,

and ¢ into 1, (a~c)(b—e)(@=f)+(a—f)(b—d)(¢c~¢) =0,

and (6-9)(d—g) (c—a)+(a—g)(c-g) (@—8) =0, N
the symmetrical forms of which are an invariant of the 315 order in the
roots and 90tk in the coefficients, and one of the 945t order in the roots
and of the 270thin the coefficients; both, being of odd order in the
differences, are skew invariants. The vanishing of these is not, however, a
sufficient, though a necessary condition, for the possibility of the trans-

formation, as it does not follow that the vanishing factors will correspond
to the same transformation.

Nore oN QuesTtioN 7695; by C. L. Dopason, M.A.

The solution given to this question on p. 75 of Vol. 42, is one of the
most curious instances I have met with of the pitfalls to be found in
Mathematics: the answer is right, but the method of solution, beautifully
simple as it looks, is entirely wrong.

This can be most easily demonstrated by & reductio ad absurdum. Let
the winning throw, for A and B alike, be 6. Then, by this method of
solution, their chances are equal, since ¢‘the probability that B will have
a throw after A is 31" ; which is also the probability ‘¢ that A will throw
again after B.”” Yet it is obvious that, as A begins, his ¢ expectation’’ is
better than B’s.

The true solution will be best given, first, in the general form ; and the
formula, so obtained, can then be applied to the particular case.
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Let A’s chance of making his winning throw, each time he throws, be
% ; and similarly'let B’s chance be .

Then A’s ckance of winning, in his first throw, is ¥ ; in his second,
g—k) .(1=2.%; in his third, (1—k)3.(1—/)2.%; and so on for ever.

ence the limit, to which his ¢‘ expectation *’ approaches, is the limit of

k. [14(1—F).(1=0)+A—kr. (1= +&e.];

k.— L . ., k.
—(1=%.0=0 Fri-m

Similarly, B's chance of winning, in his first throw, is (1—£)./; in his
second, (1—4) . (1—) . (1—#) . Z; in his third, (1—k)3. (1=0%. (1—4) . {;
and so on for ever. Hence his ¢ expectation ’’ approaches the limit of

1=k) 3 [14(1=F). (1= +(1—kP.(1=0+ &c.]; .. (__k‘:l‘_*zki

i.e.,

Hence the ratio, of A’s expectation to B’s, is approximately (l"—m
In the given case, k = %, ! = & = }; hence the required ratio = §4.
By a mere accident this happens to be the same as H, which accident

has misled all the solvers into adopting this as a true formula.
In my ““reductio ad absurdum’ case, k = I = J; hence the required
ratio = 3¢.

It is worth noting that the ratio, $9, is only approzimative, the expect-
ations of A and B being just less than the fractions §¢, 3. If this were
not so, the sum total of their expectations would equal 1; i.e., it would be
absolutely certain that one or other of them would win—whereas there is
clearly a chance, though an indefinitely small one, that the game might
go on for ever without either winning. '

[Mr. Smamons remarks that the last portion of the above Note is
‘‘ extremely unmathematical. A’s expectation is represented with
perfect accuracy by the series fy [1+34§+ (338)3+ (348)%+...]), and it
is erroneous to say that the sum of this series is only approzimately equal
to 3. When we say that ¢ = b approximately, we mean that & and
differ by at least some conceivable quantity. Thus, we say rightly that
the ratio of the circumference of a circle to its diameter is approximately
equal to 3:14159266 ; but it would be wrong to say that it is approximately
equal to 4 (1—4+}—4+..). The game may go on for ever without
either A or B winming. True, but.this is taken into account, and allowed
for, by the above series going on for ever without stopping. Mr. Dodgson’s
reasoning, if it were correct, might be applied equally to almost ever{
probability question. For instance, we might say that it is ‘¢ wortl
noting’’ that, in the case of a triangle whose vertices are taken at random
on the circumference of a given circle, the chance of its being acute-
angled is only approzimately 3, and that of its being obtuse-angled only
approzimately §, ‘b there is clearly a chance, though an indefinitely
small one, that the triangle may be right-angled !’ Has not Mr. Dopason,
in his anxiety to avoid one of the aforesaid mathematical pit-falls,
walked straight into another ? ”’]
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8008. (By, Professor ByoMaxesa CHAKRAVARTI, M.A.)—If the tem-
perature of an’infinite'solid-have- different uniform values V, V’ on oppo-
site sides of a given plane, prove (1) that, at any subsequent time ¢, the
temperature is given by the expression

V+V’ V- VIth‘_.-d‘
2 VAR ?

# being measured from the plane towards the side where the temperature
is initially V; and (2), if the reasoning be applied to the case of the earth,
supposed to have been cooling for 200,000,000 vears from a uniform m-
perature, and if the numerical value of k be 400, when a foot is the unit
of length and a year the unit of time, ¥mve that, at any particular instant,
at a depth of about 76 miles the rate of cooling is greatest ; and at a depth
of about 130 miles the rate of cooling has reached its maximum value at
that place for all time.

Solution by Professor Haueuron, F.R.S.

The first part of this question was solved by Sir WiLLiam TroMson
(Trans. Royal Society, Edinburgh, 1862). .
The second part is solved by -
La e I Te_
e (+*—8Kkt) x e o,

where ¢ is a function having no part in the question.

These two factors give 2, = 151-51 miles, z; = 135:52 miles.
My first answer 18 double that of the Proroser.

N.B.—I have solved this problem in conformity with the time-honoured
illusion of a cooling globe. My private opinion, bowever, is that the
earth is mainly a globe of metallic iron, having a probable temperature of
460°F., in most parts; with occasional hot layers depending on greater
collision between the meteorites out of which it was formed, and on local
chemical actions depending chiefly on the oxidation of the iron.

The heat derived from the interior of the earth is very contemptible, only
sufficient to melt a quarter of an inch of ice in the year; whereas the sun,
in the same time, melts 150 feet of ice.

7818. (By MoraaN JENKINS, M.A.)—1. If on the three sides of a tri-
angle ABC there be described any three similar triangles BDC, CEA, and
AFB, eitherall externally or all internally, having their angles in the same
order of rotation, and the angles which are contiguous to the same corner
of the triangle ABC equal to each other, prove that the three straight
lines AD, BE, and CF meet in a point O, which is also the common point
of intersection of the circles BDC, CEA, and AFB.
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2. If the homologous sides of these similar triangles be produced to
meet, viz.)/FBand ECin D’y DCand)FA in E/, and EA and DBin F, the
triangles BD'C, CE’A, and AF'B are also similar triangles having their
angles in the same order of rotation, and equal angles contiguous to the
same corner of the triangle ABC ; hence the three circles circumacribing
these similar triangles and the three straight lines AD’, BE’, CF’ meet in
the same point O’.

3. The straight lines DD’, EE’, FF' are parallel to one another and
to 00’.

4. O and O’ are confocal points with regard to the triangle ABC, that
is, are the two foci of a central conic touching the sides of the triangle, or
O’ may be determined by making the angles CB(U’, CAO’ equal to the
angles ABO, BAO respectively in opposite directions of rotation, and then
angle BCO’ is equal to the angle ACO.

6. The sides of the triangle BCD’ or either of the other two similar tri-
angles are proportional to the rectangles AO, BC; BO, CA; and CO,
AB; and in like manner for the sides of the triangle BCD and the two
similar triangles ; that is, in the typical case, if lengths A, k, ! meet at a
point within a triangle and make angles 6, ¢, and § with one another, then
a triangle which has its angles equal to 0—A, ¢ —B, and ¢y —C, will have
its sides proportional to ah, 4%, and cl.

Solution by PROPOSER.

Let AD, BE meet in O, then,

since the triangles ECA, BCD rra.. Ford!
are similar, having equal X

angles ECA, BCD and the
sides about those angles pro-
portionals, therefore by the
addition or subtraction of the
angle ACB, according as the
triangles ECA, BCD are de-
scribed externally or internally
to the triangle ABC, the angles
ECB, ACD are equal, and, by
alternation, the sides about
those angles are proportionals;
hence the triangles ECB, ACD
are similar to each other; in
like manner, thetrianglesD BA,
CBF are similar to each other ;
and the triangles BAE, FAC
are sinnilar to each other. Now
let ¢’, ¢’,y’ denote the angles
of the three similar triangles
BDC, CEA, AFB; ¢ being
the an‘glle which is opposite to
A in the first triangle and ad-
jacent to A in the other two,
and similarly for ¢’ and ¢':
also let 8, ¢, and ¢ be used for
w—0, w—¢’, and »—y’ respectively.




First, taking the
cases where the
gimilar triangles
are described ex-
ternally, of the
three sums A + ¢,
B+¢’, and C+y/
at least two, say
the last two, must
be less than =,
because the sum
of all six angles
is equal to 2.
Therefore AD lies
within the angle
BAC, and AO
within the same
angle or its
vertical angle,
The relations
B+¢ <» and
C+y' are equiva-
lent to ¢>B and
¥>C: the neces-
sary and sufficient
condition that O
may be within the
triangle ABC is
that we may also
haved>Aor A+6
<=, as follows
from Euclid I. 21.
In every case, when the similar triangles are applied externally, O must
be on the opposite gide of BC to D : if therefore 6 <A, then O must be in
the vertical compartment lying within BA produced and CA produced ;
but of the pairs of points B, E and C,F, O may lie either between both
pairs, outside both pairs, or between one pair B and E, and outside
another pair C and F, as shown in figures 2, 3, and 4 : but O is never in
& base compartment, if the similar triangles are applied externally.

In Fig. 1, where > A, ¢> B, and y>C, LEB(§)= £ ADC, thatis, the
£LOBC.= £ODC, and B and D are on the same side of OC; therefore O
is concyclic with B, D, andC. Also £ BEC = £ DAG, thatis, £ OEC =
£ OAC ; therefore O is concyclic with C, E, and A. Therefore O is the
intersection of two segments applied to BC and CA on the same side as
the opposite vertices and containing £BOC =6, £COA = ¢; but
0+¢+y = 2x, and BOC + COA + AOB = 2x. Therefore the remaining
£ AOB = ¢ ; and O is concylic with A, F, and B. Hence, since it may
be proved in a similar manner that BE and CF meet on the other point
of intersection of the circles CAE, BAF, the straight lines AD, BE, and
CF meet in the point O : this proves theorem (1).

Again, the £BCD’ = supplement of B = /8 CBE+CEB = /8
CBO +CAO.-=.$—C: similarly, £D'BC = ¢—B, and therefore £BD’C

=0—-A, B ly for the other two triangles ACE’ and BAF; and this
proves theorem (2).
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Since EC: CA =BC:CD and CA:CE’'=CD’:BC, ... EC:CE' =
CD’: CD and, £ ECE’ = vertical £ D’CD, therefore the triangles ECE’,
D’CD are similar) and 'EE”is parallel to DD’. Similarly, FF’ is parallel
to DD’. By transversals AO: 0D = EE'.FF': DD’ . (EE’'+ FF’) and
AQ’: 0D = the same ratio; .°. 00’ is parallel to DD’, and therefore also
to EE’ and FF': this proves theorem (3). Also AO:00’ = AD:DD’
and 00’:0B = EE':BE; .. AO:0B = AD.EE':BE.DD’ =
AC.EC:CE.CD'=AC:CD’,and £LACD' = y—C+C =y = £AOB.
Therefore the triangles AOB and ACD’ are similar, and the £CAOQ’ is
equal to the £ BAO: in like manner for the other angles. This proves
theorem (4). The same result may be obtained thus : —Make the £ CAD’
= the £ BAO in the contrary direction of rotation, and make rectangle
AO . AD' = rectangle AB. AC, then the triangles BAO, D’'AC are simi-
lar: hence, the £ D’CA = the £ AOB, and therefore the L D'CB = ¢ -C:
similarly, the /D'BC = ¢—B, and therefore the £BID'C = 6—A.
Similarly for the triangles CAE’ and ABF’, which are similar to the tri-
angle BCD’. Therefore, by theorem (1), AD’, BE’, and CF’ meet in a
point O, and OO’ is parallel to DD’, because the rectangles AO.AD’
and AO’ . AD are each equal to the rectangle AB. AC. Since AO:0OB
BO.AC CO.AB

= -CD’. .- = + 8imi - =
AC:CD/, ...CD 20" similarly, BD’ 20’ and BC
A(igm ; and this proves theorem (5).

These proofs hold good for the other figures, when suitable modifications
are made in the relations of the angles ¢, ¢’, ¢, and in the positions of
the points. 1In figures 2, 3, and 4, §is<A and O is in the vertical
compartment opposite to the angle BAC ; but (/' is in the base compart-
ment opposite to BC, the similar triangles BD’C, &c. being applied to the
sides of the triangle ABC internally. Fresh figures will not be required
for the cases where the similar triangles are applied internally ; for, in
figure 1, the triangles ECB and ACD are similar, and are applied to BC
and AC internally ; and in like manner for other triangles. 1f, therefore,
we change E into D, D into E, E’ into D’, and D’ into E’, O" into F' and
O into F’, ¥’ into O and F into O, we have a figure where both sets of
similar triangles are applied internally. It may be noticed that in the
typical case the three parallel straight lines DD’, EE’, FF’ are all in the
same direction ; but in the other cases one of them is in the opposite
direction to the other two.

The use of similar triangles as here applied was suggested by the
Sylvester-Kempe extension of Hart’s cell, where they are applied to the
sides of a contra-parallelogram (vide Nature, July, 1876).

7812. (By Professor Genese, M.A.)—If CA, CB are semi-con&'ugate
diameters of an ellipse, and P, Q two points on CA, CB produced such
that AP . BQ = 2CA . CB, prove that BP, AQ intersect on the ellipse.

Solution by Professor JosepH NEUBERG; and the PROPOSER.
Soit H un point de l'ellipse. Les droites AH, BQ engendrent des
faisceaux homographiques, et déterminent sur CB, CA des divisions
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homographiques. Dans celles-ci, les points correspondant & 1’infini sont
B et A; donc le produit BQ.AP est constant. [A longer proof, by
Algebra, is given/in/Vol. 43,)p. 65]

7947 & 7956. (By Astrosr MuxnorADpHYAY, B.A.,, F.R.A.8)—
(7947.) Prove that the locus of points (H), from which tangents drawn
to two given circles are in the ratio of their radii, is a circle passing
through the centres of similitude as the extremities of a diameter.

(7956.) Prove that (1) the locus of points from which tangents drawn
to two fixed circles are in any given ratio, is a circle ; and (2) for all
values of this ratio, the locus of the centre of this locus-circle is the
straight line that joins the centres of similitude of the fixed circles.

Solution by Rev. J. L. KrrcuiN, M.A. ; J. O’REGAN ; and others.
(7947.) Let A, B be the circles; P,
(s); the centres of similitude; 8, = 0,
= 0 the circles A and B: then '
8,—n 8,—r? are the squared o —46} 1
tangents from H to the circle ; hence &
8, —r3 B—rt
we have —1—1” = —1—3-'_,
therefore 8;r,2—8;#® = 0 locus of H, which is obviously a circle. Tt
clearly satisfies the points P and Q, and therefore passes through them,
and it is symmetrical about PQ ; therefore PQ is the diameter.
(7956.) This problem gives S, —m3S, + m*ry? —r,? = 0, and the locus of
the centreis on AP.

N
3

8038, (By J. P. JonnsroNE, B.A.)—If a cone of the second degree,
whose vertex moves on a right line, intersects a quadric in a pair of planes,
one of which is fixed, the other developes a cone of the second degree
having its vertex at the intersection of the polarline of the fixed line with
the fixed plane.

Solution by Professor MavLrr, F.R.8.

Let the quadric be the sphere 22+ y?+ 224 2lz + 2my + 2nz +d = 0, and
the fixed plane the plane at infinity. Now, if the vertex of the cone lieon
the axis of z, its equation will be 22+ g2+ (z—9)? = 0, which intersects the
sphere in the plane 2/ + 2my + 2z (8 +9) +d— 9% = 0, and this plane, as o
varies, envelopes the cone 23 + 2iz + 2my + 2ns + d = 0, the vertex of which
is the intersection of the plane at infinity with thelinez=0, 2 +my + #n:=0;
but the polar line of the axis of s with respect to the sphereis s+n = 0,
Iz + my +nz +d = 0, which is parallel to the former line; and therefore
the theorem is proved in this case, and, being projective, is true for
any quadric,
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8042 & 8078.  (By, Professor SyLvester, F.R.8.)—(8042.) Let A,
B, C, D be thepérpendiculars uptn laplane from the pointsa, b, ¢, d, the
angles of a pyramid whose volume is P. Required (1) to prove that

3 (ad)* (C—D)?—23 (ab)? (ac)* (D-B) (D-0) )
+ 23 (ab)? (¢d)*(A—C) (A-D) + (B—-C) (B—D) = — 144P2.
Show also (2) how to find the Constant Homogeneous Quadratic Function

of the five perpendiculars from five points in space of four dunenslons
upon any hyper-plane drawn thereon.

(8078.) If, in a system of quadruplanar coordinates, for which
#) + Zy + 23+ x, expresses the plane at infinity, A, A;A3A, is the pyramid
of reference; show that (1) 3 (A, Ag)?xy is the sphere which circumscribes
it; and hcnce (2) if p), Py p3, p4 are the perpendicular distances of A, A,,
Aj;. A, from any variable plane, the following determinant is a constunt,
and find its value :—

. 14 Py 3 Py .
n . (A A,)2 (A A2 ] (A A2 1
b2} (AgA,)? . (A Ag)? (A;A)? 1
ps (AgA)? (AjA? . (AsAy)? 1
24 (Ay i&l)2 (a, lAa)’ (A, {‘:{)2 l 1

Solution by Professor NEUBERG.

Voici la solution que nous avons donnée de ces questions dans un
mémoire publié en 1869 (Etudes sur les Coordonnées Tétraddrigues).

Soient #4,, Ay, Ag, k, les hauteurs du tétraddre de référence. Cherchons
d’abord la distance XY = & de deux points dont les coordonnées barycen-
triques sont (a,, g, ¥3, 2,), (¥}, ...) ; Par exemple, z, est le quotient de la
distance de X au plan A, Ag Ay, divisée par %,. Si dans la relation

1 cos-3k, cosdh; coB3k; | = 0, on fait

cos A, 8 1 cos by coshy kg c08 8k, = A (z—y) .
cos he8 cos Aqh, 1 cos hghy 8 T
cos hy8 ‘cos Agh, coshgh, 1

on voit que 3?est une fonction du second degré des différences z, —y,, z4—y,,
zg—ys. Mais on peut éliminer les carrés (z;—y,)? (2 -y3)? (r3—ys)? en
remarquant que  Zr; =1, Zy; =1, I (r,—y)) = 0,
d'0d (2~ 91)2 = — (2.~ ) (23— ¥2) — (21— ) (3~ ¥3) — (21— %) (z, —¥,), ete.
Par conséquent, on peut poser

8 =dyg(@1—1) (x23—y3) + ... +d3y (Z3—¥3) (Z4—Ya)euurrneeenn (1).

Pour trouver les coefficients inconnus d,,, ..., nous ferons coincider XY
successivement avec chacune des six arétes A, 1As AL A, ..., ce qui donne

== (A)Ap)% .y dyy == (A3A)%
Soient Y le oentre de la sphére A, A;A3A,, R le rayon, X un point
queleonque de la sphore. L’équation de celle-ci sera
Zdy; (£1—9) (2a—ys) = R?,
ou 3dyaryro+ Zdpy Ya—2dyg (7,2 + 23) = RV e (2).
VOL. XLIII, M
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Les inconnues g,, ¢s, ¥s ¥4 R résultant des equations

2dyyi¥a—(disvs + dipys ¥ dyy) = R?
2y ys—(dny) + dnys + dayy,) = R?
2digy,ys— (dnyr +dpays +dpy,) = B
2dpy1ys—(dus +d3ys +dny;) = R :
qui expriment que la sphére pusse parles points (1, 0, 0, 0), etc. ; de plus
NHY+Y+Ys =1 i (4).
Retranchons de (2) les équations (3) multipliées respectivement par
), Iy, Ty, T,; NOUs aurons Xd;r,z; = 0, ce qui démontre la premilre
partie de la question.
8i on fait la somme des équations (3) multipliées par y,, ¥ ¥3, ¥4 OD
trouve Xd,;y,y, = — R3, ce qui réduit les équations (3) a
dygys+dyg+dyy, =— Ry ete. coveniiiiiiiinnnnnnn. @),
Soit E le déterminant

l,

dn . dy dy 1
[

1

ui, comme on mait, est égal & 288 (A;A;A;A)3; et désignons par
1 Ejg, ... les mineursde E. Les équations (3’) et (4) donnent

R A . )

E ’
Soient de nouveau X, Y deux points quelconques de l’espace. On a
évidemment -y = Bw—;s—}" = 3 ...
1

;‘_, i, AL —Al— étant les longueurs des droites A,B;, A,B; A,Bj,
A, B, paralléles & XY et terminées aux faces du tétraddre de référence.
Les quantités A vérifient les identités

M+Ag+A3+A0, =0, Zdgar,=1 ...ccooevnnnnns (5, 6),

qui se tirent de (1) et de 3 (o, —y,) = 0; on peut les appeler cosfficients de
direction des droites paralléles & XY et les considérer comme coordonnses
du point & I'infini sur ces droites.

Soit V I'angle de deux droites XY, YZ dont les coefficients de direction
sont (A;, ...), (1 ...). SiXY=XZ =1,0na

(YZ)* = (XY)*+(XZ)?—2XY.XZ .cos V= 2—2cos V;

mais = =AM, Ty—z =p, Y1—4H = p—A, etc,
par suite (YZ)? = Zdig (uy—Ay) (ma—Ag) = 2—2co8 V.
D’ou, & cause de (6), cos V = § Zd;; (uAq+pgA,).

La condition de perpendicularité de deux directions est donc

Bdp (As+ ) =0 i (VB

Elle pourrait encore étre obtenue en exprimant que les points & l'infini
sur les directions rectangulaires sont conjugués harmoniques par rapport
i la sphére A, A, A; A, dont 1'équation est Zdy, 2, x5 = 0.
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- Un plan quelconque P est le lieu des droites XY menées par un point
fixe Y et perpendiculaires,d une direction fixe (A, ...). Son équation
peut donc se déduire de (7) en faisant
m = ”L;il, My = ‘Eg;:'—l” seey
ce qui donne, aprés avoir posé ¢ (r) = Zdy, 1,7, et représenté par ¢, (z),
@3 (), ... les demi-dérivées partielles de ¢ () par rapport & 2y, 25, ...,
I(n—wn)e,(A) = 0.
8i ’on fait encore Xy, ¢, (A) = K = K3y,, I'équation de P devient

[ (M)=K]z;+... =0 ..ovvrrnniiiniinniiicinne. (8).

Soit maintenant XZ = 3 la perpendiculaire abaissée d’un point quelcon-
que X sur P; nous aurons a;,—zg, = 3A,, z; = 2,—-38,, etc. Exprimons
que le point Z est dans le plan (8), en tenant compte de (5) et (6) ; il vient

S=[o;(A)=K]ry+... v 9).

- 81 K = 0, le plan P passe par le centre de la sphére A,A,AzA,; car
les coordonnées de ce centre vérifient les équations (3') ou
91 (x) = 62 (%) - ¢3(2) = ¢4 (),

et I’on a identiquement X x, ¢, (A) = 3, ¢, (z). D’ailleursle plan polaire
du point & 'infini (A,, ...) par rupport & la sphére ¢ (x) = 0 a précisément
pour équation 3. ¢, (A) = 0.

En général, K est la distance du centre de la sphére A A;A A, au
plan (8).

D'uprés la formule (9), si p,, p;, 3 2, sont les distances de P &
A, (1,0,0,0), A;(0, 1, 0, 0), etc., on a

21 =0 N)-K, p = ¢:(N)=K, 25 = ¢;(A)—K, p, = ¢, () -K...(10).

On a aussi Al FAgHA3HAL =0 v, (),
et, en faisant la somme des équations (10) multipliées par A, Ag, Ag, A, ef
réduisant au moyen de (6) p\A) +23Ag + 2323+ DA = L .cevvinnniinnnnnns (11),

Eliminons A;, Ag, A3 Ay, K entre (11}, (10) et (5) ; nous aurons
1 N 2 »3 e 0| =0

20 . $dyy dd a1
Py tdy . 3dn  tdy 1
P ddy  jdy . 30y 1
py ddy  jdg dg 1

1 1 1 1 0

On conclut deld que le déterminant de M. SYLVESTER & pour valeur }E ou
—144 (A A2 AA))2

Si I'on développe ce déterminant suivant les produits des déterminants
partiels formés avec les colonnes extrémes d’une part et ls lignes ex-
trémes d’autre part, on obtient la formule de la question 8042.

Larelation (11)est susceptible dela généralisationsuivante: Des parallélcs

bes pas les ts d’un tétraédre A) Ay Ag A rencontrent les faces opposées.

auz points B, B,, By, By et un plan quelconque aux points C,, Cgy Cgy C4; on

,A_J_Cl.pi?_cz.;.éicl.',é‘gt' =

la relati
@ retation A,B, A;B;" A,B," A,B,
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8012. (By the Evitor.)—From any point'P in the base BC of a tri-
angle ABC, lines PDR, PEQ are drawn through fixed points D, E to
meet AB, AC in/R)'Q..| IDrdw DHOEK (respectively parallel to AB, AC,
meeting the base in H, K, and produce HE, KD to meet AC, AB respec-
tively in 8, T'; then prove that (1) AAQR is a mazimum when QR is
parallel to ST ; (2) for other positions of P the rectangle SQ . TR is con-
stant ; (3) hence, or otherwise, give an easy construction for finding the
position (P,) of P for the maximum triangle AQR; (4) prove also that
AAQR is a minimum when QR is parallel to ST (the corresponding position
of P being denoted by p,.) ; (5) the positions of QR in.(1) and (4) are equi-
distant from ST and on opposite sides of it; (6) the range HP,.Kp,, is
harmonic; (7) if [HPP,,K] = [KP'P, H], the areas of the triangles AQR
corresponding to the points P, P’ are equal ; (8) for all positions of P, SQ
varies as the ratio of HP to PK ; (9) the ratio of AR to AQ depends only
on the anharmonic ratio of KeP’P, where P’ is determined as in (7) and e
is the intersection of AE with BC; (10) hence, or otherwise, find the
relation between the two positions of P corresponding to two parallel
positions of QR ; and (11) express the ratio of any two values of the area
of AQR in terms of the corresponding positions of P.

I. Solution by the Rev. T. C. SiMmons, M.A.

1. Let P be such that, when
PDR, PEQ are drawn, RQ is
parallel to TS. Through any
other point P’ draw the lines
P'DR’, I"EQ’; also R’ parallel
to TS. Then, if weimagine other
points Q”Q’..., »"r'”... taken in
AC in like manner, it is evident
that the two systems QQ'Q"Q"...,
Qr'r"”y"”... will be homographic, Q
being a double point. Morcover,
the point S coneidered asa member
of the first system will correspond
with oo in the second, and the same point considered as a member of the
sccond system will correspond with co in the first. Hence the twosystems
will form an involution having 8 for centre. (Sec Towxsenp’s Modern
Geometry, Vol. 11., p. 292, &c.) That is to say, SQ'. S = SQ3? = constant.
Now the arithmetic mean between two lines excceds the geometric mean,
so that Q»'>QQ’; and from this it follows, on the same principle, thut
AQ'.Ar'<AQ* But AR’. AQ=Ar". AR. Therefore AQ’. AR’ <AQ. AR.
That is, AQR is the required maximum triangle.

2. Since TR’ varies as 8/, it follows at once, from above, that
SQ'. TR = SQ . TR = constant.

3. We will give three independent constructions for determining the
position of QR :

(a) Through any point P’ draw P’EQ’, P'DR’, R'», as in Fig. 1, and
take SQ? = SQ’. 8». Produce QE to meet BC in P, and PD to meet AB
in R. This perhaps is the simplest construction. ) ’

(B) Take Q'Q"Q" any threc positions of Q, und #'7"r"" the three corre- .
sponding positions of 7; the lines k7, R/, R being in this case
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parnllel to any fixed direction. On Q’r” describe a semicircle, and on Q"¢
a semi-ellipse; the squares of whose axes, perp-ndicular and parallel to AC,
are in the ratio Q'Q".»'r" : Q"Q.+'r".” From their puvint of inter-
section draw a perpendicular to AC; t}ns will meet it in the required
point Q. (Compare Casey’s Sequel to Euclid, p. 136.) This construction,
1t will be seen, does not involve the points S and T.

(y) Determining H, K, 8, T A
a8 before, draw DF, EG parallel
to BC as in the figuro (Fig. 2); X s
also Ef parallel to TS. Then &
[HPmK» ] = [SQ o G] on ac-
count of the common vertex E. T D
That is, F)

HP,.Ko _8Q.xG

-

G

HP. _8SQ B H P K c
P.K SG’ (Fig. 2.)
Again, on account of the common vertex D, and the parallels RQ,, TS, Ef,
we have [HP,,K» ] = [ QSf}, whence

HP,, . Ko _® Q.8f or HP Sf

P K II@ QS. Wf mK Q)s
Combining these two results, we get HPS, : P,,K? :: 8f: 8G. Thisis an
extremely simple method for determining the position of P,,.

4. In Fig. 3, 1et AD, AE be produced to meet BC in d, e respectively.
Then we have, corresponding to different positions of P, these valucs for
AAQR:

or

Positionsof P| - to H | H tod d to Pm, thento e etoK | Kto+mo

area of AQR | finiteto» | « 0 0 | 0 to maximum, thento 0| 0 to « | ® to finite

M c

’ (Fig. 3.)
80 that there will be a minimum value of AAQR for some position of P,
either to the left of H, or to the right of K. Take P’ in the former region,
and draw P'R'D, P'EQ also R'r’ puralleltoTS (Fig. 3). Then, asin (1),
it will be seen that the points such as Q’, r taken on SC form an in-
volution lying now on the other side of 8§ nnd again having S for centre.
Whence, as before, SQ’. Sr'= constant. Take S¢?, = SQ'.8r'; then, if

a semicircle be described on Q'r’, and tangents drawn thereto _from 8 and
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A, it is easily seen that the geometric mean between AQ’ and A7’ has its
extremity farther\from Althan)the(geometric mean between SQ’ and S/,
except when Q' and 7/ coincide. Whence AQ’. A7’ is a minimum at the
int gu, and,asin (1), we get for the minimum triangle that which has its
parallel to ST. It is hardly necessary to refer to the apparent
paradox, that in the above figure the minimum triangle is greater than
the mazimum.

5. Moreover, as the latter involution belongs to the same system as the
former, it may be inferred that S¢. = 8Q,, ; or, if this proof be deemed
unsatisfactory,

6. We can deduce, a8 in (3) above, that p,, being the position of P for
this other triangle whose base is parallel to ST, Hp? : p.K* :: 8f: BG,
80 that Hpn : p.K :: HP,, : Py K, showing that [HP, Kp,] is harmonic.
Whence, since [HPmKpm] = [SQuex gm], it follows that 8Qm = Sgum; an
independent method for deducing (5).

7. Through any point P A
draw the lines PEQ, PDR,
Rr, as in Fig. 4. Then,
since SQ . 8r always
= 8Q3,, it is evident that,
if we produce rE to P,
and P'D to R/, then draw
R’y parallel to TS, r’ will
coincide with Q. Hence
this will befthe case of the ot

U
R A ma Al g Bk

[EP'PnH] = [0 Q'QaS] (Fig. 4.)
or [or QmS], which = [SQQu® ] on account of the involution, which
latter range again = [HPP,K]. Hence theorem (7) is proved.

8. In Fig. 4 we have [SQQmw» ] = [HPP, K] or

8Q.Q.» _ HP.P.K or SQ'_S(;),,...P...K HP,
8Qm.Qo HP,.PK HP, °“PK’

which, the points Q. and P, being fixed, shows that SQ varies as
HP/PK.

9. Referring again to Fig. 4, we see that [ArQw] = [¢P'PK]
Ar. Qo
or AQ.ro

on [¢P'PK].

10. As P moves along BC from — to + o, it will be seen that RQ
revolves completely through the four quadrants, and comes twice into a
position of parallelism with any given direction.

1f P,, P, denote the corresponding positions of P, we see, from (9), that
[¢P,P/K] = [¢P,Py/K]. This relation enables us to connect the position
of P’y with that of P,.” For, P, being given, P, can be determined from
(7); hence [¢P,P/K] is known. Hence, tor the determination of P,, we
have the twoequations [¢P;P,’K] = constant, and [HP,P,, K] = (KP;'P,H];
from which, by the elimination of P;’, we can find P,. o

= [¢P'PK]. Hence g—f} which varies as “:_;, depends only
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« 11. Let P, P” denote any two positions of P; and AQR’, AQ”R” the
corresponding triangles.)(Then, d being taken as in Fig. 3,
A.AQ,’R’ - AQ,' AR/ - AQI Q” 0 ARI. R"’»
AAQ”R" AQ”. AR” AQ’I. le M AR”.R'w
_¢P.P’K dP'.P"H _ P.Pd ) %
¢P”.PK 'dP".PH HP.P’K HP".PK’
This gives the ratio of the two triangles corresponding to the points P, P”’-
It will be at once seen that the absolute area of any triangle AQ'R’ depends
only on the ratio ¢P’. P’d ; HP'. P’K, and hence can be given at once in
terms of the maximum triangle, and the position of P/. It can also be
seen that there will be two positions of P’ corresponding to any given
magnitude of area of AAQ'R, as in theorem (7) proved above.

II. Solution of Parts (1) and (3) by D. BippLE.

. 1. Draw DF, EG parallel to BC (Fig. 2). Then, let HK = 1, DH = d,
EK = ¢, AF = f, AG = g, DF = m, EG = n, and HP = 2.

Thenz :d=m . f—AR,and 1—-z:¢ = u . g—AQ; whence

) AR = (fzx—dm) [z, and AQ =[g (1—2)—en] [ (1—w).
Now, in order that the triangle ARQ may be a maximum, AR . AQ must |

. efn dgm = demn
be amaximumalso. ButAR.AQ = fy— =— - =—+ .
1-2 z z(l-2)

efnx +dgm (1 —x) —demn

There«

fore, since fg is the limit, = g minimum, and

z(l—x)
[@m (g—en) + (efn—dgm) 2] [ z (1—2)
= [dm (g —en) + (¢fn—dgm) z + (¢fn—dgm) h] [ [# (1—2) + h—2ho—h%];
whence (¢fn— dgm) 22 + 2 (dgm—demn) x =dgm—demn. But 1:d=m:TF
and 1:¢ = n:8G. Moreover, f—TF = AT, and g—8G = AS.
Let TF =p, SG=¢, AT=¢ AS=45 Then dn =p, and en =g,
and the above equation becomes (fg—gp) 22+ 2 (9p—pg) 2z = gp—pq and
w-m)’ gr—rg |} _gr—rg i }
== + - = (sp sp) +(q?)*]).
[(fq—yp Se—gp.)  Sfg—gp Ge)" /1) + (@]
- For example, let HK = 77, DH = 44, EK = 26, AF = 60, AG = 68,
DF = 23, EG = 23. Then
p=44.23 /772, ¢ =26.23/77%, ¢=(60.77—-44.23) /77,
s = (68.77—26.23)/ 772,
and z = *596 . HK = 45-892 as in the diagram. We have, also
RT+p:m=4d:o, M
RT=p(l—-‘L‘)/Z, M
and, assuming that QR is L
parallel to ST,

%RT+q:u=e:l—z,

NPT K

therefore
RT = qz/ti(l -z)

=p (1 —x) / z,
whence z = (sp)} / [(#0)} + (¢1)'), as efore. (Fig. 5.)

E Q B
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+ 8. The foregoing analysis also enables us to find the point P, and fo
construct the triangle PQR, geometrically. For we have »

S (€)1 L (2
z 1/{1+(8p 1=1 {%H 2 !
Accordingly, upon HK, with centre O (Fig. 2), describe a qemi-circlo,
and mark off HA = s, HT = ¢, HC = », and HF ~gq. Desg:nbe the arcs
AB, TE, und draw CD, FG parallel to KB, KE respectwgly. Then
HD = sp and HG = ¢¢. Further, describe the arc DL and join LK, also
make HM (on HL) = HG, and draw MN parallel to LK; then
HN = gt /sp. Draw NQ at right angles to HXK and join HQ; then
_(Lt i

HQ (.p) .

Finally, make OR = 1HQ, describe the arcs RS, OV, .l'oin SK and
draw VP parallel to SK. Then HP-,}/{}h} (?q-‘:) {, and Pis
the required vertex of the triangle PQR. ’

QU _PC SC _HC. ... = Q8 _HP.KC

[W° bave FR=PK’ EK ~HK' "I EX T PK.HK'

.. RT _PK.BH,
similarly, we find DH ~ HP.BHK’
hence we obtain

BH.HD.CK.KE 8C.TB.BH.CK
O.-BT="""Hgr -~ BK.CH

Now AAQR will be a maximum when the consfant magnitude
(AS. AT + QS . RT) diminished by the variable magnitude AQ. AR is a
minimum, that is to say, when AT . QS + AS. RT is & minimum. And it
is well known that, if QS, RT be (as in this problem) variable lines whose
rectangle QS.RT is constant, then (AS, AT being constant lines)
AT .QS+AS.RT will be a maximum or a minimum when AT.QS
= AS.RT, that is to say, when AS : QS = AT : RT, that is, when QR
is parallel to ST.]

= & constant.

8008. (By Professor WoLsTeNHOLME, M.A., Sc.D.)—Two conics are
met by a transversal in the points P, Q; P’, Q' respectively, and AA’isa
common tangent ; the straight lines AP, AQ meet the straight lines A’PF’,
A’Q in four points ; prove that these four points and the four common
points of the two conics lie on one conic.

Solution by R. LAcHLAN, B.A.; Dr. CurTis; and others.

v Let U, V be any two conics, and let two other conics %, v be drawn
through the points in which U and V are cut by any conic 8 ; then we
haveu =S+AU,v=8 +uV; whence 4—v =AU —uV, or the four points
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common to % and ¥, and the four points common to U and V, lie on a
conic. The theorem in the question is easily deduced from this.

[On pp. 24, 25 of Vol. xri1. (Quest. 7842) it is shown that, if two circles
are met by a transversal in the points P, Q; P’, Q/, respectively, and
AA’ be a common tengent touching the circles in A, A’, respectively,
the four points in which the straight lines AP, AQ meet the straight
lines AP, A’Q/, lie on a circle having a common radical axis with the
given circles. If in this theorem the three circles be projected into conics,
and the line at infinity into a line intersecting them in two common
points, the theorem here enunciated results.]

7998, (By F.Pursnr, M.A., and Professor Haveuron, F.R.8.)—Four
points on a quartic lie on & line (A) ; three other Foints lie on a line (B);
three other points lie on & line (C) ; there are (of course) two other real
points, lying on (B) and (C) respectively: prove that, for every possible
quartic passing through the above ten points, the line joining the remain-
ing two real points passes through a fixed point which can be constructed.

Solution by James R. Hovrr, B.A.

1. Taking the three lines as sides of triangle of reference, let the equation
of the quartic be Q = 0, and let the results of puttingz =0,y =0,z =0
respectively in Q be X =0, Y =10, Z = 0. These three equations give
the points in which the qum“ic meets the three lines; hence all the roots
of X = 0, three of the roots of Y = 0, and three of the roots of Z = 0 are
fixed. Let the coefficients of &4, ¢4, ! be 4, 6, . Let the factors.of X=0
be y + a8, ¥ +ag2, &c. ; let the factors of Y=0bes+ 8,2, ¢ + B3o, &c., and
the factors of Z = 0 be 2 +7,¥, £+ 73y, &c.; then

5
aagagay = %3 B1B:B3B, = %; NYYV = 5
hence a;ayesn, 8183858, 1Y17474 = 1. But in this all the quantities except

B, and v, are fixed ; hence Byy, is fixed. Let the line passing through the
points (By, 7,) be Iz +my +nz = 0.

Then % =By 1;'- = v, Therefore % is fixed, and therefore the line
cuts # = 0 in a fixed point.
2. To construct the point if the line joining B8;, 7, meets 2 = 0 in

¥ +a,/s = 0, we have B,y,@’ = 1. Similarly for the other pairs of points.

Henco masmge, = ay'as’agsy. But —:l,, :":, 7“';, are known anharmonio
) 3

VOL. XLIII. N
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ratios. Compounding them (which can be done by a linear construction),
we know ?.,-, and therefore can-determine the required point by a linear
construction.

[Mr. Purser thinks that perhaps the most convenient method of con-
structing the fixed point which lies, as Mr. HoLT has shown by a process
- the same as his own, on the line (A) is the following : —Let the four points
on (A) be denoted by P, Q, P/,Q’; the three on (B) by 8, T, U ; and the three
on (C) by 8, T, U’. Then one quartic through the ten points is the pair of
conics PQS'T'U, P'Q'STU’, and for this quartic the line Iz + my + nz = 0
is that joining the remaining intersections V, V’ of these conics with (B),
(C) respectively. We have ouly then to construct the points V, V’, and tke
intersection of VV’ with (A) will be the fixed point required. Now V, V’
are given immediately by applying Pascar’s thebrem to the hexagons
PQS'T'UV,P'Q'STU’V’. We have thus the following construction:—Join
the intersection of the lines P8’, QU to the intersection of (B), (C), and let
the joining line meet QT' in M. Then PM meets (B)in V. A precisely
similar consiruction determines V’. It appears from above theorem that,
if all the four points on (B) be given, the fourth point on (C) is determined,
being of course found by joining the fourth given point on (B) to the fixed
point on A, determined as above, and producing this line to meet (C).]

Proors or THE ForMULE 2 = }f83, &c. By J. WaLuBiLey, B.A.

1. Assume OA to represent the path of a particle P moving from rest
at O during time ¢ with uniform acceleration f. At A the velocity accu-
mulated will be f2.

A P’ [ P A

In AO produced make OA’ = OA = s suppose. Then A’A = 2s.

Suppose a particle P’ to move from O along OA’, starting with velocity
Jt, but with a uniform refardation f which will reduce ft to zero in ¢
seconds. Clearly the motion of P’ during this time will be that of P
reversed, and P’ will come to rest at A’ as P is arriving at A.

Consider the relative velocity of P from P’. This is simply the rate of
increase of the distance which separates them ; and

= vel. of P’ from O + vel. of P from O = a uniform velocity f¢;
since, at any instant, P has just gained in velocity what P’ has lost.
Hence, by formula for uniform motion,
2s=ft.t =ft2; therefore s = {f¢.
Taking initial velocities as % and u + f¥, we get, in this way, s=sut + }f22.
‘We will obtain this result as an illustration of another method.
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2. Suppose we impose on a particle two accelerated velocities in one
straight line, namely w with(acceleration |, and u+f¢t with acceleration
—~f. In time ¢ the former will increase to « + /¢, and the latter decrease
to u.

By the Second Law of Motion, the space described in the same time
will be the sum of the spaces due to the component velocities them-
selves. Call it 2s.

But the resultant velocity is uniform, namely 2u+f%, for one compo-
nent is gaining at the same rate as the other is losing,
therefore 28 = (2u+ft) t = 2ut + }ft3.

Aguin, the space due to each component is the same, for the motion due
to one of them is precisely the same as that due to the other taken the
reverse way. It follows that the space due to each velocity is s.

‘We conclude, therefore, that for a particle moving along a straight
line, with initial velocity » and acceleration f, s = ut+,ﬂ’ The same
method will, of course, apply when « = 0.

The remaining formule s = }v¢, &c. easily follow as usual.

8013, (By T. Muie, LL.D.)—Show that, if Zsstands for s+ +¢+d,
the persymmetric determinant
1, 4Za, 33ab | = § [§42ab—} (ab+od)] [43ab—} (ao+ b))
13a, }3ab, 43abe x [}2ab—1} (ad + be)].
}=ab, %{Zabe, abed

Solution by B. HANuMANTA RAvu, M.A.; J. O'REcAN ; and others.
1728A = — 8 (Zal)3 + 363ab (8abed + Za . Zabc) — 108[ (Zabc)? + abed(Za)?],
or 4324 = (3ab)3~ 3 (3ab)? (Zab) + 9 (Zab) [Za . Zabe—4abed]
—27 [(Zabc)? + abed (Su)?— 4abed Zad]
= [Zab—3 (ab + cd)] [2ab—3 (ac + bd)] [Sab— 3 (ad + bc)].
For  3a.Zabc—4abed = (ab+ecd)(ac+bd)+( )( )+( )( )
and (Zahe)3 + abed (Za)2— 4abed . Zab =3 (a362¢%) + abed . 3 (a¥)
= (ab +cd) (ac + bd) (ad + be).

7938. (By R. Trcker, M.A.)—ABC is a triangle of which DEF,
D'E'F (D, D’ on BC, &c.) are the pedal and medial triangles respec-
tively ; prove that the.six Simson-lines, taken from each vertex with
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r?ferenoe to the other triangle, the circum-circle being the nine-point
circle of ABC, pass through a point-on the line mentioned in Queat. 7900,
and is the centre of Mr. H. M. TaYLoR’s circle.

Solution by CrarvoTTR A, Scort, B.Sc.

&
)
C
QL
o

Let ndicular from D’ on E'F' meet circle again in 8. Then we
know that D3 and the Simson-line of D with respect to DEF make equal
angles with D’3. But D’3 is a diameter; therefore Simson-line of D is
parallel to D'H, i.e., perpendicular to EF.

Let d, dy, dj be feet of perpendiculars from D on E'F’, CA, AB. Then,

since APD, AFdy, AEd, are respectively collinear, dqdy is parallel to EF;
therefore the Simson-line of D goes through d, and is perpendicular
to dydy.
But d is centre of circle AdyDdy; therefore Simson-lines of D, E, F
bisect dq, dy, ey, ¢, fi, fy at right angles; and therefore, since d,, dj,
¢y, ¢ for 1, Lio on circle, centre Q, the three Simson-lines of D, E, F pass
through Q.

Again, D'D is perpendicular to DP, which is bisector of angle EDF ;
therefore line joining feet of perpendiculars from D’ on FD, ED 1s perpen-
dicular to DD’; i.e., Simson-line of D’ with regard to DEF is perpen-
dicular to DD’. Moreover, since D’H is perpendicular to FE and bisects
it, the Simson-line goes through bisection of EF.

Now ¢,, f; are points on circle, centre Q ; therefore Q lies on line
perpendicular to ¢, f; at its bisection, i.s., Q lies on line through bisection
of EF, perpendicular to DD, s.e., Q lies on Simson-line of D’ with regard
to DEF, and therefore the three Simson-lines of D’E'F’ with regard to
D, E, F pass through Q.

Let pgr be medial triangle of DEF, d'¢/f pedal triangle of D’E'F".
Then pqr, d’¢f’ are both similar to DEF, and of half the linear dimensions ;
therefure they are equal. Also they are similarly situated, and therefore
pdy g¢, rf are parallel, as are all lines joining corresponding points.
Now O is in-centre to d'¢/f', and Q is in-centre to pjr E:ince 2Q is
parallel to DP, &c.], therefore OQ is parallel to d’p’, &c., and therefore 0Q
18 parallel to line joining centroids of pgr, d'¢’f’.

Now (centroid of @'/’ to centroid D'E'F’) is parallel to (centroid of
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DEF to centroid ABC), i.e, to (centroid pgr to centroid D’E'F’), there-
fore centroids of D'E‘'F’; d’¢'f, pgr,arecollinear. Therefore OQ is parallel
to line joining centroids of D’E'F’, DEF, i.c., 0Q is parallel to OK, and
therefore Q lies on line mentioned in 7900.

7969. (By Professor SArADARANIAN Riy, M.A. Extension of Question
7865.)—On the sides of any triangle, similar and similarly situated poly-
gons are described, and equal masses are placed at all the corners; prove
thatl the centre of gravity of the masses coincides with that of the tri-
angle.

Solution by Dr. Curtis; A. GorpoN, M.A.; and others,

Let p), ps, ps denote the three altitudes of the given triangle, let 1 be
the number of sides in each of the polygoms, G,, G G, the centres of
gravity of a system of masses, each = m, placed at each angle of each of
the polygons on the sides @, 4, ¢ respectively, thereby introducing masses
2m at the points A, B, C. If from G,, G, (3 perpendiculars be let fall
on a, b, ¢, they will themselves be proportional to these sides, and may be
denoted by Aa, Ad, Ac, and will divide a, &, ¢, respectively, in the same
ratio, say x : 1—«x. The centre of gravity of this entire system will be the
centre of gravity of three masses, each = nm, placed at G,, Gy, Gg, and,
if 3 be its distance from e,

3nmz = nm [xa sin B+ Aacos B + (1 —«) dsin A + Ab cos A—Ac],
or, as e=acosB+bcosA, and as8inB = bsinA,

5z = bsin A = p,, therefore z = }p,; similarly y = }p,, 2 = }2,;

therefore the centre of gravity of the system coincides with that of the
given triangle. Again, as the centre of gravity of three masses, each = m,
placed at A, B, C, coincides with the centre of gravity of the triangle,
these three masses may be left out of account, thus reducing the system
above considered to that cous sting of a mass m placed at each angle of the
figure constructed as in the Question ; therefore, &c.

7922, (By Professor Syrvesrer, F.R.8.)—Prove that the equation
in quaternions 23— pz = 0 has four roots, and that these roots, if regarded
as belonging to the sguare of the equation, obey Harrror’s law.

Solution by Professor MaTHEWS, B.A.
Let p=b+ai+Bi+ok, z=owtli+ni+k
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where 1, j, & are rectangular unit vectors; then .
23/ I3 3L 03 200 E + 20my + 200(E,
Pz = dw—af—Bn—y(+ (aw + 8f—yn + BC) § + (Bw + dn—al + vE) S

+(yw+ 50— B + 8n) k.
Hence, if »* = pz,

Wi (t = de—at—Bn—f, 20t = s+ By +BC) (),
20m = Bo+3n—al+ 7k, 20( = yo+3(—BE+3n
The last three equations may be written
Qu—3)t+m—B({=aw, =7+ (20—3)n+af= Bw,
Bt—an+ (20—3) ( = yo.
Let A=|20-83 4 -B
-y 203 a
B —-a  20-3
= (2w -3) [40*— 4B + 3 + a¥] + 7y (aB + 20y — y3) — B (ya— 2wB + B3)
= (20—38) [4w?— 403 + a + B* + y? + &),
then A.} = w[a (4w’ — 403+ 8 +a?) + B (aB— 29w +98) + 7 (ya — B3 + 28w)]
= wa [40?—4wd+al+ B2+ 93+ 8] ;

hence 40 —4d+at+ B2+ + B =0..ccovrninnninnnen o (B),
G]‘e - wa . = “8 = ot 4 .
or = ? ""2d ("Za-3

Substituting in the first of equations (A), we get, after transposing,
hence w = 0, or 3, or else
(w=8)1= = (a®+8+9Y), w=1[5+(-1) (a2+ B2+ )],
the same values as would be derived from (B).
In the last expression, (— 1)! must be taken to mean an imaginary scalar

quantity, while (a*+ 8%+ 7’)‘ means the arithmetical square root of
a?+ B ++3. Using quaternion notation, the values of w or Sr are

0, 8p, }[Sp£(—1)!. TVp),
while Vzeli+nj+(k = 2:_‘ (:.i+g,'+-,»k} = %T"’__av
=0, Vp, % .Vp=0, Vp, }[TVpF(~1). 8p] UVp.
Thus, finally, the four values of  are
#7=0, z=p, z=4p+}(~1)[TVp—8p.UVp],

#=p-4 (-1 [TVp—8p. UVp].
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‘Hence @ +r9+ 2342, = 2p,
2(7 ¥\ = PR [ p2H (T Vp—8p . UVp)?]
=i+ [p?—(Vp)'— (8p)*—25p. Vp] = 1
2, Zg%g+ ... ™ 29237, = 4p [p*+ (TVp—8p . UVp)}] = 0, z,7z,232, =0,
the same relations as for the roots of #4—2p23 + p°a? = 0, i.c., of
(23—p7z)2 = 0.

8045. (By Professor WorLsTexmoLMB, M.A., Bc.D.)—Through each
point P of a given straight line is drawn a straight line making a given
angle with the polar of P with respect to a given conic; prove that (1)
the envelope of such straight line is in general a parabola, but degenerates
into a point when the given angle is that which the given straight line
makes with the diameter of the given conic conjugate to it ; and (2) this
point is the focus of any parabolic envelope.

Solution by SAMUEL RoBBrTS, M. A. ; A. MUKROPADHYAY, B.A. ; and others.
Take for the given conic the equation
("1 bye, f, 9, hI‘”) Y 1)’ =0,

for the given line £ = 0, and for the generating line y—mz—n = 0,
Then, if ¢ be the tangent of the given angle, we have

nh+g nh+g )
nb+f nb+f ]’
and, substituting, y—mz for n, we get
m(th+b)o—m [(th=R)c+(th+B)y+tg+f]+ (tb—h)y+tf—g = 0...(a).
The envelope is evidently a parabola.

‘When m =+ (i for +,/—1), (a) becomes

(5—1t) (hz—by—f)— (1 +it)(bz+hy +g) = 0,

and the focus is determined by equating the coefficients of (§—¢) and
(1 ++¢) to zero. But the tangent of the angle which the axis of y makes
with the conjugate diameter in question, is — —Z—, which, substituted for ¢

in (a), causes the coefficient of m? to vanish, leaving a system of straight
lines passing through the focus.

m+ -t(n—m

7719, (By Asross MuxmorApuYiY.)—Show that, if
brtay—es _ey+bz—az _ aztex—by
a?+ 52 b2+ 2 ¢ +ad
then (1) x (6% —bc) +y (43— ac) + £ (c*—ad) = 0,
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z+y+e _ox+bytes,
a+b+e) | ab¥be+ea’

and (2) (a+b0+ca) (2 +yi+2) gH+5l—ot) (42 —ph) (ah 4+ 4P —sh)
= (az + by + cz)3.

implying

Solution by B. HANUMANTA Rau, M.A. ; SarAH MARKS ; and others.

1. Putting each of the expressions equal to ¥ and solving for z, y, and
s, we obtuin z = k(b+¢), y = k (¢c+a), and s = k (a +5), therefore

z (a3—bc) +y (82— ac) + = (c*—abd)
=k[a2(B+e)+b2(c+a)+cP (a+8)—bc(b+e)~ca(c+a)—ab(a+d)] =0,
or a2 + By + % = bex + cay + abs.
Adding (ca+ ad) @ + (b + ab) y + (ca + b¢) s to both sides, this becomes
(ab+de+ca)(z+y+2) = (a+b+c)(ax+dy +cz).
The second part of (1) also follows from the fact that each fraction = 2%.
2. (ax + by + c£)?—(ad + be + ca) (2ys + 222 + 22y — 28— y*—¢? )
= (a+d)(@a+e)z?+...+...—2a(b+c) yz—...—...
- —kl?[z’yl+y’u+33:ty—2kuyt—2kbzyz—2kwyz]

- %—'[s+y+z—2k(¢+b+c)] =0,
therefore (az + by + o2)*
= (ab+Be+ca) (st + gt +5Y) (W +5t—2) (D A—gt) (2P + ¢t —ob).

7935. (By G. Herrer, M.A.)—Three lines, no two of which are
parallel, are given by their equations. Express the condition that the
origin may be within the triangle formed by them.

Solutions by (1) Rev. T. C. Snumons, M.A.; (2) the Proproser.

1. Write the equationsin the form @,z + by =1, az + by =1, ayz + byy =1,
and denote the angles the lines make with the axis of x by a, 8, 7.

Now it will be seen, from figures drawn in various positions, that the
necessary and sufficient condition that the origin should lie within the
triangle is that sin (a — 8), sin (8—~1), 8in (y—a) should be all of the same

R g e - a, L) .
sign. Whence, substituting cos a @i+ o @i oV &c.,

we obtain, as the required condition, that a, bs— 8, ag, aghy—byas, a3b, —b3a,
must be all of the same sign. ’

sing =
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2. If the origin is within, the angular points are all on the origin side
of the opposite, sides. |- They cannot be all on the non-origin side. But,
in order that the intersection of (1) 'and (2) should be on origin side of (3),
the sign of

a b 1]+ l a b
ag b 1 ag by
ag by 1
must be negative. The first determinate is symmetrical, therefore

o b I ay by I ag by |
ay by ag b o b
must have the same sign.

8068. (By W.J.O. Saarp, M.A.)—Show that the angular radii of
the circles inscribed in a spherical triangle and its associated triangles,
are the complements of those of the circles described about the polar tri-
angle and its associated triangles, and that the circles are consecutive.

Solution by Professor NEUBERG.

Soient ABC, A’B’C’ deux triangles polaires,
C’ ot B’ étant les poles de AB, AC. Les arcs
C'D, B’E sont égaux & un quadrant, d’od
B’D = C'E. Le milieu M de DE est aussi
le milieu de B’C’, et I’arc AM est & la fois
bissecteur de I’angle BAC et perpendiculaire
au milien de B'C’. Par consgluent, le cercle
inscrit & ABC et le cercle circonscrit &
A’B’C’ ont méme pble 0. L’arc A’O, qui
passe par lepdle A’ de BC, est perpendiculaire
sur BC; donc le rayon A’O du cercle circonscrit & A'B’C’ est complé-
mentaire du rayon OP du cercle inscrit & ABC.

Le théordme du No. 8068 est fort connu, de méme que le suivant :—
Les deux triangles ABC, A’B’C’ ont méme orthocentre, et les hauteurs corres=

pondantes sont supplémentaires.

6871. (ByJ. L. McKenzie, B.A.)—The three sides BC, CA, AB of a
triangle are cut by a straight line in L, M, N ; and lines drawn through
A, B, and C, parallel to LMN, cut the circumscribing circle of the triangle
ABCin P, Q, and R; prove that the lines PL, QM, RN all cut the circle
ABC in the same point.

VOL. XLIII. o
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Solution by the Rev. T. C. Simmoxs, M.A.

Let NR meet/the circlein Scand
join LS; then «S8NL = alternate
angle SRC = £ 8BC, therefore a circle
goes round SLBN; therefore £ BSL
= £ BNL = alternate angle BAP,
therefore SL produced passes through
P. Similarly SM produced passes
through Q.

[Mr. Siumons sends this solution
of the Question because he finds a
difficulty in understanding the one
given on p. 66 of Vol. 40.]

8028, (By Iris.)—Given two circles and a point O ; draw a line PQ
cutting the circles in P and Q respectively, so that the triangle OPQ may
be similar to a given triangle ABC.

Solution by Dr. Curtis; Professor CHAKRAVARTI, M.A. ; and others.

If of a triangle of given species, OPQ, one angular point, O, is fixed,
while P moves along a fixed straight line, or the circumference of a fixed
circle, it is well known that the locus of the third angular point, Q, is &
circle, denoted, for the purgose of reference, by A ; if then Q be supposed
to be restricted to a locus, B, which may be a straight line, a circle, or any
fixed curve in the plane of the triangle, the point Q will be determined by
the intersections of A and B, and the corresponding triangles obtained.

[For another solution, see Vol. xxrv., p. 112.]

4266. (By Professor SyLvesrer, F.R.8.)—If, by a mediate between
two curves in resgect to any point, be understood the curve which every-
where bisects each segment of any ray passing through that point inter-
cepted between the two curves; prove that (1) every unicursal quartic
having two nodes at infinity is a portion of the mediate of two similar
conics placed with their axes parallel, in respect to a point situated on
one of the conics, and that there always exist two real pairs of such conics
(coinciding only in particular cases) of which any given quartic is a part-
mediate ; and (2) show also how to construct any unicursal quartic what-
ever by means of two general conics, & fixed point in either of them, and
any one of their chords of (real or imaginary) intersection.
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Solution by W. J. C. Smarp, M.A.

If ax?+by*+22+2y =0 and az3+by?’+2fy+29'z2+¢c =0 be the
equations to the two conics referred to axes parallel to their axes of figure,
the origin being at a point on the first, and if R and R’ be the radii
vectores to these, which make an angle 0 with the axis of x, R and R’
are determined by the equations

. (acos®0+58in%6) R+2(fsin6+gcos ) = 0........ veeeees 1,
and (acos?0+5b8in20) R2+2(fsin0+g'cos ) R +¢ = 0......... (2),

whilst the corresponding radii vectores of the mediate are p = JR’ or
p = % (R+R’), valves which correspond to two distinct portions of the
mediate. Considering only the latter part, and eliminating R and R’ be-
tween 2p = R + R’ and the equations (1) and (2), we have

[p(a cos? 0+ bein? 6) + fsin 0 + g cos 6]

x [p(acos®6 + bsin?8) + (f+/)sin 8 + (g +¢°) cos 8] + ¢(a cos? 8 + b 8in? 6) = 0.,
The locus of the extremity of p is
(623 + by + fy + go] [a23+ by + (f+S ) y + (9 + ') ] + ¢ (a2? + by?) =0...(3),
a unicursal quartic with one node at the origin and two at infinity (at the
points at infinity on the asymptotes to the given conics); so that the
nodal triangle is formed by the parallels to the asymptotes through the
origin and the line at infinity.

If ax® + By® = 0 be the equation to the two sides not at infinity of the

nodal triangle of & unicursal quartic with two nodes at infinity and one
at the origin, the equation to the quartic may be reduced to

(az® + By?) (62® + by® + 2h + 2hy) + 12 + 2may + ny? = 0,

which compared with (3) gives 2h=2¢g +¢’, 2k=2f+f, l=g(9+9')+ca,
2m = f(g+9)+9 (f+S), n=F(f+S)+¢b, which will give real values
off,f+f, g and g+¢,if A%> A andk*>n. Nowthe equation to the quartic
may be written (a2 + by? + hz + ky)? = (h* — ) 2° + 2 (hk —m) oy + (K*—n) 37,
which for a real quartic involves 22>/ and A*>n, and there will in
general be two pairs of real conics, and these pairs coincide if

b(2=1) = a(R—n),

and the origin is the centre of (2).

The construction required in Part (2) of the question may be deduced
by projecting infinity into z, one of the sides of the nodal triangle, and the
axes of # and y into the other two. The conics become

a2+ by + 2fyz + 2922 = 0 ..ooonvniiiniinnnen. 1%,
a2+ oy + 2f Yz + 292 +¢22 = 0 ..ovnnivinnnnnnne, (2%).

So that # = 0, y = 0 is in (1) and =0 a chord of intersection. The pro-
jection of any point on the part-mediate is the point on the line through
x =0, y =0, and that point which is harmonically conjugate to the
second intersection of the line with (1¥), one of its intersections with (2*
and the point where it meets 3 = 0. The part-mediate is then projecte
into a unicursal quartic, havingz = 0, ¥y = 0, and s = 0 for the sides of
the nodal triangle.
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7254. ‘By Professor Marz, M.A.)— Given the axes CA = 2a and
CB = 25 of an elliptic quadrant AP PsP,B ; also the £ ACP, = w = 30°,

LP,CPy=¢ = 15° (P,CPy=10=30°: find (l) D,P,, D,Ps, CD,,” CD,.
where P » P,D, perpendicular to CP,; also (2) these values for

e=mdm]l, o=0

Solution by R. KNowLes, B.A.; Professor Roy, M.A.; and others.

1. From the equations
y = tan (¢ +a)z, Py,
y = tan (p+w +0) z, CPy,
5223 4+ a%y® = 4a%? the curve,

which belong, respectively, to CDy,
CP;, and the curve, we obtain ¢

CP, = 2absec (p+e) _ 224
T [Frattant (pra) (400

CP, = 2ab sec (¢ + w + 6) 4ab
3™

[P ratant(p+w+0)]t  [(2++/3)at+(2—/3) BT
Ifw = 30° ¢ = 16° 0 = 30"; and, from the triangles CD,P,; and CD,P,,
DR = 5t G /3=y €D, = f‘fb,), (V3+1),

2tab
[(2+v/3) a3+ (2—4/3) 3]}
2. If 6 = 1 = b, @ = 0, these become respectively

1 .6
;/—2(\/3—-1), 73 (W3+1) and 2.

DyPy = = CD,.

8044. (By Professor Hauvenron, F.R.S.) — The mean distance of
Mars from the Sun is 121 millions of miles, and his periodic time is 687
days; calculate the mass of Mars (a8 compared with the Sun) from the
following data as to the distance and periodic times of his two satellites—

No. 1. No. 2.
Distance........ccceuuveeenee 12483 miles. 6000 miles.
Periodic time............... 30h 14m, 7 38m,

BSolutions by (1) Avice G. Huxmam ; (2) ApELATDE HALL ;
(3) Astrosn MvukroripHYAY, B.A., F.R.A8.

1. Taking distance and period of Deimos (satellite 1.) as units, the dis-
tance and period of Mars are 9693 and 645. Hence mass of Mars [ mass
of Sun = 545 x 545 / (9693)® = 1/3066067. Treating Phobos similarly,
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the mass of Mars = 1/1757728. Thus the results are still discordant. If
the elements given inl Bavry's|Elements-of, Astronomy be taken (distance of
Mars 141 millions, and of Deimos 14500 miles, with slightly altered
periods) the results are 1/3106969 and 1/3093507, which are fairly
accordant with each other and with Professor Asarr HaLL’s calculation,

2. We use the formula m = d®/#, where m is mass of central body,
and d, ¢ the mean distance and periodic time of the planet or satellite.
The results, by use of logarithms, are easily found to be:—From satellite I.,
1/3062213; from satellite II., 1/1767900. The elements in Barr’s
Astronomy differ considerably from those given by Professor HaugHTON,
and give the mass of Mars; 1., 1/3039690; 1I., 1/3027520.

3. Let R be the distance of Mars from the Sun, and T his periodic
time ; then, the ¢ centrifugal force” of Mars in his orbit is 4a2R /T2,
But, since Mars is retained in his path by the attraction of the Sun, which
is proportional to the Sun’s mass, and inversely as the square of the dis-
tance, we therefore have )

Mass of the Sun R
S
Rs
whence Mass of the Sun = 4x2. T3 e (1).
Exactl{ for the same reason, if r and ¢ denote the distance and periodic
time of one of the satellites of Mars, its ¢ centrifugal force’ will be
4x?r [ 3, which must be equal to the attraction of Mars, or

Mass of Mars r [ad
—_— = - —_ = e eeeseenee 2).
o 4x? ri Mass of Mars = 4«2 m (2)

s - Mass of the Sun _ (I_t)'(i)’
Hence we obtain  u ~Mass of Mams ~ \> T)
Therefore log i = 3 (log R—log r)—2 (log T—log ¢).

Let us first take the first satellite. Here

R = 141 x 108, T = 687 x 24 x 60/,
r = 12483, t =1814".
log R = 8°1492191, log T = 5-9953192,
logr = 4-0963190, ~ logt = 3-2686374.
Hence logu = 66863367, u = 4845478.

If we take the second satellite, we have r, = 6000, ¢, = 468';
log r, = 3:7781513,
log ¢, = 2:6608665,
which give log jy = 6-4442960, u, = 2781608.

‘This great discrepancy between the two results is principally due to the
fact that the elements of the first satellite as given in the question are too
small. If we put r = 14600, as in Loowmis, p. 223, we have log r = 416436,

‘whence log » = 6:4812350, and x = 3028651.
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Of these two values, that obtained from the sacond satellite is the nearer
to the value giyen in Dr:{Hapcuron]s dstronomy, p. 22, Table I. If we
take the mean of the two values, we have

2log u = 129255310,
log u = 6°4627655, whence u = 2900453,
which is greater than the more accurate value given in the table, where
u = 2680337. It is also to be remembered that the discrepancy arises
partly from neglecting the ellipticity of the orbits. If we take the mass
of the Sun to be unity, we have, from the respective sources affixed, the fol-
lowing five values, arranged in order of accuracy, for the mass of Mars :—

1) +0000003730874 (HAUGHTON'S Astronomy);
ﬁ-z) -0000003595043 (second satellite) ;

(3) -0000003447736 (mean value above) ;

4) -0000003301909 (corrected value for distance of first satellite) ;
26) +000000206378 (uncorrected value for distance of first satellite).

3666 & 7729.—(3666.) (By Professor Evans, M.A.)—The six faces
of a cube, each of whose edges is n inches in length, are divided into square
inches by two systems of parallel red lines. How many different routes of
3n inches each, by red lines, are there from one corner of the cube to the
corner diagonally opposite ?

(7729.) (By B. RevNoLps, M.A.)—Show that the number of shortest
routes from ome corner of a chess-board to the opposite one, along the
edges of the squares, is 12870.

Solution by the Rev. T. C. Snamons, M.A.

(3666.) Let ABCD be one of the faces adja- s 1
cent to A, the starting-point. Then any route T
which commences in the plane ABCD must T~
cross one of the edges CD, CB. P S\ g

In either case (let us suppose the former),
we have the equivalent of a route traversing
a rectangle 27 inches long by # inches
broad, and whose opposite angles correspond
with A and E, the opposite corners of the
cube, and we have to consider in how many
ways # journeys parallel to one direction can £ r
be interspersed among 2n journeys parallel to
the perpendicular direction. As the extreme lines AB and EF are both
available for the former set, this is equivalent to finding in how many
ways »n indifferent things can be distributed into 2n +1 different parcels.
This is the same as the number of combinations of 3» things taken 2n
at a time (see Prop. 26 of WHITWORTH’S Choice and Chancs). Hence the
total number of routes crossing CD is 3n!/[2n!ns!]. Multiplying by 2,
we get all the routes traversing the face ABCD, and, multiplying again
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by 3, we include all the routes starting from A, which thus amount to
[6.3n!]/[2n! n!].

It only remains to subtract the routes’which have been counted twice.
All the routes from D to E, numbering 2r! /%! #!, have begn included
twice, both among those crossing DC, and among those crossing DF, and
similarly for the routes from B to E. The routes from A to C have like-
wise been counted twice, both among those crossing CD and those crossing
CB. There are six of these sets of routes, corresponding to the six corners
of the cube lying between A and E. Hence the final result of the number
of different routes is 6 (3n! [ 2n! n!—2n! [n!nl). It will be seen that
each route along the edges has been subtracted twice, as it ought to be,
since it is originally included thrice. For # = 1, 2, the respective results
are 6 and 64, which may be tested by actual calculation.

(7729.) By the same line of reasoning, it will be seen that this question
is equivalent to finding in how many ways 8 l{"oumeys in one direction can
be interspersed among 8 journeys in a perpendicular direction, the extreme
ends of the latter being both available for the former. This is the same
a8 the number of combinations of 16 things 8 at a time, i.c., 12870. [For

another solution, see Vol. xv11., p. 28. ]

7932 & 7972. (7932.)—(By the Eprror.)—If a, B, 7, 3 be the angles
subtended by the sides of a square at an internal point not situated in a
diagonal, prove that
(tan a + tan )1 + (tan B + tan 3) -1= (cot a + cot y) ~1 + (cot B + cot 8)-1 = 1.

7972.) (By Rev.T. C. Simmoxns, M.A. Suggested by Question 7932.)

—1If the angles of a square ABCD be joined with any internal point P,

_and the angles PAD, PDA, PBC, PCB be denoted respectively by a, B,
%, 8, prove that

(tan a + tan y) -1+ (tan B+ tan 3) -! = (cot a + cot B) -1 + (cot ¥+ cot 3)-1=1.

Solution by Rev. E. SxriMsuirg, M.A.; Rev. T. Garriers, M.A.;
and others.

(7932.) Draw EPG, FPH parallel to the sides, 3 e A
and take APB=a, BPC =8, CPD =4,
DPA = §; then we have F = H

tan g = (tan APE + tan BPE)
1—tan APE tan BPE
= PE. AB/ (PE:—PF . PH),
tany = PG .AB [ (PG3—PF . PH);
whence, putting PE=¢, PF=f, PG=y,
PH = 4, AB = a, ¢ C z
ac_, 89 __ O (g—Sfh)
e—fh gi=fh (& -fh)(g*—fh)

tana+tany =
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Adding the reciprocal of this to the reciprocal of a similar expression for
tan 8 + tan 3,/ we obtain

1 1 - E=TR(GP=1B) | (F—eg)(A—eg)
tana+tany tang+tand a? (eg—fA) @ (fh—eg)
(LW —fh (49 _ g f+A—fh(e+0)* _

a (eg—fh) a* (eg—fh)
Similarly,  cota+coty = =S 1=TA _ a(eg—fA)
ae ag aeg

! .1 -2 L,
cota+coty cotB+cotd3  eg—fh fh—eg "

The above proof does not hold when P is situated on either diagonal,
since in this case eg—fA, which has been used as a factor of numerator
and denominator, is equal to 0.

[Put £ABP = 0, ZADP = ¢ ; then we have
PB _sin(a+6) _PB _ cos (8-0)
AB i

sina CB 8in B8

therefore tang = fiRa(sing—cosp) . . ),

sin 8 (sin a—cos a)

similarly tang = Sn8(siny—cosy) @).

AB _sina _ AD _sind mdBO_sinB_DC=sin-y

8% AP “sine " AP ~sing PC " coso ~ PC " cosg’

Hence

tang _ sina.sin"y
therefore tan¢ ~ snp.sms " creseencesensas [P (3).

From the above equations (1), (2), (.:3), we obtain

(ein a—cos a) (8iny—cosy) = (sin 8— cos B) (sin 3—cos 3),
or sin (a + ) —sin (8+3) = cos (a—) —c08 (B=3) .cececeeuuee (4).
But  gin(a+9) =—sin(8+3), and cos(a+7y) = cos (8 +3);
whence co8 (a—7)—cos (8—3) = 2[cos a cos y—cos g cos 3]

= 2 [sin a sin y—sin B sin 3].

Substituting in (4), this gives
sin (a+7) = — 8in (B + 3) = c08 a c08 y—C0o8 8 c083 = gin a sin y —sin B 8in 3,
cosacosy cosBcosd sinasiny sinBsing
gin(a+79) 8in(8+3) sin(a+q) sin(8+38)
case when 8in (a +7) = 8in (8 + 3) = 0 ; that is, when P is on a diagonal. )

(7972.) In this question PAD =a, PDA =8, PBC =9, PCB = 3,
and AHtana+BFtany = PH + PF =a, whence tana+tany =afe;
so tanpB+tand = a /g ; hence the stated results follow at once.

hence =1, except in the
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7620. (By Rey. T:C. Srumoxns, M.A.).—(See p. 45 of this Volume.)

Solution by the ProPosSER.

Take any point O; join OA, OB, OC, and through C draw the trans-
versal 4Cdef parallel to AO.

Then ABCE, ACDE, ACEF, being harmonic, give respectively §C =Ce,
Cd = de, Ce = ¢f : hence we may take 6C = 2, Cd = 1,de = 1, ¢f = 2.

Hence bd =df, therefore A BDF is harmonic; and 6Cdf, bdef are obviously
harmonic, whence also are BCDF, BDEF.

, (By Professor Lroyp TanNEr, M.A.)—AP, BP, CP are arcs
of great circles bisecting the angles of a spherical triangle ABC; prove

sin BPC _ sin CPA _ sin APB
cos §A cos B cos $§C
where r is the radius of the circle inscribed in ABC.

= 8oc 7,

that

Solutions by (1) Professor GENEsk, M.A. ; (2) W. J. JounsTONE, M.A.
1. Draw arc PL perpendicular to B(' ; then
sin APB : gin A = sine¢ : sin BP, sin }A ; 8in APC = sin CP : sin 3,
therefore sin APB : 8in APC = sin ¢ sin CP : sin 4 sin BP
= gin C sin CP : sin B 8in BP = sin Csin {B : sin B 8in }C-
= co8}C : cos § B = 8in CPL cos r : sin BPLcosr.

But APB + APC = 2x—BPC; then this angle and PBC are divided into
rts whose sines are in the same ratio ; therefore APB = »—~CPL and
APC = »—BPL. 8o, if PN be perpendicular to AB, .

BPC = x—APN, therefore sin BPC = sin APN = T—zsié ;
r
sin BPC —8ecT = sin CPA _ sin APR
cos A cos 1B cos 30
YOL. XLII. P

thus
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, . tanBL _ tanCL _ tan BL+tanCL
Othersoise o flinr = G T BPL ™ tan OPL ~ fan BPL + tan CPL
_ #inBC cosBPL.cosCPL _ _sina
gin BPC ° cos BL . cos CL sin BPC
therefore sin y 8in BPC = sing . sin § B sin {C = tanr . cos }A,

. gin § B sin }C,

sin BPC
therefore cosjA = sec r.
2. (BPL = BPN, CPL = CPM,
APN = APM;
.. BPL+APC = } sum of all these = «;
therefore APC = »—BPL.

The right-angled triangle BPL gives
v co8 PBL = cos PL sin BPL,
therefore  cos {B = cosrsin APC;
sin APC sin BPA _ sin CPB
=scr= —— = .
cos {B cos 4C cos A

N.B.—The triangle BPL gives also

tan APC = —tan BPL = — 88 BL _ _ fan(s—5)
sin r sainr

There are similar values for tan BPA and tan CPB. The sum of these
angles = 2, 80 that sum of their tangents = product of their tangents.
This gives the relation

[tan (s—a) + tan (s— 5) + tan (s—¢)] sin®r = tan (s—a) tan (s—b) tan (s—¢c).

. 7948. (By Rev. T. R. Terry, M.A.)—An inextensible string has one

end fixed at the vertex of a cycloid and is wrapped round the out-
side of the curve, being just long enough to reach as far as a cusp. If
the string is unwrapped from the curve and turned round (being con-
tinually kept stretched) until it is wrapped round the other half of the
cycloid, find the area included between the cycloid and the curve traced
out by the moveable end of the string.

Solution by D. EpwArDEs ; G. G. STorR, B.A.; and others.

If s be the length of the arc of the cycloid measured from the vertex,
and a the radius of the generating circle, an element of area will be
1 (4a—2)*dp, or 8a®(1—sin ¢)*dgp, the intrinsic equation of the cycloid
being s = 4a8in ¢. Integrating between }» and 0, we have 242 (3x —8).

The area of the semicircle described by the string is 8wa2?; hence the
required area = 8xa?+ 44? (3x—8) = 442 (6x—8).
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7981. (By R. Lacutaw, B.A.)—With any point in the plane of a tri-
angle as centre, three circles can be drawn, so that the angles 6, ¢, ¢, in
which they cut the sides of the triangle, are connected by the relation
0+ ¢y =0: show that (1) the radius of one of the circles is equal to
the sum of the other two,; (2) the locus of the centres of such circles
having a given radius is a cubic curve whose asymptotes are parallel to the
sides of the triangle.

Solution by B. Hanumanta Rav, M.A.; J. O’REGAN;
and others.

If a, B, « be the distances of the point from the sides of the triangle
and r the radius of the circle, then

=2, =8. =2
cos8 0 o co8 ¢ o’ cos ¢ .

2r
But 0ot y=0 or cosd =cos(p x9y);
hence (cos0—cos ¢ cos §)? = (L—cos? ¢) (1-cos? ) ;
therefore 83 —2r(a?+ B+ +aBy =0 ....cocciviiiininnnnne (1).

If the point is given, a, B, y are known, and » has three valucs such that
their sum is zero ; since the three values cannot all be of the same sign, one
of them is equal to the sum of the other two. If r isgiven, (1) represents
a cubic curve in trilinear coordinates, whose asymptotes are parallel to
a=0, =0, y =0, i.c., to the sides of the triangle.

8024. (ByR.Tucker, M.A.)—Prove
that the smages of any point on the
circum-circle with respect to the three
sides of an inscribed triangle lie on a
straight line which passes through the
orthocentre.

Solution by EmiLy PrrriN, B.Sc.;
D. BibvLe ; and others.

Let ABC be a triangle, K its ortho-
centre, P a point on its circum-circle ;
then, if PD, PE, PF be perpendicular to
the three sides of the triangle, D, E, F lie
on the Simson-line of P, which bisects
KP. Now, ifa, B, ¥ be the images of P
in the three sides, Pa=2PD, &c. ; hence
a, B, y lie-on a straight line through the
orthocentre K.
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7462, (By the Eprror.)— Through two given points draw a circlesuch
that ite points of intersection ‘with a'given circle, and a third given point,
shall form the vertices of a triangle of given area.

Solution by Rev. T. C. Snamoxs, M.A.

Through the given points (A, B) draw
any circle whose radical axis with the
circle C meets AB in R; then R must
evidently be a point on the chord of
intersection (EF) of C with the required
circle. Now we have

APEF = PRF—PRE = a given area ;
hence, since PR is given, the difference is

so given of the perpendiculars from E

%lon PR.

Draw RT dicular to PR and
equnl to this given difference; then, draw-
ing TX lel to RP, we evidently re-
quire to draw from R a line meeting TX
in D and the circle in E, F, such that RD = EF.

[This is & much simpler construction for reducing Question 7462 to 7620
than that given in Vol. xv., p. 99.]

7943. (By Rev. T. C. Siumons, M.A.)—Prove that the mean value
of the uth power of the distance between two points taken at random
within a given circle is, according as n is an even positive integer, or an
odd integer not less than —1,

m+4 1.3.6...(n+l)', n+8 2.4.6...(n+3)
+2° 2.4.6...(n+4) ’ x(n+2)n+3) 1.3.5...(n+4)

Solution by D. EpwarDEs ; Professor Roy, M.A.; and others.

Let O be the centre, P, Q two random points, OP = z, PQ = y,
£LOPQ =¢. While P ranges over the circle, let Q be confined to the
concentric circle through P.  An element of area at P is 2x2dz, and at Q
is ydyde. Hence the required average is

2 f L4 23 cos §
'_2;]'] "L o* . 2xzdrydydo

(since P may be confined to the concentric circle through Q)

__& 3 ir ns+2
T 4)r . cos"+2 040 = the result stated.
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3556. (By the Eprror.)—Show that the equation of the chord common
to the conic ax?'+ 2hry ¥ by?+ 201+'2fy'= 0 and the circle osculating it at
the origin is, 6 being the angle between the positive axes,

Y., 2Af+g (a—5)—2afcos § _
z 2hg+f(b—-a) —2bgcos®

Solution by the Rev. T. C. Simmons, M.A.
Let the equation of the osculating circle be
23+ 22y coB 0+ Y2+ 2mgz + 2mfy =0 ..c..cevveniinnnnnnne (1),
and that of the required chord pz+gy = 0 .....cccevvreernrnirrernnenrenes (¢)8
Then for some value of u we must have )
(a=A) 22 +2 (A=A 008 6) zy + (b—A) y3+ 29 (1L=Am) (92 +/fy) = 0,
identical with (g9 +fy) (px + gy) = 0 ; hence
a—-A=gp, b—A=0g, 1=Am =0, 2(h—Aco86) = gg+fp...... (8, 4,5,6).
Substitute in (6) the values of p and ¢ obtained from (3) and (4), then
2h—2A 0080 = L(b—A)+ L L (a-n), whence 1= A +bg"=2gh .
S +g2—2fgcos0’
L . a—A _ 2fh + g (a—b)— 2afcos @,
g b—A  29h+f(b—a)—2bgcos6’

whence, from (2), the required result fullows. If the value of m obtained
from (6) be substituted in (1), the osculating circle is completely
determined.

therefore, in (3) and (4), £ "

3247. (By the Epiror.)—If a set of dominoes be made from double
lank up to double n, prove that (1) the number of them whose pips are
n—r is the same a8 the number whose pips are n+r; (2) the number is
the coefficient of 2" - in the expansion of (1—z—a%+2%)-1; (3) the total
number of dominoes is } (n+ 1) (# + 2); (4) if from the dominoes a man is
to draw one at random, and to receive a8 mnany pounds as there are pips
on the domino drawn, the value of his expectation is # pounds.

Solution by the Rev. T. C. Siumons, M.A.

1. The different pairs of numbers giving n+ r altogether are obtained
by putting p = 0, 1, 2, &c. in (n—p) + (r + p) until n—p equals either r +p
orr+p+1. The different pairs giving n—r altogether are obtained by
putting p = 0, 1, 2, &c. in (r—r—p) + p until n—r—p equals either p or
p+l. In each caso the number of different pairs is easily seen to be the
greatest integer in § (-7 +2). .
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- 1 -1tz
=)= ~ (1=a%¢
= (14+2) (142234 324+ 42%+...),

in( which )t.he coefficient of z"-" is evidently the greatest integer in
J(n=r+2).

2. (U oz Ha342) -}

3. The number of ways in which zero and the first n integers can be
combined in pairs (exclading doublets) is the same as the number of com-
binations of » + 1 things two at a time. Adding the n + 1 doublets, we ob-
tain for the total number of dominoes }n (w+1) +n+1 =} (n+1) (n+2).

4. Lot p. denote the number of ways in which m pips can be drawn;
then since, from above, pu-» = Pu+r We have, for the expectation,
0.pg+1. 214+ ...+ (B=1)pu_1+08pa+ (n+1) pa1+ ...+ (28—1) p, + 2np,
Do+t ..t Pnc1tPutPu1t . P+ D
_2(potpt. . Hpu1) +0pa
2(La+ Pyt +Pn-1) +0n

7788, (By Bev. T. C. Srumons, M.A.)—Prove (1) that according as
a triangle is obtuse-angled, right-angled, or acute-angled, its nine-point
circle will cut, touch, or lie within its circum-circle ; (2) having given two
circles, of radii R and {R, not entirely external to each other, an infinite
number of triangles can be constructed having the one for circum-circle
and the other for nine-point circle respectively.

Solution by B. HANUMANTA RAU, B.A.. ; Professor Moz, M.A.; and others.

1. If the triangle is obtuse-angled, the feet of two of the perpendiculars
fall without the circum-circle and the foot of the third within. The nine-
point circle, therefore, cuts the circum-circle. In the right-angled triangle,
the vertex coincides with the feet of two perpendicularsand lies on both the
circles, and the lins joining the centres passes through this common point.
The circles therefore touch.

In the case of the acute-angled triangle, all the nine points lie within
the circum-circle. Hence the nine-point circle lies entirely within the
circum-circle.

2. Let O, O’ be the centres of the two circles, and R, }R their radii.
Divide, at G and P, OO0’ in‘ernally and externally in the ratio of 2: 1.
Then G is the internal point of similitude of the two circlesand the centre
of gravity of the required triangle. P, the external point of similitude, is
the ortho-centre.
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If a be any point on the circle O, draw Ba, DC at right angles to Oa,
cutting the circle 0" ‘again’'at- D-and: the circle O at BC. BC will be the
base of the required triangle, and the point where aG or the perpendicular
to BC through D meets the circle O will be the vertex.

Since a4 is any point on the smaller circle, an infinite number of
such 1iriangles can be described. [For other solutions, see Vol. xvirm.,
p. 37.

7915. (By Satis Cranpra Riv.)—Tangents are drawn to & parabola,
80 that the intercepts on the tangent at the vertex are in arithmetical pro-
gression ; prove that the cotangents of the angles of inclination of these
tangents to the tangent at the vertex are in harmonic progression.

Solution by W. J. GreensTREET, B.A.; R. KNowyrEs, B.A. ; and others,
Let the equation to the tangent be y = mx + am-1; then this cuts off
from % = 0 the intercept %; hence %, ’1’:7, mi,,arein Arithmetic Pro-

gression, and m, m’, m” in Harmonic Progression.

79687. (By Professor HupsoN, M.A.)—Find the mass of a ship that
would attract an equal ship at a distance of one furlong with a force equal
to one pound weight, assuming that the earth is a spherical mass of six
thousand trillion tons of four thousand miles radius.

Solution by D. EpwarpEs ; Professor SArxAR, M.A. ; and others,

. Let m denote the mass of the ship, M that of the earth, R its radius,
‘When the ships are at a distance » from each other, the acceleration

2
ily.—'ﬁ %— If then a ton be the unit of mass, we have
’ﬁz . % (weight of a ton) = weight of one pound ;

where M = 6000,000000,000000,000000, R = 4000, r = };
6000,000000,000000,000000
64 x 40003 x 28 x4 x20

m= ‘;—" (21)} tons = 51144-75446 ... tons.

[Attraction of earth : attr. of ship = i‘% ;™ also = 2240m : 1],

therefore m? =
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7888. (By B. Hanumanta Rav, B.A.)—If A’, B’, ' be the mid-points
of the sides of 'a'triangle ABC, 'prove that the in-centre of A’B’C’ is
collinear with the in-centre and centroid of the triangle ABC.

Solution by R. KnowLzs, B.A.; G. G. Srorr, B.A.; and others.
The coordinates of the in-centre of A’B’C’ are
1 1 1 1 1 1)\,

s(e-n) o(5-%) ‘(T?.)'

those of the in-centre of ABC are each = A and the centroid ?A, 2—A, 2—A;
] 3a 35 3¢
hence the equation to the line joining the in-centres of the two triangles
1 1 1 1 1 1

ia (v-3)=t(e-)r+(3-2) =0
and this is satisfied by the coordinates of the centroid ; therefore the three
points are collinear.

[The theorem is evident from the fact that the centroid is the centre of
similitude of the two triangles.]

8045. (See p. 107 of this Volume.)

Solution by the Rev. J. J. Mrune, M. A,

First consider the case of a circle,
whose centre is 8.

Let AB be the polar of P, and let the
angle PQR be const. Then the angle
8PQ is const. ; therefore, since 8 is a
fixed point, and P moves along a fixed
straight line, PQ in general envelopes
a parabola, focus 8, except when the
angle PQR is equal to the angle between
the given line and the diameter at right
angles to it, in which case the angle
QPR vanishes, and PQ always passes
through the fixed point 8. By projection we at once obtain Question 8045.

[This Solution Mr. MiLNE sends because he thinks that  the subject of
envelopes treated geometrically is the most beautiful part of Geometry,
though all reference to it is carefully excluded frum text-books.””]




APPENDIX.

SOLUTIONS OF SOME OLD QUESTIONS,
By Astrosn MvukBoPiADHYAY, B.A., F.R.A.8.

1448, 3336, 4171, 6120. (By the late Professor CrLirrorp, F.R.8.)
—Find z 1) the position of equilibrium of a particle in the plane of & tri-
angle under the resultant attraction (or repulsion) of the perimeter, which
is supposed to be formed of matter attracting according to the law of the
cube of the distance ; and (2) solve the analogous problem for the inverse
faces of a tetrahedron.

Solution.

1. We proceed first to find the attraction of a material bar, of uniform
thickness and density, on any point, which may be done as follows : —
" Let AB be the bar of cross section «, and
density p; P the attracted point; PO (=y) P,
the perpendicular from Pon AB; £APO=a,
£ BPO = B. Consider the attraction of any
element ds at M, on P; let MO = s, and
LMPO = y. The attraction of the element
along PM is xpds [ PM3.

Now, since s = ytany, we have

ds = ysec?ydy and y = PM cosy; A Mo

80 that the attraction is ﬂ; cosy 4y ; hence, if X, Y be the total resolved

attractions of the bar along AB and PO, we have
xp (** . K, : . K|
X= ;g J'_’ sinycosy dy = 5‘52 (sin? a—s8in? B) = 4—;—‘ (cos 28— cos 2a)

Y= 'i:’-j"cos’npdnp = "P. (2a + 28 +sin 2a + sin 2B).
¥ )-s 44

If ! be the length of the bar, it is evident that y = {/(tan a—tan B) ;
hence X= :f’ (tan a—tan B)2 (cos 28— cos 2a),

Y= {‘l’; (tan a—tan B)? (2a + 2B + sin 2a + 8in 23).

VOL. XLIII. Q
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Now, consider any triangle ABC, and a A
point P in ita'plane; |let PD, PE, PF be the E
perpendiculars on the sides; then, theattrac-
tion of the perimeter on P may be represen-
ted by two sets of three forces each, viz., one
set of three forces, parallel to the sides of the -
triangle, and having X for their type; the g ) ¢
other set at right angles to the sides, and of

Y.

t the forces be called X,, X, X,, Y;, Y,, Y; respectively. Starting
from any arbitrary origin D, construct the force-diagram of the system
DEFGHK, wherein DE = X,, EF = Y,, FG = X,, GH = Y;, HK = X,,
and KD = Y,. The angles at D, F, H”are obviously right angles, and
the triangle ABC, formed by producing the
sides of the polygon, is similar to the given . E D B
triangle. If we now project the sides of the
force-polygon on DE, we have
X, + (X5 cos C—Y, 8in C)

= X;c08 B—Y,sin B...... (1).
Thus, projecting any five of the sides on the
sixth, 1n rotation, we get, in all, six equations,
of which (1) is the type. Only four independent relations, however, can
be obtained from this force-diagram, as may be shown by actual calcula-
tion, or, better still, from geometrical considerations. Thus, suppose we
are given four of the elements, viz., X,, Y,, X,, Y, ; then, since all the
angles of the polygon are known, we construct DEFGH, and then deter-
mine K as the intersection of perpendiculars at H and D. Hence, we
have four independent equations (1, 2, 3, 4), involving the six forces, that
1s, involving the six quantities a, 8, 7, 3, ¢, (.

Again, if z, y, z be the trilinear coordinates of P, viz., if PD = 2,
PE =y, PF =2z, we have
¢ = z (tan a - tan B), & = y (tany—tan3), ¢= z (tan e—tan ¢)...(5, 6, 7),
and we have further tho two identical geometrical relations

a+B+y+8+e+( =27, ar+by+cz=2A......... (8, 9),
where A is the area of the given triangle. As these nine equations in-
aolve the nine unknown quantities a, 8, 7, §, ¢, ¢, 7, ¥, 2, the values
of z,y, zcan be determined in terms of the known quantities «, b, ¢,
A, B, C, », A. Thus the position of equilibrium of the point is theoreti-
cally determined.

2. From the above, it is sufficiently clear that the corresponding case of
the tetrahedron is to be solved by the use of tetrahedral coordinates ; it is,
therefore, enough to indicate how the attraction of any triangular lamina
on any point in space may be calculated, according to the law of the
inverse cube of the distance. Let AOB be the triangular plate, take O as
origin, £AOB = w, OA = a, OB = 4, so that the equation of AB is

%-I»-';/— =1, then the element at any point z, y is drdysin «; hence, if

h be the height of the attracted point above the plane, and, a, 8 be the
coordinates of the projection of the point on the plane, we have, for the
element of attraction,

drdy

e R mar v U +2 - A) cora ]V
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in which the limits of.z are (a, 0), and those of y are {% (a—x), © } .

The total attraction is to be found by resolving this along and perpene
dicular to the plane.

It may be noticed that the unusual complexity in the first case is solely
due to the fact that the law of attraction is that of the inverse cube of
the distance. The law of nature gives a very neat and symmetrical
answer, even if the densities of the bars be different, viz., if the densities
be p, o, 7, the common cross-section &, and the angles subtended by the
bars at the point be 26, 2¢, 2¢, we see that the particle is animated by
the three forces

2xpsin@ 2xosing 2xrsiny

’ ’
s y 2
the angles between the lines of action being the supplements of 6, ¢, § res
spectively ; hence, for equilibrium, we have -5 = —;/L = %. I p=0=1,

this gives z = y = 2, or the particle occupies the in-centre, as is also
sufficiently obvious from the theorem that the attraction of any bar is the
same a8 that of a certain well-defined circular arc (MINcHIN’S Statics,
p- 417), which at once shows that the attraction of the perimeter on &
particle at the in-centre is the same as the effect of the circumference of
the inscribed circle, which effect is, of course, zero.

1507. (By the late Professor Crirrorp, F.R.S.)—Consider six planes
A, B,C, D, E, F, and join the point ABC to the point DEF, and so on ; we
have thus ten finite straight lines, and their middle points lie in a plane.

Solution.

The easiest way to solve this problem is to regard it as the space-
analogue of the well-known proposition in plane geometry, that the
middle points of the three diagonals of a complete quadrilateral lie on a
right line, which theorem muy be re-stated as follows :

‘¢ Consider four right lines A, B, C, D, and join the point AB to the
point CD, and so on; we have thus three finite straight lines, and their
mwiddle points lie in a right line.”

It will be noticed that, while in two dimensions we have to deal with four
lines, in three dimensions we have (4 x 3) = 6 planes, as it should be.

1591. (By Professor Hirst, F.R.S.)—Find the polar equation of a
curve whose radii vectores are each divided into segments having a
constant ratio, when, upon the same, the respective centres of curvature
arc projected orthogonally.

Solution.

Let OFP be the radius vector, so that OP =», £POX =0. Let

PN = p = the radius of curvature. Let ¢ be the radial angle OPT, and
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¢ the angle PTX which the tangent makes with the prime vector, then
PQ = psiny, 10Q =n—psiny,
Hence, r—psiny = kpsiny,
where & is the constant ratio. There-
fore, we have
r i ds  rdf

1+k pemy dp ds’
Hence, ¢ = (1+%)6,
the constant of integration vanishing, if 6 and ¢ vanish simultaneously,
which requires the prime vector to be a tangent to the curve. The curve
may be easily traced, if necessary, from the above equation between 6 and
¢. The relation between r and @ is, however, obtained with ease. For
¢ = 0+, which gives 40 = ¢ ; therefore

[ T X

rde dr _ _do
tankd = tany ' whence - = an i -
Integrating, logr = -;‘— log sin k6, l

the constant of integration being suppressed, as r and 0 vanish together.
Hence, the required polar equation is »* = gin X9, and this system, in
fact, is, for different values of £, analogous to the family »™ = a™ cos m6,
when a=1. If ¥ =1, that is, if the radius vector is bisected by the
projection of the centre of curvature, the curve is » = sin 6, a circle, and
the property ip question gives the theorem of Euc. I11. 3. [See Solution
of Quest. 1464, Vol. 11., p. 65, also p. 19 of Dr. Hirer's Geomelrical
Contributions to the « Educational Times.”]

1605. (By the late Professor Crirrorp, F.R.S.)—Required, the area
of the triangle included by three points in space, given by equations of
the form /z + my + nz +sw = 0.

Solution.

Let a, 3, ¢ be the sides of the triangle, and A its area; then
1642 = 2 (522 + 242 + a%2) — (a4 + b4 + o).
‘We have now to express the lengths a, 4, ¢ in terms of the coefficients in
the three given equations which represent the three vertices, in the
¢¢ four-point coordinate system.”” But, if

oc=l+min+s, o =V+m' +n'+¥¢,
4 l m  m
3 _ L _t\(m_m 2
we have a 2{(‘, v)(c J)AB},

where AB is an edge of the tetrahedron of reference. (This result is fully
worked out in Frosr and WoLsTeNHOLME'S Solid Geomelry, ed. 1863,
pp. 67—69. In the second edition of the work, published in 1875, the
result is, however, stated without proof on p. 80.) Hence, by substituting
for a%, 8% ¢% we see how A? can be expressed in terms of the constants
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involved in the equations to the three points. No very material simplifi-
cation is effected\even/if(the threp|/sides coincide with three edges of the
tetrahedron of reference. [For a similar problem, see the Solutions of
Quest. 1497 in Vol. 1., p. 79 ; Vol. 1v,, p. 63.]

1691. (By the late Professor Crirroro, F.R.S.)—If p,, p; be the
radii of two spheres, and D the distance between their centres, and if a
tetrahedron be inscribed in each: prove (1) that the product of the
volumes of the tetrahedra into (D2-—p,2—p,?) may be expressed as an
integral function of the squares of the distances between the vertices of
the tetrahedra; and hence (2) deduce the condition (® = 0) that four
points in a plane may lie in a circle, and (3), if they do not lie in a circle,
state the meaning of .

Solution.

This question relates to and well illustrates the Theory of Powers of
Spheres, which is developed in a posthumous memoir, published in
CriFrorD’s Mathematical Papers, pp. 332—336. Thequantity (D3— p,%—p,?)
is the squared distance between the centres of the spheres, less the sum
of the squares of the radii, which is exactly what has been happily termed
the power of the two spheres (or, of one of the spheres with regard to the
other). Call the given spheres P and A, of radii p,, p,; let BCDE,
QRST be the tetrahedra, of volumes V,, V,, inscribe(f1 in P and A
respectively. Then, the vertices of these tetrahedra may be tndiscrimi-
nately regarded, either as so many points, or as so many spheres of in-
finitesimal radii. Regarding them from the latter point of view, we have
to deal with ten spheres, or, rather, with two systems of five spheres, viz.,
(A, B,C,D,E), (P, Q R, S, T). Now, writing (AP) to denote the
power of the spheres A and P, it is obvious that, since the points B, C,D, E
are all on the sphere P, and Q, R, 8, T on A, the powers (BP), (CP),
(DP), (EP), (AQ), (AR), (AS), (AT) all vanish, so that P and A are the
orthogonal spheres of the systems (B, C, D, E) and (Q, R, S, T). But,
defining the apospheric function of five spheres to be ¢‘the product of the
tetrahedron, whose vertices are at the centre of any four, into the power
(in regard to the fifth) of a sphere cutting them orthogonally,” we know
that the determinant formed with the powers of two sets of five spheres
is equal to 6144 times the product of their apospheric functions. Hence,
considering (A, B, C, D, E), (P, Q, R, 8, T) as two sets of five spheres,
and P, A the orthogonal trajectories of the systems (B, C, D, E),
(Q, R, S, T respectively, and also remembering that the power of A and
P = (AP) = D?—p;?—p,’, we have

(6144) V, (D*—pf*~ps’), V3 (D?=py*—p7?)
=| (AP) (AQ) (AR) (AS) (AT)
(BP) (BQ) (BR) (BS) (BT)
(CP) (CQ) (CR) (C8) (CT)
(DP) (DQ) (DR) (DS) (DT)
(EP) (EQ) (ER) (ES) (ET)
But it has been shown before that
(BP) = (CP) = (DP) = (EP) = (AQ) = (AR) = (AS) = (AT) = 0;



130

Hence, dividing both sides by D2—p,2—p,? = (AP), we have
(6144)" 'V, Vg (D*=p*<py) =" | (BQ), (CR), (DS), (ET) | .

But, since B, C, D, E, Q, R, S, T are all spheres of infinitesimal radii,
the powers are nothing but the squares of the lines joining the centres,
that is, the squared distances between the points, which themselves are
really the vertices of the two tetrahedra. Hence, we see that the

roduct of the volumes of the tetrahedra into (D?—p;*—g,?) is an integral
?unction of the squares of the distances between the vertices of the
tetrahedra, —which is the first theorem in question.

In order to deduce the condition that four coplanar points may be
concyclic, wenotice that, when B, C, D, E are on the same plane, V, = 0,
8o that the required condition is .

| (BQ), (CR), (DS), (ET) | =0.

This determinant, if developed, would involve the eighth power of the
lincar magnitude, so that it would appeqr, at first sight, as if no real
geometrical interpretation could be obtained. But it is evident that,
without any loss of gencrality, we may make the two systems of four
points coalesce: so that (BQ) = (CR) = (DB)= (ET) = 0. Hence,
calling the points (B, C, D, E), (1, 2, 3, 4) respectively, the condition
that they mauy be coplanur as well as concyclic becomes.

0 (122 (132 (14)*
(122 o (239 (24|
(13)2 (23)2 o0 (34)2|
(14)° (24)2 (342 0
which well-known function is equivalent to
© = (12) (34) & (13) (42) & (14) (23) = 0,
the gecometrical meaning of which is Ptolemy’s Theorem, Euc. VI. p.
When the points do not lie on a circle, the geometric meaning of the
relation connecting the mutual distances of any four points in a plane is
ointed out in BALMON’s Conics, ed. 1879, 3) 134, Ex. 4. The following,
owever, is a different interpretation, an mcludes Ptolemy’s Theorem
as a purticular case.
Let a, &, ¢, d, 3, 8; be the lengths of the six lines Jommg four points
in a plane; let
.BCD + £BAD = 2¢;
make ¢(BCE = £ACD, «CBE = £CAD.
Then, LBEC= £ADC ........... 1),
and, if we join AE, ED, then, from the similar
triangles BEC, CDA, we have

BC _ CA
BE = & “hence BE.CA = BC.AD...(2).
Again, BC : AC = CE : CD,

and LBCE+ £ECA = £ACD+ LECA, or £BCA = £ECD,
80 that the triangles BCA, ECD are also similar, whence

LCED = £CBA.......ccoiiivi, 3)s
and ED ; DC = BA: AC, orBA.DC =<ED.AC ... vennrgeenanes (4).
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Again, LA+ LB+ £C+ £D = 4 right angles;
then, attending t6/(1) and((3), .
£BED = £BCD + £BAD = 2¢.
Now, from (2), BC.AD = BE.CA =A.BE,say; or, /d=A.BE.

From (4), ao =A.DE.  Also 33 =A.BD.
Hence, substituting in BD? = BE?+ ED?—2BE . ED. cos 2¢,
we get 8,2 8,2 = (ac + bd)>— 4abed cos’p,

which result is implicitly involved in my Quest. 7764. When 2¢ = =,
we get Ptolemy’s Theorem. From the above, it appears that, when the
points are coplanar without being concyclic, the geometric meaning of
the condition ® may be stated as follows:

“If a, b, ¢, d, 5, 3; be the six lines joining four points on a plane, the
rectangles ac, bd, 3,3, are proportional to the three sides of a triangle,
which has an angle equal to the sum of a pair of opposite angles of the
quadrilateral formed by the four points, this triangle vanishing when the
points are concyclic, so that in this particular case 3,3; = ac + bd.”

1831, (By Professor PauL SkrreT.)—Une ellipse et ’un de ses cercles
directeurs étant tracés, il existe une infinité de triangles simultanément
inserits au cercle et circonscrits & D'ellipse ; le point de rencontre des
hauteurs est le méme pour tous ces triangles.

Solution.

1. The term Director-circle is ordinarily employed to demote what
might perhaps be better called the ortho-cycle, viz., the circle-locus of the
intersection of tangents at right
angles to a conic; this, however,
is not the sense in which it is used
in this question, since, obviously,
no triangle circumscribing the
conic can be inscribed in the circle,
which would make the sum of its
angles equal to three right angles.
But there is another application of
the term, the one intended by the
Proposer, viz., it denotes either of
the circles having their centres at
the foci, and their radii equal to
the transverse axis of the conic.
For an able historical review of
this double use of the term, which is
often perplexing, see Dr. TAyLoRr’S
admirable work on The Ancient and Modern Geometry of Conics, p. 90.

2. Let 8 and H be the foci of the ellipse; with centre H and radius
equal to the major axis of the ellipse, describe the director-circle; let
XYZ be a triangle, circumscribing the ellipse and inscribed in the circle.
Join HX, HY, HZ; also, join SX, 8Y, 87, and produce them to meet
the opposite sides in A, B, C respectively, Let LHYS =8, L YBX = 9,
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and ZYBZ = ¢. Then, from elementary geometry of conics, £ HYZ =
£SYX = a//say)/ | BinceDHY(=HZ;) we have £ HZY = (HYZ =g,
whence £XZ8 = (HZY = a. Again, /XZ8 = /YXH = LXYH =
a+ 8.

Now, because £ CYB = £ CZB = a, we see that C, Y, Z, B are con-
cyclic. Therefore, £ YCZ = £ YBZ = ¢.and £ BCZ = £ BYZ = a+5,
which gives £ BCS = a+8 = £ BXS, whence B, X, C, S are concyclic,
and £ YCZ = £/ XBS = 9. Hence, weinfer that § = ¢, and, 88 0 +¢ =,
we seo that § = ¢ = one right angle. Thus BY is at right angles to XZ.
Similarly, AX and CZ are at right angles to the opposite sides. Hence,
8 is the orthocentre of the triangle XYZ, and, being a focus of the conic,
is a fixed point, which is exactly the theorem in question.

3. If the centre remains fixed, and the ellipse rotates about it, it is
obvious that both the foci always lie on the same circle ; hence, from the
above proof, we have at once the following theorem : —

¢ If an ellipse rotates about its centre as a fixed point, then the locus of
the orthocentres of all triangles circumscribing the ellipse, and inscribed
in the double system of its director-circles, is the circle described on the
line joining the foci as diameter.”’

1883. (By the Eprror.)—Defining the area of a curvilinear figure as
by polar coordinates in the Integral Calculus, prove that, if at one end
a variable line of constant length touch, in every position, a plane closed
re-entering curve of any form consisting of m right and n left loops, the
area of the figure tmceg out by the other end, in the course of a complete
revolution, differs from that of the original figure by (m—#) times the
area of a circle, whose radius is equal to the constant length of the line.

Solution.

First, suppose that the curve is a single-looped oval,and
let P, P, be two cansecutive points on the curve ; then
P,T,, P,T; are two consecutive positions of the touch-
ing line, 8o that P\T, = P,T, = /, suppose. IfA be the
difference of the areas of the loci of P and T, and 46 the
angle between T, P,, T;P,, we have 2dA = /*d6, which
gives 2A = [ ds, the integral being taken round the
whole curve. Now, regarding the curve as the limit of a polygon of an
infinite number of sides, we see that d6is an exterior angle of the polygon,
and Ido signifies the sum of all the exterior angles, which sum is known

to be 2, from Euclid I. 32, Cor. 2. Hence, A = x/® = area of a circle
whose radius is equal to the constant length of the moving line, If there
are more loops than one, viz., m to the right and » to the left, we see
that the same argument applies to each of them ; whence, attending to the
usual conventioh of signs, we get the difference between the areas of the
two loci to be = (m—n) 8.

1927. (By Professor Burnsine, M.A.)—Find the conic of least eccen=
tricity which cun be drawn through four given points.
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Solution.

Let us take for axes of coordinates any two opposite sides of the quad-
rilateral, which may be produced to meet at O, and include an angle w;
then, if Ay, As ), ps be the intercepts which any conic through the four
points makes on the axes, we see that, if we makey = 0 or z = 0, in its
equation, it will reduce to

P—M+A) 2+ MA =0, PP —(py+py) y+pypg=0;
whence the equation to the conic is
P pa2? + 2RTY 4+ A\ Mgt — g pa(Ay 4 Ag) Z—A  Ag () + pg) ¥ + A Agy g = 0...(1),
which may be written in the standard form
ax® +2hxy + by3 + 292 + 2fy +¢ = 0,
the variable parameter A to be determined from the additional condition
that the eccentricity is to be a minimum, ¢ being given, as is well known,

. et (a+6—2h cos w)?
— +4= e erierineriranee ceerenen «(2);
by the equation v + @— s 2);

whence :—; = 0 gives the remarkably simple value

p= 22 s = Ml o0,
a+bd AyAz + g pg
which indicates that the solution is unique. By substituting for % in
(1), the equation of the required conic is actually exhibited. The actual
value of the eccentricity is also known, for (2) becomes
4 (a=ip
1—¢?  absinle’
which is a quadratic in ¢2.  If the given points are concyclic, A, A3 = ujuq
= @ = b, whence ¢ = 0, a8 it should be. In the particular case, when

0= %, we have A =0, and 2= a:—b or b%g [The Solver is of

opinion that the two solutions of this Question given in Vol. vmr.,
p. 107—108, ““resemble mighty engines set up in vain attempts to kill a

r fly, because, although the Solvers use the methods of Quadric
nversion, Invariants, and Covariants, neither of them actually exhibits
the equation to the conmic’’; whereas this solution ¢‘is elementary and
straightforward, actually, in a few lines, exhibits the equation of the
conic, and gives the value of the eccentricity.’’]

6661. (By Professor JurLLiArD.)—(1) On prend sur la tangente & une
courbe fixe, & partir du point de contact, une longueur proportionnelle 2 la
normale en ce point ; trouver le lieu de l’extrémité de cette longueur,
quand la tangente se déplace. (2) On prend sur la normale A une
courbe fixe, & partir du piel de la normale 3 la courbe, une longucur
proportionnelle & la tangente en ce point; trouver le lieu du point ainsi
obtenu, quand la normale se déplace. Application aux coniques et & la
cycloide.

VOL. XLII. R
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Solution.

Let the equation to the given curve be y = f (z), referred to any rect-
angular axes in its plane. Draw the tangent and normal at any point
(a, Bﬁ and let the I 8 of these, a8 terminated by the axis of z, be T
and N respectively. en, if @ be the angle which the tangent makes
with the axis of #, we have

tan0 = &« f (5) = £ (),
where f” (a) means that a is substituted for zin f” (z) ; also, from geometry,
Te f Nab
8in @ cos 6
Firat Case.—Let us measure on the tangent a length = kN, starting
from the point of contact. Then, if X, Y be the coordinates of the point
whose locus is sought, we have X =a+kNcos6, Y = §+kN sin 0.
Substituting for N and 6 their values as given above, we have
X=a+kB, Y =B+kBS (a).
Since B = f(a), this becomes
X =a+kf(a), Y =f(a) {1+kS (@)} ...... reerssenens (A),
from which, if we eliminate a, we get the equation to the required locus.
Second Case.—Let us measure on the normal a length = AT, starting
from its foot. Then, if X, Y be the coordinates of the point whose locus
is sought, we have X = a+4Tsing, Y = g8+4Tcosd. Substituting,
as before, for T, 6, B, we get the system,

X =a+kf(a), Y = f(a) {l+f_lz¢:)-}

from which, if we eliminate a, we get the equation to the required locus.
It will appear in the sequel that, in this case, the presence of /” () in the
denominator often makes the elimination considerably more complex than
in the first case.

Applications.—I. The Conic.

(1) Let the conic be

Lo g @ _ 3 _=
Rl 1, so that o a (a'-’—a‘)"

eevvenererestetns (B),

which makes  f(a) = % (a=a?)ly S (@) ==~ b _a

P (as_aa)i'
Hence, the system (A) becomes
kb i b 3 kb
zZ=a+ - (a’—-a’) ) Y= ;(a’—a’) - 2 a,
which reduces to
] b 82 B2 ) 5 i
2@ty = ;(1+ Bha )a, ey = ;(u Ek’) (@—a)t;

whence, squaring and adding, « is at once eliminated, and the resulting
equation, after some algebraical reductions, assumes the form

2 »

T - (eam),
which shows that the required locus is another ellipse, of equal eccentri-
city, whose axes are coincident in position with the axes of the old one,
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but have been altered in magnitude in the ratioa : (a?+ k%)), Ifk =1,
that is, if we\measure on the tangent alength egual to the normal, this
ratio becomes 1 : (2—e3)}.

[In the equilateral hyperbola, we have a® = — 3, and, if further k =1,
the locus degenerates into the aﬁmr of lines 22—y2 = 0 which denotes the
asymptotes, and this is the well-known theorem that the normal is equal
to the intercept on the tangent between the curve and either asymptote.
Bee TAYLOR’S Geometry of Conics, p. 68.]

(2) For the Second Case, the system (B) becomes
LRFEEY! R A 4

.a_(a a®)h y._a(a af)l—k . —

If, by transposing and squaring, we get rid of the radicals, we shall have
to eiminate a between a quadratic and a biquadratic ; this difficulty, how-
ever, is easily obviated, as follows. We have, obviously,

a—ky = at 3. "’%“’ or a?(1-#)—2a (";2"”) +133 = 0.
Again, from the first equation,
“‘(1+k'_:;)-2¢.z+(za—kﬂbt) =0.

The result of eliminating a between these two quadratics gives, for the
required locus, the quartic curve
83 {4a%3 (1 — %) = (2 —ky)2} {23~ (a3 4+ 42389) }
= a*{z (y—ks) +k [a?+ (281 1) . 3]}

If k = 1, that is, if we measure on the normal a length equal to the tan.
gent, the locus is the quartic (22— 8%)(z—y)?— 242z (z—y) +a*(a* + B%) = 0.
Even if we take the particular case of the circle 4% = 3, no simplification
is effected. But, if we take the case of the equilateral hyperbola, where
a? = —}3, the last term vanishes, and the quartic breaks up into the line
y = z, and the cubic (2? +a%)'z—y) = 2¢%. As in the above results we
have assumed nothing about the sign of %, it is evident that the equations
are true for both the ellipse and the hyperbola.

(3) Let us next take the parabola y? = 4az.
i )

Here @ . (s), o f(a) = 2(aa)l, f(a) = (E)
Hence, the system (A) becomes z = a+ 2% (2a)}, y = 2 (aa) + 2ka.
The result of eliminating a easily gives, for the locus y* = 4a(z +ak),
another parabola, of equal latus rectum, and whose vertex is at a distance
ak from that of the first.

(4) For the Second Case, the system (B) becomes

. z = a+2k(aa)}, y = 2 (aa)! + 2%a,
whence z2—ky =a(1-2%), 2%kr—y=2 (aa)‘ (2ky-1),
which, by the elimination of a, leads to (24kz—y)? = 4a (1 —24?)(z— ky),
another parabola, passing through the origin, the latus rectum of which is
6ak (2k*— 1) [ (443 + 1), the axisisthe line 24z —y = 6ak (1 —2k%) [ (1 + 443),
the directrix is the line z + 2&y + a (1 + 4%) =0, the coordinates of the focus
are a (1—5%°) / (1 + 44%), and 2ak (k*—2) [ (1 + 4%°), so that the locus of the
focus of the parabolic locus is a right line for different values of a4, and
the cubic »* (4% +5a) = 4(6—¢)(a+§)? for diffcrent values of X. In the

Z=a+
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particular case, when % = 2-i, the locus degenerates into the line
y=2.2
IX. The Cycloid. . .
The differential equation of the cycloid, referred to its vertex as origin,
] -
is (%)" =222, and the integral is
y = a vers-! i+(2¢x—z’)l,

so that  f (a) = avers-1 £ +(2aa—¢!)l Fla)= (2a—a);

If we now substitute in Systems (A) and (B), and eliminate a, we shall
get for the loci two transcendental curves.

6682. (By Professor Eppy, M.A.)—If E? be the sum of the squares of
the edges of a tetrahedron, F3 the sum of the squares of the areas of the
faces, and V the volume ; prove that the principal semi-axes of the ellipsoid
inscribed in the tetrahedron, touching each face at its centroid, and having
its centre at the centroid of the tetrahedron, are the roots of
B V' =0.

2‘ 3 PUNET 263

Solution.

Take the centroid of the tetrahedron as the origin ; then, according to
the notation of Tarr's Quaternions, §2562, the elhpaoul is Sppp=1.
Agauin, if a, B, 7, § be the vectors from the origin to the vertices of the
tetrahedron, we have a+ B+y+38 = 0. Now, from elementary mecha-
nical pnnaples, the vector from the ongln to the centroid of the face
opposite the vector a is known to be —3a; so that the perpendicular
from the origin on this face is easily founx

[p(—3a)] ! =V (By+75+33)]"1SBys = [V (aB — 3By +ya)] -1 SaBy.
Therefore ¢a = 3V (38y —ya—aB) S-1aBy.
The corresponding symmetrical equations for 8, 4 are at once written
down, viz., we have
8 = 3V (3ya—aB—By) B-1aBy, ¢y = 3V (3a8—By—va) S—aBy.
For the axes, ¢p must be codu'ectlona.l with p, which condition leads to
(p+4-2)p Now, selecting Sp as the operator, we have to determine
k from the equatlon k* = T?. Hence, the discriminating cubic is
S(p+k-2)a(p+k-2)B (p+k-3)y =0,
which is obviously equivalent to

k-6+PE-4+Qk3+R =0, or M+ Qk‘+—ik3+ =0

where the values of P, Q, R are given by
P= 8 (aB¢y + Byda + 'ya¢B)
SaBy
=S(a¢Be¢y+Boypatydad8 o _ ScapBey
SaBy ’ SaBy
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3 3(V2aB+Vipy+V?
__ 3 { V‘ﬁB—'r) (y—a)+V3(B—a) (5—a) } 4P
18%py | + V2 (5—a)(y—a) + V(B-3) (v—9) v’

gimilarly Q= —s%,ys(ﬂﬁn’ﬂﬂwww)
9 {("—B)’+(B-'7)’+(7—¢)"+(6-5)’} _2E
v’ i)

~ SlaBy +(B—=8)*+(v—9)?
—20.3 2.3

i
erefo Q__E P_F 1__ VI
Therefore ¢ #.8 B 2.3 R 2.3
Hence, finally, we get
T NE R L, P . W
2.8 2i. 3% 2.3 -

6664. (i{ Professor Marz, M.A.)—Find the centroid, (1) of the
Y

arc of a I (2) of the surface of a leaf, of the curve whose polar
equation is p = m3 (1—gin 26) (1 +sin 26)-1.
Solution.
. 1—sin 20
2 = g2

The curve is P imgg e (1).
1f 7, ¥ be the coordinates of the centroid of the arc of the leaf, we
have ] II * 5 " y .

= Td—l’ y= Idc

Now, assume § = }x—, so that sin 260 = cos 2y, and d@ = —dy, which
leads to 73 = m*tan%y.

£ dr _ m —2m - _=2m

Therefore do cos®y (cos0+sin6)?  (1+sin26)’
ds \? dr\*_ . b-sin?29
therefore (1}5 ) =13+ (Z)) me . (——l ey 20),,
therefore .‘ ds=m j (5—sin? 26)} 5
1 +8in28
Putting sin 20 = 5% sin ¢, 2 cos 2040 = 5* cos ¢ de, cos 20 = (1 —5sin?¢)h
cos®¢ do

- . s bm
this is easily transformed into ’=_2-I(1+6*sin¢)(l—5sin?¢)"

which is a complicated hyperelliptic form, and cannot be integrated in a
finite form. Similarly, since # = r cos 6, we have
j zds = maj (1—sin 20)" (5 —sin? 20)} cos 8 d,
(1 +sin 20)
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which, by assuming sin 20 = 5sin ¢, may, as before, be put into the form

6m? ( cos¢ )2 PEPPRY Y
I 2.2'.[ 1+5isin¢) [+ o' de,
which is at least as complicated as the preceding one. It appears, there-
fore, that the values of the coordinates of the centroid of the arc of the
leaf cannot be expressed in a finite form.
In order to find the centroid of the area of the leaf, we have

— Ir‘coaodo - Ir‘sinOdO
zT =8'— =8 —
[raae fr2de
Putting, as before, 9 = ix—y, and r = mtany, these are transformed
2_0m | tan® y (cos y +sin y) dy
3 [tanty dy
—  gb  [tandy(cos y—sin¥)dy
y = — N .
3 [ tanty ay
Since Itan'ﬂcoswsin.p)u - j’“‘t:d‘p + j:’%%u

cos*®

into z -

= COBY + 86C §— % +§i—%—ib8““(i'+w)

jtanww-miv—%

[tan'ﬂoow—sin#) dy
= COS y+8eCy + ’iL"k_* sin § +§ logtan (3= + §y),

cos’y " costy
we can always find =, y, in a finite form, for any assigned limits of
6, y. For example, if the limits of ¢ aro (§, }r), those of § (—4r, 0), and
the corresponding values of z, y are
7= 2 . 8+6105§3£’2—11m, 7= 2% 8(1-y/2)+6log(y/2+1) m.
3 4—w 3 4—-=

8788. (By C. B. S. Cavarrix, M.A.)—Find the position in space for
a triangle of given dimensions, in order that the sum of the times required
for particles to descend down its sides may be a minimum.

Solution.

Let the plane of the triangle be inclined at an angle ¢ to the vertical
plane ; assume { (x—A)+0 to be the inclination of AB to the line of
greatest slope through A on the plane. The resolved part of gravity
along this line of greatest slope is g cos ¢ ; and the whole time of falling



139

down the three sides of the triangle is given by
2 L a L] 3 ] [] ]

T= (]cos¢) { (nin (*A-o)) M (sm ({A+0)) + (sin(§A+C+0)) }‘
In order to determine when T is a maximum or a minimum, we have
:'_1‘ = 0, which gives ¢ = 0, showing that the plane of the triangle must
be vertical. Moreover, 6 is determined from the equation ';.—? = 0, which
gives cot (A —06) [ cosec (§A —6) ]}

= cot (3A +6) [4 cosec (}A +6)]! + cot (O + 3A +6) [¢ cosec (O+ ;A +6)Th
whence 8 may be determined.

6885. (By H. Fortey, M.A.)—Find the number of different rows
that can be made with », indifferent balls of one colour, r; of another
colour, 7 of a third colour, &c. (all the balls being used in each row), in
which no two balls of the same colour are in contact.

Solution.

Let us begin with the simple case where there are n balls, of which two
are white, three black, and all the rest of other different colours. Suppose
for a moment that balls of the same colour are distinguishable, and call
the white balls w,, w;. Now the whole number of rows is ! and w,, w,
will come together in that order in J (n!) rows, and in the order w,, w,
also in J (n!) rows. Therefore the number of rows in which the white
balls are separated is (1—2J) n!. Similarly, had we begun by separating
the black balls, we should have found the number of rows to be

(1-6J+6J9)n!;

and it is obvious (or, if not, can be proved) that the number of rows in
which both white and black balls are separated is

(1-2J) (1-6J+6J3)n!,
where it is immaterial in what order the operating functions are written.
If balls of the same colour are indifferent, the result is

(1—2J) (1—6J +6J2) n!

2! 31 :

Let ¢g ¢y ... ¢, be the operative symbols for separating 2, 3, ... » balls,
then ¢g = 1—-2J, ¢y = 1—-6J +6J3, and when ¢, has been determined
the problem is solved,

Now, suppose there are s + # balls, of which (r + 1) are black and (n—1)
are white. Then, if balls of the same colour are indifferent, the number of

1
rows with the black balls all separated is ﬁl!_’%-’ﬁ But, looking at
the question from another point of view, we see that in the line
.6.64.6.4.06.4.4a.
if the o’s represent the (n—1) white balls, the black balls may be placed
one each on any of the n dots. Therefore

Pro1ntr! »C ngn—-ll...gn—r)
a—llrel = M= r+1l
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therefore Pran+ri=nn-1). (n-r)n-1!.
_Auume that Prit 2@ F a4 a I+ ... +a,41 77,
then (3,+ayJ+...+a I n+r!i=n(n-1)...n—r)n-1!,
Son(p=l) . (m-r)=a@m+r)(ntr~1) .8 +a(n+r—1) .0+ &ec.
+a,(n+1)n+a,,n '
Or, in factorial notation,
Al =g (ntr)r*Dtay(n+r—-1)04
et B (8 +2)3 +a, (n+1)3 4+ apiyn.
Now operate on both sides with A”-*+3, and we have
(r+D)r..s.nD=(r+l)r...s(n+r)e-Da
+r(r—1)..(s—1) (n+r—1)-3 g, 4 &c.
+(r—s+3)(r—6+2)...2(n+r—s+2)a,.y
+(r—s+2)! a,.
In this identity, make # = —r+s—2; then all the terms on the right-
hand side vanish, except the last, and we have
(r—s+2)!a =(r+1)r...s(—r+s=2)0-0),

and, by reduction, a, = (-).-lr—c+ 2? ;-::-il- ; 1g—1"
a =1, 6 =— [rer=1)B(r+1)(r—2)
ag=—r(r+l), 3! !
- P(r+1) (r=1) o _’[r (r—1) (r—24)_;]2 (r+1) (r—3),
2! '
&c. = &c.;

therefore .
pra=1=r (4 )T+ 2EDED 5 L= DIINC=D o, o,

or gy = 1-(—1) 1T+ L= =N _[e=DEDPrC4I o, g,

If therefore there are m sets of balls, r, of one colour, #; of another, &c.,
and 7, + 7o+ ... +rm = n, then, balls o; the same colour being indifferent,
the number of rows in which no two balls of the same colour are in con-
tact is ¢r.Pr,Pr, -0 ‘9'--"!. )
rilrgleg! o rm!
As an application of the general formula, suppose there are 10 balls, of
which 4 are white, 3 black, 2 red, and 1 blue, then the number of rows

. P3Py 0. 10!
will be 213141
Now ¢y = 1127 +36J2—24J8;
therefore ¢.10! =10!-12.9!+36.8!-24.7!,

@:0,.10! =101—6.9146.81—12(9!—6.8!+6.7)
+36(8!—6.7146.61)—24 (7!1-6.6!+6 .65
=10!-18.9!+114.8!—312.7!+360.6!—144.56!;
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. e, 10! =101-2.91-18(9!1—-2.81)+114 (8!-2.71)
L312(7+—2.6!)+360(6!-2.6!)—144(5!-2.4!)
=10!-20.9'+160.8!~540.7!4+984.6!-864.6!4+288.4!
= 12888 .4!;
$20;0,.10! _ 12988.41 _
2!33!44! 213!14! 1074,
which is the number of rows in which no two balls of the same colour are
in contact.

7132. (By N. Nicorrs, B.A.)—A van of height 5 open in front is
moved forward with a given uniform velocity V ; if the rain descending
vertically strike the floor of the van at a distance ¢ from the front, find
the velocity of the rain as it strikes the floor.

Solution.

Let o be the velocity of the rain. Impresson the rain-drop as well as
on the carriage a velocity V, equal and opposite to that of the carriage.

Then, by the parallelogram law, we hav: % = %.

7337. (By H. L. OrcrarD, M.A.)—P is a particle moving with uni-
form angular velocity, », in the circumference of & circle of radius & and
centre C. If O be any point in the plane of the circle such that
COO= asin 46°, find the maximum angular velocity of P with regard
to O.

Solution.
Let OP =4, CO= % OP =1, v=P’s

linear velocity, so that ¥ = ws. Then the com- P
ponent linear velocity of P, at right angles to
OP, is v cos OPC ; then the angular velocity about

A

Ois Q= rlcosOPC.

4+ (1—'—5) a?
Now, cosOPC=— "7

2ar
v 1\ad ) _ e -_L)i
therefore O §§l+(l n*)r=}—2{l+(l ) A5

Hence O will be & maximum, when r is a minimum and equal to
A0=a(l-—1-) -an=l
n

’
n

VOL. XLIII. s
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which gives o = ”—”—1 Similarly, the minimum value of @ is found -
1o be -v’%. In the particular case, when CO = asin45°, we have

n = 2}, and the maximum and minimum values of 8 are
w(2+2Y) and o (2-2Y),
respectively. If 8, 8, be the maximum and minimum values of Q, we

have always the relation 1,1_2
8 O, )
showing that 0,, w, 0, are in harmonic progression.

’

7436. (By AsOTosH MukHOPADHYAY.)—Is the expression o”‘.lu, where
% = — 1, real for any values of 4, m, n? 1f so, discriminate the cases.

Solution.

1t is obvious that *™'" ig real, whenever ™" is an even integer, posi-
tive or negative, of the form +2p; and there is an infinite number of
ways in which this condition can be satisfied. Again, cos + ¢ sin § = ¢é.
Putting 8 = }r, we get i = ¢™, therefore ™' " = ei™*™", Hence, the
expression under consideration is real, whenever A™" = ki, where % is any
real number, positive or negative, integral or fractional. It is easy to
see that this latter condition follows at once from the general theorem that

(6 + )P = ¢P ¢ [cos (p0+ glog r) +isin (20 + ¢ log r)],

where 12 =qa24+8, 0 =tan-! —%.

7894. (By Professor HupsoN, M.A.)—Prove that, in the steady
motion in one plane of a uniform incompressible fluid under the action
of natural forces, if #, v be the velocities at z, y, parallel to the axes,

a3 a2 d:  d3
v(E’+@)u-u (E+E3)v =0,

Solution. .
The *¢ equation of continuity ”” for the uniplanar motion of an incom-
. iy s dy  dv
pressible fluid is . "t = 0 e (1).

If the motion is also steady, — =— =0
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whence the equations of motion are
u%+v§'—; = X—% ‘;—:, u%+v% = Y——} :—’;
If, in addition, the forces are such as occur in nature, they have a
potential V, viz., X = - ‘%’, Y=o ‘;l’. Then, writing dp = p 4P, and
assuming Q = P +V, the equations of 'xynot.ion reduce to
du du __dQ dv dv__dQ

U — 40— % eessescssens 2, 3 »
d;r:+ 2y az’ iz dy dy (: )

By substituting -% for %‘ , and differentiating (2) and (3) with regard

to y and z respectively, Q is at once eliminated, and we get
du  du d’  d¥
(@) =« (@ )
which is the relation required.
[If V2 denote LarrLace’s Operator, this may be written ¢V = uV3y.]

Note oN QuesTION 6960.

As to Dr. MacAvLsTeER's remark on my solution of his Quest. 6960
(Vol. xum., p. 110), the phrase ¢ time variation of the position of the
momentum,” to which he takes objection, is an exact paraphrase of his
own words, ‘‘rate per second at which momentum is deflected.” 1 used
the word position to signify angular position or direction, and I took the
deflects ¢:{ tum to mean the ‘‘ change of direction of the momen-
tum,”’ and what the theorem asserts is that, the normal force is measured
by the time-variation of the direction of the momentum ; that is, by the
rate per unit of time at which the direction of momentum is changing, or
at which momentum is being deflected. Of course, the position (= angular
position = direction) of the momentum does not necessarily increase the
position (= distance from origin whence s is measured) of the particle.

8049, (By Professor HopsoN, M.A.)—Find the locus of the vertex
of a parabola of which the axis is parallel to that of & given catenary with
which it has contact of the second order.

Solution,

Refer the system to two rectangular axes, the y-axis being verticall
upwarde through the lowest point of the catenary, the axis of z horizontal,
and the origin at a distance ¢ below the lowest point, where ¢ is the para«~
meter of the catenary, viz., its equation is

when exp. § = ¢, y = % (exp. %+exp. :cf) R (1)
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If (—a, —pB) be the coordinates of the vertex of the parabola, its equation

is (Z+Ha) = 4a(y+B) coovverenniiiiiiiiiii, (2).
Since the two curves have a contact of the second order, their osculating
circles are the same at the point of contact. From (1), we have, for the

dy 1 o —z\ dy_ 1 z -z
catenary, 2 = 2\ exp. - —exp. 7—), 78 % (exp.7+exp. -;—),
W\ L ( z —_z)’
1+ (d;) r exp. p + exp. R
From (2), we have, for the parabola,
dy_gre By 1 (d)1 L,y
&= 2 an e H\Z) el
Hence, from the usual formula for the radius of curvature, we see that, at
the point of contact, the radii of curvature of the two curves are
£ z =z 3 l_ 2 H
. (exp . + exp. p ) and 4a:[«ira + (2 + a)?]
respectively, and, these values must be equal. Hence,

a% (exp. % + exp. —0—‘7)3= [4a2+ (z+a)®] eoreerennrnne. (3).
Put exp.:’ +exp.:c—"€=u, Z+a=1v
Then, from (3), Alel 0 =4a3 403 .iieeiiiieieeeere e
and, from (1) and (2), ¥ = 20 (cu +28) ...

Eliminating v3, we get a quadratic for u, involving B alone, whence,
solving, we have u=F (8), say. Substituting in (7), we sce that
v = 2a[cF (B) + 28], so that v = f(B), suppose. But, from (4) and (6),

V- —_ +
exp. —®iexp. 7% =
4 c

Hence, finally, the required equation of the locus of the vertex is
exp.f (Gl
[

2 + exp. _f(f\ ta F (B),
a, B being the current coordinates.

[Without bringing in the radius of curvature, the solution may be

simply obtained from the fact that the values of y, %’:. :;1:, corresponaing

to the same values of z, are the same in the two curves. Taking the usual
equations

L= 2i( e + e'7) (#—a)? = 4a (y—B) -wereeene(l, 2),

dy __z—a (- dy_ 1 _u (3,4);
== 28 s gal gy e , 4) 5
‘from (1), (2), (3), (4) eliminate z, vy, a, the resulting equation in a, B is
that of the locus required. It readily follows that y?—28y+¢? = 0, and
thence the solution is easy, though the result, which is of the form
given by the Solver, is complicated.]

we have
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8082. (By Asraragus.)—The locus of the intersection of normals to
a given conic\dfawn/at| the ends ob & cliord passing through a given point
is in general a cubic. Is there any position of the given point (other than
the centre of the given conic) for which the locus degenerates in degree P

Solution.

2
At ‘Z—: =1, 8 =2(c%y+By'z—ary);
then, it is well known that the points on S at which the normals pass
through the given point 2y, are determined as the intersection of S with
8’. Expressing the condition that the equation
ASB-e8"“8+0'8'8:—-a'8 =0,
which represents the three pairs of lines joining the four points of inter-
section of the two conics, may be satisfied by the coordinates a, 8 of the
given point, the locus is found to be
4a'b? (a%Bx — blay —c’aB)? + a2b?(alz? + b3y2 — of) (a2Bz — b%ay — Bap)
(6%? + a*B* — a%°)3 + a?b3c’zy(b%2 + 4283 — a2b%)3 = 0,
which is a cubic. This locus reduces in degree when a = 8 =0, or the
given point is the centre ; it reduces also in two other cases, viz., (1) the
locus becomes a conic when the point is infinitely distant, that 1is, when
we have to find the locus of the intersection of normals at the extremities
of a chord which is parallel to a given line. (2) The locus becomes a
conic when either a = 0 or 8 = 0, that is, when the given point is on
either axis; this, of course, includes the particular case when the given
point is either the centre or either of the foci, which latter case may also
be solved directly. All this, again, is a particular case of the more
general property noticed by Mr. R. A. RoBerrs, that the locus of the
intersection of lines making any constant angle (in this particular case
= }x) with 4 conic at the extremities of a chord passing through a fixed
int, i8 a cubic, the locus degenerating into a conic, not only when the

xed point is at infinity, but also when the fixed puvint is on the diameter
which cuts the curve at the given angle, since the diameter is in this case
part of the locus, as, indeed, is geometrically evident.

Let 8=

8103. (By Asparacus.)—Given a system of confocal conics (foci S,'S’,
centre C) and a point O, the well-known envelope of the polar of O is a
certain parabola of which CO is directrix : prove that, if OL, OM be the
tangents to this parabola from O, L, M will be the centres of curvature at
O of the two conics of the system which pass through O.

Solution.

In my solution of Question 8129 [see p. 148 of this Volume], I have

shown that the equation of the enveloping parabola is
(mz +ny)3—26 (mx—ny)+c4 =0 ..covvrennnnnnn.. (UB
whereof the parameter is 4cmn [ (m? +n2)1, the axis is the line mz +ny =

mi:—n?

i’ the directrix is my = nx, which is the line CO, and the focus is
"
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the point 7 n leal ® . If we now take the two confocals
m*n m3'nd
. I x i
through O, their equation is roree + Bien = ) S serecnesensne (2),
n?

the double value of A% being given by E"::Tz * g = Lo e(3),

or, for shortness, writing.m’ =p(A2+A%), 03 = ¢ (B2+A%),thisisp+g=1.

Now, if , ¢ be the coo; tes of the centre of curvature of (2) at O, we
_ __—=cnd _ .2
havo & = Aisay?’ ¢= By 0 ™= 0P, (= —d¢, and,

in order that (¢, {) may be on the parabola (1), we must have
T=(2-¢)-2(P+¢)+1=0,
when p+¢ = 1. But, in fact,
T=(p—9gP-2[(p+¢)*-2pg] +1
=(2+9°-2(p+9)*+1 =—(p+q)*=0;
80 that, the centres of curvature at O are on the parabola. Now, the
tangents to the parabola at (¢, {) are
m3gz + n¥y +mn ((r+ty) —cm (x+E) +n (y+ &+t =0,
where, as before, m¢ = 2p?, n{ =—c3q% If this tangent is to pass
through (m, ), we must have the identical relation
m (P -g?=1)+n? (PP +1)= (PP +4*-1) = 0,
2
or, since pl-g’=1= —3g, pl=g'+1 =2p, P4+g’~1=2g, > il

which is identically true. Hence, we finally infer that the centres of
curvature are on the parabola, and that the tangents to the parabola, at
these points, pass through O.

8123. (By Professor LLoyp TANNER, M.A.) —Assuming the Moon to
move round the Earth at a mean dis'ance of 240,000 miles in 27 days
8 hours, and Jupiter’s inner satellite to move round Jupiter at a mean
distance of 260,000 miles in 1 day 18} hours, compare the masses of
Jupiter and the Earth,

Solution.

In my solution of Question 8044 (8se Vol. xrm1., p. 112) I have com-
pletely proved the formula, logu = 2 (log T —log ?) + 3 (log »—log R).
__ mass of Jupiter
Here, # = mass of Earth
R = Earth’s distance from Moon = 24-104 miles.
T = Moon’s periodic time = 656 hours.
r = Distance of satellite from Jupiter — 26°10* miles.
t = Satellite’s periodic time = 42°5 hours.
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log T = 2-8169038 log R = 5-3802112
log, ¢,=, 16283889 log r = 5°4149733,
whence log u = 2:4813161, which gives u = 3029117482,

This value of u agrees fairly with the one given in Lockyer’s Astro-
nomy, p. 329, when u = 300-857. The two results may be thus sume
marised, E. =003301311 . J. E. = 003323916 . J.

These agree to the fourth decimal place, or the second significant figure.

8124. (By Professor Cocurz.)—Trouver une courbe dont le rapport
de son rayon de courbure & sa normale soit égal & 1 ; u.
Solution.

As regards the next question, we remark that the radius of curvature
and the normal may lie on the same or on different sides of the curve;
this will be indicated by taking the radius of curvature with anegative or
a positive sign. Hence, by the condition,

dy\ii_ T . e A U
v l+(dz) { q:"{”(daa) J t s ot l+(d.c) 5"
Multiplying by % and integrating,
]
log { 1+ (%)’ } L u (log eFlog g‘/), or { 1+ (g }‘: (5)’01' (cy)*,
J 628 — g2
whence Z—i = (y—’"/) , or (ceyt—1)h
To integrate the first, put y = ¢% cos?6, which transforms the integral
: 1 1
into dv = — % (cos §)* 46, whence z+k =—2 I (cos 6)* do,
u n
which can be integrated by the ordinary formula of reduction, and can

be finitely expressed whenever 1 / u is & positive integer. Similarly, to
obtain the second solution, we assume, ¢?#y*+ = sec? ¢, which transforms
1

the equation into dz = ol (cos )™ * dg,
n

1
whence c+k= lj (cos 9) " dg.
n

A particular case of special interest is when u = 1, or the absolute value
of theradius of curvature is equal to that of the normal. The first solution
gives (z + )2+ y* = ¢, which is a circle of radius ¢. The second solution

2_ g2t
gives log-'/ifn'/a_“:l = ":k, where cs = 1 and k is a new constant.
z+k z+k

From this it follows that y = —;— (¢® +¢ ‘@), which is the equation
to the catenary. :
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8127. (By Professor HapamarDp.)—Bi A, B, C sont les angles d’un
triangle, les/angles A, [nj »,que font entre elles les médianes de ce tri-
angle, sont donnés par les formules :

cotA = } (cot A—2cot B—2cotC), cotu= 4 (cot B—2cot C—2 cot A),
cot ¥ = } (cot C—2 cot A—2 cot B).

Solution.
‘We have £BOC = A, £0OBC =6, LOCB =¢; then
cota = LmCObOCObS (1).
cot 6 + cot ¢
Now, from elementary trigonometry, (-; + ;—) cot B = %coto——; cot C,
whence cot 8 = cot C+ 2 cot B. Similarly, cot¢ = cot B+2cotC,
Therefore cot 6+ cot ¢ = 3 (cot B +cot C).

Also, 1—cot6ocot¢p = 1—(2cot?B +2 cot* C+ 5 cot Bcot C)
= 1—cot B cot C—2 (cot B + cot C)?
= cot A (cot B + cot C) —2 (cot B + cot C)2.

Substituting in (1), we have 3cotA =cotA—2cotB—2cotC, and
similarly for cot u, cot ».

8129. (By Professor WorsTeNnEOLME, M.A., 8c.D.)—Given a point
O and a system of confocal conics (foci 8, §’, centre C), if OP, OQ be tan-
gents to any one of these conics, and through each point of PQ there be
drawn a straight line perpendicular to its polar with respect to this conic ;
prove that (1) the envelope of all such straight lines is definite (the para-
bola which is also the envelope of PQ and of the normals at P and Q) ;
52) the locus of the point where each straight line meets its polar is also
efinite (being the circular cubic which is the locus of P, Q and of the
foot of the perpendicular from O on PQ); (3) this locus and envelo
depend only upon the relative positions of O, 8, 8, although there are in
each case two parameters involved, which we may take to be 4[5, the
ratio of the axes of the conic, and Y’ / X’ where (X'Y’) is the point on
PQ through which the perpendicular is drawn.

Solution.
. 2
Let a conic of the system be at "5 =1 ciiiiiiiiiinens R (1),

wherein, for convenience, I write a2 = A34+3, 5% = B%+A%, where A is
the parameter of the system, and A, B the semi-axes of the primitive
conic; so that 88’ = a?—§3 = A?—B? = ¢%. Hence, if the given point
O be (m, n), the equation of PQ which is the polar of O is

fidacd ﬁ!:
- + » R .(2).
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Now, if the coordinates of any point R on PQ be (a, 8), the equation

ek 'Ilg F @)
is satisfied, and the polar of R (e, 8), with regard to the conic, being
= %,! B OO ),
the line through R, at right angles to (4), is
Sy-8) = %(z-.) .............................. )

and we have to find the envelope of (5), when the variable parameters
« and B satisfy (3). This may be done, a8 usual, by differentiating (3)
and (5), and then employing LacraNagE’s Method of Undetermined Multi-
pliers. As, however, the required envelope is of the second class, it is found
with equal ease by getting rid of one of the variables, viz., eliminating

B between (3) and (5), we have gma’—{m+ny+c’} a+a?z = 0, which
gives for the envelope (mz+ny+c%)? = 4mc3z, which is equivalent to
(mz +ny)2~232 (mz—ny)+ 2 =0 ...ocvvnnnnnrnannnnns (6),

(’i’:‘, the axis is the line
'm? + n?)

the directrix is nz = my, which represents CO, and

a parabola of which the parameter is

mi—n?
m? 402’

the focus is the point (a’

mz+ny =

-2 ) If ¢,  be the coordinates

mi 4 n? m3 + n?

of the focus, we see that 3+92 -g, where 3% = m3+92; whence it

:ﬁll)eam that if the given point O describes circles concentric with the
, the focus of the parabolic envelope also describes concentric cir-
cles. That this parabola is also the envelope of PQ for different members
of the confocal family, is easily seen, viz., PQ being
mz_ o _ny
A2+ Bi+a?
the equation of which the envelope is to be found is
At+ {A34+ B'—(mz +ny) } A+ ATB?—Bimz—Alny = 0,

1,

which gives for the envelope
{A?+Bi—(mz + ny)}? = 4 {AZB*~Bmo— Ay},
which may be put into the form
(mz +ny)3— 2 (A2—B?) (mz—ny) + (A3—B%)3 =0 ............ @,

which, since A3— B3 = ¢3—5% = ¢3, represents the same parabola as in (6).
Again, if the point P be (¢), the normal is

VOL. XLIII. T
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and the tangent PO passing through O leads to the condition

Eliminating ¢ between (8) and (9), and putting A? = a?—A? = $2—-B?,
the envelope of (8) is found to be the same parabola.

Again, 1f we seek the locus of the intersection of the lines (4) and (5),
which include a right angle, we have to eliminate a, 8 between, (3), (4),
(6). Now, from (3) and (4), we obtain the equations
By g, M=Z
nz—my my—nz
Hence, substituting these values for a, B in (5), we get for the required
locus the cubic

(22 + y%) (nz —my) = (mz + ny) (nx—my)—c2 (m—2) (n~y)...... (10).
Again, if we seek the foot of the perpendicular from O on PQ, we see
i L AR . LU 11);
that PQ is Aten T B o 1 ();
and the line at right angles is
L N RrS) Q. Sy P SO 12);
A +A’(y ") B’+A’(x ™) 12)

whence, solving for A2+ A3, B? + A3, we have
A4n = ol - (notmy)], BN = ST [ateg—(matmy)],

which, by subtraction, give
A-Bl=g=_MYNT a3 mo + ny
G-my—m T el
which shows that this locus is the same cubic as (10). We can also find
the locus of P in the same manner, namely, putting P as (¢, 1), we have

3 i ny "
the equations Efm. tEa= b A_zﬂ—-i-)" * B = 1...(18, 14),

together with the conditions
22 v I3l 7’ -
et el et g e (15, 16),

from which {, , A are to be eliminated, viz., solving for ¢, % from (13),
= (A24+A%) =¥ = (B? m=z
(14), we have t= (A7+2%) nz—my’ 7 = (B3+A3) ne—my
which, being substituted in (16), gives for A2 the value
N [(m—2)1+(n—y)?] = (my —nz)2— A2 (n—y)* — B} (m—2)?,
whence
2423 = (My—n2)?+6? (m—2)? 2  (my—nz)3+ 2 (n—y)?

R o e R s O

which, being substituted in (15), give for the required locus the same cubic

a8 (10). It may be noted that the fact of the coincidence of the loci of the
intersection of the polar of R with the perpendicular from R on it, and of
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the intersection of the perpendicular from O on PQ with PQ, might have
been @ priors \expected from the fundamental theorem in polars that, as R
is on the polar of P, P is always on the polar of R, so that the properties
are, in a sense, reciprocal. From a mere inspection of (6) and (10), it is
evident that the envelope and the locus depend simply on the relative
ition of 8, O, 8’, since, wherever 4, 6 occur, they occur in the
orm a2—§? = 63 = O8* = 0S?. What makes the question peculiarly
interesting is the determinateness, which we had mo right to ezpect as d
priori possible.

8144, (By Asraragus.)—Two points P, Q are taken on the coordinate
axes conjugate to each other with respect to a conic U,
(@ 8, ¢,1, 9, "-I", Y, l)’ =0;
prove that the envelope of PQ is the conic (¢9z +/y + ¢)® = 4 (fy—ck) zy.
[This envelope is independent of a, 5, which seems very singular.
It degenerates when ¢A = fg, that is, when Oz, Oy are conjugate with

respect to U; is an ellipse when fg/cA>1, an hyperbola when

Joleh < 1.]
Solution.

Let O be the origin of the coordinate axes, and take OP = m, 0Q =1,
on these axes to which the conic
U = az®+ 2hoy + by*+ 292+ Yy +e = 0
is referred ; then, the equation of PQ is

LA A SRR .
m+” ceeens(1)

Again, the polar of any point (=, y,), with respect to U = 0, being
azzy +h (29 +2y) +byy  +g (T +2) +f(y+9) +e =0,
either of the conditions

x| = m, z==0}_ z, =0, z=m},
$H =0, y=nf> y=n y=0/§"
leads to the equation Amn+gm+fn+e = 0.iienniineiniiinninnnceenn. (2);

and we have to find the envelope of (1) when the parameters m, n are
connected by the relation (2). Eliminating #, we have
(by +9) m*—(gz—fy—c) m—cx = 0,
the envelope of which is
(go—Sy—cy+4ex (hy+g) =0, or (gz+fy+c)® =4 (fg—ch)zy.

It will be noticed that the absence of 4, & from the envelope arises from
the fact that both the given points are on the coordinate axes, which makes
the coefficients of 2% and ¢? vanish identically. The envelope degenerates

into the polar of the origin when fy = c, or, when the axes are conjugate
to U = 0, is an ellipse or hyperbola, according as fy > < ¢A.

Printed by C. F. Hodgson & 8on, 1 Gough Square, Fleet Street.
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