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m e wissenschaft gleichzeitig belebt und vertieft. Dasselbe ist
aber auch ein Forsciungsmlttel von grosser Bedeutung. Denn
in jenen grundlegenden Schriften ruhten nicht nur die Keime, welche
inzwischen sich entwickelt und Friichte getragen haben, sondern
es ruhen in ihnen noch zahllose andere Keime, die noch der Ent-
wicklung harren, und dem in der Wissenschaft Atbeitenden wund
Forschenden bilden jene Schriften eine unerschopfliche Fundgrube
von Anregungen umg fordernden Gedanken.

Die Klassiker der exakten Wissenschaften sollen
ihrem Namen gemiss die rationellen Naturwissenschaften, von der
Mathematik bis zur Physiologie umfassen und werden Abhandlungen
ausden Gebieten derMathematik,Astronomie,Physik,Chemie
(einschliesslich Krystallkunde) und Physiologie enthalten.

Die allgemeine Redaktion fithrt von jetzt ab Professor
Dr. Arthur von Oe*tingen (Leipzig); die einzelnen Ausgaben
werden durch hervorragende Vertreter der betreffenden Wissen-
schaften besorgt werden. Die Leitung der einzelnen Abtheilungen
tibernahmen: fiir Astronomie Prof. Dr. Bruns (Leipzig), fir Mathe-
matik Prof. Dr. Wangerin (Halle), fir Krystallgunde Prof. Dr.
Groth (Minchen), fir Pflanzenphysiologie Prof. Dr. W. Pfeffer
(Leipzig), far Chemie Prof. Dr. %V Ostwald (Leipzig).

Erschienen sind bis jetzt aus dem Gebiete der

Mathematik:
Nr. 5. C. F. Gauss, Flichentheorie. (1827.) Deutsch herausg. v. A. Wan-
gerin, (Gb 8.) # —.80.
» 14, C. F. @aunss, Die 4 Beweise der Zerlegung ganzer algebr. Functio-

nen ete. (1799—4849.) Herausg. v. E. Netto. Mit 1 Taf. (81 S.)
J 1.50.

» 17. A, Bravais, Abhandlungen iiber symmetr. Polyeder. .(1849.) Ubers.
und in Gemeinschaft mit P. Groth herausg, von C. u. E. Bl asius.
Mit 1 Taf. (508.) 4 1.—.
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Abhandlung
iiber

die Systeme von regelmdssig auf einer Ebene oder im
Raum vertheilten Punkten

von

A. Bravais,

Lieutonant zur See und Professor an der Ecole Polytechnique.

‘Der Académie des Sciences vorgelegt am 11. December 1848.)

§ 1. — Einleitende Definitionen.

Um ein System von regelmissig im Raum vertheilten
Punkten zu erhalten, nehmen wir zwei willkiirlich gewihlte
Punkte, und verbinden sie miteinander durch eine gerade Linie,
welche wir nach beiden Richtungen ins Unendliche verlingern.
Wir besetzen diese Gerade mit einer unbeschriinkten Reihe
anderer Punkte, die alle unter sich #quidistant, und durch
einen, dem Abstand der beiden Ausgangspunkte gleichen, eon-
stanten Zwischenraum getrennt sind. Das geradlinige System
dieser #quidistanten Punkte soll im Laufe dieser Abhandlung
den Namen »>Punktreihe« erhalten. Der fundamentale Ab-
stand zwischen zwei benachbarten Punkten soll mit dem Namen
»Parameter der Punktreihec« bezeichnet werden.

Wir nehmen eine zweite Punktreihe von demselben Para-
meter, bringen sie, parallel zur ersten, in eine in Bezug auf die-
selbe willktirlich gew#hlte Lage, und verbinden diese beiden
Reihen miteinander durch eine geometrische Ebene, welche ihrer
[2] Natur nach in jeder Richtung unbegrenzt ist. Wir besetzen
diese Ebene mit einer Folge von eben solchen Punktreihen, die
parallel und #qnidistant unter einander sind; wir lassen endlich,
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4 A. Bravais.

um die Lage dieser Punktreihen zu bestimmen, jede derselben
als Ganzes und in ihrer Lingsrichtung gleiten, bis die Punkte,
welche auf jeder Punktreihe als Ausgangspunkt gedient haben,
sich auf einer und derselben Geraden befinden, die mehr oder
weniger gegen  die gemeinsame Richtung der Punktreihen ge-
neigt ist. Wir werden ein solches auf der Ebene vertheiltes
System von Punkten mit dem Gattungsnamen » Netz« bezeichnen.
Wir nehmen ein zweites Netz von der gleichen Form
und Grdsse wie das vorige, bringen es auf eine parallele, von
der ersten durch einen willktirlichen Zwischenraum getrennte
Ebene, indem wir Sorge tragen, dass alle homologen Linien
in den beiden Netzen gleich gerichtet sind, was durch eine
gemeinsame Parallel-Verschiebung aller Theile des urspriing-
lichen Netzes bewirkt werden kann. Wir vertheilen eine un-
endliche Anzahl von gleichen und gleich gerichteten Netzen auf
einer unendlichen Anzahl von Ebenen, die den beiden ersten
parallel und #quidistant unter einander sind, und tragen Sorge,
jedes Netz auf seiner Ebene gleiten zu lassen, bis alle Punkte,
die als Ausgang ‘dienen, auf einer und derselben Geraden
liegen, welche nothwendiger Weise ausserhalb der Ebene des
" urspriinglichen Netzes ist. Das so erhaltene Punktsystem soll
in dieser Abhandlung mit dem Namen »Schaar« bezeichnet
werden; es ist unbegrenzt nach seinen drei Dimensionen.
’ Die Figur 1 zeigt das Resultat der von uns vorgenommenen
Operationen. 0AA'A” ... ist die erste Punktreihe; die
Folge der Punkte 4, 4', A”,... muss man sich links tiber O
hinaus fortgesetzt denken. BP P . .. bildet die zweite Punkt-
reihe. Von den Punkten B, B”, ... gehen andere gleiche und
parallele Punktreihen aus. Die Ausgangspunkte O, B, B,
B’, ... der Reihen liegen nothwendiger Weise auf einer ge-
raden Linie. Da alle diese Punktreihen #quidistant sind, so
ist einleuchtend, dass man

OB=BB =BB"...

hat, so dass OBB' B”. .. auch eine Punkireihe des Systems
ist; aber sie unterscheidet sich von O.4.4' A" durch ihre Rich-
tung, und auch im allgemeinen Fall durch die Grdsse ihres
Parameters, welcher augenscheinlich gleich OB ist.

Ein zweites Netz, 4hnlich dem Netz 04 A4'A"... BPP’
...B ... B”..., hat seinen Ausgangspunkt in D, und dehnt
sich von D in einer Ebene aus, die parallel mit der Ebene
O A B ist; seine erste Punktreihe ist DQQ'Q". .., die andern
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gehen von R, R, R”, . .. aus. [3] Diese Punkte sind auf der
neuen Ebene die Homologen von B, B, B”, ... Die anderen
Netze des Systems gehen von den Punkten 1), D", ... aus.
Alle die Punkte O, D, D', D",. .. liegen in einer geraden
Linie, und wegen, des gleichen Abstands der parallelen Ebenen,
deren jede ein Netz enthilt, hat man

0D=DD =DD ...,

so dass ODD'D". .. auch eine Punktreihe ist, welche sich aber
von 0AA'A"... und OBB'B"... sowohl durch ihre Rich-
tung, als anch dureh die Grosse ihres Parameters unterscheidet.

Die so erhaltene Schaar zeigt eine regelmiissige Verthei-
lung, welche durch die folgenden Eigenschaften charakterisirt
ist, die einlenchtend genug sind, um keines Beweises zu be-
diirfen. .

Keiner der integrirenden Punkte unterscheidet sich von
den anderen durch irgend welche Eigenthtimlichkeit der rela-
tiven Lage.

. Die Configuration einer als unbegrenzt gedachten Schaar
um einen ihrer willktirlich gewihlten Punkte ist die gleiche,
welches auch der angenommene Punkt sein mag. Wenn zum
Beispiel dieser Pankt zum Anfangspunkt irgendwelcher recht-
winkeliger oder schiefwinkeliger Coordinaten genommen ist;
8o wird man um jeden nacheinander zum Ausgang gewihlten
Punkt  #hnlich gelegene Punkte mit gleichen Coordinaten
finden, vorausgesetzt dass bei dem Wechsel des Anfangs-
punktes die neumen Axen ihre urspriingliche Richtung bewahrt
haben.

Bevor ich weiter gehe, werde ich filr die Punkte, welche
ein Netz oder eine Schaar bilden, eine besondere Bezeichnung
feststellen. Es ist in der That nothwendig, sie von den rein
mathematischen Punkten zn unterscheiden, welche an irgend
einem Orte des Raumes existiren.

Ich werde sie also Gitterpunkte nennen. Man kann
ohne Nachtheil, um die Begriffe festzulegen, diesen Gitter-
punkten sehr kleine Dimensionen geben, wirkliche Moleciile
daraus machen und speciell den Mittelpunkten dieser Mole-
ctile, deren polyedrische Form tbrigens unbestimmt bleibt,
den Namen Gitterpunkt ertheilen.

Ich werde annehmen, diese Gitterpunkte seien unter sich
durch solche Krifte verbunden, dass die ganze Schaar eine
unverinderliche Gestalt, mit constant bleibendem Abstand der
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Punkte unter sich habe, dass sie indessen fibig sei, sich wie
ein fester Kérper im Raum zu bewegen, sowohl parallel mit
sich selbst als um [4] eine gegebene Axe, sobald es ndthig
wird, ihr derartige Bewegungen der Translation oder der
Rotation zu gehen.

Wenn man das ganze System parallel mit sich selbst
bewegt, so dass ein Gitterpunkt wie z. B. 4, Fig. 1, an den
Ort kommt, welchen vorher ein anderer Gitterpunkt B inne
hatte, so wird jeder der anderen Gitterpunkte gleichfalls einen
Ort im Raume einnehmen, der bei dem Anfang der Be-
wegung von einem Gitterpunkte des Systems verlassen wurde.
Ich sage alsdann, dass durch die allgemeine Bewegung, welche
der Schaar gegeben ist, der Ort der Gitterpunkte nicht
verdndert ist, oder einfacher dass eine Wiederherstellung
der Orte der Gitterpunkte stattgefunden hat.

Solange die Geraden 0 4.4', BPP, ... und die Ebenen,
welche sie vereinigen, im Raum fixirt bleiben, beh#lt die
Schaar die Kennzeichen des Verfahrens, das angewandt wurde,
um sie zu construiren. Aber wir kénnen in Gedanken alle
diese Geraden und alle diese Ebenen unterdriicken, und ver-
suchen eine umgekehrte Aufgabe von derjenigen zu ldsen,
welche uns soeben beschiftigt hat, eine Aufgabe, die wir im
Folgenden zusammenfassen.

Aufgabe I. — Zu einer gegebenen Schaar sollen
diePunktreihen, Ebenen undNetze gefunden werden,
welche sie hervorbringen kénnen.

Nehmen wir aufs Gerathewohl zwei Punkte oder Gitter-
punkte, wie z. B. O und 4 (Fig. 1), welche der gegebenen
Schaar angehdren, und verbinden sie durch die Gerade O .A.
Wenn es auf dieser Verbindungsgeraden zwischen O und 4
andere Gitterpunkte @, 8, ¢, ... gibe, die dem System ange-
horten, so wiirden wir den -Gitterpunkt @, den niichsten an
O, besonders ins Auge fassen und Oa wire dann ein ein-
facher Theil von OA. Also kann man immer annehmen,
dass zwischen den beiden gew#hlten Gitterpunkten O und 4
kein anderer dazwischen liegender Gitterpunkt existirt.

Verlingern wir O A4 nach beiden Richtungen und nehmen

Ad' =04, A4 =Ad,...;

so werden alle diese Punkte 4’, 4"... gemiss dem allgemeinen
Gesetze, welches die regelmissige Vertheilung charakterisirt,
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unserer Schaar angehoren. Dieses erste Verfahren bestimmt
eine der Punktreihen des Systems. Es ist indessen nothig
zu bemerken, dass diese so gefundene Reihe nicht nothwendiger
Woeise eine von denen ist, welche urspriinglich dazu gedient
haben die Schaar zu econstruiren,

Ausserhalb der Punktreihe O A4’ 4"... nehmen wir aufs

Gerathewohl einen Gitterpunkt B und verbinden O mit B;
wenn andere Gitterpunkte zwischen O und B existirten,
wiirden wir nur [5] den niichsten an O beibehalten. So
konnen wir also immer voraussetzen, dass zwischen O und B
kein anderer Punkt, der dem System der Schaar angehort,
existirt. : .
Nachdem dieses festgestelt, construiren wir tiber OB
und OA das Parallelogramm O APB; P wird dem Netz
der Ebene O AB angehoren. Nun konnte im Innern dieses
Parallelogramms im Allgemeinen eine endliche Anzahl von
Gitterpunkten wie m, n, ... existiren, welche dem Netz der
Ebene angehdren. In diesem Fall muss man den Punkt B
verwerfen und ihn durch denjenigen dieser Gitterpunkte er-
setzen, dessen Entfernung von O.4 ein Minimum ist. Nennen
wir ihn m; ziehen wir von m die Strecke mm' parallel und
gleich O.A und vollenden das Parallelogramm O Am'm.
Dann wird m’ nicht allein dem Netze angehdren, sondern
man kann behaupten, dass das Parallelogramm Om'm 4
weder in seinem Innern noch auf seinen Seiten irgend einen
Punkt der allgemeinen Schaar zeigt, mit Ausnahme der vier
Gitterpunkte O, 4, m, m'.

Um die Figur 1 nicht nutzlos zu compliciren, nehme ich
das Parallelogramm O A PB wieder auf, und beschriinke mich
darauf anzunehmen, dass der Punkt B mit Rtcksicht darauf
gewihlt ist, den beiden folgenden Bedingungen zu gentigen:

1. Dass zwischen O und B kein Punkt der Schaar existirt;

2. Dass ein solcher ebenso wenig im Innern des iiber
O A und OB construirten Parallelogramms existirt. Wir
haben eben gesehen, dass es immer wenigstens einen Gitter-
punkt giebt, der diesen Bedingungen gentigt.

Alsdann kdnnen wir, da wir die Parameter O 4 und OB
der beiden Punktreihen kennen, nicht nur alle Punkte finden,
die zu diesen Punkireihen gehoren, sondern wir kdnnen auch
durch die Schnittpunkte der beiden durch 4.4'A4"... und
BB B’ ... gelegten Systeme von Parallelen das Netz der
Ebene OA B vollstindig wiederherstellen. Wir bemerken,
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dass dieses Netz nicht nothwendiger Weise dasselbe ist, welches
im Anfang zur Construction der Schaar gedient hat.

Nachdem wir nacheinander eine Punktreihe, dann ein
Netz erhalten haben, wird es uns nicht schwerer werden, das
ganze System wiederzufinden.. ;

Wir wollen' 'ausserhalb’ der’ Ebene O 4B einen Punkt D
wihlen, den wir der Bedingung unterwerfen, dass kein da-
zwischen liegender Gitterpunkt weder auf der Verbindungs-
linie zwischen O und D existire, noch anf der Oberfliche
des Parallelogramms 4 0D Q, noch auf derjenigen des Paral-
lelogramms BODR, noch im Innern des Parallelepipedes
OAPSQDRB, welches ither den Parametern 0.4, OB,
OD 3als Kanten constrnirt ist. Man [6] muss sich verge-
wissern, wie wir es fir den Punkt B in dem Falle der
Ebene gethan haben, dass diese Bedingungen thatsichlich
erfdllt sind.

Es giebt ein einfaches Mittel, um direct den Punkt D
zu erhalten. Es besteht darin, eine geometrische Ebene sich
parallel mit sich selbst bewegen zu lassen, von einer Anfangs-
stellung an, in welcher sie mit der Ebene O AB zusammen-
fillt. Sobald diese Ebene in ihrer Bewegung einen ersten
Gitterpunkt der Schaar erreicht, nimmt man ihn als den
gesuchten Punkt an und macht aus der Entfernung O D) den
Parameter der dritten Punktreihe ODD'D" . ..

Die Losung, welche wir eben gegeben haben, zeigt, dass
man die Aufgabe I auf sehr viele verschiedene Arten l0sen
kann, und es ist sogar picht schwierig einzusehen, dass die
Zshl dieser Lusungen eine unendliche ist. In der That be-
sitzt die Ebene D QSR die Eigenschaft, in dem System aller
jhrer Parallelen so nahe als moglich an der Ebene O.AB zu
sein. Wenn wir irgend einen Gitterpunkt betrachten, wie
z. B. 8, der dem Netz, das diese Ebene triigt, angehort, so
ist klar, dass wir die Punktreihe OD durch die neue Punkt-
reihe O8 ersetzen kdnnen; wir erhalten alsdann alle Punkte
der gegebenen Schaar, als Schnitte des Systems der zu 0.4.B
parallelen Ebenen, mit dem System der Geraden, die parallel
mit OS durch alle Punkte des Netzes 044 ... BB ge-
legt sind.

Ebenso kénnte man, indem man OS und OA, oder O
und OB als anfingliche Punktreihen nimmt, die Schaar wieder-
herstellen, indem man als Consirnctionsmittel das Netz der
Ebene OAS oder dasjenige der Ebene OBS nimmt, was




Ueber die Systeme von regelmiissig vertheilten Punkten. 9

uns neue Losungen der Aufgabe giihe; und da die Zahl der
Netzpunkte unendlich ist, so ist es die Zahl dieser Lisungen
ebenfalls.

Wenn in einem Netz zwei Punktreihen OA und OB
80 beschaffen sind, dass.kein. einziger Gitterpunkt in das
Innere des Parallelogramms fillt, welches tiber den Para-
metern 04, O B dieser Punktreihen construirt wird, so nenne
ich diese Punktreihen conjugirt, und in dem Falle, wo sie
zu Coordinaten-Axen gew#hlt wtirden, sollen sie den Namen
conjugirte Axen erhalten.

Das System der Punktreihen, welche parallel zu zwei
conjugirten Punktreihen 04 A4'..., OBB’... liegen, schneidet
das Netz in parallelogrammatische, unter einander gleiche
Felder. Ich werde dieses Parallelogramm (O APB Fig. 1)
(O Am B Fig. 2) Grundparallelogramm oder parallelo-
grammatische Masche des Netzes nennen.

Der nicht allseitig begrenzte Raum, welcher zwischen einer
Punktreihe wie 0.4.4'A"... und ibrer [7] nichst benachbarten
BPP' (Fig. 1) begriffen ist, soll den Namen Streifen er-
halten. Der Streifen ist dadurch charakterisirt, dass niemals
irgend ein Gitterpunkt in seinem Innern existirt, sondern nur
auf den beiden Geraden, die ihn begrenzen.

Die beiden parallelen Punktreihen, welche einen Streifen
einschliessen, sollen angrenzende genannt werden. Jeder
Punktreihe entsprechen zwei angrenzende Punktreihen, welche
in Beziehung auf die gegebene Punktreihe auf entgegenge-
setzten Seiten liegen. Die Ebene eines Streifens, oder von
zwei parallelen Punktreihen, oder allgemeiner, die Ebene,
welche drei Gitterpunkte enth#lt, die nicht auf gerader Linie
liegen, soll Netzebene genannt werden. Sie trigt auf ihrer
Oberfliche ein vollstindiges Netz von Gitterpunkten.

Wenn die Parameter von drei Punktreihen OA4, OB,
OC (Fig. 1) im Raume als Kanten eines, sowohl in seinem
Inneren wie auf seinen Seitenflichen von jedem Gitterpunkt
freien Parallelepipedes dienen kdnnen, werde ich diese drei
Punktreihen mit dem Namen conjugirte Punktreihen be-
zeichnen, und in dem Falle, wo man sie als Coordinatenaxen
gebrauchen wollte, mit dem Namen conjugirte Axen.

Die drei Ebenen, welche diese Punktreihen paarweise
verbinden, sollen conjugirte Netzebenen oder conjugirte
Ebenen genannt werden.

Eine Punktreihe soll zu der Netzebene comnjugirt
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heissen, wenn zwei in Bezug auf das Netz dieser Ebene con-
jugirte Punktreihen auch zu der gegebemen Punktreihe con-
jugirt sind. Der nicht allseitig begrenzte Raum, welcher zwi-
schen einer Netzebene und der niichsten unter den ihr parallelen
Netzebenen enthalténisty)|soll mit\dem Namen Schicht be-
zeichnet werden, Es kann keinen Gitterpunkt in dem Innern
einer Schicht geben. Die beiden parallelen Netzebenen, welche
die Schicht begrenzen, sollen angrenzende genannt werden.
Zu jeder Netzebene gehren zwei angrenzende Ebenen, die ihr
parallel und in Bezug auf die gegebene Ebene auf entgegen-
gesetzten Seiten liegen.

Die drei Systeme von Netzebenen, die parallel den drei
conjugirten Ebenen AO0B, AOD, BOD (Fig. 1) liegen,
schneiden den Raum in parallelepipedische Zellen, welche alle
inhaltlich und zum Decken gleich sind. Ich werde das so
erhaltene, tiber den drei conjugirten Parametern O 4, OB,
O D construirte Parallelepiped Grund-Parallelepiped oder
Kern der Schaar nennen.

S#immtliche Punkte dieses Systems konnen durch das
Aneinanderlegen solcher Parallelepipede, Seite an Seite, wieder
erhalten werden.

(8] Nach Feststellung unserer Terminologie kionnen wir
die grundlegenden Eigenschaften irgend einer Schaar folgender-
maassen zusammenfassen:

»Die Gitterpunkte einer Schaar sind auf einem System
paralleler und #quidistanter Ebenen angeordnet und bilden
auf jeder dieser Ebenen ein Netz, dessen Configuration auf
jeder Ebene dieselbe ist.«

»In jedem dieser Netze bilden die Punkte Systeme von
parallelen, deckbar gleichen und #quidistanten Punktreiben.«

»Auf jeder Punktreihe haben die Gitterpunkte gleichen
Abstand unter einander. Man kann die gegebenen Gitter-
punkte eines Netzes immer als S8chnittpunkte je zweier Geraden
erhalten, welche zwei verschiedenen Systemen von parallelen
und dquidistanten Geraden angehoren. Die ganze Ebene erscheint
dann in parallelogrammatische, deckbar gleiche Felder zer-
schnitten, welche keine Lticke zwischen sich lassen.«

»Man kann die Gitterpunkte einer Schaar immer als die
Schnittpunkte von drei Ebenen erhalten, die drei verschiedenen
8ystemen von parallelen und in jedem System gleich ent-
fernten Ebenen angehdren. Der Raum ist alsdann in parallel-
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epipedische Zellen zerschnitten, welche alle inhaltlich und zum
Decken gleich sind - und keine Lticke zwischen sich lassen.«

»Die Theilang der Ebene oder des Rammes in gleiche
Parallelogramme oder Parallelepipede, deren Ecken mit den
Gitterpunkten der Schaar/ zusammenfallen, lésst sich auf un-
endlich viele verschiedene Weisen durchfithren.«

§ II. — Von den Netszen im Allgemeinen,

Bezeichnungen und Definitionen. — Wir wollen
das Netz der Figur 2 untersuchen. Der Punkt O soll zum
Anfangspunkt der Coordinaten, gewihlt werden.

Seien 0A4A4'..., OBB' ... die beiden Punkireihen,
welche zur Construction des Netzes gedient haben, und be-
zeichnen wir mit ¢ und 4 die beiden Parameter, sodass wir
haben
(1) OA=a ud OB =05

Seien &, 7 die linearen Coordinaten der auf die schriigen
Axen 04, OB bezogenen Punkte der Ebene. Fitr einen

beliebigen Punkt P werden die Verhiltnisse 5— und —Z— (9]

positive oder negative ganze Zahlen sein, die wir die Zahlen-
coordinaten des Gitterpunktes P nennen wollen und welche
durch die Buchstaben 7 und % bezeichnet werden sollen,
wenn P ein bestimmter Gitterpunkt ist, und durch die Buch-
staben = und y, wenn P ein unbestimmter Gitterpunkt des
Netzes ist. Man erhilt je nach dem Falle

(2)

=m,

7,

S s

@
. £
(3) .
Die allgemeine Gleichung des Netzes, betrachtet als ebene Curve
mit getrennten und in jedem Gitterpunkt des Netzes verschwinden-

den Zweigen, lisst sich analytisch in folgender Form schreiben:

s
a
wobei sz die Zahl 3,14159 ... ist. Diese Gleichung ist
erflllt fur jeden Gitterpunkt des Netzes und ist es nicht fiir
Jeden anderen Punkt der Ebene.

=x,

=y.

sin? 7t+sin’%n=0,
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Aufgabe II. — Die Gleichung einer durch den
Anfangspunkt und dureh den Gitterpunkt P (Fig. 2)
gehenden Punktreihe zu finden.

Beien m und » die Zahlen-Coordinaten von P, so wird
die Gleichung\von'/O!P inlatfenden! linearen Coordinaten sein.

§ _ 1

ma nb

Seien z und y die Zahlen-Coordinaten irgend eines der Punkt-
reihe OP zugehorigen Punktes, so wird man haben

r_.Y.

(4) o ,
Dieses ist die Gleichung der Punktreihe OP in Zahlen-Co-
ordinaten.

Wenn 7 und » einen grossten gemeinschaftlichen Theiler
D hitten, witrde der Punkt ﬂ, % zu der Punktreihe O P
gehoren, und wire von allen Gitterpunkten dieser Punktreihe
der n#chste an dem Punkt O; wenn aber m und n relative
Primzahlen sind, so ist OP der Parameter der Punktreihe.

Man kann die Gleichung (4) in der Form schreiben -

(5) nz —my =0,
(10] Wenn man dann

n m
(6) D =9, D =—rh

setzt, wobei ¢ und % ganze und relative Primzahlen positiver
oder negativer Art sind, so wird die Gleichung
(7) gz -+ }&y = 0.

Satz I. — Wenn m und M (Fig. 3) zwei Gitter-
punkte eines Netzes sind, und wenn man durch einen
dritten Gitterpunkt O eine mit mM gleiche und par-
allele Strecke On legt, so wird der Endpunkt dieser
Strecke ein vierter Gitterpunkt des Netzes sein.

Wir legen den Anfangspunkt der Coordinaten nach ein-
ander auf m und O, ohne die Richtung der Axen zn indern;
wir nennen § und 7 die Coordinaten von M in Bezug auf
die durch m gelegten Axen. Es folgt aus den allgemeinen
Eigenschaften der Netze und Schaaren (Seite 5), dass es in
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dem Netz einen Punkt von gleichen Coordinaten in dem System -
der durch O gelegten Axen geben wird. Sei 7z dieser Punkt.
Die Strecke Oz wird gleich und parallel 7 M sein.
Corollarsatz. — Wenn man Mm um eine Strecke mp
= m M (Fig. 3) verléngert, 80 wird, p-einer der Gitterpunkte
des Netzes sein; also ist der Punkt 7 ein geometrischer Mittel-
punkt des Netzes und dasselbe ist der Fall fiir alle anderen
Gitterpunkte. '

Aufgabe III. — Die allgemeine Gleichung der zu
der Punktreihe OP. (Fig. 2) paralielen Punktreihen
zu finden.

Durch einen Gitterpunkt mit den Zahlen-Coordinaten
m', n' lege man eine Parallele zu O P; ihre Gleichung in linearen
Coordinaten wird sein

§—ma _n—n'b
ma ~ nb

Schafft man ¢ aus dem ersten und & ams dem zweiten Gliede
weg, s0 hat man

oder wenn man die Gleichyngen (6) berticksichtigt,
gle—m)+hly—n)=0.
Man hitte diese Gleichung direct aus der Gleichung (7) folgern
konnen, indem man z und y in £ — m' und y — ' ver-
wandelte, Also
gz + hy =gm' 4 k7',
(11] oder

(8) ' gz + hy = C,

indem man das letzte Glied mit C' bezeichnet; C ist noth-
wendiger Weise eine ganze Zahl. Diese Gleichung, welche so
allgemein wie moglich ist, umfasst das ganze System der mit
O P parallelen Punktreihen.

Bezeichnungen und Definitionen. — Wir werden
kiinftig die Bezeichnung (g/4) gebrauchen, um das ganze
System der Punktreihen darzustellen, welche der durch die
Gleichung (7) dargestellten Geraden parallel sind.

Die ganzen positiven oder negativen Zahlen g und % sollen
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- die Charakteristiken fiir dieses System von Punktreihen in
Bezug auf die Axen der z und der y sein.

Aufgabe IV. — Den Parameter der Punktreihen
mit der Bezeichnung (g4) zu finden.

Sei 0 der /Winkel (AOB/(Figl 2); sei A der Parameter
der Punktreihe OP, welche vom Anfangspunkte nach dem
” und = sind. 8
l_) un ﬁ sind. 0
wird man nach einer bekannten Formel erhalten:

2 L .

A = (%) a® 4 (%) b 4 2 (—g) (%) ab cos d,
und wenn man die Charakteristiken g, A substituirt
(9) A* = h*a® 4 g*b* — 2ghab cos J.

Aufgabe V. — Die Zahl der Gitterpunkte zu
finden, welche in dem tiber den Parametern O.4 und
OP oder OB und OP (Fig. 2) construirten Parallelo-
gramm enthalten sind.

Nehmen wir an, dass die Zahlen-Coordinaten m und »
des Punktes P positiv seien. Die Zahl der Punktreihen Bm . . .,
B'rn..., B'p..., welche parallel der z-Axe liegen, und
die das Parallelogramm O.A4 PQ durchschneiden, ist gleich
n — 1. Da jeder zwischen OP und 4AQ gelegene Abschnitt
dieser Punktreihen dem Parameter O.4 gleich ist, so muss
er einen Gitterpunkt enthalten, welcher im Innern des Parallelo-
gramms OAPQ gelegen ist, weil er weder auf O.P noch
auf 4Q fallen kann,; folglich wird die Zahl der in diesem
Parallelogramm enthaltenen Gitterpunkte 2 — 1 sein. Ebenso
wird die Zahl der innerhalb des Parallelogramms O BPR
gelegenen Gitterpunkte m — 1 sein.

Wenn m und » negativ wiren, wiirde man sie durch
einen passenden Austausch der positiven mit den negativen
Halbaxen positiv machen.

Aufgabe VI. — Die Gleichung der an OP angren-
zenden Punktreihen zu finden.

Die allgemeine Gleichung der zu O P parallelen Punkt-
reiben ist

Gitterpunkte geht, dessen Coordinaten

gz + hy = gm' 4+ hn';
(12] g und % sind gegebene relative Primzahlen; m' und »’
willkiirlich gew#hlte Zahlen,
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Nun weiss man aus der Theorie der Kettenbrtiche, dass

man m' und %" immer so bestimmen kann, dass der Gleichung

gm' + hn'= 41,
oder der Gleichung

gm' + hn"= — 1.
gentigt ist.
Die Gleichung (8) wird alsdann
(10) gz + hy==1,

und stellt die beiden an die Punktreihe O P angrenzenden
Punktreihen pp'... und r7’... dar. Es ist klar, dass man in
dem Netze keine anderen, dem Anfangspunkte O nither ge-
legenen Punktreihen haben kann.

Anderer Beweis der Ldsung. — Seien m, n, p, ¢
(Fig. 2) die im Innern des Parallelogramms O .4 P Q gelegenen
Pankte. Keine zwei von ihnen konnen in derselben Ent-
fernung von O P liegen, denn wenn m und p in diesem Falle
wiren, so wilrde mp parallel O P sein, .und auf einer mit OP
parallelen Punktreihe hitte man einen geringeren Parameter
als OP, was nicht sein kann.

Also wenn man die Linien pp’, mm’, ¢¢’ und nn' zieht,
bilden sie den Anfang der Serie der mit O P parallelen Punkt-
reihen, folglich mtissen diese Linien #quidistant sein.

Da die Zahl der zwischen OP und 4Q enthaltenen
Gitterpunkte gleich » — 1 ist (Aufgabe V), so wird diejenige
der zwischen diesen beiden Geraden liegenden Btreifen gleich
n sein. Also wird OA4 in n gleiche Abschnitte getheilt und
man hat

(11) Opf =—= —.
Wenn man jetzt die Punkireihe pp’ bis p”, dem Schnitte mit
der Halbaxe der negativen y verldngert, so wiirde man ebenso

mit Hiilfe des tber OP und OB construirten Parallelo-
gramms beweisen, dass
b

(12) Op'=— -

Nun ist offenbar die Gleichung von pp° in linearen Co-
ordinaten
§

S
Op' + Op" 1'.
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(18] Wenn man fir § und # ijhre aus den Gleichungen (2)
bervorgehenden Werthe setzt, und statt Op’' und Op” ihre
aus den Gleichungen (11) und (12) hervorgehenden Werthe,
80 bekommt man
nY - my =1+ 1.
Auf der anderen Seite von O P giebt es in dem Parallelogramm
OBPR eine andere angrenzende Punktreihe, die Punktreihe
r7’, welche mit O P einen 8treifen von derselben Breite bildet,
als der ‘zwischen pp’ und OP eingeschlossene Streifen.
Ihre Gleichung wird augenscheinlich

nr —my =—1

sein, folglich sind die beiden angrenzenden Punktreihen in
der gemeinschaftlichen Gleichung

nx — my = £ 1

einbegriffen, und wenn man statt 72 und 7z die Charakteristiken
g und A& der Punktreihe OP setzt, indem man beachtet, dass
m und » relative Primzahlen sind, da OP ein Parameter ist,
so wird diese

gz + hy == 1,

Aufgabe VIL. — In einem System von Punktreihen
deren symbolische Bezeichnung (g4) ist, soll fest-
gestellt werden, welche Anzahl von Streifen dieses
Systems zwischen dem Gitterpunkte mit den Co-
ordinaten M und N und dem Gitterpunkte mit den
Coordinaten M’ und N’ enthalten ist.

Denken wir uns, dass die an O P angrenzende Punktreihe
pp (Fig. 2) die Einheit als Ordnungszahl erhalte, die folgende
Reihe mm' erhalte die Zahl 2, und so weiter; dann, dass
man die Ordoungszahlen — 1, — 2, — 3, ... den auf der
entgegengesetzten Seite liegenden Punktreihen 77, ss’. . . gebe.

Die Punktreihe Nr. 1 wird die Gleichung haben

gz + hy =1,

Die Gleichung der Punktreihe Nr. 2, die zweimal so weit vom
Anfangspunkt entfernt ist als die vorige, wird sein

gz + hy = 2.
Die Punktreihe, deren Ordnungszahl C ist, wird als Gleichung

haben
gr + hy=~C.
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[14] Woraus man ersieht, dass in der Gleichung (8) das letzte
Glied gerade die Ordnungszahl der Punktreihe ist; welche
man untersucht.

Seien also C und (" die Ordnungszahlen der Punkt-
reihen, welche durch/die Gitterpunkte (M, N) und (M’', N’')
gehen, so ist

C =gM 4+ kN,
(13) C—C=gM—M)+h(N—N

So wird also die Zahl der zwischen den beiden gegebenen
Gitterpunkten liegenden Btreifen, bis auf das Zewhen, den °

‘Werth haben
gM— M)+ h(N— N').

Corollarsatz. — In dem titber dem Parametern OP
und OP’ (Fig. 2) construirten Parallelogramm wollen wir die
Coordinaten der Gitterpunkte P und P’ mit (m, n) und
(m', n') bezeichnen. Die Zahl der zwischen zwei gegeniiber-
hegenden Seiten dieses Parallelogramms gelegenen Streifen wird,
bis auf das Zeichen, gleich m»n' — nm' sein.

Aufgabe VIII. — Die Bedingung zu finden, unter
der zwei Punktreihen conjugirt sind.

Seien . und # die Zahlen—Coordinaten eines Gitterpunktes
P (Fig. 2), seien m' und »’ diejenigen eines anderen Gitter-
punktes p. Man mmmt an, dass m und 7 relative Primzahlen
seien, sowie, dass m' und 7' relative Primzahlen seien, und
gesucht werde die Bedingung, unter welcher O P und 0p con-
jugirte Punktreihen sind.

Der Gitterpunkt » muss der einen oder der anderen der
beiden an OP angrenzenden Punktreihen angehdren, senst
wiirden die zu O P parallelen Punktreihen mit denen, welche
parallel Op sind, sich in Punkten schneiden, die nicht alle
Gitterpunkte des Netzes wiren, und die Punktreihen O und
Op wiren mcht conjugirt. Also muss, wenn man

x—-m, y-—-n

in der Gleichung (10) setzt, dleser gentigt sein, was die Be--
dingung giebt -
(14) gm' k' = £ 1,

und wenn man darin die Werthe von g-und.% einsstzt, die
Ostwald's Klassiker. 90. 2
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aus der Gleichung (6) gezogen sind, indem [15] man beachtet,
dass D =1 ist, so verwandelt sich diese Bedingung in

(15) nm' —mn' = *1,

Umgekehrt wird, /wenn dieser Bedingung gentigt ist, der Gitter~
punkt: (m', #') einer der an OP angrenzenden Punktreihen
angehoren, und seine Verbindungslinie mit dem Anfangspunkt
wird eine zu der Punktreihe O P conjugirte Punktreihe bilden.

Wenn man statt m, # die Charakteristiken g, £ der Punkt-
reihe O P setzt und statt m', »' die Charakteristiken ¢', A’
der Punktreihe Op, so hat man

(16) }ly'—ghl=i l,

dies wird die Bedingung dafdr sein, dass die durch die
Symbole (g%) und (g'A’) bezeichneten Punktreihen conjugirt
sind, und dass sie die Gitterpunkte des Netzes als ihre gegen-
semgen Durchschnittspunkte wiedererzeugen.

Aufgabe IX. — Die Bedingung zu finden, unter
welcher drei Gitterpunkte (m, n), (m’, #') und (m", n")
angrenzenden Punktreihen angehoren.

Legen wir den Anfangspunkt nach (m”, »”); dann werden
die Zahlen-Coordinaten der beiden anderen Gitterpunkte
(m —m", n — "), (m' — m", 2’ — 7") sein.

Damit die Punktreihen, welche von dem neuen Ausgangs-
punkte nach diesen beiden Gitterpunkten gehen, conjugirte
seien, muss man

(n . nu) (mp — m") . (m —_ m") (nl —_— 7‘") — i 1
haben, das heisst nach der Reduction
am' —n'm 4+ na'm—nm’' +n'm' —m'n = 1.

Aufgabe X. — Die Coordinatenaxen zu #ndern
und die neuen Coordinaten als Functionen der alten
auszudricken und umgekehrt.

Seien (m, n) und (m', n') die Zahlen-Coordinaten der beiden
Gitterpunkte P und P’ (Fig. 3), m und n sind relative Prim~
zahlen, und dasselbe gllt von »' und 7'

OP und OP' seien als neue Coordinatenaxen gewihlt,
und X und Y seien die Zahlen-Coordinaten eines Gitter~
punktes M in diesem neuen System.

Wenn man . alsdann Mm parallel ‘mit OF’ bis zum
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Schnittpunkt 7 mit OP zieht, und M7 parallel mit O P bis
zu dem Schnittpunkt mit O P’, so hat man

Om= Mn= X-OP,
O =5 Mm| =0 OP'.

[16] Die Zahlen-Coordinaten des Punktes s in dem alten
System der conjugirten Axen OA OB smd mX und nX;
diejenigen des Punktes 7 sind m' Y und »' Y.

Um die Coordinaten  und y des Punktes M im alten
System zu erhalten, hat man zu beachten, dass in dem Ueber-
gang von m zu M die Zahlen-Abscisse und -Ordinate dieselbe
Vergrosserung erfahren, wie in dem Uebergange von O nach
n, weil On gleich und parallel mit Mm ist. Also

17 { z=mX+mY,
17 ly=nX 4+ 2Y,
Man folgert darams, durch Elimination,
n m'
X=n'm—m’nx+ mn —nm Y
(18) n m
Y= Py —— + mn —am’ V"

Wenn die Punktreihen OP, OP’' conjugirt sind, so ver-
#ndern ‘sich diese Gleichungen in

EX=nz—mnmy,
tY=—nz+my.

Man lasse die Axen der X und der Y sich durch eine ge-
meinsame Bewegung um O drehen, bis die Halbaxe der posi-
tiven X und die Halbaxe der positiven z zusammenfallen;
wenn dann die Halbaxen der positiven Y und der positiven
y sich auf derselben Seite in Bezug auf die znsammenfallenden
Axen befinden, so sollte das obere Zeichen in den ersten
Gliedern der Gleichungen (19) den Vorzug erhalten. Im ent-
gegengesetzten Falle nehme man das untere Zeichen an.

Corollarsatz. — Nehmen wir an, dass die Axe der y
gich allein ver#ndert, und durch die zu der unver#nderlich
bleibenden Axe der z conjugirte Punktreihe O P ersetzt werde,
und sei m, die Zahlen-Abscisse des Punktes P. Man wird
bei dieser Verinderung der Axen erhalten '

9%

(19)
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m=1, n =0,

m=m,, n =1,
daraus schliesst man :
z=X+4+mY,
y=7%,
[17] und umgekehrt,

Y=y, X=z—m,y.

Die mit der verschobenen Axe parallele Zahlen-Coordinate
bleibt unverinderlich.

Aufgabe XI. — Man sucht das Symbol einer
gegebenen Punktreihe (g%) in einem neuen Axen-
system. . .

Seien immer wieder (m, n) und (m', »') die Zahlen-
Coordinaten der Endpunkte der nmeuen Axen.
Wenn man in der Gleichung

gz +hy=2=C

die aus den Gleichungen (17) gezogenen Werthe von z, y
substitnirt, so erhilt man I

(gm + hn) X + (gm’ + hn') Y = C,
woraus man sieht, dass, wenn man das neue Symbol durch

(G H) darstellt, man von (gk) auf (G'Hj gelangt vermittelst
der Formeln ’

G=gm +h
(20) om
- H=gm' + hn'.
Corollarsatz. — Wenn man sich darauf beschrinkt,

unter Beibehaltung der z-Axe die Axe der y zu verindern;
und als neue Axe der positiven y die Punktreihe zu nehmen,
die vom Anfangspunkte zum Gitterpunkte (—1, —1) geht,
welche Punktreihe die im umgekehrten Sinne genommene
Verlingerung von der Diagonale des iiber @ und & construirten
Parallelogramms ist, so erhilt man

m =1, n =0,
m=—1, n=—1;

wodurch das Symbol (g, %) in (g, — g — &) verandert wird.
Wenn man dann die Charakteristik der Punktreihe (g2)
in Bezug auf diese neue Axe ¢ nennt, so hat man die Gleichung

t=—g—h.
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Bei ¢ der Parameter der neuen Axe; dann wird der auf dieser
Axe zwischen dem Anfangspunkte und der Punktreihe

gz + }ly =1,
[18] die in dem npeuen System
gz +1iY¥Y =1,
geworden, enthaltene Abschnitt ersichtlich als Werth f—.haben.

Man sieht darans, dass, »wenn die Parameter a, b, ¢
paarweise conjugirter Punktreihen auf eine Weise gewi#hlt
sind, dass sie drei Krifte vorstellen, die einander auf der
Ebene des Netzes das Gleichgewicht -halten, jede Punktreihe,
welche angrenzend an eine durch den Anfangspunkt gehende
Punktreihe ist, auf den Parametern dieser Punktreihen die
drei Abschnitte -:Z—, %,
ganze positive oder negative Primzahlen sind, die der Beziehung
(21) g+ri+i=0
gentigen. Man kann alsdann ohne Unterschied das eine oder
das andere der Symbole (gb) (97), (¢A) als Symbol der Punkt-
reihe (g4) nehmen.< - ) .

Bezeichnung mit drei Charakteristiken. —
Wenn man die Lage der Punktreihen des Netzes auf drei
Coordinatenaxen, welche den eben angegebenen Bedingungen
geniigen, bezieht, so kann man das Symbol (g%) durch ein
Symbol mit drei Zeichen (g/s) ersetzen.

Die Formel (9) nimmt in diesem System der Charakie-
ristiken eine bemerkenswerthe Form an. ‘

Beien (Fig. 5)

OA=a, 0OC=0b, OE=c¢, AO0C=;
so hat man :

c L. . . .
a bestimmen wird, wobei g, %, ¢

c*==q® -+ b 4 2abcos .
Indem man in der Gleichung (9) den aus dieser Formel ab-
geleiteten Werth 2a cos d substitnirt und beachtet, dass man
B+ gh=—hi, g +gh=—gi
hat erhilt man fur das Quadrat des Parameters der Punkt-
reihe (gh9)

(22) A’:-—hia’———gib’—-gﬁc’;——gki(‘7 + 2 +°

7
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S8atz II. — Wenn eine Punktreihe OP (Fig. 3) in
dem durch [18] zwei conjugirte Punktreihen O.A
und OB gebildeten Winkel AOB enthalten ist,
so werden alle zu OP conjugirten Punktreihen in
demselben Winkelraum 4028 enthalten sein.

Wihlen wir O.4 zur Halbaxe der positiven z, OB zur
Halbaxe der positiven y, und seien m und »n die Zahlen-
Coordinaten des Gitterpunktes P, sie seien positiv und grdsser
als Null.

Setzen wir voraus, dass Op eine zu OP conjugirte
Punktreihe sei, und seien

r___
m=m,, #=—mn,

die Zahlen-Coordinaten des Gitterpunktes p; m, und », sind
ganze und positive Zahlen. Die allgemeine Bedingung, welche
durch die Gleichung (15) vorgeschrieben ist, wird

nm, + mny = £ 1,

Nun ist es aber unmdglich, ihr mit solchen Werthen der
Zahlen .m, n, m,, n,, welche positiv und grosser als Null
sind, zu gentigen. Also kann die Punktreihe Op nicht zu
O P conjugirt sein.

Aus demselben Grunde kann eine Punktreihe wie O ¢ (die-
selbe Figur) nicht zu O P conjugirt sein. Folglich u. s. w.

Satz III. — Das Grund-Parallelogramm des
Netzes hat einen constanten Fldcheninhalt, auf
welche Weise es auch construirt sei.

Ich werde von jetzt an die Fliche des Grund-Parallelo-
gramms eines Netzes mit « bezeichnen; O AmB (Fig. 2)
sei ein solches Parallelogramm.

Da die Punktreihen OP und Op conjugirt sind, wollen

“wir itber OP und Op das Parallelogramm O Ppw constru-
iren, welches die aus diesem Punktreihen-Systeme abggleitete
Masche unseres Netzes sein wird. Ich behaupte, dass der

Flicheninhalt O P& p = Flicheninhalt O AmB = v
sei.
In der That hat das Parallelogramm OPwp dieselbe

Basis .'wie 0. AQ P, aber die Hohe ist verschieden, und man
hat [Gleichung (11)]

OPwp: 0AQP=0p' : 04=1:n,
wobei 7 die Zahlen-Ordinate des Gitterpunktes P ist.
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Aber andrerseits ist

04AmB: 04AQP = OB: OBlV—l n;
[20] also

Flicheninhalt Q. Pop = Flicheninhalt O AmB = w.

Zweiter Beweis. — Seien (m, n) die Zahlen-Coordi-
naten von P und (m', n') diejenigen von p. In den Lehr-
blichern der analytischen Geometrie wird bewiesen, dass das
Dreieck, welches den Anfangspunkt mit den beiden Punkten
verbmdet deren lineare Coordinaten (£, 7) und (&', %) sind,
als Flachemnhalt wenn die Coordinaten-Axen rechtwmkhg
sind, den absoluten Werth des Ausdrucks hat

& — &),
und wenn die Axen schiefwinklig sind und mit einander
einen Winkel J bilden

$(n§ — &y sin 4.
Also wenn man setzt
Winkel- AOB =4,
hat man bis auf das Zeichen :
Flicheninhalt des /\ Op P = 4 sin 6(ndm'a — man'b)
= Yab sin 6 (nm’ — m2'},
also wegen der Gleichung (15)

Flicheninhalt des /\ Op P= {absind.
Also

Flicheninhalt O Pop=absin 6 =Flicheninhalt O Am B=w.

Dritter Beweis. — Wir wollen itbereinkommen, als
Dichtigkeit des Netzes die Anzahl der Gitterpunkte zu
bezeichnen, welche in der Einheit der Fliche enthalten sind,
wobei die Dimensionen dieser Einheit der Fliche alle beide
unendlich gross im Vergleich zu den Parametern der in Be-
tracht gezogenen Punktreihen angenommen seien.

Nachdem dies festgesetzt, seien (Fig. 3)

OP=qd', Op=V¥, pOP=4¢', Flicheninhalt OPomp=u';
so hat man

0

w = a'}’ sin d'.
Nehmen wir auf der verlingerten Geraden O P, angefangen
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bei O, eine in Bezug auf & sehr grossa Linge %, und von
0 auf der verlangerten Geraden Op eine in Bezug auf &' sehr
grosse Linge ¢, in der Weise, dass das dber diesen beidem
Lingen » und ¢ construirte Parallelogramm der Einheit der
Fliche gleich gei, und, [21] dass man also habe

#«¢8in 0’ =1,

Die Anzahl der in diesem Parallelogramm enthaltenen Gitter-
punkte berechnet sich wie die Zahl der Kugeln in der Basis
eines rechtwinkligen Haufens nach der Formel

Lo
al b"

Man wird also haben, wenn ¢ diese immer sehr grosse Zahl ist,

_ %t _ wesind -1

=Ty T dhsme W’
nun muss aber die Zahl ¢, welche die Dichtigkeit des Netzes
misst, constant bleiben, welches auch das System der conju-

girten Axen sein mag, das man zu seiner Bestimmung ange-
nommen hat. Man erhilt also

(23) w = w = ab sin d.

Batz IV. — Der mittlere Abstand der Gitterpunkte
eines Netzes ist gleich der Quadratwurzel aus dem
Flicheninhalt seines Grund-Parallelogramms.

Poisson *) hat als »mittleren Abstand der Molectile eines
Korpers« die Seite eines Wirfels bezeichnet, welcher gleich
ist der Einheit des Volumens des Korpers, durch die Zahl
der Moleciile getheilt, welche diese Volumen-Einheit enthilt.
Man kann diese Erklirung auf den Fall der Ebene anwenden,
und den mittleren Abstand der Gitterpunkte eines
Netzes die Seite eines Quadrats nennen, welches gleich
ist der Einbeit der Fliiche, getheilt durch die Zahl der Gitter-
punkte, welche sie enthilt.

Sei ¢ dieser mittlere Abstand; wenn man fortfshrt, die
Zahl der in der Einheit des Flﬁchemnhalts enthaltenen Gitter-
punkte mit ¢ zu bezeichnen, so hat man .

*) Journal de I'Ecole Polytechnique, 20. Heft, p. 5. — Mémoires
de I'’Académie des Sciences, Band XVIII, p. 7.
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1
T
folglich nach dem vorigen Satze
(24) €Y= w0l eV
wobei w der constante Flicheninhalt des Grund-Parallelo-
gramms des Netzes ist.

[22] Aufgabe XII. — In dem Punktreihen-
System, dessen symbolische Bezeichnung (gA) ist,
die Breite eines Streifens zu finden.

Seien 4/ die unbekannte Breite dieses Streifens, 4 der
Parameter der beiden angrenzenden Punktreihen, welche ihn
einschliessen. Der Flicheninhalt des Grund-Parallelogramms
ist dann gleich /4. Man hat also

(25) - 44= o

Indem man die aus den Gleichungen (9) und (23) gezoge-
nen Werthe fiir 4 und w substituirt, erhalt man

. ab sin &
VAia* + ¢g*b* — 2ghabcos d’
oder einfacher

g — sin &

(26) +——2%cosd

Definition. — Ich bezeichne als elementares Drei-
eck jedes Dreieck, das als Ecken drei Punkte des Netzes
hat, welche zwei angrenzenden Punktreihen angehdren.

Ein solches Dreieck ist immer die Hilfte eines der Grund-
Parallelogramme des Netzes.

Man kann es als die dreieckige Masche des Netzes
anseben.

Ich bezelchne mit dem Namen hauptelementares
Dreieck oder kiirzer unter dem Namen Haupt-Dreieck
dasjenige, welches den kleinsten Parameter des Netzes zur
Basis hat, und dessen Winkel an der Basis spitz sind, einer
von ihnen kann ausnahmsweise ein Rechter werden.

Satz V. — Die elementaren Dreiecke haben einen
constanten Flacheninhalt, der gleich der H#lfte des
Flacheninhalts des Grund-Parallelogramms ist. Das
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Dreieck, welches den Anfangspunkt zur BSpitze
und die Strecke, welche die Punkte (m, n) und (m', »)
verbindet, zur Basis hat, hat als Flicheninhalt das
Product des Flicheninhalts des elementaren Dreiecks
in den absoluten -Werth des, Factors mn — nm.

Der erste Theil des Satzes ist klar; die Flicheninhalte
der elementaren Dreiecke haben als gemeinsamen Werth § w.

Seien nun P und P’ (Fig. 2) die Gitterpunkte mit den
Zahlen-Coordinaten (m, 7) und (m’, #'), so wird man nach
dem zweiten Beweise des [23] Satzes III haben:

Flicheninhalt des /\ OPP = § ab sin §(nm’ — m2n').

Nun ist
agbsind = w;
folglich

(27) Flacheninhalt des A OPP = jw(nm’ — mn').

Wenn man m und » mit einem gemeinsamen Factor 7)
multiplicirt, so werden das erste und das zweite Glied beide
Dmal grosser, so dass die Gleichung (27) nicht gestort wird ;
sie wird es ebenso wenig in dem Fall, wo man 7' und 7' mit
einem Factor D’ multiplicirte. Also findet diese Gleichung
immer statt, selbst wenn m, n oder m', n' nicht relative
Primzahlen sind.

Aufgabe XIII. — Das Haupt-Dreieck einegNetzes
zu finden.

Man wihle willkitrlich einen Gitterpunkt O (Fig. 4) und suche
unter allen anderen Gitterpunkten den O zun#chst liegenden.

8ei A4 dieser Gitterpunkt, O.A4 also der kleinste Para-
meter des Netzes. In O und A4 errichte man die Geraden
Op und Am senkrecht auf O.A4, und suche in dem nicht
allgeitig begrenzten Raume p O Am den der Geraden O.A zu-
nichst gelegenen Gitterpunkt. Man wird ihn nothwendiger-
weise in B, auf der an O.4 angrenzenden Punktreihe finden.
Verbindet man OB und B 4, so wird O.AB das Haupt-Drei-
eck des Netzes sein.

Satz VI. — Das Haupt-Dreieck ist das einzige
elementare Dreieck, dessen drei Winkel spitz sind.

In der That, sei OAB (Fig. 5) das Haupt-Dreieck.
Ziehen wir die Gerade COF parallel zu Bd; die drei
Punktreihen 40D, BOE, COF sind paarweise conjugirt.
Also wird jedes Elementar-Dreieck, das seine Spitze in O hat,
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in einem der sechs Winkelriume 40B, BOC, COD,
DOE, EOF, FOA enthalten sein (8atz II). Sei Ocg ein
solches Dyeieck; die Punktreihe Oy, welche von O parallel
mit o8 gezogen ist, muss, da sie zu O« und OF conjugirt ist,
in demselben Winkelraum 4 Q- Benthalten sein (Satz II).
Wenn das Dreieck Oag drei spitze Winkel hitte, so miisste
der Winkelraum, welcher durch die drei Geraden Oc«, Of
und Oy eingeschlossen wird, gleich 90 Grad oder mehr sein.
Das ist aber im gegenwirtigen Fall unmdglich, weil, wie wir
eben bewiesen haben, der Winkel « Oy nothwendigerweise
kleiner als der spitze oder rechte Winkel 4 OB ist.

[24] Um also ein spitzwinkliges Dreieck zu erhalten,
muss man Oc mit OA4 und Of mit OB zusammenfallen
lassen, und man findet so das Haupt-Dreieck wieder.

Anmerkung. — Die sechs Dreiecke, welche das Sechs-
eck ABCDEF bilden, sind alle inhaltlich und deckbar
gleich, sie bilden also nur eine einzige Losung. Man wird
bemerken, dass diese Dreiecke von zwei Arten sind: die
Einen, nimlich O4B, DOC, EFO, drehen ihren klein-
sten Parameter nach unten, und konnen durch eine einfache
Translation, ohne Drehung zur Deckung gebracht werden;
die drei anderen stehen in umgekehrter Lage; und man kann
sie mit den ersten nur durch eine Drehung von 180° um
eine auf der Ebene Senkrecbte, zur Deckung bringen.

Zum Beispiel wird D O C sich mit D OE durch eine
halbe Umdrehung in seiner Ebene, um die Mitte O° der den
beiden Dreiecken gemeinsamen Basis OD, zur Deckung
bringen lassen. Eine halbe Umdrehung um O wirde D OC
mit 4 OF zur Deckung bringen.

Corollarsatz. — Da das Haupt-Dreieck keinen ein-
zigen Winkel hat, der grosser ist als 90° so schliesst man
daraus:

1. Dass sein kleinster Winkel zwischen Null und 60°,
inclusive, enthalten ist;

2. Dass sein mittlerer Winkel zwischen 45 und 90°, in-
clusive, enthalten ist;

3. Dass sein grosster Winkel zwischen 60 und 90°, in-
clusive, enthalten ist.

Satz VII. — Das Haupt-Dreieck geh6rt dem brei-
testen Streifen an.

Aus der Gleichung (25) folgert man n#mlich
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" Da nun o fir das ganze Netz constant ist, so erreicht A
sein Maximum, wenn der Parameter seinen Minimalwerth an-
nimmt. Wenn'man''also“den Minimal-Parameter zur Basis des
Haupt-Dreiecks nimmt, und eine Parallele zu der Basis durch
die Spitze dieses Dreiecks legt, so wird der zwischen diesen
Parallelen eingeschlossene, das Haupt-Dreieck enthaltende
Streifen der breiteste des ganzen Netzes sein.

Anmerkung. — Dieser Maximalwerth von A kann
nicht geringer sein als a V%, 25) wenn man mit ¢ den Mi-
nimal-Parameter des Netzes bezexchnet Man construire nim-
lich um O (Fig. 4) als Mittelpunkt den Viertelkreis ANP,
und um A4 als Mittelpunkt den Viertelkreis ONM. Die Spitze
B des Haupt-Dreiecks wird in dem nicht allseitig’ begrenzten
Raum p PNMm liegen. Die Hohe  dieses Dreiecks wird
die kleinstmogliche sein, wenn B mit N zusammenfillt.
Wenn man also die Maximalbreite der Streifen des Netzes
mit 4, bezeichnet, so hat man

4, > oder =a V3.

Satz VIII. — Das Haupt-Dreieck enth#lt die drei
kleinsten Parameter des ganzen Netzes.

Seien 04 (Fig. 5) der Minimal-Parameter und O B die
kleinste der belden andern Seiten- des Haupt-Dreiecks;
seien OAB und OBC die beiden iiber OB construirten
Haupt-Dreiecke. Die zu O.4 normale Linie O¢ wird zwischen
den Gitterpunkten B und C durchgehen. Fir irgend einen
der verlingerten Punktreihe BC angehirigen Gitterpunkt «
wird man augenscheinlich bekommen

ta >¢B, ta>1C;
also )
Oac> OB, Oa> 0C, wofir auch AB stehen kann.

Wenn der Punkt « der an B C angrenzenden Punktreihe
angehorte, derselben welche die Normale O¢¢" in der Ent-
fernung O¢’ = 2 O1 schneidet, so hitte man

Oc > 07

nun hat man ferner
0¢ =20t=2AB < sin OAB.
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Und schliesslich noch, dem Corollarsatz zum Lehrsatz VI
entsprechend, weil O.4 B der mittlere Winkel ist:

0AB>> oder = 45°, 2sin 0AB > oder = V2;
also .

Oe> ABYV2.

So wird also in allen Fillen der Parameter Oc den Para-
meter .4 B iibertreffen, der, der Veraussetzung nach, die grosste
Seite des Haupt-Dreiecks ist.

Anmerkung. — Ausnahmsweise kann natiirlich

OB = 0A, und selbst 0C = OB = 04

sein. [26] Man kann auch ausnahmsweise O = O C haben,
aber nur in dem Falle, wo das Dreieck BOA4 in 0 recht-
winklig wire.

Corollarsatz. — Das Haupt-Dreieck ist unter allen
Elementar-Dreiecken des Netzes das Dreieck von kleinstem
Umfang. _

S8atz IX. — Wenn irgend ein Punkt im Innern
eines Haupt-Dreiecks genommen wird, so wird eine
der drei Ecken dieses Dreiecks diesem Punkt immer
niher liegen als jeder andere Gitterpunkt des Netzes.

Man wiirde diesen Satz beweisen, indem man iiber 0.4,
OB und BA (Fig. 5) als Durchmessern Halbkreise ausser-
halb des Dreiecks BOA construirte und beachtete, dass
l(11¢=,se drei Halbkreise keinen einzigen Gitterpunkt enthalten

Onnen.

§ IIL. — Von den symmetrischen Netzen,

Definitionen. — Jede Gerade, welche ein Netz in
zwei symmetrische Hilften theilt, das heisst solche Hilften, von
denen jede durch eine halbe Umdrehung um die Gerade, Gitter-
punkt auf Gitterpunkt, mit der anderen zur Deckung gebracht
werden kann, soll Symmetrie-Axe des Netzes heissen. Die
Gittérpunkte, welche so zur Deckung gebracht werden, sollen
homolog in Bezug auf die Symmetne-Axe heissen. Wir
werden bald sehen, dass diese Axen immer als Panktreihen
angesehen werden konnen. Das Netz, welches eine oder
mehrere Symmetrie-Axen besitzt, soll symmetrisches Netz
heissen, und im entgegengesetzten Fall asymmetrisches.
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Wenn das Netz mehrere Symmetrie-Axen besitzt, so
konnen diese Axen gleichartig oder ungleichartig sein.

Zwei Symmetrie-Axen sollen gleichartig genannt werden,
wenn die Anordnung des Netzes um jede von ibnen die
gleiche ist, \was\\als| érste Bedingung verlangt, -dass sie den-
gelben Parameter haben. Wenn man dann in Gedanken die
Gitterpunkte des Netzes mit jeder dieser Axen verbindet,
zum Beispiel vermittelst auf diese Axen gefiliter Senkrechten,
so dass man zwei gleiche Netze bildet, deren Gitterpunkte
sich decken, und wenn eins dieser Systeme als beweglich
angenommen wird, so miissen, damit diese Axen von derselben
Art sind, durch geeignete Bewegungen des beweglichen Netzes
gleichzeitig die bewegliche Axe mit der festen und die be-
weglichen mit den festen Gitterpunkten zur Deckung gebracht
werden kdnnen.

Zwei Symmetrie-Axen sind von verschiedener Art, wenn
die Anordnung des Netzes um beide von ihnen nicht dieselbe ist,

[87] Satz X. — Jeder Symmetrie-Axe, welche
keinen Gitterpunkt des Netzes enth#lt, entsprechen
andere ihr parallele Axen, welche durch Gitterpunkte
gehen; das Haupt-Dreieck ist alsdann rechtwinklig.

Sei GH eine solche Symmetrie-Axe (Fig. 6); seien 4
ein Gitterpunkt und A’ der zu A4 homologe Gitterpunkt
auf einer zu G'H normalen Linie. Man verbinde 4, 4', und
wihle auf der Punkireihe 4.4  die beiden der Axe GH am
niichsten liegenden Gitterpunkte, den einen auf einer Beite,
den andern auf der andern. Nebmen wir an, dass die Gitter-
punkte 4.4’ dieser Bedingung gentigen, und ziehen wir 4B
und A' B’ parallel mit GH.

Sei jetzt BB’ die an die Punkireihe 4.4" angrenzende
Punktreihe; ihr Parameter wird nothwendigerweise gleich
AA' sein, ihre Durchschnittspunkte mit den Geraden 4B
und A4'B’ werden Gitterpunkte des Netzes sein; denn wenn
ein Gitterpunkt zwischen B und B’ fiele, 80 wirde er in
einer Entfernung von seinem homologen sein, die kleiner wire
als der Parameter 4.4’, was nicht mdglich ist. Also werden
AB und A'B’ Punktreihen vom Parameter A B = A' B’
und conjugirt zu AA', BB sein. Diese Punktreihen sind
angenscheinlich Symmetrie-Axen. Das Haupt-Dreieck ist als~
dann A’ A B, oder A'B’'B; es ist rechtwinklig,

Corollarsatz. — Man kann die Axe G'H durch die
ihr parallelen Symmetrie-Axen 4B und A4'B’ ersetzen, oder
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durch irgend eine zu 4 B parallele Punktreihe, die, wie er-
gichtlich, auch eine Symmetrie~Axe sein wird.

Man sagt dann, dass das Netz eine zu AB parallele
Symmetrie-Axe besitast. Man muss daranter verstehen,
dass alle zu 4 B\parallelen Punktreihen solche Axen sind.

Nachdem ein System von parallelen Symmetrie-Axen
gefunden ist, welche durch Gitterpunkte gehen, kann man
sich fragen, ob es nicht Axen gibe, die mit den vorigen
parallel wiren und keinen Gitterpunkt enthielten. Ich be-
zeichne diese letzteren mit dem Namen Zwischenaxen; aber
da diese Axen, wenn sie vorhanden sind, keinen neuen Be-
griff in das Studium der Netze bringen, werde ich sie nicht
beachten, und werde ktinftig annehmen, dass jede Symmetrie-
Axe durch einen Gitterpunkt gehe.

S8atz XI. — Jede Symmetrie-Axe, welche durch
einen Gitterpunkt geht, ist eine der Punktreihen
des Netzes.

Sei GOH (Fig. 7) die durch den Gitterpunkt O gehende
Axe, und sei A ein anderer Gitterpunkt ausserhalb der Axe.
Der Punkt A hat seinen homologen in 4’, zufolge der [28]
Symmetrie, welche die Axe G O H besitzt; aber andererseits
hat, vermdge der allgemeinen Symmetrie jedes Netzes, A’
einen correspondirenden Gitterpunkt A” auf der anderen Seite
von O in Bezug auf A’. Also ist die Gerade A4.A4" eine
Punktreihé; aber sie ist parallel mit G O H; folglich ist G O H
aunch eine Punktreihe des Netzes.

S8atz XII. — Jeder Symmetrie-Axe entspricht
eine zweite Symmetrie-Axe, die senkrecht zu ihr
steht und sie in einem Gitterpunkt schneidet.

Wenn man die Gerade 7O K (Fig. 7) zieht, welche durch
den Gitterpunkt O geht und normal zu G'OH ist, so wird
sie Mittelsenkrechte von A A" sein; also entspricht jedem
Gitterpunkt A4 ein anderer Gitterpunkt 4", der sein homologer
in Bezug auf 7 O K ist; folglich ist /O K auch eine Symmetrie-
Axe des Netzes.

Satz XIII. — Jeder Symmetrie-Axe entspricht
eine unendliche Anzahl anderer S8ymmetrie-Axen,
die ihr parallel sind und durch alle Gitterpunkte des
Netzes gehen.

Dies ist ein Resultat der allgememen Gesetze der regel-
missigen Vertheilung der Gitterpunkte in irgend einem Netze.
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Die Symmetrie eines Netzes nach einer bestimmten
Richtung ist niemals durch eine einzige Axe charakterisirt,
sondern durch ein System von parallelen Axen, welche ein
completes System von unter sich parallelen Punkireihen bilden,
die alle Gifterpunkte desl Netzes umfassen.

: BatzXIV. — Jedes Netz, welches eine Bymmetrie-

Axe besitzt, hat als Haupt-Dreieck ein recht-
winkliges Dreieck oder ein gleichschenkliges
Dreieck.

. Bei nidmlich OMm (Fig. 8) die durch zwei benachbarte
Gitterpunkte O und M gehende Symmetrie-Axe; sei O' M’
die Gerade, auf der die an OM angrenzende Punktreihe
gelegen ist. Die zwischen den Senkrechten OO’ und MM’
befindliche Strecke O'M’ muss einen der Gitterpunkte des
Netzes enthalten.

Bei also N dieser Gitterpunkt, der seinen homologen in
N’ hat. Wenn man
M'N"= ON=O0"N'

macht, so wird die Strecke MN" gleich und parallel ON’
sein, also wird N” einer der Gitterpunkte des Netzes sein
(Satz I). Nun kann es aber keine zwei verschiedene Gitter-
punkte N und N" zwischen O’ und M’ geben. Es muss
also einer von den beiden folgenden Fillen vorliegen: ent-
weder erstens muss NN"= O’ M’ sein, in welchem Falle NV
auf O’ und N” auf M’ fillt, [29] oder zweitens muss NN"= 0
gein. In dem ersten Falle wird das Haupt-Dreieck O’ OM
oder OMM' sein, das heisst rechtwinklig. In dem zweiten
Falle fillt N mit der Mitte P von O'M' zusammen; das
Dreieck O PM ist gleichschenklig und ist tiberdies, wenn
POM > 45 Grad ist,” das Haupt-Dreieck des Netzes; wenn
aber POM < 45 Grad so wird das Dreieck 20 P’, wobei
P' der homologe Gltterpunkt des Gitterpunktes P 1st das
Haupt-Dreieck sein (Satz VI); es wird ebenfalls gleich-
schenklig sein.

Corollarsatz I. — Jedes Netz, dessenm Haupt-Dreleck
ungleichseitig ist, ist asymmetrisch.
Corollarsatz II. — Jedes symmetnsche Netz hat als

Grund-Parallelogramm ein Rechteck oder einen Rhombus: das
Rechteck O O’ M’ M (Fig. 8), wenn das Haupt-Dreieck OO’ M
ist; den Rhombus OPMP’, wenn das Haupt-Dleieck oPP
oder OPM ist. .
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SBatz XV.— Umgekehrt besitzt dasNetz, wenn das
Haupt-Dreieck rechtwinklig ist, zwei Symmetrie-
Axen, die parallel mit den kleineren Seiten des
Dreiecks sind, und wenn das Haupt-Dreieck gleich-
schenklig ist, hesitzt das Netz zwei Symmetrie-Axen,
die eine parallel und die andere senkrecht zu der
Basis. :

Das Netz mit rechtwinkliger Masche hat die Seiten des
Rechtecks zu Axen; es giebt in diesem Falle Zwischenaxen
der Symmetrie, die mit den vorigen parallel sind und durch
die Mittelpunkte der Grund-Rechtecke gehen. Das Netz
mit rhombischer Masche hat die Diagonalen des Rhombus
zn Axen. '

Definition. — Ein Netz centriren,oder die Maschen
eines Netzes centriren heisst, neue Gitterpunkte in dem
Mittelpunkte von jedem der Grund-Parallelogramme hinzufiigen.

Satz XVI. — Wenn man alle Rechtecke eines
Netzes mit rechtwinkligen Maschen centrirt, so bildet
man ein Netz mit rhombischen Maschen; wenn man
alle Rhomben eines Netzes mit rhombischen Maschen
centrirt, so wird das Netz rechtwinklig.

Dieser Satz ist evident, es ist wichtig zu bemerken, dass
diese Ver#inderungen die Symmetrie-Axen des Systems nicht
#ndern. :
Satz XVII. — In dem Netz mit centrirten Rhomben
und in dem Netz mit nicht centrirten Rhomben
kommen dieselben Systeme von Punktreihen vor.
[30] Dasselbe ist der Fall bei den Netzen mit recht-
winkligen centrirten oder nicht centrirten Maschen.

Bei abe..., ABC ... (Fig. 9) ein rhombisches Netz
mit der Masche AaBa’, und betrachten wir das System der
Punktreihen, welche parallel einer der Diagonalen des Rhombus,
z. B. AB, liegen. Wenn man diese Diagonale zur Axe der
z nimmt, so wird irgend eine der zu dieser Axe parallelen
Punktreiben durch die Zabhlengleichung

=n

charakterisirt sein, wobei » eine beliebige ganze Zahl ist.
Das rhombische Netz verwandelt sich in das rechtwinklige
Netz mit der Masche 4B A'B', wenn man alle durch die

Gleichung )
L y=2741

Ostwald's Klassiker. 90. 3



34 A. Bravais. \

dargestellten Punktreihen wegnimmt, wobei ; irgend eine ganze
Zahl ist. Diese Verminderung lisst alle Gitterpunkte mit
ungeraden Zahlen-Ordinaten verschwinden.

Die Punktreihe, welche zwei Gitterpunkte mit den gerad-
zahligen Ordinaten 27 und 27", verbindet, kommt augenschein-
lich sowohl in dem urspringlichen Netz vor als in dem ge-
hilfteten. Wenn man einen Gitterpunkt mit der geradzahligen
Ordinate 27 mit einem Gitterpunkt von der Ordinate 27" 41
verbindet, so wird die so erhaltene Punktreihe, wenn sie jen-
seits dieses letzten Gitterpunktes um eine Strecke gleich dem
Abstand der beiden gegebemen Gitterpunkte verlingert wird,
in einem dritten Gitterpunkte enden, der eine Ordinate gleich
475"+ 2—27, also eine geradzahlige Ordinate besitzt. Diese
Punktreihe wird also dem geh#lfteten Netze angehdren, aber
ihr Parameter wird darin zwei Mal grosser sein als in dem
arspriinglichen Netze.

Wenn man endlich die beiden Gitterpunkte mit ungeraden
Ordinaten 27 +1 und 27”41 verbindet, so giebt es zwar die
auf diese Weise erhaltene Punktreihe nicht in dem gehilfteten
Netze; aber wenn man eine ihr Parallele durch den Gitter-
punkt zieht, der als Anfangspunkt dient, so wird das #ussere
Ende des Parameters auf einen Punkt fallen, der als Ordinate

= (27 — 27) hat, und der den Punktreihen des gehilfteten
Netzes angehort.

Die Halbirung des Netzes hat also kein einziges System
der Punktreihen verschwinden lassen.

Man kann ebenso beweisen, dass, wenn man in dem
Netze mit rechteckiger Masche a’ 45" 4" (Fig. 10), alle Punkt-
reihen von ungerader Ordnung wie abe, [81] a'b'c'd’, ... in
dem System der zu den Diagonalen @' %', A B parallelen Punkt-
reihen unterdriickte, das Netz mit rhombischer Masche A B A’ B’,
welches aus dieser Weglassung entsteht, die gleichen Systeme
von Punktreihen zeigen wird wie das urspriingliche Netz,
abgesehen von den nothwendigen Aenderungen in den Para-
metern dieser Punktreihen oder in den Zwischenriumen,
welche sie trennen.

Satz XVIII. — Wenn das Haupt-Dreieck eines
Netzes zu gleicher Zeit rechtwinklig und gleich-~
schenklig ist, so wird das Netz vier Systeme von
Axen haben: zwei Systeme, die unter sich recht-
winklig und von derselben Art sind, werden die
Seiten des Grund-Quadrats als Parameter haben;
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zwei andere Systeme, von einer anderen Art als die
vorigen, werden gleichfalls rechtwinklig unter
einander sein, sie werden die Diagonalen des Grund-
Quadrats als Parameter haben und die vorigen Axen
unter Winkeln von, 45 Grad-schneiden.

Dieses ist eine evidente Folgerung aus dem Satze XV.

SatzXIX. —Wenn das Haupt-Dreieck eines Netzes
gleichseitig ist, so wird das Netz sechs 8ysteme von
Axen besitzen: drei Systeme einer ersten Art werden
wie die Seiten des Haupt-Dreiecks gerichtet sein;
drei andere unter sich gleiche Systeme, aber von
einer anderen Art als die vorigen, werden senk-
recht auf den Seiten des Haupt-Dreiecks sein.

Dieses ist wieder eine Folge des Satzes XV. Die Figur
11 stellt die Vertheilung der Axen vor; die ausgezogenen
Linien entsprechen den Axen der ersten Art, die punktirten
Linien denen der zweiten.

Eintheilung der symmetrischen Netze.

Aus dem Gesichtspunkt ihrer Symmetrie kann man vier
verschiedene Classen von Netzen unterscheiden:

Erste Classe. — Netze mit sechs Symmetrie-Axen,
drei von einer Art und drei von einer anderen Art. Diese
Classe zeigt nur eine einzige Art; das Netz mit dreieckiger
gleichseitiger Masche, welches als Grund-Parallelogramm einen
Rhombus mit Winkeln von 60 und 120 Grad hat. (Siehe
Batz XIX).

Zweite Classe. — Netze mit vier Symmetrie-Axen, zwei
von einer Art, zwei von einer anderen Art. Diese Classe
zeigt nur eine einzige Art; das Netz mit quadratischen
Maschen. (Siehe Satz XVIII).

Dritte Classe. — Netze mit zwei Symmetrie-Axen.
Diese Classe zeigt zwei verschiedeme Arten: das Netz mit
rhombischer Masche oder centrirtem Rechteck; das [32] Netz
mit rechtwinkliger Masche oder centrirtem Rhombus (Sitze
XV und XVI). Die beiden Axen sind unter sich rechtwinklig
und von verschiedener Art.

Vierte Classe. — Asymmetrische Netze, die Masche
ist ein Parallelogramm mit ungleichen Seiten, dessen Winkel
von 90 Grad verschieden sind.

3*
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Von den gleichartigen Punktreihen in den symmetrischen
Netzen.

Definition. — Wir wollen wie auf Seite 30 voraus-
setzen, dasy\in/.demOgegebenen| Netze zwei gleiche Netze
existiren, die, Gitterpunkt auf Gitterpunkt, ibereinandergelegt
sind, so dass sie nur ein einziges Netz vorstellen. Das eine
der beiden Netze soll als unbeweglich angenommen werden,
aber das andere soll sich als Ganzes bewegen konnen, sei
es durch Translation oder durch Drehung.

Nachdem dies festgestellt, sollen, wenn vor irgend einer
Verschiebung eine gegebene Punkireihe des beweglichen
Netzes mit der feststehenden Punktreihe abc ... zusammenfillt
und man durch passende Bewegungen des beweglichen Netzes
diese Punktreihe mit der festen Punktreihe A BC ... zur
Deckung bringen kann, wihrend gleichzeitig die beiden Netze
Gitterpunkt auf Gitterpunkt zusammenfallen, die beiden Punkt-
reihen abc ... und ABC ... gleichartig heissen.

Batz XX. — Zwei parallele Punkireihen kénnen
immer als gleichartig betrachtet werden.

Denn wenn man dem beweglichen Netze eine passende
Bewegung der Translation, ohne Drehung, giebt, so wird man
das gewilngchte Zusammenfallen immer herbeifithren konnen.

Satz XXI. — Zwei Punktreihen sind gleichartig,
wenn sie denselben Parameter haben, und wenn man
itber diesen Parametern als Basis zwei, unter ein-
ander gleiche, Elementar-Dreiecke construiren
kann.

Durch eine einfache Translation kann man stets einen
Gitterpunkt der beweglichen Punktreihe mit einem Gitterpunkt
der festen Punktreihe zusammenfallen lassen. Sei also O
(Fig. 12) der gemeinsame Punkt; sei O.4 die bewegliche
Punktreihe, tiber deren Parameter O.4 man das Elementar-
Dreieck O.4Aa construirt hat. Sei O.A’ die feste Punktreihe,
tiber deren Parameter O A’ man das Elementar-Dreieck O 4’a’
construirt hat. Man hat als Voraussetzung 04 = 0A4'. Es
ist erlaubt anzunehmen, dass man Oa = O« hat, denn wenn
man Oa' = a4 hitte, so wiirde eines der Elementar-Drei-
ecke auf der entgegengesetzten Seite des Parameters, der ihm
zur Bagis dient, construirt werden konnen, und die Beziehung
Oa = Od' wire dann erftllt.
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[38] Wenn wir jetzt das bewegliche Netz um einen
Winkel gleich 404 um eine durch O gehende und zur
Ebene des Netzes normale Rotations-Axe drehen, so werden
die beiden Elementar-Dreiecke zusammenfallen, und die Deck-
ung der beiden Netzé/wird eineCvollstindige sein.

In dem Falle, wo die beiden Elementar-Dreiecke invers
gelegen wiiren, wie es Oa4 und Od"” A" sind, kdnnte man
die Deckung nicht durch Drehung um die Normale der
Ebene erreichen; aber dann wiirde man dazu gelangen, indem
man das bewegliche Netz um 180° um die Gerade OO,
die den Winkel 4 O.A4" halbirt, sich drehen l4sst. Folglich
sind auch in diesem Falle die beiden Punktreihen von der-
selben Art.

Anmerkung. — Die Halbirende des durch zwei Punkt-
reihen mit gleichen aber invers gelegenen Elementar-Drei-
ecken gebildeten Winkels ist eine SBymmetrie-Axe des Netzes.

Definition. — Die Punktreihen O.4 und O 4’ (Fig. 12),
deren Elementar-Dreiecke durch Drehung um die durch O
gehende Normale zur Deckung gebracht werden konnen,
sollen direct #hnlich heissen. Die Punktreihen O.4 und
04", deren Elementar-Dreiecke invers sind, sollen invers
dhnlich genannt werden.

Wenn die beiden Elementar-Dreiecke, welche tiber den
Parametern als Basis construirt sind, gleichschenklig sind,
80 sind die Punktreihen gleichzeitiz direct #hnlich und in-
vers #hnlich.

Satz XXII. — Zwei, in Bezug auf eine der Sym-
metrie-Axen des Netzes homologe Punktreihen
sind gleichartig und invers #hnlich. ‘

Die inverse Ahnlichkeit ist hier das Resultat der Sym-
metrie.

S8atz XXIII. — Wenn zwei oder mehrere gleich-
artige und direct Shnliche Punktreihen vorhanden
- 8ind, die von demselben Punkte ausgehen, so theilt
das vollstindige System dieser Punktreihen den
diesen Gitterpunkt umgebenden Raum in gleiche
Theile.

Unter den Punktreihen, welche O.A4 (Fig. 12) direct #hn-
lich sind, konnen wir diejenige herausgreifen, die mit O 4
den kleinsten Winkel einschliesst. 8ei O.A' diese Punktreihe.
Lassen wir das bewegliche Netz sich um die durch O gehende
Normale drehen, bis die bewegliche Punktreihe O.4 mit der



38 A. Bravais.

festen Punktreihe O A’ zusammenfillt. Bei dieser Bewegung
wird die bewegliche Punktreihe O .A' nach O A" kommen,
welches [34] eine der Punktreihen des festen Netzes sein
muss, und man findet so

A"04" =404

Eine Drehung um denselben Winkel, und in demselben Sinne
wie vorher, wird die bewegliche Punkireihe O.A nach O A"
bringen, und wenn man so fortfihrt, wird O.4 schliesslich
auf Oca, die Verlingerung von O.4 fallen, nach einer ge-
sammten Drehung von 180 Grad. Alle die auf diese Weise
erhaltenen Punktreihen O 4, 0A4', O A", ... werden direct
dhnlich sein, und wenn man die Gesammtzahl dieser Punkt-
reihen mit ¢ bezeichnet, hat man

(¢]
d04 =8"

S8atz XXIV. — Die Gesammtzahl der gleicharti-
gen und direct 4hnlichen Punktreihen in einem Netfze
kann nicht grbsser als drei sein.

Sei ¢ die Gesammtzahl der direct #hnlichen Punktreihen ;
sei O (Fig. 13) ihr gemeinsamer Gitterpunkt, und O M der
kleinste Parameter des Netzes. Man drehe OM um O um

. . .. 180° . .
einen Winkel gleich ﬂ: man weiss aus dem vorigen Satz,

dass bei dieser Bewegung das bewegliche Netz mit dem fest-
stehenden wieder zusammenfillt.

(]
Sei also MOM' = 18;0; M wird einer der Gitter-

punkte des Netzes sein. Man beschreibe einen Kreis mit dem
Mittelpunkt O und dem Radius O}, und mache Bogen M" M’
= Bogen M'M, Bogen M"'M" = M"M' u. s w. Die
Punkte M, M’ und M" werden alle dem Netze angehoren,
und die Sehnen MM’ und M’ M" werden die Seiten eines
regelmissigen, eingeschriebenen Polygons sein, dessen Seiten-
zahl gleich 2¢ ist.

Dieses Polygon kann nur ein Quadrat oder ein Sechs-
eck sein. Construiren wir ndmlich die Raute MM' M'm,
so wird augenscheinlich Winkel M’ Mm — Winkel M' OM
gein; also werden die Dreiecke M'OM und M' Mm gleich-
schenklig und #hnlich sein, und man hat
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nu

oM.’

Wenn folglich M’ M < O M ist, wird a fortiors M'm < OM,
und da m ein Gitterpunkt- des- Netzes ist, wiire O nicht
mehr der kleinste Parameter. Nun ist aber bei jedem regel-
missigen eingeschriebenen Polygon mit hoherer Seitenzahl
als sechs die Seite kleiner [35] als der Radius. Also muss
das Polygon MM'M" ... ein Quadrat oder ein Sechseck
sein, und die Zahl ¢ wird gleich 2 oder 3 sein. Wenn
g = 2 ist, so besitzt das Netz eine quadratische Masche ; wenn
g =3 ist, besitzt das Netz eine dreieckige, gleichseitige Masche.

Corollarsatz. — Der Winkel, welcher von zwei direct
#hnlichen Punktreihen gebildet wird, kann nur gleich 60 oder
90 Grad sein.

Satz XXV. — Gleichartige und direct #hnliche
Punktreihen kénnennurinNetzen mit quadratischer
oder dreieckig gleichseitiger Masche vorkommen.

Dieser Satz ist eine Folgerung auns dem vorhergehenden
Corollarsatz. Die beiden folgenden, welche keines Beweises
mehr bediirfen, sind die Umkehrungen dieser Sitze.

S8atz XXVL. — In jedem Netz mit quadratischer
Masche, welches in seiner Ebene um einen seiner
Gitterpunkte gedreht wird, wird der Ort der Gitter-
punkte nach jeder viertel Umdrehung wieder derselbe,
und jedem Punktreihen-System entspricht ein an-
deres System gleichartiger direct #hnlicher Punkt-
reihen, welches senkrecht zu ihm steht.

S8atz XXVIL.—In jedem Netzmit dreieckig gleich-
seitiger Masche, welches sich um einen seiner
Gitterpunkte dreht, wird der Ort der Gitterpunkte
derselbe nach jedem Sechstel der Umdrehung,
und jedem Punktreihen-System entsprechen zwei
andere Systeme von gleichartigen und direct #hn-
lichen Punktreihen, welche eine Neigung von 60
Grad zu dem gegebenen Systeme haben.

Definitionen. — Wenn ein Netz bei einer Drehung um
eine Normale zun seiner Ebene die Stellung seiner Gitter-
punkte bei jedem Viertel der Umdrehung wiedererhilt, so
soll diese Gerade eine quaternire Symmetrie-Axe des
Netzes genannt werden. Wenn der Ort der Gitterpunkte
nach jedem Sechstel der Umdrehung derselbe wird, so ist

M'm =
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die Drehungs-Axe eine senire Symmetrie-Axe. Wenn
solche Axen vorhanden sind, so bilden sie ein System vomn
parallelen, durch jeden Gitterpunkt gehenden Geraden.

Die quaternire Symmetrie charakterisirt das Netz mit
quadratischer, Masche; - die-sendre, Symmetrie das Netz mit
dreieckig gleichseitiger Masche.

Die Figuren 14, 15 und 16 zeigen die Art der Anord-
nung der gleichartigen Punktreihen, seien sie direct oder in-
vers #hnlich, um einen und denselben Gitterpunkt O fiir
diese verschiedenen Classen von Netzen. Die ausgezogenen
Linien sind Symmetrie-Axen, die Striche von ungleicher Linge
bezeichnen die Axen von verschiedemen Arten, die punktirten
Linien sind die Punktreihen, deren Art [36] dieselbe ist als
diejenige einer Punktreihe von gegebenem Parameter. Die
Figur 14 bezieht sich auf die Netze der ersten Classe mit
dreieckig gleichseitiger Masche; die Figur 15 auf die Netze
der zweiten Classe, oder mit quadratischer Masche, die Figur
16 auf die Netze der dritten Classe, mit rhombischer oder
rechteckiger Masche.

Satz XXVIIL. -~ In einem asymmetrischen Netze
kann es keine gleichartigen Punktreihen von ver-
schiedener Richtung geben.

Das ist klar fir die invers #hnlichen Punktreihen (man
sehe den Corollarsatz zum 8atz XXI). Ftr die direct #hn-
lichen Punktreihen ist es nicht weniger klar, in Folge des
Satzes XXV.

Satz XXIX. — Zwei gleichartige Symmetrie-
Axen sind gleichartige Punktreihen fiir das Netz.

Diese Axen sind Punktreihen des Netzes (S#tze X dnd
XI), und da, wenn zwei solche Axen zur Deckung gebracht
werden, auch das feste mit dem beweglichen Netze zur Deckung
kommt, sind diese Punktreihen von derselben Art. (Defini-
tion 8. 36).

Definition. — Man kann als Winkel derselben Art
in einem Netze solche definiren, die gleich und zwischen zwei
paarweise gleichartigen Punktreihen gelegen sind.

§ IV. — Von den Schaaren im Allgemeinen.

Wir wollen die Schaar der Figur 1 betrachten, deren
Gitterpunkt O zum Anfangspunkt der Coordinaten genominen
ist, und welche vermittelst der drei Punktreihen O 44" 4". ..,
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OBB'B"..., ODD'D'". .. construirt ist. Wir werden die
Parameter dieser Punktreihen mit @, & und & bezeichnen, nimlich
(28) OA=a, OB=1b, OD =d,;

&, n und { sollen, die linearen Coordinaten der auf die schief-
winkligen Axen OA, OB und OD bezogenen Punkte im
Raume sein; 7, z und p sollen die Zahlen-Coordinaten
der bestimmten Gittexpunkte vorstellen; z, ¥ und z die be-
weglichen Zahlen-Coordinaten,’ welche unbestimmten Gitter-
punkten angehdren, so dass man, je nach dem Fall, hat

n

(29) m =n, §-=p,
¢

Qun 8 jun

)
(30) =z, l=y, 2=2.
b
(37] .Man wird bemerken, dass die ganze Schaar als eine
Fliche mit getrennten und geschlossenen Schalen betrachtet
werden kann, deren jede in einem Gitterpunkt der Schaar
zum Verschwinden kommt.

Die Gleichung dieser Fliche ldsst sich in der Form

schreiben
.9 & - .. L
: S 2 22 r—=0.
sin a7L‘+sm bn+sm d” 0

Aufgabe XIV. — Die Gleichung einer Punkt-
reihe zu finden, welche durch den Anfangspunkt
und durch einen gegebenen Gitterpunkt 7' (Fig. 20)
geht. ' :

Seien m, » und p die Zahlen-Coordinaten von 7'; dann
wird die Gleichung von OT in laufenden linearen Coordi-
naten sein

§ _n_¢

ma™ nb " pd’
in Zahlen-Coordinaten wird man haben

(31) - z_y=z
m n p

Wenn m, » und p einen grossten gemeinsamen Theiler .D
. m n p .
hittten, so wiirde der Gitterpunkt (5 ' E) der Punktreihe



42 A. Bravais.

OT angehéren, und wire unter allen Gitterpunkten der
Reihe der dem Gitterpunkt O zunichst liegende. Wenn 2,
n und p keinen anderen gemeinschaftlichen Divisor besitzen
als die Einbeit, so ist OT der Parameter der Punktreihe.

Ich werde kiinftig) annehmen, dass die Gitterpunkte,
welche wir Gelegenheit haben werden mit dem Anfangspunkt
durch eine Gerade zu verbinden, dieser Bedingung gentigen,
dass ihre drei Zahlen-Coordinaten keine anderen gemeinschaft-
lichen Theiler haben als die Einheit.

Bezeichnung. — Die Punktreihe, welche vom Anfangs-
punkt nach dem Gitterpunkt (m, =, p) geht, wobei m, »
und p keinen gemeinschaftlichen Theiler besitzen, soll ktinf-
tig durch das Symbol mnp bezeichnet werden.

Satz XXX. — Seien 7 und 7" zwei Gitterpunkte
einer Schaar (Fig. 20); wenn man durch einen dritten
Gitterpunkt O die Strecke OA gleich und parallel
mit 7’7" zieht, so wird das #usserste Ende dieser
Strecke ein vierter Gitterpunkt der Schaar sein.

Dieser Satz l#sst sich beweisen wie der Satz I.

(38] Aufgabe XV. — Die allgemeine Gleichung
der mit der Punktreihe OT (Fig. 20), deren Symbol
mnp ist, parallelen Punktreihen zu finden.

Seien 7', n’ und p’ die Coordinaten eines zweiten Gitter-
punktes, der willkiirlich gewihlt wurde: die Punktreihe, welche
durch diesen Gitterpunkt parallel mit O7 gefithrt ist, wird
als Gleichung in Zahlen-Coordinaten haben

’

z——m’___y-—n'__z—p.
-m mn p

Aufgabe XVI. — Den Parameter der Punktreihe
‘OT und ihrer Parallelen zu finden (Fig. 20).

Seien o, # und J die Winkel, welche die drei Halbaxen
der positiven Coordinaten miteinander in der yz-Ebene, in
der zz-Ebene und in der zy-Ebene bilden.

Kommen wir iiberein, durch Pmnp den Parameter der
vom Anfangspunkte nach dem Gitterpunkte (m, », p) gehenden
Punktreihe OT zu bezeichnen. Man wird nach einer be-
kannten Formel als Werth des Quadrats dieses Parameters
haben

(32)

P’mnp = m*a® 4 n*b* 4 p*d® + 2mnab cos J

3
(33) + mpadcos 8 + 2npbd cos «.
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Man konnte in dieser Formel ¢ durch P 100, b durch
P 010 und & durch P00l erseizen.

Aufgabe XVII. — Die Gleichung der Netzebene
zu finden, welche durch den Anfangspunkt O und
die beiden Gitterpunkte Dund) 7' (Fig. 20) geht.

Die Formeln der analytischen Geometrie geben

Embp'd— pdn'b) + n(pdm'a — map'd) + L(man'b
—nbm'a)=0,
und nach Division durch abdd
(34) 2(np’ — p) +y(pm' — mp') + 2mn’ — nm') = o.
Sei jetzt D der grosste gemeinsame Theiler der Binome
np' — pn', pm' — mp' und mn' — nm'. Setzen wir

np' — pn' m — mp' mn' —nm'
(35)_P;._L.——y u=h, _— =1},

D - D D
[89] so erhalten wir
(36) gz + hy+kz=0.
Bezeichnung, Definition. — Wir wollen die sym-

bolische Bezeichnung (g%%) annehmen, um die Gesammtheit
der mit der Fliche O 7' T’ parallelen Netzebenen darzustellen.
Die ganzen positiven oder negativen Zahlen ¢, % und %,
sollen die Charakteristiken dieses Systems der Netzebenen
in Beziehung auf die Axen der z, der ¥ und der z sein. In
dem Falle wo dieses Symbol (g4%) ein Missverstindniss zu-
liesse, wiirde man es durch (g, %, %) ersetzen. Wenn eine der
drei Charakteristiken, £ z. B., das Zeichen — bekdime, wiirde

man es Hber diese Charakteristik setzen, was (gh%) in (ghk)
verwandeln wilrde.

Aus diesem Uebereinkommen folgt, dass das Symbol der
zy-Fbene (001) sein wird, dasjenige der zz-Ebene (010) und
dasjenige der yz-Ebene (100).

Satz XXXI. — Die Spur irgend einer durch den
Anfangspunktgehenden Netzebene, wie O T'7T" (Fig20),
auf einer der drei Coordinaten-Ebenen ist eine den
Netzen dieser beiden Ebenen gemeinsam zugehdorige
Punktreihe.

Die Gleichungen dieser Spur in der Ebene der zy sind

z2=0, gz+hy=0.
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Der zweiten dieser Gleichungen ist geniigt durch z = 2,
y = — g; also ist diese S8pur eine Punktreihe. Wenn ¢ und
h nicht relative Primzahlen sind, so giebt es andere Gitter-
punkte zwischen dem Anfangspunkte und dem Punkte z = A,
y = — g¢. \Beiyim| [Allgémeinen 1) der grdsste gemeinsame
Theiler von ¢ und 4; so wird die Spur der Ebene (ghk) anf

der Ebene der zy eine Punktreihe mit dem Symbol( sein.

Corollarsatz I. — Der Schnitt von zwei behebigen
Netzebenen wird eine den Netzen beider Ebenen gemeinsame
Punktreihe sein, vorausgesetzt dass er einen Gitterpunkt ent-
hilt; denn man kann immer eine der beiden Ebenen als
Ebene der zy wihlen (Aufgabe I) und den gemeinsamen Gitter-
punkt zum Anfangspunkt.

Corollarsatz II. — Wenn dieser Schnitt durch keinen
Gitterpunkt der Schaar geht, so ist er wenigstens parallel mit
einem gewissen Punktreihensystem. Um diese Punktreihen zu
erhalten, fithre man durch einen willkiirlich gewihlten Gitter-
punkt zwei, zu den gegebenen Ebenen parallele Netzebenen;
ihr Schnitt wird eine der Punktreihen dieses Systems geben.

[40] Aufgabe XVIII. — Die allgemeine Gleichung
der Netzebenen zu finden, welche parallel der
Ebene OTT' (Fig. 20) sind, und deren Symbol (gkk) ist.

Durch den Gitterpunkt (m n", p") wollen wir eine Ebene
parallel zu OT T" legen; ihre Glelchung wird sein

gz +hy + kz=gm" + ha" 4 kp"
oder

(37) g+ hy +kz=C,

indem wir das letzte Glied durch C bezeichnen; C ist noth-
wendiger Weise eine ganze Zahl. Diese Glelchung, welche
so allgemein als moglich ist, umfasst das ganze System der
zu OTT' parallelen Netzebenen.

Aufgabe XIX. — Die Gleichung der an die Ebene
OTT' (Fig. 20) angrenzenden Netzebenen zu finden.

Man weiss aus der Theorie der Kettenbrtiche, dass, wenn
g, h und % keinen anderen gemeinsamen Theiler haben als
die Einheit, es immer mdglich sein wird, der Doppel-Gleichung

(38) gz +hy+kz==*1

durch ganzzahlige Werthe der z, y, z zu geniigen.
Die beiden durch diese Gleichung gegebenen Netzebenen
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sind die angrenzenden der Ebene O 7'7"; denn fiir jede andere
Ebene, deren Gleichung

gz +hy +kz=2C
wire, wiirden die Schnittpunkte mit den Axen der z, der y
und der z in grosseren Entfernungen'vom Anfangspunkt liegen
als fiir die Ebenen der Gleichung (38).

Man konnte diesen Satz auch beweisen, ohne auf die
Theorie der Kettenbriiche zurick zu greifen.

Aufgabe XX. — Man fragt, welche Anzahl von
Schichten in einem SBystem von Netzebenen, dessen
symbolische Bezeichnung (gAh#%) ist, zwischen dem
Gitterpunkt mit den Coordinaten M, N, und Pund dem
Gitterpunkt mit den Coordinaten M N' und P ent-
halten ist.

Nehmen wir an, dass die Netzebene

gz + hy + kz=1
die Einheit als Ordnungszahl erhalte, dass die folgende Ebene
die [41] Zahl 2 bekomme, u.s. w. Die Ebene

g+ hy+kz=20C
soll die Ordnungszahl C haben.
Seien jetzt C' und C’ die Ordnungszahlen der durch die
Gitterpunkte (M, N, P) und (M', N', P’') gehenden Netz-
ebenen, so wird man haben

C=gM+hN+kP, C=gM +hN + kP

Es wird also die Zahl der zwischen den beiden gegebenen
Gitterpunkten liegenden Schichten bis aufs Zeichen den Werth

haben
gM— M)+ h(N— N') + k(P — P

Aufgabe XXI, — Die Bedingung zu finden, unter
welcher eine durch dem Anfangspunkt gehende
Netzebene mit dem Symbol (g2%) einer Punktreihe
conjugirt ist, welche vom Anfangspunkt zum Gitter-
punkt (m"n" ") geht.

Der Gitterpunkt (m", n”, p") muss augenscheinlich auf
einer der beiden an die Ebene

gr+hy+kz=0
angrenzenden Netzebenen gelegen sein.
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So wird also die gesuchte Bedingung sein
(39) gm'+ k' + kp' = = 1.

Wenn die Ebene (gh%) die Gitterpunkte (m, n, p) und
(m', #', p’) enthilt, wie das oben (Aufgabe XVII) angenommen
ist, und wenn)man|in dér Gleichung (39) ¢, # und % durch
ihre aus der Gleichung (35) gezogemen Werthe ersetzt, so
wird die gesuchte Bedingung
(40) m"(np' —pn') +n"(pm' —mp') +p"(mn’ —nm') =X D.

In dieser Formel ist D der grbsste gememschafthche Theiler
der Binome np' — pn', pm' — mp' und mn' — nm'.

Satz XXXII. — Wenn drei von ein und demselben
Gitterpunkt ausgehende Punktreihen im Raum con-
jugirt sind, so sind sie paarweise auf ihrer Ver-
bindungsebene conjugirt.

Dieser Satz folgt offenbar aus der Definition der con-
jugirten Punktreihen (Seite 9).

[42] Das iiber den Parametern dieser drei Punktreihen
construirte Parallelepiped ist eins der Grund-Parallelepipede
der Schaar. Die drei Seiten, welche sich am Anfangspunkte
treffen, bilden drei conjugirte Ebenen, die als angrenzende
Ebenen die anderen drei Seiten haben.

Satz XXXIII. — Wenn man das System der drei
conjugirten Punktreihen Od4, OB und 0D (Fig. 17)
durch das S8ystem der drei conjugirten Punktreihen
OA',OBund ODersetzt,sowirddas Volumen desParal-
lelepipedes durch diesen Wechsel nicht verdndert.

Die Gerade 44" wird nimlich in einer zu der Ebene
BOD parallelen Ebene gelegen sein, so werden also die
Grund-Parallelepipede in den beiden Axen-Systemen dieselbe
Basis O BB’ D haben, und ihre Hthe wird dieselbe sein.

Satz XXX1V. — Wenn man statt des Systems der
drei conjugirten Punktreihen 04, OB und OD
(Fig. 17) das System O.4, OB und OD)' setzt, bei dem
die Punktreihen OB und O einander in der
Ebene BOD conjugirt sind, so wird das Volumen
des Grund-Parallelepipeds nach diesem Wechsel
dasselbe bleiben.

Denn die parallelogrammatischen Grundflichen dieser
Parallelepipede in der Ebene OB D haben gleichen Inhalt
(8atz III); die Hohen sind dieselben; folglich sind die
Volumen gleich.
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S8atz XXXV, — Das Grund-Parallelepiped einer
Schaar hat immer dasselbe Volumen, welches auch
das 8ystem .der conjugirten Punktreihen sein mag,
das ihm zu Grunde liegt.

Beien Oz, Oy, 0z||Fig;|18)die-drei Parameter, welche
dazu gedient haben, die Gitterpunkte der Schaar zu construiren;
sei 22 das Volumen des itber diesen drei Parametern construirten
Parallelepipedes; seien OA4, OB und OD die drei con-
jugirten Punktreihen, welche uns gegeben sind, und &' das
Volumen des entsprechenden Grund-Parallelepipedes.

Bei jetzt O.A' die Spur der Ebene 4 O B auf der Ebene
der zy; diese Spur ist eine der Punktreihen des Netzes der
Ebene 4 OB (Satz XXXI). Sei also OB eine der ihr con-
jugirten in derselben Ebene. Man kénnte, gemiss dem
Satz XXXIV, das System der Punktreihen (04, OB, OD)
durch das System (0OA4', OB', OD) ersetzen, ohne das
Volumen £’ des Grund-Parallelepipedes zu verindern.

Sei ebemso OD' die Punktreihe, welche die Spur der
Ebene OB’'D auf der Ebene der zy bildet, und sei OB"
eine zu O D' conjugirte Punktreihe auf der Ebene O B’ D.
Man konnte [43] statt des Systems (0A', OB, OD) das
System (0A4', OD', OB") setzen, ohne das Volumen Q' des
Grund-Parallelepipedes zu verindern. ‘

Man kann schliesslich (O04’, OD', OB") durch (Oz,
Oy, OB") ersetzen, weil Oz und Oy zwei in der Ebene
A'OD', welche mit der Ebene der zy zusammenfillt, liegende
conjugirte Punktreihen sind. Das Volumen des Grund-Parallel-
epipedes wird gleich Q' bleiben.

Wenn man dieses letzte Parallelepiped mit dem tiber Oz,
Oy, Oz, constrnirten Parallelepiped vergleicht, so erhilt
man, geméss dem Satz XXXIII

Q =9,

Zweiter Beweis, — Wir wollen tbereinkommen, die
Zahl der in der Einheit des Volumens enthaltenen Gitter-
punkte Dichtigkeit der Schaar zu nennen, wobei die
Dimensionen dieser Volumen-Einheit, alle drei, unendlich gross
im Vergleich zu den Parametern der Punktreihen, welche man
betrachtet, angenommen werden.

Nachdem dies festgestellt, seien (Fig. 18)

OAd=d, OB=1V¥, OD=d,
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Winkel AOB = ¢’, die Neigung von OD gegen die Ebene
AOB =1,
Man wird nach einer bekannten Formel erhalten

Q' =a'b'd sin d sin 7',

Nehmen' wir'auf’'dén' verlingerten Geraden O 4, OB und
OD Léngen %, ¢ und g, welche sehr gross im Velglelch zu @',
b',d' sind, so dass das iiber , ¢ und ¢ construirte Parallelepiped
der Einheit des Volumens gleich sei, und dass man daher habe

#eo8in ¢’ sin ¢’ = 1.
Die Zahl der in diesem Parallelepiped enthaltenen Gitter-
punkte berechnet sich wie die Zahl der Kugeln in einem
Haufen mit rechtwinkligen Seiten, ist also

u
b’x

Es wird also, wenn o dlese stets sehr grosse Zahl ist,
__ o %¢0 sin J' sin 7’ 1

db'd  dbdsind sing Q
(44] Nun aber muss die Zahl ¢, welche die Dichtigkeit der
Schaar misst, constant bleiben, welches auch das System von
conjugirten Axen sei, das man zu ihrer Bestimmung ange-
nommen hat.

Wenn man also setat

Ozr=a, Oy=15b, Oz=d,
Winkel 2 0y=4J, Neigung von Oz gegen z Oy =1, so wird
man haben
(41) Q'=Q=uabdsin dsinz.

Satz XXXVI. — Umgekehrt werden, wenn dasiber
den Parametern der Punktreihen O A4, OB und OD
(Fig. 18) construirte Parallelepiped dem Grund-
Parallelepiped der Schaar inhaltsgleich ist, die drei
Punktreihen conjugirt sein.

Nehmen wir an, dass im Innern des Parallelepipedes ein
Gitterpunkt der Schaar liege, und nennen diesen Punkt P,
der so nahe als moglich an der Ebene .4 OB gewihlt sei;
das ttber OP, OA4 und OB construirte Parallelepiped wiirde
gleich (2 sein (voriger Satz), also milsste das iilber O D, 04
und OB construirte Parallelepiped, welches die gleiche Basis
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in der Ebene O A B und eine grissere Hohe hat, ein grdsseres
Volumen haben als £, was der in der Formulirung des
Satzes enthaltenen Voraussetzung zuwider ist. Folglich u.s.w.

Aufgabe XXII. — Die Bedingung zu finden, unter
der drei Punktreihen|conjugirt sind.

Seien (m, %, p), (m', n', p’) und (m", n", p") die Co~
ordinaten von den drei Gitterpunkten 7', 7" und 7" (Fig. 20).
Man setzt voraus, dass m, # und p keinen anderen ge-
meinsamen Theiler als die Einheit haben, und dass fur
m', w, p’ und m’, n”, p” das Gleiche gilt. Man sucht die
Bedingung, unter welcher die Punktreihen O 7, O7T" und 07",
deren Symbole mnp, m'n'p’ und m"n"p" sind, conjugirte
Punktreiben sind.

Beien (&, 7, £) (&, 7/, {') und (", n", {") die linearen
Coordinaten der Pankte 7, 7° und 7", in dem System der
conjugirten Axen Oz, Oy und Oz, welche @, b und d als
Parameter haben.

Man beweist in den Lehrbiichern der ana.lytlschen Geo-
metne, dass das Volumen eines Tetraeders, das seine Spitze
im Anfangspunkt hat, und die Ecken seiner dreieckigen Basis
in den Punkten (£, 7, L), (&', #, ') und (&% 9", {"), [45]
bis aufs Vorzeichen den Werth hat

%‘(g"]'t” §§, " +.§§Inn_n§/§"+ngléﬂ_Cnlgu)’
wenn das System der Axen rechtwinklig ist.

Wenn aber die Axen schiefwinklig sind, und wenn man
Winkel z Oy = J, Neigung von Oz gegen 20y = ©
hat, so muss dieses Volumen mit sin ¢ sinz multiplicirt werden.

Wenn man also das Volumen des tiber den Parametern
OT, OT und OT" construirten Parallelepipedes £’ nennt,
und dasjenige des Grundparallelepipedes £2, so wird bis aunf
das Vorzeichen

(mnp — mp + pm'n’ —nm'p”
+np m' — pn'm") abd sin 9 sin 7,
oder auch wegen der Gleichung (41)
(42) Q' =(mn'p —mp'n" + pm'n" — nm'p"
+ np'm’ — pn'm") Q.

Wenn die Punktreihen conjugirt sind, muss Q' = £ sein
(Satz XXXV). Also wird die gesuchte Bedingung sein

Ostwald's Klassiker, 90. 4

["
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(43) ma'p"—mp'n"+pm'n"—nm'p"+np'm'—pn'm'==21.
Umgekehrt wird man, wenn der Gleichung (43) geniigt ist,
daraus schliessen, dass ' = 2, und die drei Punktreihen
werden conjugirte sein (Satz XXXVI).

AufgabeXXIIIi==/DieBedingung dafiir zu finden,
dass zwei Punktreihen, welche vom Anfangspunkt
nach den Punkten 7 und 7" (Fig. 20) gehen, in der
Netzebene, die diese beiden Punktreihen enthilt,
conjugirt sind.

Seien (m, n, p) und (m', »', p') die Coordinaten von 7" und
T'. Die Gleichung der Ebene O7T 7T wird durch die Formel
(36) gegeben sein, in welcher g, 2 und £ Werthe haben, die aus
den Formeln (35) hervorgehen. Die Gleichung der beiden an
OTT angrenzenden Netzebenen ist (Aufgabe XIX) gegeben durch

gz + hy + kz==1.
Also konnte diese Gleichung geschrieben werden
z(np' — pn') + g (pm' — mp’) + z(mn' — nm') = = D.
[46] Beien jetat (m”, n”, p”) die Coordinaten eines Gitter-
punktes 7'”, der einer dieser angrenzenden Ebenen angehort.
<OT" wird eine zu der Ebene O T'T’ conjugirte Punktreihe

sein, und man hat
(44) m"(np'—pn') 42" (pm'—mp') +p" (m#’'—nm') == D.
Wenn aber OT und OT' schon zwei zu einander in der
Ebene OTT conjugirte Punktreihen sind, so werden O 7,
OT und OT” drei conjugirte Punktreihen sein, und man wird
gemiiss der durch (43) ausgesprochenen Bedingung erhalten

m" (np — pn') 47" (pm' —mp’) + p’ (mn' —nm')= % 1.

Aus dieser Gleichung und der Gleichung (44) schliesst man,
dass D=1 ist. Umgekehrt wird, wenn D=1 ist, der Bedingung
(43) geniigt sein, und die Punktreihen OT und O7" werden zu
einander in ihrer Verbindungsebene conjugirt sein (Satz XXXII).

Also wennnp' —pn', pm' — mp’, und mn' — nm’ keinen
anderen gemeinsamen Theiler haben als die Einheit, so sind die
Punktreihen O7 und O 7" conjugirte Punktreihen des Netzes
der Ebene O 7'T", und die Umgekehrung dieses Satzes ist eben~
falls richtig.

Satz XXXVIL. — Wenn (m, n, p) und (m', #', p’) die
Zahlen-Coordinaten der Gitterpunkte 7' und 7"
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(Fig. 20) sind, so wird die Zahl der zu OT oder
OT' parallelen Streifen, welche zwischen zwei
gegentiberliegenden Seiten des ither O Tund O7" con-
struirten Parallelogramms enthalten sind, dem
grbssten gemeinsamen  Theiler. der drei Binome
np' — pn', pm' — mp" und mn" — nm' gleich sein.
Seien niimlich 7", n” und p"” die Coordinaten eines
Gitterpunktes 7", welcher einer an die Ebene O 7’7’ an-
grenzenden Netzebene angehdrt. Man wird haben (Gleichung 44)

m" (np' — pn')+n" (pm' — mp’) 4 p" (mn’ + nm')= * D.

Sei £’ das Volumen des itber den drei Kanten OT, OT'
und OT" construirten Parallelepipedes; der Werth von £’
wird durch die Gleichung (42) gegeben, welche sich in dem
gegenwiirtigen Fall umwandelt in

Q' = QD.
Seien jetzt w der Flicheninhalt des Grund-Parallelogramms
des Netzes der Ebene O T'7T’, und «' der Flicheninhalt des
tber OT und OT', construirten Parallelogramms, sei end-

lich # die Dicke der zwischen 7' und der Ebene OTT" ge-
legenen Schicht, so wird man haben

Q=Jdov, & =Zw’,
(47] folglich auch
(45) o =wD.

Nun wird das Verhiiltniss o' : w offenbar gleich sein der Anzahl
der zn OT oder zu OT' parallelen Streifen, welche durch
das Dreieck OTT' gehen: also wird D die Zahl dieser
Btreifen darstellen; folglich wird diese Zahl gleich dem gréssten
gemeinschaftlichen Theiler unserer drei Binome sein.

Satz XXXVIII. — In einem 8 ystem von parallelen
Netzebenen, die (gh%4) zum Symbol haben, und
deren Grund-Parallelogramm als Inhalt w hat, ist
der Flicheninhalt des, durch die Schnittpunkte
der conjugirten Axen mit der Ebene

gr+hy +kz=1

bestimmten Dreiecks gleich dem Quotienten aus
dem Flicheninhalt }w durech das Produect gA% der
Charakteristiken, und der Flicheninhalt des durch
die Schnittpunkte derselben Axen mit der Ebene

4*
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gz + hy + kz = ghk
bestimmten Dreiecks hat als Werth das Product

von 4w und ghk
S8ei GHK (Fig. 19) die Ebene

gr+hy+kz=1,
und G'H'K’ die Ebene
gz + hy + kz = ghk,

8o dass man, da a, b, d die drei Parameter von Oz, Oy, Oz
sind, erhalte

0G' = hka, OG =

’

'46) OH' = gkb, OH =

N/ N> Q|

-

OK' = ghd, OK =

Flicheninhalt G' H'K' :
Flacheninhalt GHE = 0G :0G = g*/*k*: 1.

Bringen wir den Anfangspunkt der Coordinaten nach G,
wiihrend die Axen ihre Richtung behalten. Die Zahlen-Coor-
dinaten (m, n, p) und (m', #', p’) (48] der Gitterpunkte H'
und K’ werden filr diese Stellung der Axen sein

m=—hk, n =gk, p=0,
m =—hk, =0, p =gh;
man folgert daraus
np — pn' = g ki,
pm —mp = gRk,
mn' — nm' = ghk?,
und, wenn D) der grisste gemeinsame Theiler der drei Bi-

nome ist,
D = ghk,
da ja g, A, % relative Primzahlen sind.
Bei also w der Flicheninhalt der Grund-Masche der

Netze auf den Ebenen G HK und G'H'K’; so wird man
in Folge des Satzes XXXVII und der Gleichung (45) haben
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(47) 2 Flicheninhalt des N\ G'H' K' = w D = ghko,

was den zweiten Theil des Lehrsatzes beweist. Und da man
andererseits

Flicheninhalt des /\ G’H’K’

Flacheninbalt des'/NGHK ==

y! ki kl
hat, so folgt daraus
(48) 2 Flicheninhalt des A\ G HK = y“’ﬁ .

 Aufgabe XXIV. — Den Flicheninhalt des Grund-
Parallelogramms in dem System der Netzebenen,
die durch das Symbol (gh%) bezeichnet werden, zu
finden.

Ich werde die Beiten 2 Oy, 20z nnd y Ox der kdrper-
lichen Ecke O (Fig. 19) @, # und J nenmen; u, ¥ und &
die Flichenwinkel derselben kdrperlichen Ecke, wobei u der
Flichenwinkel ist, dessen Kante Oz ist, v, @ die Flichen-
winkel, deren Kanten Oy und Oz sind. Iech werde S (gAk)
den unbekannten Flicheninhalt des Grund-Parallelogramms
der Netze auf den Ebenen (g4%) nennen. Nachdem dies
festgesetzt, erhilt man durch eine bekannte Formel, die ich
der analytischen Geometrie des Raumes entnehme,

GHE' = GHO + GKO +HEKO
(49) {—2GHO-GKOcosu —2GHO- HEKO cos v
’ — GKO - HEKO cos o.

[49] Ist die Ebene G HK die Netzebene, welche als Glei-
chung

gz +hy + kz=1
hat, so bekommt man

Flicheninhalt des A\ GHO=40G - OH sind =1} :—’%sin J,

Flicheninhalt des A\ GKO=40G - O K sinf = -}g%sin 8,

Flicheninhalt des \ HKO=4 OH - OKsino = %%%sin a.
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Wir wollen jetzt
bd sin ¢ mit @ , .
ad sin 8 mit x ,
ab sin J mit P
bezeichnen ;
@ wird der Flicheninhalt der Masche des Netzes auf der
Ebene der yz, also S (100), sein,
g wird der analoge Flicheninhalt fiir die Ebene der zz,
also §(010), sein,
Y wird der analoge Flicheninhalt fiir die Ebene der zy,
also §(001), sein.

Man wird alsdann haben
Flacheninhalt des A\ GHO = § 5”1,

Flacheninhalt des A G KO = } -"—,

Flscheninhalt des N\ HKO = } h %

aber andererseits, in Folge des Satzes XXXVIII,

Flacheninhalt des A\ G HEK = } 9,{‘,‘").
Also, wenn man diese Werthe in der Gleichung (49)
einsetzt, erhdlt man

(50) {S’ (9hk) = g*¢* + Bx* + B*y* — 2ghgpy cos &
— 2gkpycos v — 2hkyy cos u,

und diese Gleichung ergiebt den Flicheninhalt des Grund-
Parallelogramms der Netzebene (g/4%), sobald man die analogen
Flacheninhalte in den Netzen der drei conjugirten Coordinaten-
Ebenen kennt.

Aufgabe XXV. — Die Dicke der Schichten zu
finden, welche parallel zu den Netzebenen mit
dem Symbol (gA%) sind.

Bei wieder § (gh%) der Flicheninhalt des Grund-Paral-
lelogramms des Netzes von [50] dem System (gA%). Seien
4 die Dicke der entsprechenden Schichten und £2 das
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Volumen des Grund-Parallelepipedes, so wird man haben
(51) Q= A8(ghk).

Behalten die Winkel «, #, J, u, v, @ ihre frithere
Bedeutung bei, 8o kdnnen wir die Gleichung (41) in die Form
bringen
(52) 2=0abd¥V1—cos®a—cos*# — cos* I}~ 2 cos zcos B cos J.

Entnehmen wir aus der Gleichung (50) den Werth von
S*(gh %), um ihn in die zum Quadrat erhobene Gleichung (51)
einzusetzen, so erhalten wir
S = a?b2d?(1 — cos?e — cos? 8 — cos2d+ 2cosacos g cosd)
TSP R Ry —2ghgycosm —2gkpycosy —2hkyyeos

Wenn wir schliesslich ¢, x, y durch ihre Werthe in @,
b, d, e, 8 und J ersetzen, so wird diese Gleichung

(53) A% =
1—cos?2e—cos28—cos?d 4 2cosacosgcos d

in%e | A2sin? , A%in®*d | ghsinesi ksinesind hksingsind
R L A B R i L9

Man hitte auch direct auf diese Formel kommen kénnen,

wenn man den analytischen Ausdruck fr die Benkrechte gesucht

hitte, die von dem Anfangspunkt auf diejenige Ebene gefillt

ist, deren Gleichung in linearen Coordinaten die folgende ist

§ an, .8 _

B8atz XXXIX., — Der mittlere Abstand der Gitter-
punkte einer Schaar ist gleich der Cubikwurzel
aus dem Volumen ihres Grund-Parallelepipedes.

In Uebereinstimmung mit der von Poisson gegebenen
Definition des mittleren Abstandes (siehe BSeite 24)
wollen wir den mittleren Abstand der Gitterpunkte
einer Schaar die Beite eines Wilrfels nennen, die gleich
der Einheit des Volumens ist, getheilt durch die Zahl der
Gitterpunkte, welche diese Einheit des Volumens enthilt.

8ei E dieser mittlere Abstand; indem wir die als sehr
gross voransgesetzte Zahl der Gitterpunkte, welche die Einheit
des Volumens enthilt, wieder ¢ nennen, erhalten wir

1

E=_—,;
0
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[61] woraus wir wegen o = -:.5- schliessen (siche den zweiten
Beweis des Satzes XXXV)

_ 3
(54) B=9, E=)Q,

wobei £2 das constante Volumen des Grund-Parallelepipedes der
Schaar ist.

Aufgabe XXVI. — Die Coordinaten-Axen zu ver-
#indern und die neuen Coordinaten als Functionen
der alten auszudrticken und umgekehrt.

Seien (m, n, p), (m', #, p')und (m", n", p") die Zahlen-
Coordinaten der #msseren Enden 7, 7' und 7 (Fig. 20) von
den Parametern der drei Punktreihen, welche als neue Axen
dienen sollen. Beien X, Y und Z die Zahlen-Coordinaten
irgend eines Gitterpunktes in dem neuen Axen-System. Auf
eine analoge Weise wie diejenige, welche zu den Gleichungen
(17) fabrt, erhilt man

z2=mX+mY+4+m'Z,
(55) {y-—— nX+nY+ n'Z,
z2=pX+ p Y+p"Z
Es wird angenommen, dass die Punktreihe OZT', welche
vom Anfangspunkt nach dem Punkt (m, %, p) geht, als Axe
der X dient. Die Punktreihe OZ7" dient als Axe der Y,
und die Punktreihe O7" als Axe der Z.

Ich setze jetzt, um abzukiirzen,
mn’p"—mp'n"+pm’n"—nm'p"-|—np'm _pnm _(m”p"\’
mn' —nm' =(mn'), nm" —mn"= (nm"),m'n" —n'm"'= (m'n"),
pm'—mp'=(pm),mp"— pm'=(mp"),p'm" —m'p'=(p'n')
np'—pn' = (np’), pn"—np"=(pn"), W' p" —p'n"'=(n'p’}
Wenn man, vermittelst des bekannten Verfahrens der Elimi-
nation, aus den Gleichungen (55) die Werthe von X, Y, Z
berechnet, so erhilt man

(56)

_ (77 (p'm") (m'n")
X_ (mn/pn)x + (mnlpn)y + (mnlpll) z )
— (pn) (mp") (nm")
Y= tnap ) F ¥ ) ?
_ _(»p) (pm’) (mn) .
- (mnrpn)x + (mnlpll) + (mn,})") z b
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[62] woraus man sieht, dass, wenn X, Y, Z immer ganze
Zahlen gein sollen, es nothwendig ist, dass die drei gegebenen
Punktreihen conjugirt sind.

Indem man diese Voraussetzung macht, wird

(m”'p”) =1y

was die vorhergehenden Gleichungen in die folgenden ver-
wandelt

= X = (np")z + (p'm")y + (m'n’) 2,
(57) = Y= (pn")z + (mp")y + (nm") z,

£ Z = @np)z+ (pm)y + (mn') 2.

Man fithre durch eine passende Drehung des Systems O T,
OT', OT" um O, OT auf Oz, fuhre O’ in die Ebene
z0y, indem Borge getragen wird, dass O7' und Oy auf
derselben Seite liegen in Bezug auf die nach beiden Rich-
tungen unendlich verlingerte Gerade Oz: wenn dann OZT"
und Oz in Bezug auf die Ebene der zy auf dieselbe Seite
fallen, so muss den ersten Gliedern der Gleichung (57) das
Zeichen -+ gegeben werden; im umgekehrten Falle muss das
Zeichen — vorgezogen werden.

Corollarsatz. — Nehmen wir an, dass die Axe der z
allein verindert, und durch OT" ersetzt werde, und nennen
wir m,, n, die den Axen der z und der y parallelen Zahlen-
Coordinaten von 7"

In diesem Fall wird sein

m=1, »n =0, p=0,
m =0, =1, p' =0,

m'=my, #'=mn, p'=1,
und die Gleichungen (55) werden geben
z=X+4mZ,
y=Y+n, Z,
z=12Z.

Die umgekehrten Formeln werden dann sein
X=2z—m,z,
Y=y —n,z,
Z=z.

Die der verinderten Axe parallele Zahlen-Coordinate bleibt
unverindert.
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(58] Aufgabe XXVIL. — Man fragt, was aus dem
Symbol einer Netzebene (ghlc) in einem neuen Axen-
Bystem wird.

Seien wieder (m, n, p), (m', »’, p') und (m", #", p")
die Zahlen-Coordinaten der Husseren 'Enden T, 1,71 (Flg 20)
der Parameter von den drei Punktrelhen, welche als neue
Axen dienen sollen. Wenn man in der allgemeinen Gleichung

gz + hy +kz=0C

die aus den Gleichungen (55) entnommenen Werthe von z, y, 2
substitnirt, so wird

(gm + hn 4+ kp) X + (gm’ + hn' + kp') Y
+ (gm" 4+ An" + kp") Z = C,
woraus man sieht, dass in diesem neuen Axen-System das
Symbol der Ebenen (ghk) sich in (gm + Ahn + kp, gm'

+ kn' 4 kp’, gm" 4 k" + kp") verwandelt, das heisst,
dass, wenn das neue Symbol (G HK) ist, man hat

(G-—-gm -+ Ahn + kp,
(58)° H=gm' + hn' + kp,
K= ym"’l_ k””'l" kp".

Corollarsatz. — Wenn man die Axen der z und y bei-
behilt und sich darauf beschriinkt, die Axe der z zu ersetzen
und zur neuen Axe der z die Punktreihe 111 zu wihlen, welche
die in umgekehrtem Sinne genommene Verlingerung der Diago-

pale von dem iber @, b, d construirten Parallelepiped ist,
so erhilt man

m =1, n =0, p=0,
m =0, n=1, p=0,
m=—1, n'=—1, p'=—1,

was das Symbol (gk%) in (g9, , — g — kb — k) verwandelt.
Wenn man alsdann die Charakteristik der Netzebene
(ghk%) in Bezug auf diese neue Axe / nennt, so wird man die
Gleichung haben
l=—g—h—kFk.

Wenn e der Parameter der neuen Axe ist, so wird der auf
dieser Axe zwischen dem Anfangspunkt und der Ebene

gr+hy+kz=1,




Ueber die Systeme von regelmiissig vertheilten Punkten. 59

[54] welche in dem neuen System
gz +hy+1Z2=1
geworden ist, gelegene Abschnitt augenscheinlich den Werth

e
7 haben. .

Man sieht daraus, dass, »wenn die Parameter a, d, d, e
von vier Punktreihen, die paarweise conjugirt sind, so gewihlt
sind, dass sie vier einander im Raum das Gleichgewicht hal-
tende Krifte vorstellen, jede an eine durch den Anfangspunkt
gehende Netzebene angrenzende Ebene auf den Parametern
dieser Punktreihen die Abschnitte s, %, -Z, %
wobei g, A, %, [ positive oder negative ganze Zahlen sind. Man
kann alsdann die Bezeichnungen (gAk%), (ghl), (glk), (Ihk)
ohne Untersehied als Symbol der Netzebene nehwen, und zwi-
schen den vier Charakteristiken g, %, %, / wird die Beziehung
bestehen

(59) gHE+E+l=10.c

Bezaichnung mit vier Charakteristiken. —
Wenn man, um die Stellung der Netzebenen der Schaar zn
bestimmen, vier Axen anwendet, welche den eben dargelegten
Bedingungen genfigen, so ist es zweckmissig, das Symbol
(gh%) durch das Symbol mit vier Charakteristiken (g% %!7) zu
ersetzen.

Definitionen. — Ich bezeichne mit dem Namen Ele-
mentar-Tetraeder jedes Tetraeder, welches als Ecken vier
Gitterpunkte der Schaar hat, die in solcher Weise gewiihlt
sind, dass jeder von ihnen auf einer an die Netzebene, welche
die drei anderen Gitterpunkte enthilt, angrenzenden Ebene
gelegen ist, oder auch »jedes Tetraeder, welches ilber drei
conjugirten Parametern, die von demselben Gitterpunkt aus-
gehen, construirt ist.«

Ein solches Tetraeder bildet immer den sechsten Theil
von einem der Grund-Parallelepipede der Schaar, also ist das
Volumen aller dieser Tetraeder dasselbe und gleich 4 ..

Ich nenne Haupt-Tetraeder dasjenige, dessen Basis
das spitzwinklige Dreieck ist, welches von den beiden kleinsten
Parametern der ganzen Schaar umfasst wird, und dessen drei
an der Basis liegende Flichenwinkel spitz sind, zwei von diesen
drei Winkeln kénnen ausnahmsweise Rechte werden.

bestimmen wird,
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[85] 8atz XL. — Jedes Tetraeder, welches als
Ecken den Anfangspunkt und die drei Punkte
(m, n, p), (m',n’ p') und (m", ", p”) hat, hat als Volumen
das Product des Volumens des Elementar-Tetra-
eders mit dem Factor

m”p p— mpln"+pm'n"_._ nm’P”-*- np,m”—p”,m".

Dieser Batz ist eine Folge der Formel (42).

S8ei OTT'T" (Fig. 20) das gegebene Tetraeder, dann
wird man haben

(60) Volumen des Tetraeders O 77" T" =1Q (mn'p")

Dlese Formel bleibt richtig, wenn m, 5, p oder m’, ', p’ oder
m", n’, p" andere gemeinsame Theiler "haben als dle Einheit.

Aufgabe XXVIII. — Das Haupt-Tetraeder einer
Schaar zu finden.

Wihlen wir willkiirlich einen Gitterpunkt O (Fig. 21),
und suchen die beiden kleinsten Parameter 0.4, OB; ent-
werfen wir sie in einem solchen Sinne, dass der Winkel A O B
spitz sei, oder htchstens gleich 90 Grad, was immer mbghch sein
wird. Vollenden wir das Dreieck .AOB welches' eins der
Hauptdrexecke der Netzebene .4 O B sein wxrd und construiren
ttber irgend einer seiner drei Seiten, z. B. uber AB, das zweite
Hauptdreieck B.A O, welches, mit dem vorigen veremt das
Grundparallelogramm O A0 B vollendet. Ueber dem Umnss
dieses Parallelogramms errichten wir senkrecht die Seiten eines
- nach beiden Richtungen unbegrenzten Prismas. Die Netzebene,
welche angrenzend an die Ebene O.4 O'B und tiber dieser
gelegen ist, wird von dem Umriss des Prismas nach einem,
der Basis O.4 O B gleichen, Parallelogramm geschnitten, wel-
ches in seinem Innern einen Gitterpunkt der Schaar enthaltem
muss, wenn es nicht zwei oder vier daven auf seinem Umriss
enthdlt. Sei D dieser Gitterpunkt; die Punktreihen 0.4,
OB und OD werden conjugirt und die Pyramide OABD
wird das Haupt-Tetraeder sein.

Wenn der so erhaltene Gitterpunkt in d gelegen wire,
und sich orthogonal auf das Innere des zweiten Dreiecks
BAO proycxrte so wtirden die Punktreihen 0’4, O'B und
O'd conjugirt sein, und die Pyramide O’ 4 Bd wire das Haupt-
Tetraeder.

Anmerkung. — Sei O.AB D das Haupt-Tetraeder, wel-
ches aus der vorhergehenden Construction hervorgeht und noth-
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wendiger Weise tther der Ebene O.A4 O'B gelegen ist. Wenn
wir dieselbe Construction auf der an die Ebene O.4AO'B an-
grenzenden Ebene wiederholen, die unter derselben gelegen
ist, so erhalten wir einen anderen [58) Gitterpunkt D', dessen
Lage in Bezug auf, D), 80sein ‘wird, dass 4, D, B und D’
ein Parallelogramm bilden. Das Tetraeder O’ ABD’ wird
auch ein Haupt-Tetraeder sein, aber es wird unter der Ebene
O AO B gelegen sein. Es ist leicht zu sehen, dass O ABD
und O'ABD’ zwei inverse*) Polyeder sind, deren Sym-
metriepol in w, dem Mittelpunkt des Parallelogramms OAO'B
liegt, woraus man ersieht, dass »in jeder Schaar zwei Haupt-
Tetraeder existiren, die invers zu einander sind«.

Satz XLI. — Alle Kantenwinkel des Haupt-Tetra-
eders sind spitz; einige von ihnen (vier hdchstens)
kénnen ausnahmsweise Rechte sein.

Seien 04, OB (Fig. 21) die beiden kleinsten Parameter
der Schaar und O ABD ihr Haupt-Tetraeder.

Die ausgesprochene Behauptungist evident fir die drei Winkel
der Basis O 4 B. Man lege durch O eine Ebene normal zu O 4;
schon nach der Construction des Tetraeders kénnen O.D und
O A nicht auf verschiedenen Seiten in Bezug aunf diese Ebene
gelegen sein, also 4 0D <C 90 Grad. Man kann auf dieselbe Art
beweisen, dass eine #hnliche Ungleichung fiir die Winkel
DOB, DAO, DAB, DBO, DBA stattfindet.

Jetzt schliesst man aus OB < OD auf ODB < OBD
< 90 Grad; aus 04 << OD schliesst man, dass 0D A < OAD
< 90 Grad; endlich aus BD > BO, DA > OA folgert man

"BD*+ DA*> BO* 4 0A4:.

Nun hat man, da der Winkel BOA ein spitzer oder ein rechter
ist, BO* 4+ 0A4®* > oder = B A%; also auch

BD* 4 DA* > BAY;

folglich kann der Winkel BD .4 90 Grad nicht #ibersteigen.
Die Zahl der rechten Winkel des Tetraeders kann ausser-
dem vier nicht ilbersteigen, da das Tetraeder nicht mehr als
vier Seiten hat.
Anmerkung. — Die Eigenschaften des Haupt-Tetraeders
sind eingeschrinkter als diejenigen, welche das Haupt-Dreieck

*) Wegen der Definition dieser Ausdriicke sehe man die An-
merkung *) auf Seite 68.
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in den Netzen besitzt. Seine Flichenwinkel sind nicht alle
nothwendiger Weise spitz. Es besitzt nicht nothwendiger
Weise alle die kleinsten Parameter des Systems, und endlich
ist es nicht nothig, dass das Haupt-Dreieck vom kleinsten
Flicheninhalt eine seiner, vier Seitenflichen bildet.

[67] Es'folgt ohne Beweis e¢ine Zusammenstellung ver-
schiedener Eigenschaften des Haupt-Tetraeders.

Satz XLII. — Wenn b der griéssere der beiden
Minimal-Parameter der Schaar ist, und wenn B der
Winkel ist, welcher der Seite 4 in dem mit diesen
Parametern construirten Dreieck gegentiber liegt, so
ist die Hohe des Haupt-Tetraeders wenigstens gleich
5V1 — § cosec® B.

Corollarsatz. — Dieselbe Hohe wird wenigstens gleich
5 V% sein.

Satz XLIII. — Der kleinste unter den Parametern
der Schaar ausserhalb der Ebene, welcher die bei-
den Minimal-Parameter enth#lt, ist nothwendiger
Weise die eine der drei Kanten, welche die 8pitze
des Haupt-Tetraeders mit denm drei Ecken seiner
Basis verbinden.

Satz XLIV. — Wenn OB, 04 (Fig. 21) die beiden
Minimal-Kanten des Haupt-Tetraeders O ABD sind,
wobei OA4 die kleinere von beiden ist, und wenn man
durch B die Strecke BO' gleich und parallel mit 0.4
legt, so wird eines der vier Dreiecke A0OB, A0D,
BOD, BO'D das elementare Dreieck mit kleinstem
Fldcheninhalt der ganzen Schaar sein.

Corollarsatz. — Die Netzebene mit kleinstem Flichen-
inhalt enth#lt immer wenigstens einen der beiden Minimal-
Parameter der Schaar.

§ V. — Von den symmetrischen Schaaren.

Definitionen. — Ich nenne Symmetrie-Axe einer
Schaar eine Gerade, wenn bei einer Drehung der Schaar als
Ganzes um dieselbe durch einen gewissen Winkel dieselben
Punkte des Raumes vor und nach der Drehung mit Punkten
der Schaar besetzt sind. Ich sage alsdann, dass der schein-
bare Ort der Gitterpunkte der Schaar nach dieser Drehung
wiederhergestellt ist.
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Um die folgenden Auseinandersetzungen deutlicher zu
gostalten, werde ich voraussetzen, dass zwei gleiche S8chaaren
vorhanden sind, die, Gitterpunkt mit Gitterpunkt, zusammen-
fallen, so dass sie nur eine einzige Schaar vorstellen. Die
Lage einer dieser Schaaren wird als unverinderlich angenom-
men, die andere moge sich ganz in einem Sticke und wie ein
fester Korper bewegen kdnnen, sowohl durch Translation wie
durch Rotation,

[68] Wenn die bewegliche Schaar, indem sie sich um die
Axe dreht, nach einer halben Umdrehung, oder einer Drehung
von 180 Grad, wieder mit der feststehenden Schaar zusammenfilit,
wird die Axe mit dem Namen biniire Symmetrie-Axe oder
kiirzer bin#ire Axe bezeichnet. Irgend ein beliebiger Gitter-
punkt der Schaar hat seinen homologen Punkt auf der anderen
Seite der Axe. Die Gerade, welche diese beiden Punkte ver-
bindet, ist zur Axe normal und wird durch sie halbirt.

Wenn das Zusammenfallen nach einer Drittel-, einer
Viertel- oder einer Sechstel-Umdrehung erfolgt, so soll die
Drehungsaxe den Namen ternire, quaternire oder senire
Symmetrie-Axe erhalten. In den Schaaren mit ternirer
Symmetrie-Axe sind die Gitterpunkte je zu dreien um die Axe
geordnet, und jeder Gitterpunkt hat zwei homologe. Die An-
ordnung ist eine solche zu vieren um die quaterniren Axen,
und zu sechsen um die sendiren Axen.

Die Symmetrie einer Axe soll als Ordnungszahl 2, 3,4
oder 6 haben, je nachdem dieselbe binir, terniir, quaternir
oder sendr ist. Diese Ordnungszahl soll bei den Rechnungen
durch den Buchstaben ¢ bezeichnet werden.

Zwei Symmetrie-Axen derselben Ordnung sollen Axen
derselben Art heissen, wenn die Anordnung der Gitter-
punkte um die eine von ihnen dieselbe ist wie um die andere.
Um diese Aechnlichkeit der Anordnung zu constatiren, ver-
bindet man in Gedanken die Gitterpunkte der Schaar mit
jeder der beiden Axen, und eins der beiden Systeme wird als
beweglich vorausgesetzt. Wenn man dann zu gleicher Zeit
die bewegliche Axe mit der festen, und die beweglichen Gitter-
punkte mit den festen zur Deckung bringen kann, so sollen
die Axen von derselben Art heissen.

Es ist nothwendig, dass die Axen von derselben Ordnung
sind, und dass ihre Parameter gleich sind, wenn sie von der-
gelben Art sein sollen. Im Allgemeinen sind diese Bedingungen
hinreichend. Es giebt indessen einen besonderen Fall, wo
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zwei biniire Axen denselben Parameter haben kdnnen, ohne
von derselben Art zm sein.

Zwei Axen, welche den vorhergehenden Bedingungen nicht
gentigen, sollen Axen von verschiedener Art heissen.

Jede Schaar, welche eine oder mehrere Symmetrie-Axen
besitzt, soll symmetrische Schaar heissen, und im entgegen-
gesetzten Fall soll sie asymmetrisch genannt werden.

Jede Ebene, welche eine Schaar in zwei geometrisch
symmetrische Halften theilt, soll Symmetrie-Ebene der
Schaar heissen. Jeder Gitterpunkt besitzt alsdann seinen
homologen auf der entgegengesetzten Seite der Ebene.

[69] Batz XLV. — Der kleinste Winkel, welcher
die Orte der Gitterpunkte einer symmetrischen Schaar
wihrend ihrer Drehung um eine Symmetrie-Axe wie-
derherstellt, ist ein Theiler von 360 Grad.

Sei M (Fig. 13) einer der Gitterpunkte der Schaar, und
MO die von M auf die Axe gefillte Senkrechte. Lassen wir
die bewegliche Schaar eine Drehung M O M’ um die Axe machen,
wodurch der Ort der Gitterpunkte nicht veriindert wird, und sei

MOM = Q.

Wahrend der bewegliche Gitterpunkt 2/ sich tber den
festen Gitterpunkt M’ stellt, wird der bewegliche Gifterpunkt
M’ auf M” kommen, und wir erhalten

OM" = OM' = OM, M"OM = Q.
Wir beschreiben einen Kreis um den Mittelpunkt O mit dem
Radius OM und machen

Bogen M"M’ = Bogen M'M, Bogen M’ M" — Bogen M"M".

Es ist klar, dass M, M’, M", ... ebenso viele Gitterpunkte
der festen Schaar sein werden, und dass die Sehnen der Bogen
ein regelmissiges eingeschriebenes Polygon bilden werden,
welches nach einer oder mehreren Umdrehungen sich in sich
selbst am Ausgangspunkt bei A schliessen wird; sonst gibe
es eine unendliche Zahl von Gitterpunkten der Schaar anf
dem Umfang des Kreises, was unmdoglich ist. Ausserdem kann
man immer annehmen, dass M, M zwei benachbarte Punkte
sind, und dann wird MOM’ der kleinste Drehungswinkel
sein, der die Orte der Gitterpunkte wiederherstellt. Man er-
hilt also, wenn man diesen kleinsten Winkel Q nennt,

360°
61 Q= .
(61) q
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8atz XLVI. — Eine Schaar kann nur bindre,
terniire, quaternire oder senire Symmetrie-Axen
besitzen.

Vollenden wir tiber MM’', M'M" (Fig. 13) die Raute
MM M"m. Der/Runkt m wirdoein Gitterpunkt der Schaar
gein, und wir werden leicht finden, dass

Om = OM'(1—4 sin* § Q).

Fir ¢ = 2, Q = 180° haben wir Om = — 30M’;

Fir ¢g= 3, Q = 120°, Om=—20M

Fir ¢ =4, Q = 90°, Om = — OM';

Fir g=5, Q= 72°, 0m=——3-—2V5'0M'
= — 0,382 OM';

Fir ¢ =6, Q = 60° Om = 0;

Fir ¢ > 6, Q = < 60°, Om <<0OM'.

[60] Die Lgsungen ¢ =5 und ¢ >> 6 sind offenbar nicht zu-
liissig; denn man kann immer annehmen, dass M in der
kleinsten Entfernung von der Drehungsaxe genommen ist, und
folglich ist die Ungleichung Om < O M’ unmoglich, ausser
in dem Falle, wo man Om = 0 hitte, weil dann O ein Gitter-
punkt der Schaar sein wirde. .

Also wenn die Schaar eine Symmetrie-Axe besitzt, hat
man nothwendiger Weise

g =2, 3, 4 oder 6,

wobei ¢ die Ordnungszahl der Symmetrie ist, welche der
Axe, die man untersucht, eigen ist.
Corollarsatz. — Drehungen von 60, 90, 120,180,240, 270
und 300 Grad sind die einzigen, welche in gewissen Fillen
die Orte der Gitterpunkte einer Schaar wiederherstellen kgnnen.
S8atz XLVIL. — Wenn in einer Schaar eine Sym-
metrie-Axe vorhandenist, welchedurchkeinen Gitter-
punkt geht, so sind die parallelen Geraden, welche
durch Gitterpunkte gefithrt sind, Axen, welche die-
selbe Symmetrie besitzen.
8ei ¢ die Ordnungszahl der Symmetrie der untersuchten
Axe MM' (Fig. 22) und sei m ein beliebiger Gitterpunkt,
. (o]

welcher nach einer Drehung der beweglichen Schaar um

Ostwald's Klassiker. 90. 5
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den Ort des Gitterpunktes 7' einnimmt. Wenn man die be-
wegliche Schaar, nachdem sie erst diese Drehung erlitten hat,
parallel mit ihr selbst von s’ nach m bringt, so wird sie
sich in denselben Verhiltnissen befinden, als wenn sie von
Anfang an \uni/¢ine Gerade zm#' gedreht wire, welche durch
m parallel zn MM’ gelegt wiire; und da der Ort der Gitter-
punkte nicht verindert ist, so ist diese Gerade nmn’' auch
eine Symmetrie-Axe der Schaar. Die Ordnung der Symmetrie
dieser Axe wird im Allgemeinen gleich ¢ sein. Immerhin
kann es, da eine Axe der Ordnung jq, wobei s irgend eine
ganze Zahl ist, erst recht die Eigenschaften der Axen von der
Ordnung ¢ besitzt, vorkommen, dass die neue Axe von einer
hoheren Ordnung wire, aber diese muss immer ein Vielfaches
der Ordnung der Symmetrie der gegebenen Axe sein*).

Definition. — Wir werden mit dem Namen Zwischen-
Axen die Axen bezeichnen, {61] welche keinen einzigen
Gitterpunkt der Schaar enthalten. Nach dem vorhergehenden
Lehrsatz sind die Zwischen-Axen immer von Axen der gleichen
Symmetrie begleitet, welche durch die Gitterpunkte gelegt
sind, woraus folgt, dass man sich ganz ordnungsmissig darauf
beschrinken kann, nur die letzteren zu beachten bei allen Unter-
suchungen, welche nicht den Zweck haben, in besonderer Weise
die Eigenschaften der Zwischen-Axen zu bestimmen.

Satz XLVIIL. — Jede Symmetrie-Axe, welche einen
Gitterpunkt enth#lt, ist eine der Punktreihen der
Schaar.

Sei MM’ (Fig. 22) die gegebene Axe, welche durch den
Gitterpunkt M geht; seien m ein anderer, ausserhalb der Axe
gelegener Gitterpunkt und ', ", ... seine Homologen in
Bezug auf diese Axe. Verbinden wir M mit m, m', m", . ..
Wenn wir jetzt die Diagonale My des iiber Mm und Mm'
construirten Parallelogramms ziehen, so wird diese Diagonale,
sowohl nach Grdsse wie Richtung, einer der Parameter der
Schaar sein, in Folge des Satzes XXX. Ebenso wird, wenn
wir My mit Mm"” combiniren, die neue Diagonale My’ die-
selben Eigenschaften haben. Das so erhaltene Endresultat
wird, nachdem die ganze Serie der Homologen von m erschdpft

¥ Diesen Beweis verdanken wir Herrn Cauchy; da er einfacher

ist, als der Beweis, den ich selbst von diesem Lehrsatz gegeben

hatte, so habe ich diesen letzteren durch ihn ersetzt. (Siehe die

Comptes rendus de I Académie des Sciences, Band XXIX, pag. 135.)
-~
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ist, dasselbe sein, als wenn man mechanisch Krifte zusammen-
gesetzt hiitte, welche nach Grosse und Richtung gleich Mm,
Mm', Mm"... wiren, um deren Resultante zu construiren.
Wenn man aber jede dieser Krifte in Componenten nach der
Richtung MM’ und senkrecht  hierzu zerlegt, so ist ersiehtlich,
dass die zu MM’ normalen Componenten sich in Folge der Sym-
metrie gegenseitig aufheben, und dass die verticalen Compo-
nenten allein ilbrig bleiben werden. Wenn also O der Schnitt-
punkt von MM mit der Ebene des Polygons mm'm” . . . ist,
so wird jede dieser verticalen Componenten gleich MO sein;
wenn man also MM’ = qMO nimmt, so wird M’ auch ein
Gitterpunkt sein; also ist MM’ eine Punktreihe der Schaar.

Satz XLIX. — Jede Ebene, welche normal zu
einer Symmetrie-Axe durch einen Gitterpunkt ge-
legt wird, ist eine Netzebene der Schaar.

Seien M der gegebene Gitterpunkt (Fig. 22) und MM’
die gegebene Axe, die man immer als durch M gehend vor-
augsetzen kann, Seien sm irgend ein anderer Gitterpunkt,
m' und m"” seine Homologen. Die Linien, welche parallel zu
mm', m'm", m"m, ... durch M gelegt werden, sind augen-
scheinlich Punktreihen der Schaar, also wird die Ebene, welche
normal zy MM’ liegt und alle diese Geraden enthilt, eine
der Netzebenen der Schaar sein.

[62] Wenn die Axe MM’ eine binire Axe wire, so wiirde
man einen zweiten Gitterpunkt u, der ausserhalb der Ebene
mMM' gelegen, zu Hillfe nehmen. Derselbe Beweis wiirde
auch dann noch anwendbar sein.

B8atz L. — Wenn in einer Schaar eine Symmetrie-
Ebene existirt, welche keinen einzigen Gitterpunkt
enthilt, so ist jede parallele Ebene, welche durch
einen Gitterpunkt geht, auch eine Symmetrie-Ebene
des Systems.

Seien m (Fig. 23) ein beliebiger Gitterpunkt und =’ sein
Homologer auf der anderen Seite der gegebenen Ebene G H,
die der Voraussetzung nach eine Symmetrie-Ebene der Schaar
sein soll. Wenn man die bewegliche Schaar, parallel mit ihr
selbst, von 7’ nach m fithrt, das heisst in einer zur Ebene nor-
malen Richtung, so weiss man, dass sie zu der festen Schaar
.symmetrisch bleibt beztiglich einer Ebene, welche in der Mitte
der den beweglichen Punkt ' mit dem festen Punkt m ver-
bindenden Strecke normal ist. Im Grenzfall, wenn »' mit m
zusammentrifft, wird die Symmetrie-Ebene, immer parallel mit

. 5%



68 A. Bravais.

sich selbst, schliesslich durch m gehen; aber dann fallen die
beiden Schaaren, die bewegliche und die feststehende, zu-
sammen; folglich wird die durch m parallel zu G H gelegte
Ebene eine Symmetrie-Ebene des Systems sein.

Anmerkung. —— Man kann von den Zwischen-Ebenen
der Symmetrie absehen und nur diejenigen beachten, welche
dureh Gitterpunkte gehen.

Satz LI — Jede Symmetrie-Ebene, welche einen
Gitterpunkt enthilt, ist eine Netzebene.

8ei M (Fig. 23) der in der Symmetrie-Ebene G H ge-
legene Gitterpunkt; seien m, m’ zwei in Bezng auf diese
Ebene homologe Gitterpunkte. Die Diagonale der tber Mm
und Mm’ construirten Rante wird, nach Grosse und Richtung,
der Parameter einer der Puanktreihen des Systems sein. Es
ist nun aber klar, dass sie in der Symmetrie-Ebene enthalten
ist. Man kann ebenso beweisen, dass andere Punktreihen
existiren, welche durch M gehen und der Symmetrie-Ebene
angehbren, aber nicht in der Ebene m Mm' gelegen sind;
woraus man sieht, dass die Symmetrie-Ebene nothwendlger
Weise eine Netzebene ist.

Satz LII. — Wenn eine Schaar eine Symmetrie-
Axe von gerader Ordnung besitzt, so besitzt sie auch
ein System von Symmetrie-Ebenen, welche alle zu
dieser Axe normal sind, und umgekehrt zieht das
Vorhandensein einer Symmetrie-Ebene dasjenige
eines Systems von Axen von gerader Ordnung, die
zu ihr normal sind, nach sich.

Ich habe in einer Notiz tiber die symmetrischen Polyeder
der Geometrie [63] bewiesen*), dass, wenn man das inverse
Polyeder eines gegebenen Polyeders P um 180 Grad um eine
Gerade A dreht, die durch den Symmetrie-Pol gelegt ist,
man das symmetrische Polyeder zu P beziiglich der normal zu
der Geraden A durch den Pol gelegten Symmetrie-Ebene erhilt.

Nehmen wir einen beliebigen Gltterpunkt O (Fig. 23)
zum Symmetrie-Pol und construiren wir die inverse Schaar,
welche Gitterpunkt aunf Gltterpunkt mit der nrsprnnghchen
zusammenf3llt; dann, nachdem wir durch O eine Gerade mOm’

*J Journal de Mathématiques de M.Liouville, Band XIV, p. 138.
Das inverse Polyeder von P erhilt man, indem man die Ecken von
P mit einem festen Punkte verbindet, welcher den Namen Sym-
metrie-Pol erhilt, und indem man diese Geraden jemnseits des
Poles um eine ihnen gleiche Strecke verlingert.
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parallel zu der Axe von gerader Ordnung gelegt haben, lassen
wir die inverse Schaar sich um 180° um diese Gerade drehen,
so wird sie in Folge der Symmetrie der Axe Punkt fiir Punkt
wieder mit sich selbst zusammenfallen. Also wird, in Ueber-
einstimmung mit\/dér/obem! erwiknten"allgemeinen Eigenschaft,
die durch O normal zu der Axe gelegte Ebene eine Sym-
metrie-Ebene fiir die beiden zusammenfallenden Schaaren sein
und folglich fur die zwei Hilften der gegebenen Schaar.*)

‘Der umgekehrte Satz wird in der folgenden Weise bewiesen:

Sei O (Fig.23) ein Gitterpunkt, welcher auf der der festen
und der beweglichen Schaar gemeinsamen Symmetrie-Ebene
gelegen ist, Man weiss aus der allgemeinen Theorie der in-
versen Polyeder (siche die angeftihrte Notiz), dass, wenn man
das symmetrische Polyeder eines Polyeders P um 180°% um die
in diesem Gitterpunkt O errichtete Normale zu der Symmetrie-
Ebene dreht, man das inverse Polyeder wiederfinden muss.
Im gegenwiirtigen Fall wird man, wenn man die bewegliche
Schaar diese halbe Umdrehung machen l#sst, sie mit der in-
versen Schaar wieder zusammentreffen lassen, die augenschein-
lich micht verschieden von der gegebenen Schaar ist. Also
ist die Normale eine binire Axe des Systems. Man sieht,
dass sie im Allgemeinen eine Axe von einer beliehigen geraden
Ordnung sein kann.**)

Definition. — Wenn man fortfihrt, die Gesammtheit
aller Punktreihen in einer Schaar, die unter sich parallel sind,
als Punktreihen-System zu bezeichnen, so hat man in einem
solechen System die Richtung, die Grosse des Parameters
[64] und endlich die Dichtigkeit des Systems zu be-
trachten, welche gleich der Anzahl der Punktreihen ist, die
in einem prismatischen Raum von dem senkrechten Querschnitt
gleich 1 und mit Kanten, die parallel der gemeinsamen Rich-
tung der Punktreihen laufen, enthalten sind.

Es folgt aus der Constanz der Volumen der Grund-Par-
allelepipede, dass beim Uebergang aus einem Punktreihen-
System in ein anderes der Quotient des Parameters durch die

*) Man kann diesen Satz auch als unmittelbare Folge des
Satzes XXI meiner Abhandlung >Ueber die Polyeder von symme-
trischer Form« ansehen, Journal de Mathématiques de M. Liouville,
Band XIV

**) Dieser reciproke Satz ist eine unmittelbare Folgerung aus
dem Satze IV meiner Abhandlung »Ueber die Polyeder von symme-
trischer Forms«.
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Dichtigkeit sich nicht verindert und dem Volumen £ des
Grund-Parallelepipedes gleich bleibt.

Wenn man ein Punktreihen-System dureh das Dazwisechen~
schieben von neuen #quidistanten Gitterpunkten zwischen zwei
benachbarten /Gitterpunkten. Cauf . jéder Punktreihe ver4ndert,
so modificirt man die Schaar, und je nachdem die Zahl der
eingeschobenen Gitterpunkte 1, 2, 3, ... anf jedem Parameter
ist, wird die neue Schaar verdoppelt, verdreifacht oder ver-
vierfacht sein beztiglich der Anzahl ihrer Gitterpunkte. Alsdann
verkleinert sich das Grund-Parallelepiped in dem Verhilt-
niss der Einheit zu den Zahlen 2, 3, 4,... Nachdem dies
festgestellt, kann man den folgenden Satz beweisen.

Satz LIII. — Dieselben Punktreihen-Systeme fin-
den sich in der urspringlich gegebenen Schaar und
in der Schaar wieder, die daraus durch die Zwischen-
schaltung von neuen Gitterpunkten auf einem ihrer
Punktreihen-Systeme abgeleitet ist.

Es seien drei conjugirte Axen als Coordinaten-Axen ge-
nommen, wobei die Axe der z eine der Punktreihen des durch
die Zwischenschaltung von neuen Gitterpunkten modificirten
Systems ist; dann werden, wenn @, b, d die drei Parameter

,g die drei Parameter in der neuen
Schaar sein, wobei & — 1 die Zahl der auf jedem Parameter
hinzugefiigten Gitterpunkte ist. Um auf die urspriingliche
Schaar zuriickzukommen, unterdrticke man in jener alle Netz-
ebenen von der Form

z2=404+1, =j0+4+2, ..., =404+ 6—1,
wobei 7 eine beliebige ganze Zahl ist, und behalte nur die
Ebenen z2=10, z2=260, 2 =260, ..., z= 70 bei.

Betrachten wir jetzt die Punktreihe, welche von dem
Anfangspunkt O (Fig. 20) nach dem Gitterpunkte # mit den
Coordinaten (m, %, p) von der Schaar mit zwischengeschalteten
Gitterpunkten geftihrt ist. Alsdann wird, wenn die Ordinate
p ein Vielfaches von @ ist, der Gitterpunkt ¢ der ursprting-
lichen Schaar angehoren, und das System der Punktreihen
Ot wird sich mit derselben Grdsse des Parameters in der
ursprilnglichen Schaar wiederfinden. Wenn die Ordinate p
(85] kein Vielfaches von 6 ist, so verlingere man Of um
tt" = (0 — 1)Ot¢; da die Zahlen-Ordinate von dem Gitter-
punkt ¢”, die parallel zu den z liegt, dann ein Vielfaches von

dieser Axen sind, @, b
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6 geworden ist, so wird der Punkt ¢” dann der urspriinglichen
Schaar angehdren; so wird also das System der Punktreihen
Ot in der Schaar noch besteher, nachdem die Netzebenen

2=40+4+1, z=40+2, ..., z2=750+0—1

unterdriickt sind.

"Demnach bestehen alle Punktreihen-Systeme, ohne dass
ihre Richtung verindert wire, nach Unterdrtickung der
zwischengeschalteten Gitterpunkte. Diese Systeme sind nar
in Bezug auf ihre Dichtigkeit oder die Grdsse ihres Parameters
verindert, fir jedes von ihnen lisst die Unterdriickung der
Gitterpunkte das Verh#ltniss des Parameters zu der Dichtig-
keit im Verhiltniss 6:1 wachsen.

Corollarsatz. .— Dieselben Punktreihen-8ysteme finden
sich in den beiden Schaaren wieder mit Modificationen, welche
nur die Grdsse des Parameters oder die Dichtigkeit des Systems
betreffen; es folgt daraus, dass dieselben Systeme der Netz-
ebenen auch in beiden Schaaren vorhanden sind; immerhin
wird die Dicke der Schichten oder der Flicheninhalt der
Grund-Masche in der Weise von-der einen zur anderen vari-
iren, dass ihr Product im Verhiltniss 6:1 durch die Unter-
driickung der zwischengeschalteten Punkte wichst.

Nach diesen allgemeinen Sitzen wollen wir nach einander
die Eigenschaften durchnehmen, welche jede besondere Art
der Symmetrie charakterisiren.

4

Bindre Symmetrie.

Satz LIV. — In jeder Schaar mit bin#rer Sym-
metrie-Axe wird, wenn man die beiden angrenzenden
Netzebenen einer zur bindren Axe normalen Netz-
ebene betrachtet, das Netz einer dieser beiden Ebe-
nen mit der orthogonalen Projection des Netzes der
anderen zusammenfallen.

Denn seien P eine zur Axe normale Netzebene und P’,
P" ihre beiden angrenzenden; die Netze von P’ und P" sind’
homolog in Beziehung auf die Ebene P, welche eine Sym-
metrie-Ebene der Schaar ist (Lehrsatz LII); also ist das Netz
einer der Ebenen P’, P" die orthogonale Projection des
Netzes der anderen.

Corollarsatz. — Wenn man allen diesen auf einander
folgenden Netzebenen, die alle normal zu der Axe sind, Ord-
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nungszahlen giebt, so sieht man, dass in der Reihe der Ebenen
mit geraden Zahlen dasselbe Netz sich durch orthogonale
Projection wieder herstellen wird, [66] und das Gleiche gilt
von der Reihe der Ebenen mit ungeraden Ordnungszahlen.

Satz LV, =~ JédeSchaar mit binirer Symmetrie-
Axe kann angesehen werden, als wire sie aus einem
geraden Prisma mit parallelogrammatischer Basis
abgeleitet, welches in gewissen Fillen in dem Cen-
trum seiner Form einen der Gitterpunkte der Schaar
aufweisen kann.

S8ei ABCDE (Fig. 24) das Netz, welches auf der zur
bindren Axe normalen und durch einen Gitterpunkt A4 gehen-
den Ebene entworfen ist. Nehmen wir diese Ebene zur Ebene
der zy; ihre Gleichung in Zahlen-Coordinaten wird z = 0 sein.

Alle Netze, welche auf den Ebenen z =12, z= =+ 4,
z= 16, ... entworfen sind, werden sich orthogonal auf
das Netz ABCD ... projiciren (8atz LIV).

Die Netze der Ebenen z =1 1, z = * 3, ... kinnen
auch moglicher Weise orthogonal auf ABCD ... projicirt
werden; in diesem Fall wird das Grund-Parallelepiped ein
gerades Prisma mit parallelogrammatischer Basis sein.

Aber das Gegentheil kann auch stattfinden. Nebmen wir dann
an, dass einer der Gitterpunkte A" des Netzes z=1 sich nach @
auf die Ebene z=0 projicire. Wenn man 4 mit 4’ verbindet,
und 44" um eine ibr selbst gleiche Grosse bis D" verlingert,
go wird D" offenbar ein Gitterpunkt des Netzes z =2 sein, und
wenn man die Senkrechten A'a, D"D fillt, so wird D einer
der Gitterpunkte des Netzes z = 0 sein (Satz LIV), und a
wird auf der Mitte der Strecke 4D liegen. Da der Gitter-
punkt A4 willktirlich gew#hlt wurde, so sieht man, dass a ein
geometrischer Mittelpunkt von dem Netz ABCD ... ist, und
auf der Mitte eines der Parameter 4 D dieses Netzes liegt.
Construiren wir jetzt ilber 4D als Basis zwei gleiche und
entgegengesetzt liegende Elementar-Dreiecke wie ACD, A ED;
der Punkt ¢ wird der Mittelpunkt des Grundparallelogramms
ACDE sein, und A’ wird das Centrum der Form des ge-
raden Prismas sein, das als untere Basis ACDE hat, und
dessen obere Basis sich auf der Ebene z = 2 befindet. Die
Schaar konnte also als aus einer unendlichen Zahl solcher
Prismen zusammengesetzt angesehen werden, welche von glei-
cher Hohe wie der Abstand der Ebenen 2==0, z2=2 wiren,
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und von denen jedes ausserdem in dem Centrum seiner Form
einen der Gitterpunkte der Schaar triige.

Anmerkung I. — Es ist immer erlaubt vorauszusetzen,
dass 4 so gewihit wurde, dass er unter allen Gitterpunkten
des Netzes z = 0 der/ niichsté @andem Punkte @ ist; wenn
dann 4D nicht der kleinste Parameter des Netzes z = 0 ist,
sei AB dieser kleinste Parameter der in einem solchen Sinne
aufgetragen sei, dass man [87) B.AD <90 Grad habe. Weil
man aB ~> aA hat, liegt der Gitterpunkt B ausserhalb des
Kreises, der itber A.D als Durchmesser beschrieben ist, und
daher ist es sicher, dass man 4B D < 90 Grad hat. Aber
andererseits hat man, wegen AB < BD auch 4ADB <
BAD <90 Grad; also sind die drei Winkel des Dreiecks
B AD spitz; so wird also B.AD das Hauptdreieck des Netzes
z=0 sein (Satz VI). Demnach wird die Projection von A4’
immer auf die Mitte von einer der drei Seiten des Haupt-
dreiecks fallen, was beweist, dass das Alterniren der Netze mit
abwechselnd gerader und ungerader Ordnungszahl sich nur aunf
drei verschiedene Weisen machen kanm, je nachdem die Pro-
jection der Gitterpunkte des Netzes z = 1 auf die Mitte der
kleinen, der mittleren oder der grossen Seite des Haupt-Drei-
ecks des Netzes z = 0 fillt.

Man sieht daraus ebenfalls, dass die Schaar als aus
Prismen zusammengesetzt angesehen werdem kann, die ein
Parallelogramm wie 4 BCD zur Basis, als Héhe den Abstand
der Ebenen z = 0 und z = 2 haben, und Gitterpunkte auf
den Mittelpunkten von zweien ihrer rechteckigen verticalen
Seitenflichen tragen. Man kann sich dann immer die Basis
einer jeden der beiden centrirten Seitenflichen als von einer
der drei Seiten des Haupt-Dreiecks gebildet denken.

Anmerkung II. — Im Fall des Alternirens der Netze
kann man auch statt des geraden, centrirten Prismas das
Oktaeder der Figur 28 nehmen, dessen Axe .A'A” die par-
allelogrammatische Basis ACDE normal und in der Mitte
durchschneidet.

Es muss bemerkt werden, dass dieses Oktaeder deshalb
doch noch kein Grundkdrper ist, welcher fihig wire, durch
unmittelbares Aneinanderftigen alle Gitterpunkte der Schaar
zu reproduciren.



74 . A. Bravais.

Terbindre Symmetrie.

Satz LVI. — Wenn der Grundkdrper der Schaar ein
centrirtes oder nicht centrirtes gerades Prisma mit
rhombischer Basis- ist, so-besitzt die Schaar drei binsire
Symmetrie-Axen, die rechtwinklig zu einander sind.

Nehmen wir an, dass der Rhombus A CDE (Fig. 24) die
Basis des geraden Grund-Prismas sei; wenn wir alsdann die
Augen auf die Figur 25 werfen, welche auf der Ebene z =0
erstens das Netz z — 0 zeigt, dessen Punktreiben durch ausge-
zogene Linien dargestellt sind, und als Projection auf dieses
Netz die Netze z = 27, sowie die Netze z = 27 - 1, aber
diese letzteren nur in dem Falle, dass sich [68] alle Projec-
tionen decken; zweitens, aber nur fiir den Fall des Alternirens,
die Netze z = 27 41, dargestellt durch die punktirten Linien
ac, cd, de, ae etc., so wird es klar, dass jede normal zu der
Ebene der Zeichnung liegende Ebene, welche mit einer der
Diagonalen des Rhombus, z. B. der Linie aca’ gleich gerichtet
ist, eine Symmetrie-Ebene fiir die Schaar sein wird, weil alles
zur Rechten und zur Linken dieser Ebene gleich ist. Alseo
wird die zu dieser Ebene normale Diagonale 4D eine binire
Axe des Systems sein (S8atz LII). Man wtirde ebenso beweisen,
dass die zweite Diagonale EC auch eine binire Axe ist.

Anmerkung I. — In dem Falle, dass a (Fig. 25) auf
die Mitte von 4.4’ fiele, ¢ auf die Mitte von AC, d auf die
Mitte von ED, ete., wtrde der vorige Satz nicht mehr an-
wendbar sein, selbst wenn das Grund-Prisma noch ein gerades
Prisma mit rhombischer Basis wire.

Anmerkung II. — Wenn das Haupt-Dreieck gleichseitig
wird, und wenn ausserdem die Netze iibereinander liegen, so
wird die Symmetrie senir, und die Schaar gehort einer be-
sonderen Classe an, von der spi#ter die Rede sein wird; wenn
dagegen, in diesem Fall, die aufeinanderfolgenden Netze alter-
nirend sind, so wird die allgemeine Symmetrie der Schaar
durch diesen Umstand nicht beeinflusst.

Satz LVIL. — Wenn das zur biniren Axe normale
Netz rechteckige Maschen hat, so besitzt die Schaar
drei zu einander rechtwinklige, binire Symmetrie-
Axen.

In dem Fall, wo die Netze nicht-alternirend itber einan-
der liegen, ist der Grundkdrper ein rechtwinkliges, nicht cen-
trirtes Parallelepiped und der Satz ist einleuchtend.
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Wenn die Netze alternirend sind, so kdnnen zwei ver-
schiedene Fille eintreten: entweder fillt der Punkt a der
Figur 24 auf die Mitte der Hypotenuse des Haupt-Dreiecks,
welches dann rechtwinklig ist, oder auf die Mitte einer der
beiden kleinen Seiten:

Im ersten Fall zeigt die Figur 26 die Projection der
alternirenden Netze auf die Ebene z = 0. In diesem Falle
gind die normal zur Ebene z =— 0, durch die Geraden AC,
ac, ED, ... gehenden Ebenen, sowie die Ebenen, welche
durch AE, ae, CD, ... gehen, augenscheinlich Symmetrie-
Ebenen der Schaar; also sind dann die Seiten der Rechtecke
bindre Axen (Satz LII).

In dem zweiten Fall wird die Projection durch die Fi-
gur 27 dargestellt, wo ACDE [69] die Masche des Netzes
z =0 ist und acde diejenige des Netzes z = 1. In diesem
Fall sind offenbar anch wieder die durch die Seiten des Recht-
ecks gelegten Ebenen Symmetrie-Ebenen der Schaar. Man
wird bemerken, dass man in diesem letzten Fall als Grund-
korper ein gerades Prisma mit rhombischer Basis annehmen
kann; es gentigt in der That, die rhombische Netzmasche,

welche in der zu z = 0 normalen Ebene liegt und die Gerade
" AaEe als Spur hat, zur Basis zu nehmen.

Anmerkung. — Wenn das Rechteck sich in ein Quadrat
verwandelte, so wtrde die Symmetrie eine quaternire und
die Schaar wiirde in eine besondere Classe gehoren, tiber die
wir bald sprechen werden; indessen bleibt die Symmetrie die
gleiche, wenn das Alterniren der Figur 27 entspriche.

Definition. — Wir wollen mit dem Namen terbinire
Symmetrie diejenige bezeichnen, welche durch drei binire,
zu einander normale Axen charakterisirt ist. Diese drei
Axen sind, obgleich von derselben Ordnung, von verschiedenen
Arten.

S8atz LVII. — In jeder Schaar mit terbinsirer
Symmetrie, haben die zu den biniren Axen normalen
Netzebenen entweder rhbombische oder rechteckige -
Maschen.

Es seien die drei biniren Axen zu Axen der z, der y
und der z genommen. Wenn man die Schaar um 180 Grad um
die Axe der z dreht, so muss das Netz z = 0 wieder mit
sich selbst zusammenfallen; deshalb muss die Axe der z eine
Axe von bindrer Symmetrie fir das Netz der Ebene der zy
sein, was verlangt, dass seine Masche rhombisch oder recht-
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eckig sei (S8atz XIV, Corollarsatz II). Es wiirde dasselbe fiir die
Netze gelten, welche in den Ebenen der zz und yz liegen.

Corollarsatz. — Es folgt aus den vorhergehenden
S#tzen, dass jede terbindire Schaar in eine der vier folgenden
Kategorien gehdrt:

1. Niecht centrirtes, gerades Prisma mit rhombischer Basis,
oder gerades rechteckiges Prisma, das zwei seiner Seiten-
flichen centrirt hat;

2. Centrirtes, gerades Prisma mit rhombischer Basis;

3. Nicht centrirtes, gerades rechteckiges Prisma;

4. Centrirtes, gerades rechteckiges Prisma.

In den Fillen 2 und 4 kann man, um die Schaar abzuleiten,
das Prisma durch ein Oktaeder ACDEA' A" (Fig. 28) mit
rhombischer Basis (zweiter Fall) oder mit rechteckiger Basis
(vierter Fall) ersetzen.

Anmerkung. — Ich habe in meiner » Abhandlung #iber die
Polyeder von symmetrischer [70] Form« mehrere Lehrsitze iber
die bindire Symmetrie bewiesen. Man kann dieselben auf die
Schaaren anwenden, indem man nicht ans den Augen verliert,
dass irgend ein Gitterpunkt als das Symmetrie-Centrum der
Schaar angesehen werden kann, und als der Ort, an dem sich ihre
Axen und Symmetrie-Ebenen kreuzen. Ich werde mich darauf
beschriinken, hier den Inhalt des folgenden Satzes (Corollar des
Satzes XIII meiner Abhandlung) zu wiederholen, dessen directer
Beweis im Uebrigen keine Schwierigkeit bieten wiirde.

>Wenn zwei bindire Axen existiren, die zu einander nor-
mal sind, so ist immer eine dritte vorhanden, welche normal
zu ibhrer Ebene ist<.

Satz LIX. — Dieselben Systeme von Punkt-
reihen und von Netzebenen finden sichinder8chaar,
welche von dem centrirten geraden Prisma abge-
leitet wird, und in der Schaar, welche von demselben
nicht centrirten geraden Prisma abgeleitet wird.

Die Centrirung des Prismas ist nichts anderes als die
Einschaltung eines Gitterpunktes anf die Mitte einer seiner
vier Diagonalen. Wenn man dieselbe Einschaltung bei allen
Prismen der Schaar durchfithrt, indem man immer die Diago-
nale wihlt, welche der urspriinglich genommenen parallel ist,
so ist klar, dass man eine verdoppelte Schaar hat, in welcher
man gemiss dem Satze LIII dieselben Systeme von Punkt-
reihen und von Netzebenen wiederfinden muss, wie in der ur-
sprilnglichen Schaar. Folglich, ete.
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Terndre Symmetrie.

Satz LX. — In jeder Schaar, welche eine ter-
nire Axe besitzt, hat das Netz der zur Axe nor-
malen Netzebene/drelieckige;, gleichseitige Maschen.

8ei M (Fig. 11 und Fig. 29) einer der Gitterpunkte der
Schaar, der so gew#hlt ist, dass er so nahe als mdglich bei
der Axe der terniiren Symmetrie liegt, ohne indessen auf
dieser Axe zu sein. Wir legen durch M die zur Axe nor-
male Ebene, welche sie in O schneidet, und construiren end-
lich das gleichseitige Dreieck M NP um O als Mittelpunkt.

Wenn O ein Gitterpunkt der Schaar ist, so wird das
Netz die Anordnung, welche in der Figur 11 dargestellt ist,
zeigen; M’', N', P' werden auch Gitterpunkte sein, und die
Symmetrie-Axe wird nicht nur eine ternfire, sondern, was mehr
ist, eine senfire Axe sein. Wihlen wir nimlich die Ebene
der Figur (Fig. 11) als Ebene der zy; es ist klar, dass das
Netz der Ebenen z =1, z = 2, ... sich orthogonal auf [71)
dasjenige der Ebene z = 0 projiciren wird; denn indem
man das Netz z = 0 nach der Ebene z = 1 parallel mit ihm
selbst bewegt, darf keiner der Gitterpunkte des Sechsecks
MM NN'PP sich der Axe nihern. Unter diesen Umstinden
wird die Gerade, welche durch O normal zu der Ebene der
Figur gelegt ist, angenscheinlich eine sendire Axe sein.

Indem wir uns diesen Fall vorbehalten, wollen wir in
diesem und den folgenden, sich auf die einfach ternire
Symmetrie beziehenden S84tzen annehmen, dass der Mittelpunkt
O (Fig. 29) des Dreiecks MNP kein Gitterpunkt der Schaar
ist, was indessen nicht besagt, dass die durch diesen Punkt
gefuhrte Axe keinen einzigen Gitterpunkt enthalte.

Das Dreieck M NP (Fig. 29), das Resultat der angegebe-
nen Construetion, wird offenbar das Haupt-Dreieck des Netzes
gein; folglich hat das Netz dreieckige, gleichseitige Maschen.

Satz LXI. — In jeder Schaar mit einfach ter-
nirer Symmetrie haben zwei zur terniren Axe nor-
male Netzebenen, welche durch zwei dazwischen-
liegende Netzebenen getrennt sind, Netze, welche sich
orthogonal aufeinander projiciren.

Nehmen wir die unterste dieser vier Ebenen zur Ebene
der zy, so dass ihre Gleichung z = 0 sei. Ich behaupte,
dass das Netz der Ebene z =— 3 sich rechtwinklig auf das
Netz z = 0 projiciren wird.
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S8ei ABCDEF (Fig. 29) ein regelmissiges Sechseck,
dessen Ecken dem Netze z = 0 angehdren, und errichten
wir auf seiner Ebene, durch den Mittelpunkt O, welcher
auch ein Gitterpunkt des Netzes ist, eine Normale, die eine
ternfire Axe, des|;Bystems sein  wird (S8atz XLVII). Dann
bringen wir parallel mit sich selbst das Netz z =— 0 auf die
Ebene z = 1. Sei MNP das Haupt-Dreieck des Netzes
-z=1, ein Dreieck, dessen Fliche durch die in O er-
richtete Normale durchstochen wird. Die Figur zeigt
die rechtwinklige Projection dieses Dreiecks aunf die Ebene
z=0.

Wenn O mit der Projection eines der Gitterpunkte
M, N, P zusammenfiele, so wiirden die Netze in den Ebenen
z =0, z =1 tibereinander liegen, und die Symmetrie wire
sendr.

Da dieser Fall ausgeschlossen ist, so verlangt die ter-
nire Symmetrie der in O errichteten Normale, dass O mit
dem Mittelpunkte des Dreiecks M N P zusammenfalle; und da
letzteres Dreieck seine Seiten parallel zn AB, A0 und BO
haben muss, so kann es nur zwei Stellungen haben, die invers
zu einander sind, MNP und M'N'P’. Das Dreieck MNP,
dessen Eckpunkte augenscheinlich mit den Centren der Form
der Dreiecke [72] AOF, BOC, DOE zusammenfallen,
kann .angesehen werden, als entstiinde es aus einer Trans-
lation, ohne Drehung, von AOB oder COD oder EOF.
Das Dreieck M'N'P’ dessen Ecken die Centren der Form
von DOC, EOF und AOB sind, wiirde aus der Trans-
lation von einem der Dreiecke BOC, DOE, FOA her-
vorgehen. .

Nebmen wir an, dass das Netz z = 1 in der Projection
das Netz mit unterbrochenen Linien M NP... der Figur
sei. Dann muss, in der Raute . 4 O F'G, die grosse Diagonale
OG durch M gehen, und man erbdlt vermdge der bekannten
Eigenschaften des gleichseitigen Dreiecks OM = 4 OG.
Wenn man also den Gitterpunkt O mit dem auf der Ebene
z = 1 gelegenen Gitterpunkt verbindet, welcher M als Pro-
jection hat, und den ich 3, nennen werde (der aber nicht
in der Figur angegeben ist), so wird die schrige Gerade O M/,
Tréiger einer Punktreihe vom Parameter OJf,. Indem man
auf dieser Punktreihe eine Strecke O Gy = 3 OM, abtrigt,
muss der Gitterpunkt G, (der nicht auf der Figur markirt
ist) offenbar seine Projection in G' haben, und ausserdem
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wird er der Ebene z = 3 angehSren. Woraus man sieht,
dass das Netz z = 3 sich auf das Netz z = 0 projicirt.

Zweiter Beweis. — Sei 00’ 0" 0"’ (Fig. 30) die ter-
pdre Axe, welche durch den Gitterpunkt O geht, der als der
Ebene z = 0 angehdrig| | bétrachtet wird; diese Axe wird in
O’ und O” von den Ebenen z = 1, z = 2 geschnitten, und
im Punkte O" von der Ebene z = 3. Das gleichseitige
Dreieck M'N'P der Figar ist die dreieckige Masche des
Netzes der Ebene z =1, und es hat seinen Mittelpunkt in
O’ auf der terniiren Axe.

Durch die Axe OO’ und durch einen der drei Gitter-
punkte M, N’, P, zum Beispiel durch M’, fahren wir die
Ebene M' O O'm’, weleche N’ P’ in deren Mitte m’ schneiden
und senkrecht suf dieser Linie sein wird. Ueber O P, ON’,
als Seiten, construiren wir den Rhombus ON'P M", dessen
vierte Ecke M" der Schaar angehdren wird, in der’ Ebene
z = 2 gelegen, und amsserdem in der Ebene M'OO'm’ ent-
halten sein wird.

Man wird dann haben

MO =20m = MO,
0"0"'= 00",
O0OM = 90°= O0'""0O"M".

. Also die Dreiecke OO’ M’ und O"' 0" M" sind congruent:
folglich ist M"” O’ gleich und parallel zs OM’; so ist also
O’ auch ein Gitterpunkt der Schaar (Satz XXX). Demnach
projiciren sich die Gitterpunkte des Netzes z = 3 ortho-
gonal auf diejenigen des Netzes z = 0.

(78] Anmerkung. — Es ist leicht zu sehen, dass das
punktirte Netz M'N'P'... (Fig. 29) die orthogonale Pro-
jection des Netzes der Ebene z = 2 sein wird.

Wenn hingegen das Netz M'N'P’... die orthogonale
Projection des Netzes 2=—1 gewesen wiire, dann wiirde M NP
diejenige des Netzes z — 2 gewesen sein.

Corollarsatz. — Wenn man auf der Punktreihe OG,
den Gitterpunkt M, unterdriickt, ebemso wie den auf M,
folgenden derselben Punktreihe, und wenn man dieselbe Ope-
ration auf dem ganzen System der zu O G, parallelen Punkt-
reihen, welche von den Gitterpunkten des Netzes 2 = 0 aus-
gehen, wiederholt, wird man die ternfire Schaar in eine senire
Schaar verwandeln, die als Kern ein gerades Prisma mit
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rhombischer Basis von 60 und 120 Grad haben wird. Umgekehrt
geht man von der sendiren Schaar auf die entsprechende
ternire Schaar iiber, die dreimal reicher an Gitterpunkten
ist, indem man zwei neue Gitterpunkte auf jedem Parameter
eines Punktreihen-Systems -einschaltet, welches zu einer der
beiden grossen Diagonalen des Grund-Prismas von rhombischer
Basis parallel ist.

Aber es ist wichtiz zn bemerken, dass man auf diese
Weise zwei verschiedene Schaaren erhilt, je nachdem man die
eine oder die andere der beiden Diagonalen gewihlt hat; diese
Schaaren haben die Eigenschaft zusammenzufallen, wenn man
eine von ihnen um 180 Grad um die ternire Axe dreht. Also
konnen aus einer und derselben senfiren Schaar zwei tferndre
Schaaren entstehen, welche durch ihre Lage,im Raume ver-
schieden sind, eine directe terniire Schaar und eine inverse
terniire Schaar.

Satz LXII. — Jede Schaar mit einfach ternirer
Symmetrie hat als Kern ein Rhomboeder.

Nebmen wir die Figur 30 und den zweiten Beweis des
vorigen Satzes wieder auf. Drehen wir das Parallelogramm
OM 0"M" durch 120 Grad um OO"'; dann wird der Gitter-
punkt M’ nacheinander an die Stelle von N’ und P’ treten,
und der Gitterpunkt M” wird an die Stelle von N” und P”
treten. Nun werden, ebenso wie die vier Gitterpunkte
O, N', P’, M" einen ebenen Rhombus bilden, auch OM'N' P”
und OM’' P'N" den vorigen gleiche ebene Rhomben sein,
und es ist klar, dass dasselbe von den drei oberen Flichen gilt.

Der so erhaltene Korper wird also ein Rhomboeder sein,
und da er weder in seinem Innern, noch auf seinen [74]
Seiten oder Kanten irgend einen Gitterpunkt der Schaar ent-
hilt, so kann er als das Grundparallelepiped oder der Kern
der Schaar angesehen werden.

Corollarsatz. — Man kann die Schaar auch aus einem
der elementaren Tetraeder OM'N'P’, 0" M"N"P" (Fig.30)
ableiten; die vier Ecken geniigen, um das ganze System der
Schaar vollstindig zu bestimmen; aber dieses Tetraeder ist
genau genommen kein Grundkorper.

Satz LXIII. — Jede Schaar mit ternirer Sym-
metrie besitzt drei Symmetrie-Ebenen, welche durch
die Axe gehen und senkrecht auf den drei Richtungen
der Seiten des Hauptdreiecks des Netzes der zur Axe
normalen Ebenen sind.
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Die Figur 29 zeigt in orthogonaler Projection die drei
Netze der Ebenen z = 0, z = 1, z = 2; alle anderen Netze
der Ebenen z = p projiciren sich auf die vorigen; die Netze
der Form z — 37 auf das Netz z = 0, diejenigen der Form
z2=237 + 1 auf das Netz z == 1, diejenigen der Form
z =37 + 2 auf das Netz z = 2. Eg sei durch O die Gerade
OMG normal zu der Seite 4F gelegt, und durch diese
Gerade eine zur Ebene der Zeichnung normale Ebene. Diese
Ebene wird offenbar eine Symmetrie-Ebene fiir jedes der drei
Netze sein; folglich wird sie auch eine Symmetrie-Ebene fir
die Schaar sein.

Ebenso witrden die durch O normal zu den Seiten 4B
und BC gelegten Ebenen Symmetrie-Ebenen sein; tiberdies
verlangt die ternfire Symmetrie, dass es drei Ebenen giebt.
Folglich u. 8. w.

Die normal zu der Ebene der Zeichnung und parallel zu
den Seiten durch O gelegten Ebenen sind keine Symmetrie-
Ebenen der Schaar.

Anmerkung. — Die Krystallographen bezeichnen mit
dem Namen Hauptschnitt des Rhomboeders jede Ebene
wie OM'm"O"M"m' (Fig. 30), welche durch die geo-
metrische Axe des Rhomboeders und durch zwei seiner sechs
seitlichen Ecken wie M’ und M" geht. O O™ wird die Axe
des Rhomboeders genannt.

Man sieht darnach, dass die drei Hauptschnitte des Rhom-
boeders, welches einer terniiren Schaar als Kern dient, Sym-
metrie-Ebenen ftir diese Schaar sind.

Satz LXIV. — In den Schaaren mit ternirer Sym-
metrie ist jede BSeite der dreieckig gleichseitigen
Masche eines zur terniren Axe normalen Netzes eine
bindre Axe der Schaar.

Dies ist eine offenbare Folge aus den S#tzen LII und
LXIII. Man (75) sieht es tiberdies deutlich auf der Fig. 29,
indem man das Netz MNP als zur Ebene z = 1 gehdrig
ansieht und das Netz M'N'P’ als zur Ebene z — — 1 ge-
horig. Alsdann kommt, nach einer Drehung von 180 Grad
um die Gerade 40D, M auf P’ und P auf M’, u. s. w.; 80
dass das Netz z = 1 die Stelle des Netzes z = — 1 einnimmt
und umgekebrt. Ebenso wtrden sich die Netze 2 = p und
z = — p flir einander substituiren; folglich ist .4 O.D eine
bin&ire Axe.

Ostwald’s Klassiker. 90. 6
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Quaterniare Symmetrie. .

Satz LXV. — In jeder Schaar mit quaternirer
Symmetrie-Axe hat das Netz der zur quaterniiren
Axe normalen Netzebenen qunadratische Maschen.

Bei M (Fig. 31) ein Gitterpunkt der Schaar, welcher in

der kleinsten Entfernung von der quaterniren Axe, aber
ausserhalb dieser Axe liegt. Durch M legen wir eine zur
Axe normale Ebene, die sie in dem Punkte O schneidet; dann
zeichnen wir in den Kreis mit dem Mittelpunkt O und dem
Radius OM ein Quadrat MM’ M" M'", dessen eine Ecke M
gei; die vier Punkte M, M’, M" und M'" werden dem Netz
dieser Ebene angehdren. Dann wird, wenn der Punkt O
einer der Gitterpunkte der Schaar ist, das Netz als Grund-
Parallelogramm das Quadrat OMmM’' haben, und im ent-
gegengesetzten Falle das Quadrat MM M" M.
: Satz LXVI. — Jede Schaar mit quaternirer Sym-
metrie-Axe leitet sich aus dem geraden Prisma mit
quadratischer Basis ab, das sowohl centrirt wie nicht
centrirt sein kann.

Da die quaternire Axe offembar alle Eigenschaften einer
bindiren Axe besitzt, so wird der Kern der Schaar ein gerades
centrirtes oder nicht centrirtes Prisma mit parallelogram-
matischer Basis sein (Satz LV).

Wenn das Prisma nicht centrirt ist, so werden sich alle
Netze der Ebenen z = p auf. dasjenige der zur quaterniren
Axe normalen Ebene z = 0 projiciren und es wird daraus
in orthogonaler Projection die in der Figur 32 angegebene
Anordnung folgen.

Wenn das Prisma centrirt ist, so werden sich die Netze
der Ebenen z = 2; auch auf das Netz mit quadratischer
Masche z= 0 projiciren; aber die Projection der Gitter-
punkte der Ebenen z = 2; 4 1 (Fig. 32) wird auf die Mitte
einer der drei Seiten des Haupt-Dreiecks .4 B C fallen (Satz LV,
Anmerkung I). ‘Nun kann sie aber weder auf O' noch auf
0" fallen; denn das tiber dem Quadrat ABCD, als Basis,
errichtete gerade Prisma wiirde zwei seiner Seitenflichen
centrirt haben, und die beiden [76] anderen nicht centrirt,
ein Resultat, das augenscheinlich unvereinbar mit der Sym-
metrie der vier durch die Gitterpunkte 4, B, C, D ge-
fuhrten quaterniren Axen sein wiirde. Also wird die Pro-
jection des Netzes z =1 auf O, das heisst auf die Mittel-
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punkte der Quadrate des Netzes z = 0 fallen, wie die
Figur 33 es angiebt.

Corollarsatz I — Der Satz LIII kann auf die quater-
niren Schaaren angewandt werden. Dieselben Systeme von
Punktreihen und, yon Netzebenen finden sich in der von dem
geraden centrirten Prisma abgeleiteten Schaar wieder und in
der gehilfteten Schaar, die man erhilt, indem man die in die
Centren der Prismen gesetzten Gitterpunkte unterdrtickt.

Corollarsatz II. — Man kann statt des geraden cen-
trirten Prismas mit quadratischer Basis das Oktaeder mit
quadratischer Basis der Figur 28 nehmen; immerhin ist dieser
Korper kein Grundkdrper der Schaar.

S8atz LXVII. — In dem Falle des geraden, nicht
centrirten Prismas mit quadratischer Basis sind die
vier Seitenkanten quaternire Symmetrie-Axen; die
zu diesen parallelen Axen, welche durch die Mittel-
punkte der quadratischen Basen geftthrt sind, sind
jbenfalls quaternire Axen, aber von der Art der-
eenigen, die wir mit dem Namen Zwischenaxen be-
zeichnet haben; sie enthalten keinen Gitterpunkt
der Schaar.

8atz LXVIII. — In dem Falle des geraden, cen-
trirten Prismas mit quadratischer Basis sind alle
quaterniren Symmetrie-Axen Punktreihen, deren
Parameter die Hbhe des Prismas ist.

Satz LXIX, — In jeder quaterniren Schaar giebt
es Symmetrie-Ebenen, welche dureh die Axe gehen,
und von denendie einen wie die Seiten und dieanderen
wie die Diagonalen des Grund-Quadrats des Netzes
gerichtet sind, das normal zur quaterniiren Axe ist.

Corollarsatz. — Jede Seite und jede Diagonale des

Grund-Quadrats des zur quaterniren Axe normalen Netzes
ist eine binire Axe der Schaar (Satz LII).
' Definitionen.—Die zu den Seiten der Quadrate parallelen
Axen sollen bindre Axen der erstem Art heissen, und die
Axen, welche den Diagonalen dieser Quadrate parallel sind,
sollen binire Axen der zweiten Art genannt werden. Die
ersteren haben die Seite des Quadrats und die anderen die
Diagonale desselben als Parameter.

[77] Diese vier Systeme von Axen schneiden sich unter
Winkeln von 45 und 90 Grad.

Diese verschiedenen Angaben bedtirfen keines Beweises.

6*
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Senéire Symmetrie.

S8atz LXX. — In jeder Schaar mit senirer Axe
hat das Netz der zur Axe normalen Ebenen dreieckig
gleichseitige/\Maschen, cund (die verschiedenen Netze
dieser Ebenen projiciren sich orthogonal aufeinander.

Sei M (Fig. 11) ein ausserhalb der Axe in der kleinsten
Entfernung genommener Gitterpunkt. Legen wir durch M
eine zur Axe normale Ebene, die sie im Punkt O schneidet.
Construiren wir nun das regelmiissige Sechseck MM’ NN’ PP’,
das seinen Mittelpunkt in O hat. Jede seiner Ecken wird
ein Gitterpunkt der Schaar sein, und dasselbe gilt von dem
Mittelpunkt O. Diese Ebene wird als Ebene der zy genmom-
men z = 0 als Gleichung haben.

Auf die Netzebenen z==1, 2=2, ... ist derselbe Beweis
anwendbar; der Schnittpunkt jeder dieser Ebenen mit der Axe
wird auch ein Gitterpunkt sein. Also decken sich die Nefze
dieser Ebenen in orthogonaler Projection mit dem Netze der
Ebene z = 0. Ueberdies ist es klar, dass diese Netze drei-
eckig gleichseitige Maschen haben.

Corollarsatz. — Die senire Axe ist eine der Punki-
reihen der Schaar, und diese Punktreihe ist zu ihrer normalen
Ebene eonjugirt. :

Satz LXXI. — Jede Schaar mit senirer Sym-
metrie-Axe leitet sich ab aus einem geraden Prisma
mit dreieckig gleichseitiger Basis.

Dies ist eine Folge des vorhergehenden Corollarsatzes.
Wenn man auf dem Rhombus O MM N (Fig. 11) ein gerades
Prisma errichtet, das- als Hohe das Intervall hat, welches die
Ebene z = 0 von der Ebene z =1 trennt, so wird dieser
Korper das Grundparallelepiped der Schaar sein, weil OM
und ON zwei conjugirte Punktreihen des Netzes der Ebene
OMM' N sind.

Das gerade Prisma von gleicher Hohe und mit drei-
eckiger Basis OM M’ kann auch als Grundkérper der Schaar
genommen werden.

Corollarsitze. — Alle zur seniiren Axe parallelen Punkt-
reihen sind anch sendire Axen.

[78]) Jede zur seniren Axe Parallele, welche durch den
Mittelpunkt eines der gleichseitigen Dreiecke des zur Axe
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normalen Netzes gelegt ist, ist eine Zwischenaxe, deren Sym-
metrie terndr ist.

Jede zur seniren Axe Parallele, welche durch die Mitte
einer der Seiten der gleichseitigen Dreiecke des Netzes z=—10
gelegt ist, ist ebenfalls''eine Zwischenaxe, aber von binirer
Symmetrie.

Alle zur seniren Axe normalen Netzebenen sind Sym-
metrie-Ebenen.

Alle Netzebenen, welche durch die senire Axe gehen
und den Seiten der Dreiecke des Netzes z = 0 parallel liegen,
sind Symmetrie-Ebenen. Es giebt drei verschiedene Systeme
solcher Ebenen.

Alle Netzebenen, welche durch die seniire Axe gehen und
senkrecht auf den Seiten der Dreiecke des Netzes z =0
stehen, sind auch Symmetrie-Ebenen. Es giebt drei ver-
schiedene Systeme solcher Ebenen.

In jedem der gleichseitigen Dreiecke des Netzes z = 0
ist jede Seite eine binire Symmetrie-Axe der Schaar. Es
giebt drei Systeme solcher Axen und die Axen sind von der-
selben Art.

In den ni#mlichen Dreiecken ist jede auf eine Seite ge-
fillte Senkrechte, welche durch die entgegengesetzte Ecke
gelegt ist, auch eine binire Symmetrieaxe. Es giebt drei
Systeme solcher Axen; diese Axen sind von gleicher Art
unter einander, aber von verschiedemer Art als die vorher-
gehenden.

Definitionen. — Die zu den Seiten parallelen Axen
sollen bin#re Axen der erstem Art heissen; die auf den
Seiten senkrechten Axen, deren Parameter die grosse Diagonale
des Grund-Rhombus des Netzes z = 0 ist, sollen binire Axen
der zweiten Art genannt werden.

Diese sechs Axen-Systeme schneiden sich unter einander
unter Winkeln von 30, 60 und 90 Grad.

S8atz LXXII. — Wenn man in einer Schaar von
einfach ternirer Symmetrie unter den Netzen der
zur Axe normalen Netzebenen diejenigen wegnimmt,
welche eine nicht durch drei theilbare Ordnungszahl
haben, so erhéilt man eine S8chaar von senéirer Sym-
metrie; alle Punktreihen und Netzebenen der ur-
spriinglichen Schaar finden sich in der neuen S8chaar
wieder.
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_ Der erste Theil des ausgesprochenen Lehrsatzes ist be-
reits bewiesen (Satz LXI, Corollarsatz). Die angegebene Weg-
nahme kommt darauf hinaus, [79] zwei Gitterpunkte von je
dreien anf jeder der grossen Diagonalen der geraden Grund-
Prismen mit/'rhombischer' Basis-‘zn beseitigen. Nun haben
wir aber gesehen (S8atz LIII), dass die Einschaltung von neuen
Gitterpunkten oder die Beseitigung der eingeschobenen Gitter-
punkte in einem System von parallelen Punktreihen die ver-
schiedenen Systeme der Punktreihen oder der Netzebenen
nicht #ndert, wenigstens was die Richtung dieser Systeme
anbetrifft.

Die Beseitigung der Ebenen mit Indices, die nicht Viel-
fache von 3 sind, modificirt die Systeme der Punktreihen,
gei es indem es ihre Dichtigkeit dreimal geringer macht, sei
es indem es ihren Parameter dreimal grdsser macht. Sie
modificirt die Systeme der Netzebenen, sei es indem sie
die Dicke der Schichten verdreifacht, sei es indem sie den
Flicheninhalt der Grundmasche der Netze dieser Ebenen
verdreifacht.

Terquaternire Symmetrie.

Der Inhalt der folgenden Lehrsitze und die Definition
auf Seite 94 werden zeigen, was man unter terquaterniirer
Symmetrie zu verstehen hat.

B8atz LXXIII. — Wenn eine Schaar zwei Axenvon
ternirer Symmetrie besitzt, die nicht parallel sind,
so besitzt sie deren vier, welche wie die vier grossen
Diagonalen eines Witirfels angeordnet sind, das heisst
sich unter dem Winkel 70° 31’ 44” schneiden, dessen
Cosinus gleich § ist, und sie kann keine grdssere
Zahl von diesen Axen besitzen. .

Seien 0.4 wnd OB (Fig. 34) die beiden gegebenen Sym-
metrieaxen, welche von demselben Gitterpunkie O ausgehen,
und verldngern wir sie, bis sie die Kugel mit dem Centrum O
und dem Radius gleich 1 treffen. S8chlagen wir den Bogen
des grossten Kreises 4B, und lassen wir das System O A B
sich durch 120 Grad um OB drehen, bis es nach OCB
kommt, dann durch 120 Grad um OC, ete. Auf diesem Wege
werden wir leicht beweisen, dass die terniren Axen entweder
wie die vier Diagonalen eines Wiirfels oder wie die. zehn
Diagonalen eines regelmissigen Dodekaeders angeordnet sind;
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aber wenn man den Mittelpunkt des so erhaltenen regel-
méssigen sphirischen Polygons ABCD ... w nemnt (Fig. 34),
80 muss Ow auch eine Symmetrieaxe der Art sein, dass die
Wiederherstellung der Gitterpunkte sich nach einer Drehung
durch den Winkel/udw € im0 Ow)(vollzieht. Nun wiirde man
in dem Falle des regelmissigen Dodekaeders haben

AwC = 1449,

[80] ein Winkel, der niemals die Orte der Gitterpunkte wieder-
berstellen kann (siehe den Corollarsatz zum Satze XLVI). Also
muss der Fall der zehn terndiren Axen, die wie die Diagonalen
eines regelm#ssigen Dodekaeders liegen, ausgeschlossen werden;
folglich ete.

Diejenigen unserer Leser, weélche einen ausfiihrlicheren
Beweis dieses Satzes wtnschen sollten, finden ihn in meiner
»Abhandlung tiber die Polyeder von symmetrischer Forme.
Ich beschrinke mich darauf, an das, was ich in dieser Ab-
handlung bewiesen habe," zu erinnern:

1. Wenn in einem Polyeder zwei Axen von hoherer
Ordnung als der zweiten vorkommen, so ist das Polyeder
sphiroedrisch (Satz XL der angeftthrten Abhandlung);-

2. Dass zwei Gruppen von sphiiroedrischen Polyedern
existiren, die quaterterniren mit vier terndren Axen, die so
zu einander liegen wie die vier Diagonalen eines Wiirfels, und
die deceinternéiren mit zehn terniiren Axen, die zu einander
liegen wie die zehn Diagonalen eines regelmissigen Dode-~
kaeders. (Corollarsatz zu Satz XLIII derselben Abhandlung);

3. Dass die decemternsiren Polyeder zugleich zehn
quinire Axen haben (Satz LII derselben Abhandlung).

Da die Schaaren niemals quinire Axen besitzen kénnen,
so konnen sie folglich nicht zehn ternire Axen haben.

Daraus folgt offenbar, dass eine jede Schaar, welche zwei
ternire Axen hat, in die Kategorie der quaterterniren
Polyeder gehdrt, und sogar in die specielle Art der quater-
terniren Polyeder mit Symmetrie-Centrum, weil jeder Gitter~
punkt einer Schaar als ihr - Symmetrie-Centrum genommen
werden kann. 8o ist also der vorliegende Satz vollstindig
bewiesen.

Satz LXXIV. — Die Verblndnngs-Ebene von zwei
ternéren, nicht parallelen Axen ist eine Symmetne-
Ebene der Schaar.
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Seien 0.4 (Fig. 35) die eine dieser Axen, und OB die
zweite. Um den Gitterpunkt O beschreibe man mit dem Radiuns
O A gleich 1 eine Kugel, ziehe den Bogen grissten Kreises
A B und die Bégen grasster Kreise 4 C und 4D, so dass man

BAC =120 BAD=1%0°, AC= AD= AB

hat. Durch O.A gehen drei Symmetrie-Ebenen, welche die
Kugel nach drei gréssten Kreisen schneiden werden (Satz LXIII).
Wenn diese Ebenen nicht [81] wie AB, AC und AD ge-
richtet wiren, wiirden sie es wie A5, Ac und Ad sein;
B, C, D wtrden Homologe in B’, C’, D' haben; so wiirden
also nicht nur OB, OC und OD terndire Axen sein, sondern
dasselbe wiirde der Fall sein fuir OB’, O0C’, OD', was dem
vorhergehenden Satze zuwider wire. Folglich sind OA4 B,
0OAC, OAD Symmetrie-Ebenen; es sind tiberdies die drei
Hauptschnitte des Grund-Rhomboeders, dessen Axe wie 0.4
gerichtet ist.

Satz LXXV. — Die Halbirenden der Winkel
70° 31’ 44" und 109° 28’ 16", welche zwei terniire Axen
miteinander bilden, sind Symmetrieaxen fiir das Netz
der Netzebene, welche diese beiden Axen verbindet.

Der Beweis dieses Satzes wird leicht aus den Principien
gefolgert, welche ich in meiner »Abhandlung tiber die Poly-
eder von symmetrischer Form« niedergelegt habe. Denn es
folgt daraus, dass die Halbirende des stumpfen Winkels
(109° 28’ 16”) von zwei terniren Axen eines quaterterniren
Polyeders immer eine bindre oder quaternire Symmetrie-
Axe des Polyeders ist (Satz XLIV jener Abhandlung); also
ist diese Winkelhalbirende eine Symmetrieaxe fiir die Netze
aller Netzebenen, welche durch diese Gerade gehen. Die
Halbirende des spitzen Winkels der beiden terniren Axen
wird also auch eine Symmetricaxe des Netzes ihrer Ebene
sein (Satz XII).

Aufgabe XXIX. — Die S8chaaren zu finden, welche
vier Axen von ternirer Symmetrie besitzen.

In irgend einer Schaar mit rhomboedrischem Kerne sei
00 (Fig. 36) die ternire Axe mit OO’ als Parameter; O
und O’ sind zwei Gitterpunkte und einer der drei Hauptschnitte
ist zur Ebene der Zeichnung genommen. Sei 404’ O' dieser
Hauptschnitt. Wenn man sich durch die Gitterpunkte O, 4, 4’
und O’ zur Axe normale Ebenen GOH, AmB, A'm'B
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1]
und G’ O’ H' gelegt denkt, so konnen diese Ebenen angesehen
werden, als hitten sie als Gleichungen

z2=0, z=1, z2=2, z=23;

sie theilen also den'/Parametér .der’Axe OO’ in drei gleiche
Theile.

Nennen wir jetzt

u den Winkel des Rhomboeders, das heisst den Winkel,
den zwei Seitenflichen dieses Rhomboeders miteinander bilden,
welche alle beide durch O oder alle beide durch O’ gehen;
[82) @ den Parameter der biniren Axen der Schaar, das
heisst die Linge der Seiten des gleichseitigen Dreiecks, das
die Masche des Netzes der Ebenen z2=0, z=1, ... bildet;

d den Parameter der terniren Axe, das heisst die
Linge 0O'.

Es ist leicht zu sehen, dass man, welches auch der
Winkel ¢ des Rhomboeders sein mag,

Am = A'm = V}a,
Om =mm' = 0O'm = }d

haben wird; der Winkel p hiingt von dem Verh#ltniss ab,
das zwischen den Parametern ¢ und d besteht, und man findet
ebenso leicht, dass diese Abhiingigkeit durch die Formel

2
(62) tang® §p = S+
ausgedriickt wird.

Nach dieser Einleitung, die sich auf alle terniren Schaaren
anwenden lisst, suchen wir die Bedingung, unter der die
Schaar vier ternire Axen besitzt.

Nehmen wir zur Ebene der Zeichnung die Verbindungs-
ebene von O O’ mit der zweiten terniren Axe, welche O.A
gein wird. Man weiss, 1. dass diese Ebene einer der drei
Hauptschnitte des Rhomboeders mit der Axe OO’ sein wird
(8atz LXXIV); 2. dass man haben muss

cos mO.A =1 (Satz LXXIII),

woraus folgt, dass
0A=30m= 00

ist; 3. dass die Halbirende OM des Winkels 400’ eine
Symmetrieaxe des Netzes der Ebene der Figur ist (Satz LXXV).
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Man sieht hieraus, dass, wenn man 4M parallel mit
0O’ zieht und O’ M parallel mit 0.4, die Figur 0AMO’
ein Rhombus sein wird, dessen vier Ecken Gitterpunkte sein
werden, die dem Netz der Zeichnungs-Ebene angehdren, und
dessen Diagonalen/ OM) 4 0)/Symmetrieaxen des Netzes sein
werden (S8atz LXXV). Wenn man jetzt O.A4 in drei gleiche
Theile On, nn' und »' 4 theilt, werden die zu O .4 normalen
Ebenen, welche durch O, n, ' und A4 gehen, die Halbirende
OMin C, B’ und N schneiden. Da die Gitterpunkte unseres
Netzes sich nur befinden kdnnen einerseits auf dem System
der Punktreihen G' O'H', A'm' B', Bm A, andererseits [83]
auf dem System der Punktreihen APN, »’ RB'Q, nCO,
so dirfen diese Gitterpunkte nur auf den Durchschnittspunkten
dieser Geraden gesucht werden. Aber zuvdrderst ist es klar,
dass die vier Punkte B, P, Q, D' der Schaar.nicht ange-
héren konnen; denn wenn das fir den Punkt D’ der Fall
wire, so wiirde er, wenn man ihn um 120 Grad um OO’
drehte, an einen solchen Ort des Raumes kommen, dass er «
als Projection auf der Ebene der Figur haben wiirde, und in
dem Innern der Schicht gelegen wire, die zwischen den beiden
durch O und 7 normal zu OA gelegten Ebenen einge-
schlossen ist, was augenscheinlich unmdglich ist. Also kdnnen
nur die Punkte C, B, N Gitterpunkte in dem Innern des
Rhombus O AMO' sein. Folglich beschriinkt sich die Zahl der
Losungen auf drei, wobei der Parameter der Punktreihe O CB'M
nothwendiger Weise gleich O M oder glelch OB =10M
oder gleich OC = { OM ist.

Erste Lésung. — Der Parameter der Punktreihe
auf der Halbirenden ist gleich OM. Das Parallelo-
gramm AO0A' O ist alsdann der Hauptschnitt des Rhom-
boeders mit OO’ als Axe.

Dieses Rhomboeder ist vollstindig bestlmmt durch die
Gleichung

A?n — 04 — Om = 3a,
woraus man findet )
@t =3 Am = $ a,
tang* f u=13, pn=120°.

Die aus dem Rhomboeder von 120° sich ableitende Schaar,
auf welche wir so geftthrt sind, kann erhalten werden, indem
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alle Wiirfel einer Schaar mit cubischem Kern centrirt werden.
In der That kann der Punkt O als der niedrigste Gitterpunkt
eines Wiirfels angesehen werden, dessen Mittelpunkt in O und
dessen hdchster Gitterpunkt in O” wire. Das Parallelogramm
04’ O'M wire déssen Hauptschnitt) [der durch die Diagonale
00" gelegt ist; der Gitterpunkt 4 wire der Mittelpunkt
eines der sechs Wﬂrfel welche sich an die Seiten des Wiirfels
04'0'M anschmlegen

Zweite Ldsung. — Der Parameter der Punkt-
reihe auf der Halbirenden ist gleich OB’. Das Recht-
eck OB’ O’ B ist alsdann der Hauptschnitt des Rhomboeders,
das OO’ als Axe hat. Da die Kante O'B’ des Rhomboeders
normal zu der Seitenfliiche ist, die O’ B als Spur hat, so sieht
man, dass das entsprechende Rhomboeder ein [84] Wirfel
ist. Man wirde dieses Resultat auch aus den Formeln ableiten

a’=3§—ﬂ—l’=%2—m~'=§d’,
tang* fu=4+4=1, u=190°.

Dritte Lésung. — Der Parameter der Punktreihe
auf der Halbirenden ist gleich OC. In diesem Falle
sind O, C, B’, N und M Gitterpunkte der Schaar. Der Haupt-
schnitt ist OCO'C’. Man hat alsdann

a’=3m' =%§;a, =} d*,
tang* tu=4%+4=1%4, u= 70°31' 44",

Aus dem Werthe 70°31'44" des Flichenwinkels des
Grund-Rhomboeders erkennt man, dass seine beiden End-

abschnitte oben und unten zwei regelmiissige Tetraeder sind.
Man hat tiberdies

0C =0m + Om =}§d*+ § d* =} d*=a*,

was hinlinglich beweist, dass die drei Seitenflichen dieses
Tetraeders gleichseitige Dreiecke sind.

Die Gitterpunkte C, C liegen in den Mittelpunkten von
zwei der Seiten des Wﬂrfels, dessen Hauptschnitt OBO'B’
ist; die vier Gitterpunkte, welche sich rechtwmkhg nach D
und D’ auf die Ebene der Zeichnung projiciren, befinden
sich in den Centren der vier anderen Seiten desselben Wiirfels.
So kann man sich also die vorliegende Schaar als aus einem
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Wiirfel abgeleitet denken, dessen sechs Seitenflichen centrirt
sind.

Zusammengefasst lautet unser Ergebniss: Der Wilrfel,
das Rhomboeder von 120° (das Rhomboeder, das Kanten des
Wiirfels gerade abstumpft, nachder Ansdrucksweise der Krystallo-
graphen) und das Rhomboeder von 70°31'44” (von dem der
Wiirfel Kanten gerade abstumpft) sind die einzigen Rhomboeder,
welche als Kern einer Schaar dienen kdnnen, die vier ternire
Axen besitzt.

B8atz LXXVL. —Die Schaaren, welche vier ternire
Axen besitzen, besitzen auch drei quaternire Axen.

- Man kann an die Stelle der drei Rhomboeder, die wir
eben erhalten haben, den centrirten Wiirfel, den nicht cen-
trirten Wirfel und den Wirfel mit sechs centrirten Seiten
setzen. Nun besitzt jeder dieser Korper augenscheinlich drei
quaternire Axen; dies sind die Linien [85), welche Mitten
der einander gegentiber liegenden Seiten dieser Wiirfel paar-
weise verbinden. Diese quaterniren Axen sind zu einander
rechtwinklig.

Satz LXXVI. — Wenn zwei Axen von quater-
nirer Symmetrie vorhanden sind, so giebt es deren
drei, welche rechtwinklig zusammenstossen, und es
kann keine grossere Anzahl geben.

Dieser Satz liesse sich beweisen wie der Satz LXXIII
Die Schnittpunkte der Axen mit der Kugel vom Radins 1
bilden ein System von sechs Punkten, die so vertheilt sind,
dass sie die Ecken eines regelmissigen eingeschriebenen Okta-
eders vorstellen; folglich u. s. w.

Der Satz ist ilberdies eine unmittelbare Folgerung aus dem
Satze XLI meiner »Abhandlung iiber die Polyeder von sym-
metrischer Forme.

Aufgabe XXX. — Die Schaaren zu finden, welche
drei quaterniire Axen besitzen.

Der Grund-Kérper jeder Schaar mit einer quaterniren
Axe ist ein gerades Prisma mit quadratischer Basis, das
centrirt oder nicht centrirt ist (Satz LXVI). Sei nun 04 CB
(Fig. 37) die Basis dieses Prismas, wobei O, 4, C, B Gitter-
punkte der Schaar sind.

8ei ¢ der Parameter der Punktreihen, welche den Seiten
dieses Quadrats gleich gerichtet sind,

d der Parameter der normal zu seiner Ebene gerichteten
Punktreihen.
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Die beiden quaterniiren Axen, tiber die noch zu verftigen
ist, liegen nothwendiger Weise in der Ebene (O+4d CB (Satz
LXXVII); sie sind folglich entweder wie OA und OB, oder
wie OC und G OE gerichtet; sonst wiirde die binire Sym-
metrie, welche die  letzteren | Linien - besitzen (Satz LXIX,
Corollarsatz), die Zahl der quaterniren Axen verdoppeln, was
dem Satz LXXVII widersprechen wiirde. Hieraus ergeben sich
die drei folgenden Ldsungen:

Erste L3sung. — Wenn das Prisma nicht centrirt
ist, so kdnnen die in der Ebene der Zeichnung ‘liegenden
Axen nicht OC und GOE sein; denn eine Drehung von 90°
um OC wirde A4 in das Innere des prismatischen Raumes
filhren, welcher O.4 CB zur Basis hat, und der frei von jedem
Gitterpunkt in seinem Innern bleibem muss. Aber man kann
O A4 und OB als quaternire Axen nehmen, und indem man
O ACB um 90 Grad um O A dreht, erhiilt man, wie man sieht,

d=a.

Also ist in diesem Fall der Grund-Korper ein nicht cen-
trirter Wiirfel.

[86] Zweite Losung. — Wenn das Prisma centrirt
ist, sei D sein Mittelpunkt (der nicht auf der Zeichnung
markirt ist), welcher sich orthogomal auf 4, das Centrum des
Quadrats O 4 CB projicirt.

Wenn die quaterniiren Axen, tber die zu verfiigen ist,
alsdann wie O.4 und O B gerichtet sind, so wird eine Drehung
der Figur O A CB durch 90 Grad um O .4 wie vorhin ergeben

a=d.

Der Punkt D wird den Mittelpunkt des Wiirfels, der 0.4 CB
als Basis hat, einnehmen; der Grund-Kdrper ist alsdann ein
centrirter Wiirfel. )

Dritte Lésung. — Wenn endlich die verfiigharen
quaterniren Axen OC und G OE sind, wird nach einer
Drehung von 90 Grad um OC A4 nach D kommen; woraus
man folgert

Dd = Ad =aV§,

und indem man diese Hohe verdoppelt, erhslt man die Hohe
des Grund-Prismas, nimlich

=aV2.
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Aber wenn man dann das Quadrat O CFE als Basis nimmt,
verwandelt » sich das Prisma augenscheinlich in einen auf
geinen sechs Flichen centrirten Wiirfel.

Corollarsatz. — Die drei Arten von Schaaren, welche
die Losung der Aufgabe XXX liefert, stimmen tiberein mit
den drei Arten'von Schaaren, welche die Losung der Auf-
gabe XXIX liefert.

Es folgt daraus, dass die Schaaren, welche drei quater-
nire Symmetrie-Axen besitzen, vier ternfire Symmetrie-Axen
besitzen und umgekehrt.

Satz LXXVIII. — Jede Schaar, welche zu gleicher
Zeit eine ternire Axe und eine quaterniire Axe be-
sitzt, hat drei quaterniire und vier terniire Axen.

Die drei quaterniren Axen sind eine Folge der Symmetrie,
welche der gegebenen terniren Axe eigen ist; die Schaar be-
sitzt also auch vier terniire Axen (vorhergehender Corollarsatz).

Definition. — Wir werden kiinftig die drei Arten von
Schaaren, deren Existenz wir festgestellt haben, und die zu
gleicher Zeit drei quaternire und vier tern#ire Axen besitzen,
terquaterniire Schaaren nennen [87]. Die Symmetrie,
welche diese Schaaren charakterisirt, soll terquaternire
Symmetrie heissen. Das gleichzeitige Vorhandensein von
zwei dieser sieben Axen geniigt, um die terquaternire Sym-
metrie festzustellen. :

Satz LXXIX. — Jede terquaterniire Schaar be-
sitzt sechs biniire Axen, welche die rechten Winkel,
die von den paarweise verbundemen gquaterniiren
Axen gebildet werden, halbiren.

Seien z' Oz, y' Oy und 2/ Oz (Fig. 42) drei quaternire
Axen, die sich im Gitterpunkt O schneiden. Die Symmetrie
der quaternsiren Axe Oz verlangt, dass die beiden Halbirenden
der Winkel 20y, z'Oy bindre Axen seien (Satz LXIX,
Corollarsatz). Dasselbe wiirde fir die vier anderen Winkel-
halbirenden der Fall sein.

Satz LXXX. — Jede terquaterniire Scliaar besitzt
drei Symmetrie-Ebenen, welche die quaterniren
Axen paarweise verbinden, und sechs andere Sym-
metrie-Ebenen, welche die terniren Axen paarweise
verbinden, aber von anderer Art als die drei vorigen
sind. :

Das Vorhandensein der drei quaterniren Axen fordert,
dass die zu diesen Axen normalen Netzebenen Symmetrie-
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Ebenen der Schaar seien (Satz LII). Die sechs bindiren
Axen verlangen ebenso sechs Symmetrie-Ebenen, welche zu
ihnen normal sein miissen; tibrigens hat man schon gesehen
(8atz LXXIV), dass die Verbindungs-Ebene von zwei terniren
Axen eine Symmetrie-Ebene ist: - eine-solche Ebene ist offen-
bar normal zu einer der sechs bindren Axen des Systems.

Anmerkung. — Um sich die gegenseitige Stellung
dieser Axen und Ebenen vorzustellen, kann man einen Wiirfel
betrachten, dessen Mittelpunkt der Punkt ist, in dem sie sich
treffen. Die vier Diagonalen des Wilrfels sind die terniren Axen;
die drei Geraden, welche die Mitten der einander gegeniiber-
liegenden Seiten paarweise verbinden, sind die quaterniiren Axen;
die sechs Geraden, welche die Mitten der einander gegeniiber-
liegenden Kanten paarweise verbinden, sind die biniiren Axen;
die Ebenen, welche durch den Mittelpunkt parallel zu den
Seitenflichen gelegt werden, sind die drei Symmetrie-Ebenen
der ersten Art; und die Ebenen, welche durch zwei gegen-
tiberliegende Kanten gelegt werden, sind die sechs Symmetrie-
Ebenen der zweiten Art.

Man kann auch die Oberfliche der Kugel mit Hillfe von
drei grossten Kreisem in acht Dreiecke mit drei rechten
Winkeln theilen: die Ecken Q, Q’, Q",... dieser Dreiecke
sind alsdann die Husseren Enden von quaterniren Axen;
die Mittelpunkte [88] 7, 7", T",... dieser selben Dreiecke
sind die kusseren Enden von ferniren Axen, und die Mitten
B, B’, B",... ibrer Seiten sind die #ussersten Enden von
bmiren Axen

Wenn man sich daranf beschrankt nur die kleinsten der
von diesen Axen gebildeten Winkel zu beachten, und indem
man den Mittelpunkt der Kugel O nennt, erh#lt man die
folgenden Beziehungen der Winkel:

QOQ = 90°, QOT = 54°44'8",
TOT = 170°31'44", QOB = 45°,
BOB' = 60°, TOB = 35°15'52" .

Satz LXXXI. — Wenn in einer Schaar eine seniire
Symmetrie-Axe vorkommt, so kann es darin keine
andere Axe geben als biniire, welche in der zu dieser
Axe normalen Ebene gelegen sind.

Zun#ichst konnen vor allem nicht gleichzeitig zwei senare
‘Axen existiren, weil es kein regelmissiges Polyeder giebt,
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dessen Kantenwinkel zu sechsen in jeder Ecke zusammenstossen
(siehe die Beweise der Sitze LXXIII und LXXVII, oder
besser noch den Satz XLI meiner »Abhandlung tiber die
Polyeder von symmetrischer Forme).

Wenn in der Schaar eine terndire oder quaternire, oder
gelbst eine zu der senfirem Axe schrigliegende binire Axe
vorkime, so wiirde die dieser Axe eigene Symmetrie die senire
Axe zwingen, sich zu wiederholen, und es wiirde in der Schaar
wenigstens zwei senire Axen geben, was nach der vorher-
gehenden Bemerkung nicht méglich ist.

Classification der symmetrischen 8chaaren,

In Bezug auf ihre Symmetrie kann man sieben Classen
von Schaaren unterscheiden, die ich in folgender Weise bezeichne :

Erste Classe. — Terquaterniire Schaaren. Drei quater-
niére Axen, vier ternire Axen und sechs biniire Axen, welche
wie die Linien angeordnet sind, die in einem Wirfel die
Centren der Gegenseiten, die Gegenecken und die Mitten der
Gegenkanten paarweise verbinden. Drei zn den quaterniren
Axen normale Symmetrie-Ebenen; sechs zu den biniren Axen
normale Symmetrie-Ebenen,

Drei verschiedene Arten von Anordnungen:

1. Der Wirfel; - - -

[89] 2. Der centrirte Wtirfel, an dessen Stelle man das
Rhomboeder von 120 Grad setzen kann; :

3. Der Wiirfel mit centrirten Flichen, statt dessen man
das Rhomboeder von 70° 31" 44", oder das centrirte Prisma
mit quadratischer Basis setzen kann, dessen H¢he gleich ist

dei Seite der Basis multiplicirt mit ¥2, Das regelmissige
Tetraeder und das regelmiissige Oktaeder kdnnen auch zur
Ableitung dieser dritten Art diemen.

Zweite Classe. — Sendire Schaaren. Eine seniire Axe,
die normal zu einer Netzebene ist, deren Netz dreieckige,
gleichseitize Maschen besitzt; drei binire Axen einer ersten
Art, den Seiten des Haupt-Dreiecks parallel; drei binfire Axen
einer zweiten Art, den Hohen parallel.

Eine Symmetrieebene, normal zu der seniren Axe; drei
Symmetrieebenen von einer Art, normal zu den biniren Axen
der ersten Art; drei Symmetrieebenen einer anderen Art,
normal zu den bindiren Axen der zweiten Art.
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Eine einzige ‘Art der Anordnung, angegeben durch die
sechs Ecken eines geraden Prismas mit dreieckig glgichseitiger
Basis. Das Grund-Parallelepiped "ist ein gerades Prisma,
dessen Basis ein Rhombus von 60 und 120 Grad ist.

Dritte Clasge.~~ Quaternire)Schaaren. Eine quaternire
Axe, die normal zu einer Netzebene ist, deren Netz quadra-
tische Maschen besitzt; zwei binire Axen einer ersten Art,
parallel zu den Seiten dieses Quadrats; zwei binire Axen
einer zweiten Art, parallel zu den Diagonalen.

Eine zu der quaterniren Axe normale Symmetrieebene;
zwei Symmetrieebenen von einer Art, normal zu den bindiren
Axen der ersten Art; zwei Symmetrieebenen einer anderen Art,
normal zu den biniren Axen der zweiten Art.

Zwei verschiedene Arten von Anordnungen:

1. Das gerade Prisma mit quadratischer Basis;

2. Das centrirte gerade Prisma mit quadratischer Basis;
man kann statt dessen ein gerades Oktaeder mit quadratischer
Basis nehmen. °

Vierte Classe. — Terniire Schaaren. Eine ternire Axe,
normal zu einer Netzebene, deren Netz dreieckig gleichseitige
Maschen besitzt; drei bin#ire Axen von einer Art, parallel zu
den Seiten des Haupt-Dreiecks.

Drei Symmetrieebenen, welche durch die ternire Axe
gehen und senkrecht auf den biniiren Axen sind.

 [90] Eine einzige Art der Anordnung, die durch die
acht Ecken eines Rhomboeders angegeben ist.

Finfte Classe. — Terbinire Schaaren. Drei binire
Symmetrieaxen, zu einander rechtwinklig und alle drei von
verschiedener Art; drei Symmetrieebenen, welche diese Axen
paarweise verbinden.

Vier verschiedene Arten von Anordnungen:

1. Das gerade Prisma mit rechteckiger Basis;

2. Das centrirte gerade Prisma mit rechteckiger Basis;
man kann statt dessen das gerade Oktaeder mit rechteckiger
Basis nehmen;

3. Das gerade Prisma mit rhombischer Basis; man kann
dafiir ein gerades Prisma mit rechteckiger Basis nehmen, das
auf seinen beiden Grundflichen, oder auf zwei seiner Seiten-
flichen, die parallel und einander gegentiber liegend sind,
centrirt ist;

4. Das centrirte gerade Prisma mit rhombischer Basis;

Ostwald’s Klassiker. 90. : N 7
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man kann statt seiner ein gerades Oktaeder mit rhombischer
Basis nehpgen, dessen drei Hauptschnitte Rhomben sind.

Sechste Classe. — Bindre Schaaren. Eine einzige bi-
nire Symmetrieaxe; eine einzige Symmetrieebene, die zu der
Axe normalVist/ und derenCNetz sls Haupt-Dreleck irgend ein
spitzwinkliges Dreleck hat.

Zwei verschiedene Arten von Anordnungen:

1. Das gerade, nicht centrirte Prisma mit parallelogram-
matischer Basis;

2. Das gerade centrirte Prisma mit parallelogrammati-
scher Basis; man kann statt dessen das gerade Prisma mit
parallelogrammatischer Basis nehmen, das zwei centrirte Seiten-
filichen hat.

Siebente Classe. — Asymmetrische Schaaren. Keine
Axe, keine S8ymmetriebene.

Eine einzige Art der Anordnung:

Das schiefe Prisma mit parallelogrammatischer Basis.

Die folgende Tabelle zeigt die Anzahl der Symmetrie-
axen in den verschiedenen Classen der Schaaren:

(91]

Zahl der Axen Gesammt-
Schaaren. zahl der
seniire. [quaterniire.| terniire. | binire. | Axen.

Terquaternire 0 3 4 6 13
Sen#ire .. ... 1 0 0 6 7
Quaternire . . 0 1 0 4 5
Terndre . ... 0 0 1 3 4
Terbinire . . . 0 0 0 3 3
Bindire ... .. 0 0 0 1 1
Asymmetrische| 0 0 0 0 0

Man sieht aus dieser Tabelle, dass die Gesammtzahl der
Axen gentigt, um jede dieser Classen vollstindig zu definiren,
da sie nothwendiger Weise eine der sieben Zahlen 13, 7,
5,4, 3,1, 0 sein muss; die erste dieser Zahlen drttckt den
hdchsten Grad der Symmetrie aus, der in einer Schaar vor-
kommen kann.
¢_* In Beziehung auf die Art der Axen wird man bemerken:

[,
’
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1. Dass die quaterniren Axen immer von derselben Art
sind;

2. ‘Dass dasselbe der Fall bei den terniren Axen ist;

3. Aber dass bei den biniren Axen es nicht immer so ist.

Wir wollen bin#ire |Axenider)ersten Art diejenigen mit
dem Kkleinsten Parameter nennen; binire Axen der zweiten
Art diejenigen, deren Parameter grosser ist als der der Axen
der ersten Art, aber kleiner als derjenige der Axen der dritten
Art, wenn letztere Axen in der Schaar vorhanden sind; binire
Axen der dritten Art solche mit allergrdsstem Parameter.

Die folgende Tabelle zeigt die Vertheilung der biniren
Axen nach den Arten ftir jede unserer ersten sechs Classen.
Ich habe die Zahl der Symmetrieebenen, welche die Classe
charakterisirt, hinzugeftigt; jede von ihnen entspricht einer
bindiren, quaterniiren oder senfiren Axe, die zu ihr normal ist.

Bezilglich der Symmetrieebenen von gleicher Art oder von
verschiedenen Arten wolle man sich nach folgender Regel richten:
»Axen von gerader Ordnung und von gleicher Art entsprechen
immer Symmetrieebenen von gleicher Art; umgekehrt sind, wenn
die Axen von verschiedener Art sind, auch die Symmetrie-
ebenen, die zu ihnen normal sind, von verschiedener Art.«

Die Gesammtzahl der Symmetrieebenen ist immer der
Gesammtzahl der in der Schaar vorhandenen Axen von ge-
rader Ordnung gleich.

[92] Die grosste Zahl dieser Symmetneebenen ist also
gleich 9.

Bindire Axen von Gesal‘:;mtzahl
Schaaren. N Symnf;trie-
erster Art. [zweiter Art.| dritter Art. ebenen.
Terquaternire
Sendire . . ...

Quaterndire . .
Ternire . . ..
Terbin&re . .

Bindire .. ...

- N.W D
[l I I I I -}
W wWw Ut

In der zweiten Classe (seniire: Schaaren) ist, wenn der
Parameter der biniren Axen der ersten Art 1 betrigt, der-

jenige der Axen der zweiten Art immer gleich V3.
™*
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In der dritten Classe (quaternire Schaaren) ist, wenn der
Parameter der biniren Axen der ersten Art 1 betrigt, der-

jenige der Axen der zweiten Art immer gleich V2.

In der fiinften Classe (terbinire Schaaren) sind die Ver-
hiltnisse unbestimmt.

Symbolische Bezeichnungen der Symmetrie der Schaaren.

Wenn man durch einen der Gitterpunkte einer Schaar
alle Axen und Symmetrieebenen legt, die ihr angehdren, so
kann man die Schaar als ein Polyeder betrachten, dessen
Mittelpunkt in dem gewihiten Gitterpunkt liegt.

Man nennt Symmetriecentrum in einem Polyeder einen
so gelegenen, centralen Punkt, dass, wenn man ihn mit irgend
einer Ecke des Polyeders verbindet, und die Verbindungsgerade
iiber diesen Mittelpunkt hinaus um eine ihr selbst gleiche
Grosse verlingert, der so erhaltene Punkt ebenfalls eine Ecke
des Polyeders ist, welche die homologe der urspriinglichen
Ecke in Bezug auf dieses Symmetriecentrum genannt wird.

Nicht alle Polyeder besitzen ein solches Symmetriecentrum;
wenn es existirt, so filhrt seine Gegenwart ein besonderes
Element der Symmetrie bei ihnen ein, das wichtig zu beriick-
sichtigen ist.

In irgend einer Schaar sind simmtliche Gitterpunkte
offenbar [98] Centren der Symmetrie, diese Vielziihligkeit der
Centren stimmt tiberein mit der Vielzibligkeit, die man in dem
System der zu einer gegebenen Axe parallelen Symmetrie-
axen bemerkt.

Man kann dieselben symbolischen Bezeichnungen, welche
mir gedient haben, um die Symmetrie der gewdhnlichen Poly-
eder auszudrticken (Abhandlung tiber die Polyeder von sym-
metrischer Form, Journal de Mathématiques, Band XIV), auch
auf die Schaaren anwenden.

In den 8ymbolen, welche ich angenommen habe, bedeutet
der Buchstabe C ein Polyeder, das ein Symmetriecentrum be-
sitzt; dieses Symbol muss sich augenscheinlich in allen Aus-
driicken fir die Symmetrie der Schaaren vorfinden.

Die Buchstaben 7, L, L' bezeichnen Symmetrieaxzen;
A% L* L'* bin#ire Axen; 7% L% ... ternire Axen, und so
weiter, wobei der obere Index die Ordnungszahl der Axe
angiebt.
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Der Buchstabe ./ wird immer fiir die Hauptaxe ange-
wandt, welche die Einzige ihrer Art ist.

Die Zahl der Axen von gleicher Art wird durch den Coeffi-
cienten angezeigt, welcher dem symbolischen Buchstaben dieser
Axen vorangeht; 's0/bedeutét)die(Bezeichnung (.2%, 3 L%, 3L'?)
eine seniire Hauptaxe verbunden mit drei binirem Axen einer
bestimmten Art und drei anderen biniiren Axen einer anderen Art.

Die Symmetrieebenen werden durch die Buchstaben I, P, P’
bezeichnet; man wird den Buchstaben IT fir die Symmetrie-
ebene wihlen, welche zur Hauptaxe .7 normal ist; die Sym-
bole P9, P9, PY fur die zu den Axen L9,1'9, LY normalen
Symmetrieebenen. Die Anzabl dieser Ebenen wird in Form
eines Coefficienten vor dem Buchstaben P gesetzt: so wird
also (IT, 3 P* 3 P'*) eine zur Hauptaxe normale Symmetrie-
ebene bedeuten, drei Symmetrieebenen von eimer Art, normal
zu den Axen 3L?! und drei Symmetrieebenen einer andersn
Art, normal zu den Axen 3L™.

Nachdem dies festgesetzt ist, werden die Symbole unserer
sieben Classen von Schaaren die folgenden sein.

Schaaren. Symbole ihrer Symmetrie.
Terquaternéire . ... | 3L* 4L3 6L* C, 3P, 6P
Sentire ......... A% 3L 3L% C,II, 3P% 3P
Quaterniire. . . .. .. A% 21 2L C, I, 2P%, 2P
Ternfire. . ....... A3 3L C, 3P
Terbindre ....... A% LY, L, C, II, P¢, P
Bindire ......... A, C, I1.

Agymmetrische. . . . | 0L, C, 0 P.

[94] Es ist wichtig, zu bemerken, dass hier die Buchstaben
C, 4, L, II, P, ... nicht einen einzigen Punkt, eine einzige
Linie, oder eine einzige Ebene vorstellen, wie das bei den
Polyedern mit begrenzter Zahl der Ecken stattfindet, sondern
ein ganzes System von Punkten, oder ein System von Axen,
die alle parallel sind, oder ein System von gleichfalls unter
einander parallelen Ebenen.

Es bleibt noch hinzuzuftigen, dass es in den Schaaren
Centren ‘der Symmetrie giebt, welche nicht mit den Gitter-
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punkten der Schaar zusammenfallen; diese Symmetriecentren
gind die Analogen der Zwischenaxen und der Zwischenebenen,
von demen wir pp. 65—66 und 67—68 gesprochen haben.
So existiren in der asymmetrischen Classe acht verschie-
dene Systeme von, Bymmetriecentren, n#imlich: 1. die Gitter-
punkte der Schaar; 2. die Centren der Grund-Parallelepipede;
3. die Centren der Seiten dieser Parallelepipede, welche
Centren sich in drei verschiedene Kategorien theilen; 4. die
Mitten der Kanten, welche ebenfalis drei verschiedene Systeme
von Centren bilden. Man kann hierlber die Abhandlung von
Herrn Philippe Bretorn nachsehen (Journal de Mathématiques
de M. I/zoumlle, Band X, Seite 430)

Es sei wohlverstanden, dass wir uns darauf beschriinken,
nur die Centren zu betrachten, welche mit den Gitterpunkten
zusammenfallen, ebenso wie wir bei den Symmetrieaxen nur
diejenigen berticksichtigt haben, welche durch die Gitterpunkte
giengen.

Von den verschiedenen Arten der Anordnung der Gitter-
punkte in derselben Classe von Schaaren.

Man hat bereits bemerken kdnnen, dass derselben Classe
von Schaaren Schaaren angehdren, die nach der Anordnung
der Gitterpunkte sich vollkommen verschieden zeigen, obgleich
bei allen die Axen und die Symmetrieebenen dieselben sind.
Ich werde sie die verschiedenen Arten der Classe nennen.
Herr Frankenheim, der in seinen schdnen Untersuchungen
tber die Krystallographie*) zu einer Unterabtheilung derselben
Art gekommen ist, hat diese Arten mit dem Namen Ordnungen
bezeichnet, aber der Ausdruck »Arten« ist, scheint mir, hier
vorzaziehen, da er den .geometrischen Thatbestand ausdriekt,
dem gie entsprechen. Aus demselben Grunde verwerfe ich
die Bezeichnung Typen, unter welcher ich sie anfangs in
einer Mittheilung an die Société Philomathique am 17. Mérz
1849 beschrieben habe.

[95] Zwei Schaaren von derselben Classe gehdren ver-
schiedenen Arten der Symmetrie an, wenn man die eine der
Schaaren, indem man in continuirlicher Weise die Zwischen-
riume ihrer Gitterpunkte variirt, ohne dass sie einen ein-
zigen Augenblick ihre Symmetrieaxen verliert, trotz-

*) Acta Naturae curiosorum, Band XIX, 2. Theil, pag. 483.
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dem nur theilweise mit der anderen Schaar zur Deckung
bringen kann. Solches sind zum Beispiel die Schaar, welche
vom Wirfel abgeleitet wird, und diejenige, welche vom cen-
trirten Wtirfel abgeleitet wird. Wenn man in dieser letzte-
ren die Seite des, Wiirfels,sich verindern lisst, so kann man
die Hilfte der Gitterpunkte mit denen der ersten Schaar zur
Deckung bringen; aber die andere Hilfte, welche sich auf
den Centren der Form der Wirfel befinden, bleiben ausser
Deckung.

Zwei Schaaren gehdren derselben Art an, wenn eine con-
tinuirliche Variation ihrer Parameter sie deckbar machen kann.

Wenn die drei Axen, deren Parameter man variiren lisst,
conjugirte Punktreihen von jeder der beiden Schaaren sind,
80 gehdren diese immer zu derselben Art der Anordnung;
denn das Zusammenfallen der homologen conjugirten Punkt-
reiben, Gitterpunkt auf Gitterpunkt, zieht dasjenige der Schaa-
ren nach sich.

Alle verschiedenen Arten einer und derselben Classe
konnen immer aus einer der Arten der Classe abgeleitet wer-
den durch das Hinzuftigen von neuen Gitterpunkten, sei es
im Centrum der Form des Grundkdrpers, sei es auf den
Centren seiner Seitenflichen; wir sagen alsdann, dass man
diesen Korper im Centrum seiner Form oder auf seinen Seiten-
flichen centrirt.

Ich will einige neue Details zu dem hinzufiigen, was schon
tiber die Eintheilung unserer Classen oder Systeme in Arten
gesagt ist. .

Terquaternires System. — Es umfasst drei verschie-
dene Arten:

1. Die hexaedrische Art: der Grundkdrper ist ein Wiirfel,
der ein Moleciill auf jeder seiner Ecken triigt (siehe die Be-
merkung auf Seite 5, Zeile 33);

2. Die oktaedrische Art: der Kdrper, aus dem sie abge-
leitet wird, ist ein regelm#ssiges Oktaeder, das auf jeder seiner
Ecken ein Molectll .trigt; man kann es durch ein regelmissiges
Tetraeder ersetzen, welches eine ihm #quivalente Form ist,
oder auch durch das Rhomboeder von 70° 31" 44”. Diese Art
wird vom Wirfel durch Centrirung der sechs Seitenflichen
dieses Kdorpers abgeleitet; alsdann trigt der neuwe Wiirfel
(Wtirfel mit centrirten Seitenflichen) ausser den Molectilen seiner
Ecken ein solches im Centrum von jeder seinmer Seitenflichen.
Die Symmetrie des so erhaltenen Korpers ist unmittelbarer ein-
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leuchtend als diejenige von allen seinen anderen #quivalenten
Formen;

3. Die dodekaedrische Art: der Korper, aus dem sie ab-
geleitet wird, ist ein Rhombendodekaeder, [98] welches ein
Molectll auf\ jeder |seiner| vierzehn, Ecken und ausserdem ein
centrales Molectll trigt.

Man kann sie aus dem Wirfel ableiten, indem man ein
Molecill in dem Centrum der Form des Korpers hinzuffigt.
Wenn man die acht Ecken eines solchen Wiirfels durch Ge-
rade mit den sechs Centren der benachbarten Wirfel ver-
bindet, welche jeder seiner sechs Seitenflichen anliegen, so
kommt man auf das centrirte Rhombendodekaeder zurtick.

Man kann auch als Grundkorper das Rhomboeder von
120 Grad nehmen; aber die Symmetrie der Schaar ist als-
dann weniger einleuchtend als in dem Fall, wo man den cen-
trirten Wirfel betrachtet.

Sensires System. — Eine einzige Art (siehe Seite 96).

Quaterniires System. — Es umfasst zwei verschiedene
Arten: .

1. Die hexaedrische Art, deren Grundkdrper ein gerades
Prisma mit quadratischer Basis ist;

2. Die oktaedrische Art, welche sich von einem gergden
Oktaeder mit quadratischer Basis ableitet. Man erhilt dieses
Oktaeder, indem man das gerade Prisma mit quadratischer
Basis centrirt und dieses Centrum mit den vier Ecken der
Basis verbindet und diese wieder mit dem Centrum des unten
anliegenden Prismas.

Ternires System. — Eine einzige Art (siehe Seite 97).

Terbin#res System. — Vier verschiedene Arten:

1. Die rechteckig hexaedrische Art: der Grundkdrper ist
ein gerades Prisma mit rechteckiger Basis, das auf jeder seiner
acht Ecken Molecille trigt; die Netze der drei Symmetrie~
ebenen des Systems haben alsdann rechteckige Maschen;

2. Die rhombisch hexaedrische Art: der Grundkdrper ist
ein gerades Prisma mit rhombischer Basis. Diese Art wird
aus der vorigen abgeleitet vermittelst der Centrirung von
zwei gegenitberliegenden Flichen, zum Beispiel der beiden
Basen des Grund-Prismas. Man weiss in der That, dass, wenn
man die Maschen eines rechteckigen Netzes centrirt, dieses
sich in ein Netz mit rhombischer Masche verwandelt. In
diesem Fall besitzen die Netze der beiden verticalen Symmetrie-
ebenen rechteckige Maschen; aber in der dritten Ebene ist die
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Masche rhombisch: die zu dieser letzten Ebene normale Axe
kann je nach dem Fall von erster, zweiter oder dritter Art sein;

3. Die rechteckig oktaedrische Art: der Kérper, aus wel-
chem sie abgeleitet wird, ist ein gerades Oktaeder mit recht-
eckiger Basis. Man) kdnnte ihn @us/dem geraden Prisma mit
gleicher Basis und gleicher Hohe ableiten, indem man dieses
letztere in seinem Centrum der Form centrirte, und [87] diesen
neuen Gitterpunkt mit den vier Gitterpunkten des Rechtecks
der Basis verbinde, und diese wieder mit dem Centrum des
unten anliegenden Prismas. Die Netze der drei Symmetrie-
ebenen haben alsdann rechteckige Maschen;

4. Die rhombisch oktaedrische Art, durch das gerade
Oktaeder mit rhombischer Basis gegeben. Man wird sie aus
dem rechteckigen hexaedrischen Prisma ableiten, indem man
die sechs Seitenflichen dieses letzteren Prismas centrirt. Diese
sechs neuen Gitterpunkte geben, paarweise verbunden, das
gerade Oktaeder mit rhombischer Base. Die Netze der drei
Symmetrieebenen werden dann rhombische Maschen haben.

Man sieht, dass diese vier Arten dem geraden, nicht cen-
trirten Prisma, dem geraden, auf seinen beiden Basen centrirten
Prisma, dem geraden Prisma, das in seinem Centrum der Form
centrirt ist, und dem geraden, auf seinen sechs Seitenflichen
centrirten Prisma entsprechen.

Bin#res System. — Dieses System zeigt nur zwei ver-
schiedene Arten:

1. Die hexaedrische Art, deren Grundkdrper ein gerades
Prisma mit parallelogrammatischer Basis ist;

2. Die oktaedrische Art, die sich aus der vorigen ableitet,
indem man die Prismen dieser letzteren im Centrum der Form
centrirt, oder auch indem man zwei von ihren vier verticalen
Seitenfliichen centrirt. Diese beiden Arten der Ableitung ent-
sprechen einer und derselben Art von Schaaren*) (Satz LV,
Anmerkung I).

* Herr Frankenheim (Acta Nat. curiosorum, Band XIX, 2. Theil,
pag. 570) giebt in den biniren Schaaren (System der schiefen Siiule
von Haiiy) drei verschiedene Arten:

1. Das gerade Prisma mit parallelogrammatischer Basis;

2. Das schiefe Prisma mit rhombischer Basis;

3. Das gerade Oktaeder mit parallelogrammatischer Basis.

Es ist leicht zu sehen, dass die Arten 2 und 3 doppelte An-
wendung finden, und nur verschiedemen Stellungen der biniren
Axe entsprechen, welche horizontal und quer in der schiefen Siule
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Wenn man nach der Centrirung von zwei verticalen
Seitenfliichen das Prisma um 90 Grad dreht, indem man die
Kanten vertical stellt, in welchen sich die vier nicht centrirten
Seitenflichen schneiden, so erh#lt man als Grundkdrper ein
Prisma mit rhombischer; nicht horizontaler Basis, welches das
schiefe rhomboidische Prisma der Mineralogen ist.

Asymmetrisches System. — Dieses System zeigt nur
eine einzige Art.

[08] Ausser durch die Uebereinstimmung in den Stel-
lungen der Axen und Symmetrieebenen sind die verschiedenen
Arten eines und desselben Systems unter einander durch die
im folgenden Lehrsatze dargelegten Eigenschaften verkntpft.

Satz LXXXII. — Alle Schaaren, welche den ver-
schiedenen Arten einer und derselben Classe ange-
horen, und sich eine aus der anderen durch geeig-
nete Centrirung ableiten, zeigen dieselben Systeme
von Punktreihen und dieselben Systeme von Netz-
ebenen.

In der That, wenn man die Grund-Parallelepipede centrirt,
so kommi das darauf hinaus, dass man einen Gitterpunkt auf
die Mitte einer der im Uebrigen willkiirlich gew#hlten Diago-
nalen des Parallelepipeds hinzufiigt. Diese Einschaltung wird
gem#ss dem Satze LIII die Systeme der Punktreihen und Netze
der Schaar nicht #ndern, wenigstens nicht was ihre absolute
Richtung anbetrifft.

Wenn man zwei gegentiberliegende Flichen des Grund-
Parallelepipedes centrirt, so kommt das darauf hinaus, dass
man einen Gitterpunkt auf die Mitte einer der beidem Diago-
nalen der Flichen hinzuftigt, das heisst, man verdoppelt da-
durch die Anzahl der Gitterpunkte des Systems der ent-
sprechenden Punktreihen; die Systeme der Punktreihen und
Netzebenen bleiben aber, was ihre Lage anbetrifft, noch
dieselben. Folglich etec.

Anmerkung. — Derselbe Satz l4sst sich auch auf die
senire und die tern#re Schaar anwenden, welche dieselbe

mit rhombischer Basis von Haily ist, wihrend sie vertical in dem
geraden Oktaeder mit parallelogrammatischer Basis ist.

Die rationellen Eintheilungen der oktaedrischen Art hiingen
von der Art ab, in welcher sich der Gitterpunkt, der das Centrum
des Prismas ist, auf dessen Basis projicirt, in Beziehung auf die drei
Seiten des Hauptdreiecks des Netzes.
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Hauptaxe und dasselbe Netz auf der zu dieser Axe normalen
Ebene haben. Man kann sogar bemerken, dass das tiberein-
stimmende Vorkommen derselben Punktreihen, Systeme und
Netzebenen sich auch auf die senire Schaar und die beiden
directen und inyersen;terniren Schaaren bezieht, die daraus
durch die Einschaltung von zwei neuen Gitterpunkten auf
Jjedem Parameter der diagonalen Punktreihen des Grund-Prismas
mit rhombischer Basis abgeleitet werden (Satz LXI, Corollarsatz).

Von den Netzebenen derselben Art und den Punktreihen
derselben Art in den symmetrischen Schaaren.

Definition. — Zwei Netzebenen sind von derselben
Art in einer Schaar, wenn die Anordnung der Gitterpunkte
in Beziehung auf eine dieser Ebenen dieselbe ist wie die An-
ordnung der Gitterpunkte in Beziehung auf die andere. Um
diese Aehnlichkeit der Anordnung festzustellen, verbindet man
in Gedanken die Gitterpunkte der Schaar mit jeder der beiden
Ebenen, und eins der beiden Systeme wird als beweglich an-
genommen. Dann werden, wenn zu gleicher [99] Zeit die
bewegliche Ebene und die feststehende Ebene, und die beweg-
lichen Gitterpunkte mit den feststehenden Gitterpunkten zur
Deckung gebracht werden konnen, die Netzebenen von der-
selben Art sein.

Damit zwei Netzebenen von derselben Art seien, ist es
nothig, dass ihre Netze zur Deckung gebracht werden kdnnen,
aber diese Bedingung ist nicht immer ausreichend. Es ist
ausserdem ndthig, dass die Deckung der Netze diejenige der
ausserhalb der Ebenen gelegenen Gitterpunkte nach sich ziehe.

Ich habe gezeigt (Journal de M. Liouville, Band XIV,
pag. 137), 1. dass man das inverse Polyeder eines gegebenen
Polyeders erhielt, indem man willkiirlich einen Punkt nahm
und diesen Punkt oder Symmetriepol mit den Ecken des ge-
gebenen Polyeders verband, und diese Geraden nach rtick-
wirts um ihnen selbst gleiche Grdssen verldngerte; 2. dass
man, vermittelst des inversen Polyeders, indem es eine
Drehung von 180 Grad um irgend eine durch den Pol ge-
legte Gerade erfubr, ein symmetrisches Polyeder des ge-
gebenen Polyeders (im geometrischen Sinne dieses Ausdrucks)
erhielt in Bezug auf eine zu der Geraden normale Symmetrie-
ebene.

Die inverse Schaar einer gegebenen Schaar ist immer
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fghig, mit der urspriinglichen Schaar zusammenzufallen; es
gentigt als Symmetriepol einen der Gitterpunkte zu nehmen.
Es folgt daraus, dass das Gleiche gilt von einer Schaar und
einer zu ihr symmetrischen (im geometrischen Sinne des Wortes)
oder anders ausgedriickt, dass zwei in Bezug auf irgend eine
Symmetrieebene symmetrische Schaaren immer zur Deckung
gebracht werden kénnen.

Satz LXXXIII. — Wenn dadurch, dass man das
Netz der Netzebene M der beweglichen Schaar mit
dem Netz der Netzebene F der feststehenden Schaar
zur Deckung bri#chte, die beiden Schaaren anstatt
zusammenzufallen, eine zu der andern in Bezug auf
die Ebene der aufeinander gelegten Netze symme-
trisch (im geometrischen Sinne) wiirden, so wiren die
beiden Netzebenen von derselben Art.

In der That, wenn man dann die bewegliche Schaar um
180 Grad um eine Gerade dreht, welche durch einen der Gitter-
punkte der zusammenfallenden Netze geht, und normal zu der
Ebene dieser Netze ist, so wird man die bewegliche Schaar
mit der Inversen der festen Schaar zur Deckung bnngen*),
das heisst mit der feststehenden Schaar selbst.

(100] S8atz LXXXIV. — In jeder Schaar, die eine
Symmetrieebene besitzt, sind zwei Netzebenen, die
symmetrisch (im geometrischen Sinne) in Bezug auf
diese Ebene sind, von derselben Art.

Indem man die eine dieser beiden Ebenen, welche als
zur beweglichen Schaar gehorig betrachtet wird, um die Ge-
rade dreht, in der sich diese Ebenen schneiden, wird man
ibre Netze zur Deckung bringen, und die bewegliche Schaar
wird (im geometrischen Sinne) symmetrisch zur festen Schaar
in Bezug auf die Ebene der aufeinander gelegten Netze wer-
den. Also werden diese Ebenen, gem#ss dem vorhergehenden
Lehrsatze, von derselben Art sein.

Man kann auch direct feststellen, dass die beiden gege-
benen Ebenen von derselben Art sind, indem man sie beide
durch einen willkiirlich gewihlten Gitterpunkt S gehen lisst,
und durch § eine Normale zu der Symmetrie-Ebene legt.
Diese Normale wird eine Axe von gerader Ordnung sein
(S8atz LII); wenn man also die bewegliche Schaar sich um einen

¥ Notiz tlber die symmetrischen Polyeder der Geometrie,
Satz IV (Journal de Mathématiques, Band XIV, pag. 139).
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. . . 360°
Winkel gleich gmal dem Winkel 3g

2¢ die Ordnungszahl der Symmetrie der Axe ist, so wird eine
Wiederherstellung der Orte der Gitierpunkte stattfinden, und
es ist leicht zu sehen) \dass(die beiden /gegebenen Netzebenen
Gitterpunkt aunf Gitterpunkt zur Deckung kommen werden.

Satz LXXXV. — Zwei parallele Netzebenen sind
von derselben Art.

Es gentigt, das bewegliche Netz parallel mit sich selbst
fortzubewegen, um die Deckung der Gitterpunkte zu erhalten.

Satz LXXXVI. — Wenn in einer Schaar zwei
gleichartige, aber nicht parallele, Netzebenen vor-
kommen, so besitzt diese Schaar wenigstens eine
Symmetrieaxe.

Man kann immer voraussetzen, di¢ beiden Netzebenen,
die ich F und M nennen werde, hitten einen gemeinsamen
Gitterpunkt §, der nicht an den Bewegungen der beweg-
lichen Schaar theilnimmt. Nehmen wir an, dass geeignete
Drehungen dieser Schaar das bewegliche Netz M schliesslich
auf das feststehende Netz F' geftthrt hahen. Die Coincidenz
kann immer (nach der bekannten Theorie der Zusammensetzung
der Drehungen in der Mechanik) als durch eine einzige Drehung
der beweglichen Schaar um eine durch den Gitterpunkt §
gehende Rotationsaxe hervorgebracht angesehen werden. Es
ist wichtig zu bemerken, dass diese Gerade, ebenso wie der
einzige’ Rotationswinkel, welcher 3/ zur Deckung [101] mit
F bringt, sich vollkommen bestimmen l#sst, unter der Be-
dingung allerdings, dass der Rotationswinkel 180 Grad nicht
iibersteigt. Diese Gerade, welche so die Eigenschaft besitzt,
nach einer geeigneten Drehung die Orte der Gitterpunkte
wiederherzustellen, wird eine Symmetrieaxe der Schaar sein.

Corollarsatz. — Es kann in den asymmetrischen Schaa-
ren keine Netzebenen derselben Art, die nicht parallel sind,
geben.

Definition. — Zwei nicht parallele Netzebenen der-
selben Art heissen homologe in Bezug auf eine Symmetrie-
axe der Schaar, wenn die einzige Drehung, welche ihre
Netze zur Deckung bringt, so dass die bewegliche Schaar sich
auf die feststehende Schaar legt, um diese Axe stattfindet.
Man folgert daraus nachstehenden Lehrsatz:

drehen lisst, wobei
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Satz LXXXVIL. — Zwei nicht parallele Netzebenen
derselben Art sind immer homolog in Bezug auf eine
Symmetrieaxe.

Corollarsatz. — Man erhilt alle Bysteme der Netz-
ebenen, welche\ von)iderselben; Art sind wie eine gegebene
Netzebene, wenn man die homologen dieser Ebene in Bezug
auf alle Symmetrieaxen der Schaar aufsucht.

S8atz LXXXVIII. — Die Zahl der Netzebenen von
derselben Art, welche homolog in Bezug auf eine
Symmetrieaxe von der Ordnung ¢ sind, ist gleich g¢,
wenn diese Netzebenen keine besondere Beziehung
der Lage hingichtlich der Axe zeigen, das heisst,
wenn diese Ebenen weder normal noch parallel zu
dieser Axe sind.

360° 360° 360°
) 2 g ' (g—1)
sich drehen lisst, wird man ihre ¢ — 1 homologen erhalten.
Es ist klar, dass ihre Gesammtzahl gleich ¢ ist: diese Ebenen
sind alle von einander verschieden, das heisst sie kdnnen nicht
parallel unter sich sein.

Satz LXXXIX. — Die Zahl der Netzebenen der-
selben Art, die homolog in Bezug auf eine Axe von
der Ordnung ¢ und dieser Axe parallel sind, ist
gleich ¢, wenn ¢ ungerade ist, und gleich ¢, wenn
g gerade ist.

Die Gesammtzahl der Ebenen ist auch hier noch gleich
¢; aber in dem besonderen Falle, wo ¢ eine gerade Zahl
wiire, wiirden die Ebenen paarweise parallel werden; die An-
zahl der Ebenen von verschiedener Richtung reducirt sich
also dann auf 1gq.

[102] Satz XC. — Die Zahl von Ebenen derselben
Art, welche homolog in Bezug auf die Axe von der
Ordnung ¢ sind, reducirt sich auf die Einheit in dem
Falle, wo die urspriinglich gegebene Ebene zu der
Axe normal ist..

Dieser Satz ist einleuchtend.

Vermittelst dieser Principien wird man die Frage nach
der Bestimmung der Netzebenen derselben Art in Bezug auf
ihre Zahl und ihre relative Lage in einer gegebenen Schaar
leicht 18sen kdnnen, sei es in dem Falle, wo diese Ebenen
keine Eigenthiimlichkeit der Stellung beztiglich der Symmetrie-

Indem man die Ebene um
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axen zeigten, sei es in dem Fall, wo sie parallel oder normal
zu einer bestimmten Zahl dieser Axen wiren. Diese Frage
ist von grosser Wichtigkeit in der Krystallographie.

Man kann fir die Punkireihen derselben Art ganz #hn-
liche S#tze aufstellen als diejenigen, welche fiir die Netzebenen
derselben Art geélten. )

Definitionen. — Die Definition der Punktreihen der-
selben Art ist dieselbe wie diejenige der Axen oder Netz-
ebenen derselben Art; die der homologen Punktreihen ist
derjenigen der homologen Netzebenen gleich.

Satz XCI. — Wenn man den Parameter der Punkt-
reihe M der beweglichen Schaar mit demjenigen der
Punktreihe F der feststehenden Schaar zusammen-
fallen liesse, und dabei die beiden Schaaren statt zu-
sammenzufallen zu einander symmetrisch wiirden (im
geometrischen BSinne dieses Wortes) in Bezug auf
eine durch die Punktreihe F gehende Ebene, so wiir-
den die beiden Punktreihen von derselben Art sein.

Denn wenn man alsdann die bewegliche Schaar um 180
Grad um eine Gerade dreht, welche durch einen der Gitter-
punkte der Punktreihe F' geht und normal zur Symmetrie-
ebene ist, so wird man die bewegliche Schaar mit der inversen
der feststehenden Schaar, das heisst mit der feststehenden
Schaar selbst zur Deckung bringen.

S8atz XCII. — In jeder Schaar, welche eine Sym-
metrieebene besitzt, sind zwei in Bezug auf diese
Ebene (im geometrischen Sinne) symmetrische Punkt-
reihen auch von derselben Art.

S8atz XCIII. — Zwei parallele Punktreihen sind
von derselben Art.

Satz XCIV. — Wenn es in einer Schaar zwei
Punktreihen von derselben Art giebt, die aber nicht
parallel sind, so besitzt diese Schaar wenigstens eine
Symmetrieaxe.

[108] 8atz XCV. — Zwei nicht parallele Punkt-
reihen derselben Art sind immer homolog in Bezug
auf eine Symmetrieaxe.

Corollarsatz. — Man erhilt alle Systeme von Punkt-
reihen von derselben Art wie eine gegebene Punktreihe, indem
man die homologen der letzteren in Bezug auf alle Symme-
trieaxen der Schaar aufsucht.



112 A. Bravais.

Satz XCVI. — Die Zahl der Punktreihen derselben
Art, welche homolog in Bezug auf eine Axe der Ord-
nung ¢ sind, ist gleich ¢, wenn diese Punkireihen
weder parallel noch normal zu dieser Axe sind.

Satz XCVIIL, +:Die Zahl-der Punktreihen dersel-
ben Art, welche in Bezug auf eine Axe von der Ord-
nung ¢ homolog und normal zu ihr sind, ist gleich
¢, wenn ¢ ungerade ist, und gleich 1¢, wenn ¢ ge-
rade ist.

Satz XCVIII. — Die Zahl der in Bezug auf die
Axe von der Ordnung ¢ homologen Punktreihen re-
ducirt sich auf die Einheit im Fall der parallelen
Lage der Punktreihe und der Axe.

Diese S#tze wiirden sich genman ebenso beweisen lassen,
wie die S#tze LXXXIV bis XC. Sie sind ilbrigens eine noth-
wendige Folge der Reciprocitit, die zwischen den Punktreihen
und den Netzebenen in den Schaaren, welche »zu einander
polare Schaaren« genannt werden, besteht. Von dieser Reci-
procitdt wird im niichsten Paragraphen die Rede sein.

Satz XCIX. — Symmetrieaxen derselben Art sind
zu gleicher Zeit Punktreihen derselben Art.

Dieser Satz folgt aus den Definitionen der Axen derselben
Art (Seite 63) und der Punkireihen derselben Art (Seite 111).

§ VI. — Von den polaren Schaaren.

Definitionen und Bezeichnungen. — In einer ge-
gebenen Schaar errichten wir in einem ihrer willkirlich als
Anfangspankt genommenen Gitterpunkte Normalen zu drei
conjugirten Ebenen dieser Schaar, und auf jeder dieser Nor-
malen tragen wir Lingen ab, welche gleich sind den Flichen-
inhalten der Elementar-Parallelogramme der Netze, die auf
jeder dieser Ebenen liegen, dividirt durch den mittleren
Abstand der Gitterpunkte. Wenn man mit diesen drei
neuen Axen und diesen Lingen als Parameter [104] eine
Schaar construirt, so soll sie die polare 8chaar der ur-
spriinglichen genannt werden, und sie wird wichtige Eigen-
schaften besitzen, die wir kennen lernen werden.

Wie das S8ymbol ¢g4% in der urspriinglichen Schaar eine
Punktreihe bezeichnet, welche vom Anfangspunkt nach dem
Gitterpunkt geht, dessen Zahlen-Coordinaten g, %, £ sind, so
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soll in der polaren Schaar das Symbol [gA%] eine Punktreihe
bezeichnen, welche vom Anfangspunkt nach dem Punkt geht,
dessen Zahlen-Coordinaten g, %, % sind.

Wie das Symbol (gA#%) die Netzebene bezeichnete, deren
Gleichung

gz +hy +kz=0

ist, so soll das Symbol [(g/%%)] eine Netzebene, deren Gleichung
von derselben Form ist, in der polaren Schaar bezeichnen.

Ich werde fortfahren, mit Pgki%. den Parameter einer
Punktreihe zu bezeichnen, welche vom Anfangspunkt nach
dem Gitterpunkt geht, dessen Zahlen-Coordinaten g, %, £ sind,
das heisst den Parameter der Punktreihe g/Z.

Ich werde mit P[gh%] den Parameter einer Punktreihe
bezeichnen, die vom Anfangspunkt nach dem Punkt geht,
dessen Zahlen-Coordinaten g, 4, %4 in der polaren Schaar sind,
das heisst den Parameter der polaren Punktreihe [gA%).

Der Flicheninhalt des Elementar-Parallelogramms des auf
der Netzebene (g4%) entworfenen Netzes soll in der urspriing-
lichen Schaar auch weiter S(g%%) genannt werden.

Ebenso soll § [(g4%)] der Flicheninhalt des Elementar-
Parallelogramms des Netzes sein, welches auf der Netzebene
gezeichnet ist, derem Bezeichnung {(g%%)] in der polaren
Schaar ist.

Der miftlere Abstand soll nach wie vor ZE genannt
werden, und wenn wir bemerken, 1. dass 100, 010, 001
die symbolischen Bezeichnungen der Axen der z, der y und
der z sind; 2. dass (100), (010), (001) die symbolischen
Bezeichnungen der Ebenen der yz, der zz und der zy sind,
80 wird man nach den vorhergehenden Festsetzungen haben

S(100) (010) S(001)
E ~E “E

Ich werde fortfahren, durch o, 8, d die ebenen Winkel
in den Ebenen der yz, der zz und der zy zu bezeichnen,
und durch u, v, @ die Flichenwinkel, welche als Kanten
die Axen [105) der z, der ¥ und der z haben. Nachdem
dies festgesetzt ist, wird man offenbar haben

(S(100) = P 010 - P 001 - sin &,

(63) P[100]=

P[010]= P[001]=

(64) {8(010) = P 100 - P 001 - sin B,
| §(001) = P 100 - P 010 -8in d.
Ostwald’s Klassiker. 90. 8
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In der polaren Schaar wollen wir zur Axe der [z] die
Normale zu der Ebene der yz mnehmen, zur Axe der [y]| die
Normale zu der Ebene der zz, und zur Axe der (z] die
Normale zu der Ebene der zy. Die drei positiven Halbaxen
sollen nach derselben Beite gerichtet sein wie die positive Halb-
axe von gleicher Bezeichnung in der urspriinglichen Schaar, in
Bezug auf die Ebene, zn welcher jede dieser neuen Axen normal
ist. Die drei ebenen Winkel dieser Axen sollen durch [a], [5],
[0] dargestellt werden; ihre drei Flichenwinkel durch [u], [Fv], (=]

8atz C. — Da die Winkel @, 8, 5 die ebenen Winkel
des Grund-Parallelepipedes der ursprtinglichen
S8chaar sind, und u, v, @ seine Flichenwinkel, so
werden die ebenen Winkel der polaren Schaar 180°
—u, 180° — o 180° — @ sein, und die Flichenwinkel
180° — a, 180° — 8, 180° — 4.

Dieses ist eine wohlbekannte Folge der hxgenschaften der
sphirischen polaren Dreiecke.

Man wird also haben

(65) []) =180°— g, [8]=180° —», [4] =180°— m.
(66) [11] =180° — e, []=180°—§, [®@]=180°— 4.

S8atz CI. — Wenn man in der Spitze O eines
Tetraeders OABD (Fig. 38) auf den drei Beiten-
flichen OBD, OAD und OAB die Normalen Oa,
0b und Od errichtet, die in Bezug auf jede Fliche
auf derselben Beite liegen wie die der Flache gegen-
iberliegende Ecke, und die beziehungsweise den
Flicheninhalten dieser drei dreieckigen Seiten gleich
sind, so wird die Diagonale des tber den Kanten
Oa, Ob, Od construirten Parallelepipedes normal
zu der Basis ABD und gleich dem Flicheninhalt
dieser Basis sein.

Man hat nach der Construction

O a = Flécheninhalt OB D,

O b = Flicheninhalt 04D,

O d = Flicheninhalt 04 B.
Ebenso wie Oa, Ob und Od senkrecht zu den Ebenen
"OBD, OAD und [108] OA4B sind, ebenso werden O .4,

OB und OD senkrecht zu den Ebenen Obd, Oad, und
Oab sein.
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Fillen wir von O die Normale OP auf die Basis 4 BD),
und legen wir durch ¢ die Ebene a.A4’p parallel zu der
Ebene 5 Od und folglich normal zu der Kante O 4. Diese
Ebene mag O 4 in A’ und OP in p schneiden. Projiciren
wir die Dreiecke VO'B\D|und) ABDCauf die Ebene a4’ p.
O und A4 werden die gleiche Projection in 4’ haben; also
werden die beiden Dreiecksprojectionen zusammenfallen. Die
erste der beiden Dreiecksprojectionen hat als Werth

Flicheninhalt O B D cos (Ebene ODB,/i‘.bene ad'p),
und, indem man die Ebenen durch ihre Normalen ersetzt,
Fliicheninhalt OB D cos (O a, 0 4)

~ Flicheninhalt OB D -O(%— 04'.
Die andere Dreiecksprojection wird in gleicher Weise sein

Flécheninhalt 4 B Dcos(Op, %) A)= Flachenmhalt ABD —0-%

Indem man beide Augdrticke gleich setzt, erhdlt man also

0O A’ = Flicheninhalt ABD 0(;;
demnach
(67) Op = Flicheninhalt 4B D.

Legen wir jetzt durch & eine zu @ Od parallele Ebene;
dann wird man ebenso beweisen, dass diese Ebene OP in
einer Entfernung von O schneidet, die genau dem Flichen-
inhalt 4 BD gleich ist, das hexsst in dem schon erhaltenen
Pankt p.

Dasselbe wird der Fall sein, wenn wir durch 4 eine zu
a0b parallele Ebene legen. Diese drei Ebenen mit ihren
parallelen Ebenen 50d, aOd, aOb bilden ein Parallel-
epiped, dessen Kanten Oa, 0b, Od sind, und woven Op
die Diagonale ist. Diese Diagonale ist also gleich mit und
normal zu dem Dreieck 4B D.

Corollarsatz. — Wenn die Kanten Oa, 06, Od, ohne
den Flicheninhalten der Seiten gleich zu sein, ihnen in dem
Verhiiltniss 1:8 proportional wiren, se wtirde die Diagonale
Op auch 2u dem Flicheninhalt ABD in demselben Ver-

8*
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hiltniss 1: B stehen; sie wiirde normal zu der Ebene AB D
bleiben.

(107] Satz CIl. — Wenn (gk%) das SBymbol einer
zu einer gegebenen Schaar gehdrenden Netzebene
ist, und weun mandnCilirer/polaren Schaar die Ge-
rade zieht, welche von dem Anfangspunkte nach dem
Punkte fuhrt, dessen Zahlen-Coordinaten g, %, % sind,
so wird diese Gerade mit dem Symbol [¢gA%] normal
zu der Ebene (gk%) sein.

S8eien Oz, Oy, Oz (Fig. 39) die drei conjugirten Punkt-
reihen, die als Coordinaten-Axen der urspriinglichen Schaar
genommen sind, und seien @, b, d die Parameter dieser Punkt-
reihen. Machen wir

Q4 = hka, OB=gkb, OD=gkd.
Die Gleichung der Ebene A B D in Zahlen-Coordinaten wird

sein
gz+hy + kz = ghk.
Man wird ausserdem haben:
Flécheninhalt O BD = }¢*hkbd sin « = ¢*h%S(100),
(68) Flicheninhalt 0 AD = Ygh*kad sin g =5gh*%S(010),
Flicheninhalt 0.AB = {ghk*ab sin § =§gAh%*S(001).

Die S8ymbole §(100), S(010), S(001) stellen nach unserem
Uebereinkommen die Flicheninhalte der Grund-Parallelogramme
auf der Ebene der yz, der Ebene der 2z und der Ebene der
Zy vor.

Construiren wir nun die drei Axen der polaren Schaar,
und seien auf diesen Axen genommen

Oa = g P[100] = 9—&%7%’1,

05 = apore) = 25010
0d= kP[001] = 115(%01_) \

wobei E der mittlere Abstand der Gitterpﬁnkte ist.
8ei Op die Diagonale des tther Oe, O& und Od con-
struirten Parallelepipedes; die Zahlen-Coordinaten von p
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werden ¢, 2 und % in der polaren Schaar sein, und die Be-
zeichnung der Punktreihe Op wird [gAZ] sein.

Wenn man die Werthe von O, Ob und Od mit den
Ausdrickeh der Flicheninhalte O BD, [108] 0. AD und OAB
(Gleichungen 68) vergleicht; so| sicht, man, dass sie ihnen pro-
portional sind in dem Verhiltniss

5 4ghk =1:4ghAE.

Also wird nach dem Corollarsatz zu dem Satze CI die
Diagonale Op normal zu der Basis 4B D sein, das heisst
zu dem System der Netzebenen, dessen Symbol (g4Z%) ist.

Zweiter Beweis. — Wenn man den Satz CII durch
die analytische Geometrie des Raumes beweisen will, so nennt
man 7 die Neigung der Axe Oz gegen die Ebene der zy
(Fig. 39); &, 7, Ly die linearen Coordinaten des Punktes a;
&, n,, §, diejenigen des Punktes b; &,, 7,, {, diejenigen des
Punktes d, und man setzt

(69) 1 — cos® o — cos® # — cos® J - 2 cos @ cos B cos §=J2,
Man hat alsdann
Od _0Odsind __ kabsin® d

C’=sin'r— J JE

woraus man leicht die Werthe von &,, 7, durch die bekannten
Gleichungen der Normale zu der Ebene der zy in dem System
der schiefwinkligen Axen folgern kann.

Man wtirde ebenso §,, v,, £,, &, 7,, {, bestimmen.

Die Coordinaten &, 7, { des Punktes p werden dann
darch die Formeln gegeben

§JE= (§o + §4 + §1)JE

= gbdsin® @ — had sin a 8in 8 cos @ — £ab sin « sin J cos »;
nJE=(n, + 7, + n,)JE
= —gbdsinasin g cos™ + hadsin®*8—LabsinSsindcosyu;

=—gbdsinfsindcos u — had sina sindcos v + kabsin®o.

Wenn man also um abzukfirzen setzt
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. h . . £k . .
%sm’a—z-smasmﬂcosw—-gsmasmdcosv:r,

(703 — %sinasinﬂcos w’-l—-g- sin® 8 -—%sinﬂsin&cosu:s,

——%sinﬂ 8in dcosy——h—sinasindeosv+ désin’d=t,

b
[109] so werden die Gleichungen der Geraden Op sein
§_n_2¢

r s &t
Nun ist aber bekannt, dass diese Gleichungen, nach der
Substitution der Werthe von », s und ¢, die Normale zu der
Ebene darstellen, deren Gleichung

g ko k.
;§+Z’2+Zg—07

und deren symbolische Bezeichnung (gA4Z%) ist.

S8atz CIII. — Wenn (g4%) das 8S8ymbol einer Netz-
ebene in einer Schaar ist, so wird ihre Normale eine
Punktreihe der polaren Schaar sein, und wird darin
[g%%] als S8ymbol haben.

Dies l4sst sich aus der Umformung des vorhergehenden
Satzes entnehmen. -

Satz CIV. — Der Parameter der Punktreihe
[g2 %] ist gleich dem Flicheninhalt des Grund-Paral-
lelogramms, das auf der Ebene (gh%) entworfen ist,
dividirt durch den mittleren Abstand der Gitter-
punkte.

Die Bezeichnungen bleiben die gleichen wie in dem vor-
hergehenden BS#itzen. B8ei Op (Fig. 39) der Parameter der
Punktreihe (g4 %], wobei g, £ und % keinen anderen gemein-
schaftlichen Theiler als die Einheit haben. Nach dem Corollar-
satz zu Satz CI wird man haben

Op : Flicheninhalt 4 BD = Oa: Flicheninhalt O BD;
nun ist aber dieses Verhiltniss 1:4 gAZE; folglich
Op = 2 Flicheninhalt 4 B D
ghkE

Aber es ist bewiesen worden (Satz XXXVIII, Gleichung 47),
dass man
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Flicheninhalt ABD = }ghkw

hat, wobei w der Flicheninhalt des Grund-Parallelogramms
des Netzes auf der Ebene ABD ist. Folglich wird man
haben, indem man w durch S(gk%) ersetzt,

2 Flicheninhalt A BD = ghkS(ghk),
0p— S(ghk)

—F

[110] woraus man die allgemeine Formel ableitet
S(ghk

(71) Plghk)= %,

welches der algebraische Ausdruck des Satzes ist, den wir
zu beweisen hatten.

Apmerkung. — Demnach sind die Formeln (63) nur
besondere Fille der Formel (71).

Corollarsatz I. — Eine gegebene Schaar hat nur eine
einzige polare Schaar, welche bestimmt ist, sobald man den
Gitterpunkt feststellt, der beidem Schaaren gemeinsam sein
soll. Denn die polare Schaar, welche aus drei beliebig ge-
nommenen conjugirten Punktreihen construirt ist, muss nach
dem vorhergehenden Satz mit der aus jedem anderen Punkt-
reihen-System construirten polaren Schaar zusammenfallen.

Corollarsatz II. — Wenn drei Ebenen in einer Schaar
conjugirt sind, so sind ihre Normalen conjugirte Punktreihen
der Polaren.

Das tiber diesen drei Punktreihen construirte Parallel-
epiped, soll das Polar-Parallelepiped desjenigen sein,
welches sich in der urspringlichen Schaar aus den drei con-
jugirten Ebenen und ihren angrenzenden construiren lisst.

Corollarsatz III. — Umgekehrt sind, wenn drei Punkt-
reihen in einer Schaar conjugirt sind, ihre normalen Ebenen
conjugirte Ebenen in der polaren Schaar.

Corollarsatz IV. — Die Bedingung daftir, dass drei Netz-
ebenen (g4 %), (¢'A'%') und (¢"A"%") conjugirt sind, erbilt man,
indem man die Bedingung sucht, unter der [ghZX], [¢'A' %]
und [¢”%"%"] drei conjugirte Punktreihen sind. Sie wird also
sein (Gleichung 43)

g E — gE'R" +kg'k' — hg'k' + hE g — kW g = £ 1.
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Aufgabe XXXI. — Man berechne S(gi%) oder den
Flicheninhalt der Masche des Netzes der Netz-
ebene (ghk)

Man hat allgemein in der urspriinglichen Schaar (Auf-
gabe XVI)

Pghk = g* P*100 4 A* P*010 4 A* P*001
+ 29k P100 - P010 - cos &
+ 2g%4P100 - P0O1 - cos 8
4 242%P010 - P00 . cosa.

Wenn man ausdriickt, dass die gleiche Beziehung in der
polaren [lll ] Schaar stattﬁndet, und indem man da.nn

(72)

Plgh#) durch —-S(gh/c),
P[100] durch ES(IOO),
P[010] durch %S(o'w),

P[001] durch —%, S(oot),

[e¢] dureh 180° — u,
[8] durch 180° — »,
[0] durch 180° — &
ersetzt, erhdlt man
St (ghk) = g*8*(100) 4 4*8*(010) 4 4*S*(001)
— 29%8(100)-S5(010) cos &
— 2¢%8(100)-8(001) cos »
— 2hkS§(010)-8(001) cos p.
Dies ist die Formel, welche wir schon erhielten (Gleichung 50);
aber es war zweckmissig, sie der Formel (72) gegentiber zu
stellen, um das merkwtirdige Gesetz der Reciprocitit zu zeigen,
welches sie verbindet.

Bemerkung beziiglich der Formeln (72) und-(73)
— Wenn man in der Gleichung (72) setzt -

(73)




Ueber die Systeme von regelmiissig vertheilten Punkten. 121

P100 = Va, P010 = Va, P00\ = V4", Pghk=V7],
b 4 b"
—, C8f=——, €080 =—
Va'd' ' # Vad"’ Vaa''
so wird diese Gleichung
f=ag + 'k +a"k + 28"gh + 28 gk + 2bkk.

Die Grdsse f hat von Herrn Gauss den Namen terniire
Form bekommen (Gauss, Disquisitiones Arithmeticae, p. 426),
und der bertthmte Mathematiker bezeichnet sie durch das Symbol

a , al’ all .
) ( b, bl, b”) —f .
Die Grdsse

ab® 4 a'b'* 4 a"b" —ad'a" — 200’0 =D

wurde von Herrn Gauss die Determinante der Form ge-
nannt. Indem man [112] a, &/, & und &, &', 4" durch ihre
Werthe ersetzt, und die Gleichungen (52) und (54) beriick-
sichtigt, findet man

D=P*100-P*010- P*001
(— 14 cos? @+ cos® B cos? 6-—2 cos & cos B cos ) =— E°,

wobei der Buchstabe E wieder den mittleren Abstand der
Gitterpunkte darstellt.

Man sieht hieraus, dass jede tern#re Form einer Schaar
von reellen oder imagin4ren Punkten entspricht; dass jeder
besondere Werth von f ftir bestimmte und ganzzahlige Werthe
von g, A und % das Quadrat der Entfernung zweier Punkte
oder Qitterpunkte der Schaar ausdriickt; dass die Determi-
pante der Form mit dem Zeichen — genommen gleich ist
dem Quadrat des Volumens des Grund-Parallelepipedes,
oder der sechsten Potenz des mittleren Abstandes der Gitter-
punkte, ete.

Analoge Resultate ergeben sich fiir die biniren Formen

ag® + 2bgh + a'h,

deren Determinante 4 — ca’, mit entgegengesetztem Zeichen
genommen, das Quadrat des Flécheninhaltes des Grund-Parallelo-
gramms darstellt, oder die vierte Potenz des mittleren Ab-

Co8 a0 =
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standes der Gitterpunkte desjenigen Netzes, welches aus dieser
bindren Form abgeleitet wird.
Die ternire Form

b*—da, b*—aad, b*—ad
(ab — b8, @t —bb, a"b" — bb’)
ist von Herrn Gauss die adjungirte Form der Form
a, d, d'
(b, ¥, b")
genannt worden; sie ist in dem Disquisitiones durch den
Buchstaben F bezeichnet.

Es folgt aus der Entstehungsweise von «, @', o”, b, &'
und 3", dass man hat

b* — a'd" = — P?010-P2001 - sin* @« = — §*(100),
bt — aa” = — §*(010),
b"* — ad = — §*(001),

ab — b'8"= P*100- P010- P001 (cos @ — cos § cos )
= §(001)..5(010)- cos u,
a'b — bb" = §(001).8(100)-cos v,
a't’ — bb = S$(100)-5(010)-cos @;
[118] Man wird also nach der Substitution dieser Werthe in
die Form F haben

— F = g*8*(100) 4 A*S(010) + %*8*(001)
— 2¢A~8(100)-8(010) - cos @
— 2¢%S(100)-8(001)- cos »
— 2h%S8(010)-8(001) - cos g ;
also auch
F= — S*ghk) = — E*P*[ghk].

So stellt also die adjungirte ternire Form das Quadrat des
Elementar-Parallelogramms der Ebene (g%%) mit dem Zeichen
— dar. Man sieht auch, dass, wenn die Form f sich geometrisch
durch eine Schaar darstellen 1#sst, ihre adjungirte Form F' in
gleicher Weise durch die polare Schaar dargestellt werden wird,
nachdem jedoch die Parameter der polaren Schaar alle mit
dem mittleren Abstand E multiplicirt worden sind, das heisst
mit der mit negativem Zeichen genommenen sechsten Wurzel
aus der Determinante D.
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Auf die merkwiirdige Analogie, welche zwischen den
Eigenschaften der bin#ren und terniren Formen und den
geometrischen Eigenschaften besteht, welche die Netze und
Schaaren besitzen, hat Herr Seeber in seinen »Untersuchungen
ther die terniren Formen/ciaufmerksam gemacht (siehe Crelle’s
Journal, Band XX, p. 318).

S8atz CV. — Das Volumen des Elementar-Parallel-
epipedes ist das gleiche in der urspriinglichen Schaar
und in ihrer polaren.

Seien 2 das Volumen des Grund-Parallelepipedes der
gegebenen Schaar und [2] dasjenige ihrer polaren Schaar.
Man hat offenbar '

__absindadsin g bdsin ¢
- E E E

wobei @, b, d die Parameter der ursprilnglichen Schaar sind.
Man hat andererseits

(€2

sin u 8in » sin J,

(14) sinﬂsfndsfny:J,
sin ¢ sin d sin v =J,

wenn J wieder durch die Gleichung (69) gegeben ist. Also

i drJ
[ =5,
[114] und da tberdies
abdJ = £ (Gleichung 41),
. E? = & (Gleichung 54),
80 wird endlich
(75) [Q] = Q.

Anmerkung. — Die polare Schaar hat dieselbe Dichtig-
keit, das heisst denselben Reichthum an Gitterpunkten wie die
urspriingliche Schaar; der mittlere Abstand E behilt den-
selben Werth in den beiden Schaaren. Also

(76) (E]=E.

S8atz CVI. — Wenn man die polare Schaar einer
polaren Schaar construirt, so kommt man auf die
urspringliche S8chaar zurick.

Bestimmen wir den elementaren Flicheninhalt des Netzes
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der Ebene der [yz] in der polaren Schaar. Seiten des Grund-
Parallelogramms sind die beiden Parameter

adsinf absind
E E
der eingeschlossene Winkel [a] ist gleich 180° — u (Satz C).
Also wird man haben
a*bd sin B sin §sin u _ Ea’bd sin £ sin dsinpu
E* - Q '
Nun hat man andererseits
abd sin B sin 0 sin u = abdJ = 2;

S[(100)] =

also
S[(100)] = Ea = EP100.

Man wiirde ebenso beweisen, dass man hat
' S[(010)) = Eb = EPo010,
S[(001)]= Ed = EPo01.

Wenn man, der Richtung nach, die Axen der Schaar
construirt, welche die polare der ther Oa, 0b, Od (Fig. 39)
construirten Schaar ist, so trifft man wieder auf O 4, OB, OD.
Wenn man, der Grdsse nach, die Parameter dieser Axen, den
festgesetzten Formeln (Gleichungen 63)

S[(100)]  S[(010)] S[(001)
(E] ’ [E] ' [E]
[115] gemdss, construirt, 50 kommt man wegen [E] = E wieder
auf die Parameter @, b, d, oder 100, P010, P001 zurick. Die
so erhaltene Schaar fillt also mit der urspriinglichen Schaar
zusammen. .

S8atz CVIL — Wenn g4% das S8ymbol einer Punkt-
reihe in einer Schaar ist, so wird die zu ihr normale
Ebene eine Netzebene der polaren Schaar sein und
sie wird [(gA%)] als Symbol haben.

Denn man kann, zufolge des vorhergehenden Satzes, die
polare Schaar als die urspriingliche ansehen, und die ur-
spriingliche als die polare Schaar der anderen. Alsdann muss
(Satz CIII) das Symbol der Normale der Ebene (ghk)[gh#]
sein. Um auf unsere erste Auffassung zuriickzukommen, ge-
niigt es, die Klammern [] von einem Symbol auf das andere
zu-ilbertragen, und man sieht, dass das Symbol der zu der




Ueber die Systeme von.regelm#ssig vertheilten Punkten. 125

Ebene [(g%%)] Normalen gk% sein wird; also ist die Punkt-
reihe gh% normal zu der Netzebene [(g /%))

Corollarsatz. — Wenn [gA%] das Symbol einer Punkt-
reihe der polaren Schaar ist, so wird (g/4%) dasjenige der zu
ibr normalen Ebene,sein; welche, eine Netzebene der ur-
spriinglichen Schaar sein wird.

Definition. — Die Eigenschaften der polaren Schaaren
im Raum haben ihre analogen auf der Ebene. Jedem Netze
entspricht ein polares Netz, welches man in der folgenden
Weise erhilt:

Seien Oa = @, 0b = b die beiden Parameter auf den
Axen Oz, Oy (Fig. 40); sei 0 der Winkel z Oy; sei ¢ der
mittlere Abstand, der durch die Formel

e =absind

gegeben ist. Ueber diesem Netz, und mit dem zu der Ebene

zOy normalen Parameter ¢ als Axe der z constrnire man

eine Schaar, welche das Netz der Ebene z Oy als Basis hat.
Man wird haben

2 = gabsin § = &°;

so wird also & der mittlere Abstand der Gitterpunkte dieser
Hulfsschaar sein.

Indem man ibre polare Schaar construirt, sieht man, dass
die Axe der [z] die Normale O[z] zu der Axe Oy sein wird,
und dass die Axe der [y] die Normale O[y] zu der Axe der
Oz sein wird. Seien also O[e] = [a], O[b] = [b] die auf
diese Axe beziiglichen Parameter, so wird man haben

be ag :
[a] =_3_=b’ [b]=—8——a=a.

[116] Wenn man tiber diesen Parametern ein Netz construirt,
wird man das Polare des gegebenen Netzes erhalten. Wenn
man alsdann auf der Verlingerung der Geraden Ofy] die
Strecke O[4'] = O[b] abtrigt, so wird der Gitterpunkt [5']
auch dem polaren Netz angehdren, und da man

0O[a] = 03, O[¥]= Oa

bat, werden die Dreiecke 4 Oa und [a] O[] congruent. sein.
Daraus folgt der niichste Satz.

Satz CVIII. — Ein polares Netz wird aus dem
urspriinglichen Netz abgeleitet durch eine Drehung
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von 90 Grad des letzteren um einen der Gitter-
punkte, welchen man als Anfangspunkt wihlt.

Anmerkung. — Wenn nach dieser Drehung die Axe
der positiven y zu der Axe der positiven [z] des polaren
Netzes wird, so wird  die Axe der positiven = die Axe der
negativen [y] werden.” Das Umgekehrte wird stattfinden, wenn
die Drehung im entgegengesetzten Sinne gemacht wird.

Satz CIX. — Jede polareSchaar besitzt dieselben
Symmetrieaxen wie die ursprtingliche Schaar.

Sei O (Fig. 41), der den beiden Schaaren gemeinsame
Gitterpunkt, der Anfangspunkt der Coordinaten; seien OO’
eine Symmetrieaxe der urspriinglichen Schaar, und OP
eine der Punktreihen der polaren Schaar, wobei O und P
zwei benachbarte Gitterpunkte auf dieser Punktreihe sein
moégen. Legen wir durch O normal zu OP die. Ebene RR’,
welche eine Netzebene der wurspriinglichen Schaar sein muss
(Satz CVII, Corollarsatz).

Sei jetzt ¢ die Ordnungszahl der Symmetrie der Axe

0
0O0'; lassen wir RR' sich um OO’ drehen um ﬂ, um
2-360° 3-360°
q ’
ebenen der gleichen Art erhalten (Satz LXXXVIII), deren
Normalen ebenfalls Punkireihen der polaren Schaar sein
werden (Satz CIII). Diese Normalen erhilt man, indem man
, . 360° 2-360°
OP um OO’ dreht durch Winkel von , , WS W.:
bei dieser Bewegung wird der Punkt P nach einander auf
P’, auf P", u. 8. w. kommen; woraus man sieht, dass er ¢ — 1
homologe Gitterpunkte in Bezug auf die Axe OO’ haben
wird, und da P irgend ein Gitterpunkt der polaren Schaar
ist, so wird die Axe OO’ eine Symmetrieaxe der Ordnung
g in dieser letzteren Schaar sein.

Corollarsatz. — Wenn in der urspriinglichen Schaar
Symmetrieebenen vorkommen, [117] so werden diese Ebenen auch
Symmetrieebenen der polaren Schaar sein; denn jeder Sym-
metrieebene entspricht eine Symmetrieaxe von gerader Ord-
nung, und diese Axe muss sich in der polaren Schaar wieder-
finden. Nun aber entspricht jeder Symmetrieaxe von gerader
Ordnung umgekehrt auch eine Symmetriebene, welehe zu ihr
normal ist; deshalb wird sich auch diese Symmetrieebene in
der polaren Schaar wiederfinden.

, W. 8. w.: 80 wird man ebenso viele Netz-
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Satz CX. — Wenn man alle Parallelepipede cen-
trirt, deren Vereinigung eine gegebene Schaar A4
bildet, deren polare [4] bekannt ist, und wenn man
8o eine neue Schaar A’ hervorbringt, so wird die
Schaar, die man erh#lt, indem man die sechs Seiten
der polaren Parallelepipede centrirt, welche die
Schaar [4] bilden, und darauf alle ihre Dimensionen

3,
in dem Verhiltniss 1:})/2 vergrdssert, die polare
Schaar von 4’ sein.

Sei £’ der Kern der Schaar A’; das Volumen dieses
Kernes wird augenscheinlich gleich der Hilfte des Volumens
des alten Kerns sein, so dass man haben wird

Q2 =1Q.

Seien E und E’' die mittleren Abstinde in den Schaaren
A4 und A4’, so wird man haben
3
E’=4E, E=EV2.
Audererseits hat man in der Polaren von 4’, indem man

die Grdssen, welche sich auf die Schaar 4’ und ihre polare
(4] beziehen, durch Accente kenntlich macht,

P'f100) = T F019, pron=""1%

Da aber die Netze auf den Ebenen der yz, der zz und der
zy nicht durch die Centrirung verindert werden, erhiilt man
8’(100) = §(100) = EP[100],

S§'(010) = §(010) = EP[010],
8'(001) = §(001) = EP[001].
Also durch Substitution
P'[100] = V2 - P[100],
(17) P'[010] = V2 - P[ot0],
P'[001] = V2 - P[001].

(118] P[100], P[010] und P[001] stellen nach Grdsse und
Richtung die Kanten der drei aneinanderstossenden Seiten des
Grund-Parallelepipeds der polaren Schaar [4] vor. Wenn
man dagegen die Diagonal-Ebenen (110), (101) und (011)

§'(001),

, P[010]=
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betrachtet, und speciell diejenigen, welche als Gleichung in
der urspriinglichen Schaar

z4+y=1, z242z=1,y+42=1

haben, so sieht man leicht, dass diese Ebenen durch das
Centrum des Grund-Parallelepipedes gehen: demnach werden
die Parallelogramme der Netze dieser Ebenen alle centrirt,
und der Flicheninhalt ihrer Masche wird um die Hilfte
kleiner. Man hat also

S’ (110) = §8(110),

S'(101) = 4.S(101),

87 (011) = § S(011).

Also
P'[m]-% 24509 3. 4 g,
und ebenso

P'101] = V34 P[101],
P'[o11] = /2.4 Po11].

P[110], P[101] und P[011] stellen nach Grosse und
Richtung die Diagonalen der drei aneinanderstossenden Seiten
des Grund-Parallelepipedes der polaren Schaar [A4] dar.

Aus den Gleichungen (77) und (78) schliesst man, dass
man, um die Schaar [A'] zu erhalten, die Dlmenswnen des

Grund-Parallelepipedes der Polaren [ 4] mit V2—mult1phc1ren,
und dann die Parameter der Diagonalen ihrer sechs Seiten
um die Hilfte verkleinern muss, was erreicht wird indem
man jhre Seitenflichen centrirt.

Die erste dieser beiden Operationen verwandelt den Kern

£ der Polaren [4] in Q (i/i)s =20. Durch die zweite
Operation bekommt das Grund-Parallelepiped zwei Mal kleinere
Basen und Hohen, sein Kern 2 wird also gleich

12=42=9,
das heisst gleich dem Kern der Schaar A4'. Die Centrirung
der so erhaltenen Schaar [A'] ist demnach vollstindig; eine

weitere Centrirung wiirde, wenn sie stattfinden [118] kinnte,
die Dichtigkeit von [A'] grosser machen als diejemige vor
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A', was nicht méglich ist (Satz CV, Anmerkung). Also ist
[4'] die Polare von der centrirten Schaar A'.

Satz CXI. — Wenn man die Flichen der Grund-
Parallelepipede centrirt, welche eine gegebene
Schaar A4 bilden; deéenen ) Polare[4] bekannt ist, um
durch diese Centrirung eine neune Schaar A4' zu er-
zeugen, so wird man die Polare [4’'] der Schaar 4’
erhalten, indem man die polaren Parallelepipede,
welche die Schaar [4] bilden, censtrirt und alle ihre

Dimensionen in dem Verhiltniss }/2:1 verkleinert.
Seien ganz allgemein M und N zwei Schaaren, wovon
jede die Polare der anderen ist; sei M, das was aus der
Schaar M wird, wenn man alle ihre Parallelepipede centrirt;
sei N; das was aus N wird, wenn man die Flichen ihrer
Parallelepipede, der Polaren derjenigen von M centrirt. Es
folgt aus dem vorhergehenden Satz, dass sowohl M, wie NV,
die Bedingungen in Bezug auf ihre Dimensionen-Verh#ltnisse
erfilllen, um Polaren von einander zu sein; nnr anstatt

Kern M, = Kern Ny
hat man

(79) Kern M, = 2 Kern IV;.

Wenn man dann die Dimensionen von N,- in dem Ver-

héltniss ]/2 zur Einheit vergrdssert, werden die Kerne gleich
und die Schaaren sind gegenseitig polar (voriger Satz).

Man kann dasselbe Resultat erhalten, indem man die

Dimensionen von 3/, in dem Verhiltniss ]/_ 1 verkleinert;
die Kerne werden gleich, und die Schaaren gegenseitig polale

Im gegenwirtigen Falle setzen wir N= 4, M = [4],
und Ny = A’'; hier wird M, die Schaar [A] sein, deren
Parallelepxpede man centrirt ha.t und M, mit Dimensionen,

die in dem Verhaltniss V_ 1 verkleinert sind, wird die
Polare von A4’ sein.

Satz CXIl. — Wenn man in den Ebenen z=10
und 2z =1 die Basen der Grund-Parallelepipede
centrirt, welche eine Schaar 4 bilden, deren Polare
[A] bekannt ist, 8o wird man die Polare der Schaar
mit centrirten Basen (120] A4’ erhalten, indem man
auf den Ebenen [2] =0, [z] =1 die Basen von [4)]

Osiwald’s Klassiker. 90. 9



130 A. Bravais.

centrirt, die Parameter auf den Axen der [z] und
’ 3,
der [y] mit dem Verhaltniss J/2:1 multiplicirt, und
. 3 —
denjenigen der Axe der [2) mit dem Verh&ltniss J/2: 2.

Wenn man, die; Methode anwendet, welche bei dem Be-
weis des Satzes CX gedient hat, findet man

E= E'i/f,
§'(100) = §(100) = EP[100],
§'(010) = §(010) = EP[010],
S§'(001) = 1 .§(001) = § EP[001],

P'[100] = }/2 - P[100],
(80) P'[010] = /2. P[o10],
P'[001] =} }/2- P[001],

§'(110) = §:8(110),
S'(101) = §(101),
§(011) = §(011),

P'[110] = }V/2- P[110],
(81) P'[101 = V2. Plio1],

'[011) = /2. P[o11].

Aus den Gleichungen (80) und (81) schliesst man, dass
3

alle Dimensionen der Schaar [A] mit }/2 multiplicirt werden
milssen, und dass dann der auf die Axe der [z] beziigliche
Parameter ebenso wie der Parameter der Diagonale [110] um
die Hilfte verkleinert werden muss. Diese letzte Operation
ist #quivalent dem Centriren der Parallelogramme in der
Ebene der [zy].

Die erste Operation verindert den Kern 2 der Schaar
[4] in 2Q2; die zweite halbirt ihn und ftihrt ihn auf den
Werth Q zurﬂck die dritte halbirt und macht ihn gleich
3 £2; dieses ist nun auch der Werth des Kernes der Schaar
A'. Also wird die so erhaltene Schaar die Polare von .4’ sein.
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Aufgabe XXXII. —Die polare Schaar einer Schaar
mit bindrer Symmetrie zu finden.

Seien Oz die binire Axe (Fig. 42) und d ihr Para-
meter. Seien Oz =a, Oy = b und zOy = 4.

[121) Nehmen''wir' zuerst -das 'nicht centrirte Prisma an,
und setzen

(82) abd sin 6 = R3;
wenn E der mittlere Abstand ist, werden wir haben
E*= R®.
Die Axe der [z] wird mit Oz zusammenfallen, die Axen der

[#] und der [y] werden in der Ebene der zy gelegen sein,
und man wird haben

gL _4d
{ 6] =E asind Eb
— ;1 ﬁ
Bl=F rms=%°
_ ,1_E’
[@A=F =%

Da die Axen der z, y und z conjugirt sind, weil das gerade
Prisma nicht centrirt ist, werden die Axen der [z], der [y]
und der [z] es gleichfalls sein, und die Grundform der polaren
Schaar wird ein gerades Prisma mit parallelogrammatischer
Basis sein. Das Netz der Ebene der [z][y] wird das in dem
Verhiltniss d: E vergrosserte oder verkleinerte polare Netz
des Netzes der zy sein.

Wenn das Grundprisma centrirt wire (sieche den Satz
LV), so miisste man die Flichen des polaren Prismas, das
man erhélt, ohne zuvorderst die Centrirung in Betracht zu
ziehen, centriren (Satz CX), und darauf seine Dimensionen

in dem Verhltniss 1 : ]/2 vergrossern. Man erhielte auf diese
Weise als Grundform ein gerades Oktaeder mit parallelo-
grammatischer Basis oder, was auf dasselbe hinauskommt,
ein gerades centrirtes Prisma mit parallelogrammatischer Basis.
Man findet dann fiir die Kanten dieses letzteren Prismas

g%
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3 Va* + '+ 2ab cos
0] = B*V2 %absin 0 ,

3, _Va® 4+ b*— 2ab cos 0
(A7 R’VE 2@b sin 0 ’

|
[d] = R* V2 )
und fir den von [a] und [b] eingeschlossenen Winkel

2ab sin 6)

T —

[122] Aufgabe XXXIII. — Die polare Schaar einer
Schaar von terbinirer Symmetrie zu finden.

Nehmen wir als Coordinaten-Axen die drei Axen von
bindrer Symmetrie. Seien @, & und d die Parameter der
Axen der z, der y und der 2; [a], [5] und [d] diejenigen
der Axen der [z], der [y] und der [z]. Die Axe der [z] wird
mit der Axe der z zusammenfallen, die Axe der [y] mit der-
jenigen der y und die Axe der [2] mit derjenigen der z.

Nachdem dies festgestellt, kénnen vier verschiedene Fille
vorkommen.

Wenn das gerade Prisma mit den Kanten @, b und d
nicht centrirt ist, so wird die polare Schaar als Grundform
ein gerades Prisma mit rechteckiger Basis haben.

Setzen wir, um abzuktirzen,

(83) abd = B,

arc (ta.ng =

so werden wir offenbar haben
(84) E3 = R?,

1 o 1 _ o 1
[a]=E’;, l=E 2! [d]—E ra

Wenn das gerade Prisma im Mittelpunkt seines Volumens
centrirt ist (der Fall, in dem die Schaar als aus dem geraden
Oktaeder mit rechteckiger Basis abgeleitet angesehen werden
kann), so ist das Polare ein gerades Prisma, das auf seinen
sechs Flichen centrirt ist, und man findet leicht (S8atz CX)
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(85) B =R,
()] = B3, =28,
)= Ry L
) = BV2 5 =2 o

das tiber [@], [6] und [d] construirte Prisma muss darauf auf
seinen sechs Flichen centrirt werden, und dann wird es gleich-
bedeutend einem geraden Oktaeder mit rhombischer Basis sein.

Wenn das gerade Prisma auf seinen sechs Flichen cen-
trirt ist (der Fall, wo die Schaar als von einem geraden
Oktaeder mit rhombischer Basis abgeleitet betrachtet werden
kann), so kommt man gemiss dem Satze CXI auf das’ gerade,
centrirte Prisma zurtick, welches dem geraden Oktaeder mit
rechteckiger Basis gleichbedeutend ist. Seien wieder a, &
und @ die Kanten [123) des geraden Prismas mit centrirten
Flichen. Man wird nach dem Satz CXI haben

(86) B = }R?, '
[ =RV, =281,

3 —1 1
B =RBVi; =2F7,
W= RVi;=2Fg;

(@], [6] und [d] werden die Kanten des geraden rechteckigen
Prismas sein, welches, indem es centrirt wird, die Grundform
der gesuchten Polaren werden wird.

Endlich, wenn das Prisma aunf zweien seiner Flichen
centrirt wire, z. B. auf seinen beiden Basen (der Fall, wo
* die Schaar als von einem geraden Prisma mit rhombischer
Basis abgeleitet angesehen werden kann), finde man, indem
man sich an die Vorschriften des Satzes CXII hielte, und
durch den vorhergehenden analoge Berechnungen

!l —_— 1 —_— !‘-
[a]=2E a’ [b]—2E’_1 [d]"‘E 2’



134 A. Bravais.

dann wiirde man das tiber [¢] und [b] comstruirte Rechteck
centriren. Man hitte auf diese Weise ein nemes gerades
Prisma mit rhombischer Basis.

Man kann sich fiir diesen letzten Fall auch auf die Ldsung
der Aufgabe XXXII|sttitzen: Man mache in den auf diese
Aufgabe beztiglichen Rechnungen

a=4d, b=d, E=E,
was darauf hinausliuft, die beiden Diagonalen der rechteckigen

centrirten Basis als Axen der z und der y zu nehmen.
Dann ist

(87) E’® = a"*d sin 0,
N ga_t 9
@]=E o sind P
I U P
(b= E dsnd E°
e
m=r =214

und der :Vinkel des Rhombus in der Basis des Polaren wird
180° — 4.

Corollarsatz I. — Das Polare des geraden Prismas
mit rechteckiger Basis ist ein gerades Prisma mit rechteckiger
Basis; daSJenlge des geraden Prismas mit rhombischer Basis
ist [124] ein gerades Prisma mit rhombischer Basis: die beiden
Rechtecke oder die beiden Rhomben sind #hnlich.

Corollarsatz II. — Das gerade Oktaeder mit recht-
eckiger Basis und das gerade Oktaeder mit rhombischer Basis
sind zu einander polar.

Aufgabe XXXIV. — Die polare Schaar einer
terniren oder rhomboedrischen Schaar zu finden.

Die Polare einer Schaar, welche mit einem Rhomboeder
construirt ist, dessen Kantenwinkel gleich «, und dessen
Fldchenwinkel gleich u ist, ist ein anderes Rhomboeder, dessen
Kantenwinkel [¢] (Satz C) gleich 180° — u, und dessen Flichen-
winkel [u] gleich 180° — o ist*).

*) Dieses Rhomboeder hat Professor IVeiss »>Invertirungs-
Rhomboeder« genannt (Abkandlungen der Berliner Akademie, Band
XV, p. 93).
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Das urspriingliche Rhomboeder wird vollstindig bestimmt
gein, wenn man den Parameter a des zur terniren Axe normalen
Netzes mit dreieckig gleichseitiger Masche und den Para-
meter d dieser terniren Axe giebt. Man findet alsdann durch
die bekannten EigénschaftenOdes)Rhomboeders

1 a
‘2(1—cosa)=m+§’

(88) l 1 _ a?
2(1 4+ cos gt) W‘H"

Seien [a] nnd [d] die Parameter von gleicher Bedeutung im
polaren Rhomboeder. Man wird haben

' 1l
2(1 4 cos [u])  4[d]? + 4

Nun ist

1 4 cos [u] = 1 — cos «;
also
d? [a]* . *
94~ 1 147* 3
also endlich
ale] _ d[d]
(69) R

eine Bezichung, welche die Bedingung ausdriickt, unter welcher

zwei Rhomboeder jedes dem polaren des anderen #hnlich sind.
Wegen der Gleichheit der beiden Volumen hat man ferner

die Bedingung

(90) B = 4V3a*d = 1V3[a][d].

(125] Man wird daraus die Werthe von [a] und [d] berechnen,

und zwar
= dV—— —op L :
a’

— . a
[d) = V—d—abd

Aufgabe XXXV. — Die polare Schaar einer
Schaar mit quaternirer Symmetrie zu finden.

Seien « und @ die beiden Parameter der Seiten der
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quadratischen Basis; sei d der Parameter der Axe der z, der
Axe der quaterniren Symmetrie.

Wenn es sich um ein Prisma mit quadratischer Basis
handelt, das nicht centrirt ist, wird man haben

(91) a¥d LR COMNES = R

. 1 1
W =B, [@=Eg;
das Polare wird auch ein Prisma mit quadratischer Basis sein.
Wenn es sich um ein centrirtes Prisma mit quadratischer
Bagis handelt, so wird das Polare ein centrirtes Prisma
mit quadratischer Basis sein, dessen Elemente sich aus der
Losung des zweiten Falles der Aufgabe XXXIII ableiten lassen.
In den auf diesen Fall beziiglichen Formeln mache man
b =a; man wird ein gerades centrirtes Prisma mit qua-
dratischer Basis finden, das sich durch die Formeln bestimmt

(92) B =4PR,

1 .1
[a]—ﬁEa, [d]=2E-

Aufgabe XXXVI. — Die polare Schaar einer
Schaar mit senfirer Symmetrie zu finden.

Die Grandform der Schaar ist ein gerades Prisma von der
Hohe & mit rhombischer Basis, deren Seiten @ und ¢, mit dem
eingeschlossenen Winkel J gleich 120 Grad, sind.

Man findet alsdann (siehe die Lisung der Aufgabe XXXIII,
vierter Fall), dass die Grundform der Polaren ein gerades
Prisma mit rhombischer Basis ist, wobei der Winkel des
Rhombus 180° — § oder 60 Grad ist, das heisst ein Prisma
mit sendirer Symmetrie, wie man es erwarten musste (Satz CIX).

Seien [@¢] und [a] die Seiten des Rhombus in dem polaren
Prisma, und [d] die [126] Hohe; so wird man haben, indem
man die Formeln (87) anwendet,

(93) E’ =4V3a¥d,
)] =ViE* -,

s 1
[d].-—:E ‘—i-.
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Man hat zwischen @, d, [a] und [d] die Beziehungen

[a] __d[d]
(94) ) Zé— - 'ﬁ )
(95) a*d’="'{a]*[d],

welches die Analogen von (89) und (90) sind.

Das Netz der zur sendiren Axe normalen Ebene dreht
gich um 90 Grad in seiner Ebene und modificirt sich in Be-
zug auf seinen kleinsten Parameter.

Aufgabe XXXVII. — Die polare Schaar einer
Schaar mit terquaternirer Symmetrie zu finden.

Wenn die Grundform der Schaar ein Wirfel ist, so wird
ihre Polare als Grundform denselben Wiirfel haben.

Wenn die Grundform der Schaar ein centrirter Wilrfel mit
der Seite a ist, so wird ibre Polare ein Wiirfel mit centrirten
Flichen sein (Satz CX), dessen Seite [a] durch die Formel

3
6] = aV/2
gegeben sein wird. ,
Wenn umgekehrt die Grundform ein Wtirfel mit centrir-
ten Flichen mit der Seite ¢ wire (oder ein reguldres Oktaeder

mit der Beite a}/}), so wiirde die Polare ein centrirter Wiirfel
mit der durch die Gleichung

[6) = aV%

gegebenen Seite [a] sein (Satz CXI).

So sind also die beiden letzten Arten gegenseitig polar
zu einander.

Man konnte diese letzteren Resultate auch beweisen, indem
man die Grund-Rhomboeder in Betracht zége. Das Rhom-
boeder von 90 Grad hat einen Kantenwinkel von 90 Grad;
es wird also als Polares ein Rhomboeder von 90 Grad haben
(Losung der Aufgabe XXXIV).

[127) Das Rhomboeder von 70° 31’ 44" hat einen Kanten-
winkel von 60 Grad; es wird also das Rhomboeder von
120 Grad als Polares haben.

Das Rhomboeder von 120 Grad hat einen Kantenwinkel
von 109° 28’ 16”; es wird also das Rhomboeder von 70° 31’
44" als Polares haben,
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Obwohl man die vorstehende Abhandlung als eine rein
geometrische Speculation betrachten kann, und obwohl die
darin nachgewiesenen Beziehungen unabhingig sind von den
physikalischen Eigenschaften der Korper, so hat doch der
Verfasser diese\/Arbeit)(ausgefthrtcjin der Absicht, sich der-
selben spiter zur Erklirung der Fundamentalerscheinungen
der Krystallographie zu bedienen, und behielt bei Abfassung
der Arbeit dieses Ziel besonders im Auge.

Seit Haiy hat man stets ausdriicklich oder stillschweigend
angenommen, dass in den krystallisirten Korpern die Mittel-
punkte der Molekel in gleichen Abstinden, in geradlinigen
Reihen, parallel den Schnittgeraden der Spaltungsflichen, an-
geordnet -sind. Das aus diesen Mittelpunkten bestehende
geometrische System ist demnach nichts anderes als was wir
eine »Schaar von Punkten« genannt haben, und alle in dieser
Abhandlung ausgefiihrten Ueberlegungen lassen sich darauf
anwenden.

Wenn man nun annimmt, dass irgend eine im Moment
der Krystallisation eingreifende Ursache bewirkt, dass die
gich bildende Schaar eher einer symmetrischen als einer un-
symmetrischen Structur zuneigt, so wird offenbar die schliess-
lich gebildete Schaar einer der sieben Classen (Seite 96) und
vorzugsweise einer der ersten sechs, die allein Symmetrie-
Axen oder -Ebenen besitzen, angehdren. Die Betrachtung der
krystallisirten’ Korper, kiinstlicher sowohl wie natirlicher,
beweist a posteriori, dass es sich so verhilt; und die geo-
metrische Eintheilung der Schaaren entspricht auf’s getreueste
derjenigen, die man auf Grund langwieriger und sorgfiltiger
Untersuchung fiir die Krystallsysteme hat aufstellen miissen.

Aber welche Ursache bewirkt diese Neigung der von den
Mittelpunkten der Krystallmolekel gebildeten Schaaren zur
symmetrischen Regelmissigkeit? Diese Frage werde ich in
einer anderen Abhandlung zu beantworten versuchen, deren
Abfassung eben abgeschlossen ist und die hoffentlich dem-
nichst gedruckt werden kann. Die wesentlichsten Ergebnisse
dieser neuen Arbeit sind [128] der Bociété Philomathique in
den Sitzungen vom 17. und vom 24. M#rz, vom 19. Mai,
vom 7. Juli und vom 17. November 1849 mitgetheilt worden
(siehe die Zeitschrift I'Institut, Jahrgang 1849, in den Be-
richten tiber diese Sitzungen). Die Abhandlung, die der Leser
eben beendigt hat, ebenso wie diejenige »Ueber die Polyeder
von symmetrischer Forme, abgedruckt in Band XIV vom
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Journal de Mathématiques des Herrn Ltouville, bilden in
gewisser Beziehung die Prolegomena der krystallographischen
Theorie, welche dort entwickelt ist.

Ich beschrinke mich hier darauf, die polyedrische oder
wenn man will\/die'polyatomige Formider Molekel des krystal-
lisirten Korpers als das zu bezeichnen, was die Art der
Symmetrie der entsprechenden krystallinischen Schaar be-
stimmt; dieselbe Ursache, in ihre weiteren Consequenzen ver-
folgt, erkldrt in einfacher Weise die Gesammtheit der Er-
scheinungen der Hemiedrie, der Zwillingsbildung und des
Dimorphismus. Wenn sie auch nicht villig das noch so
schwierige Problem des Dimorphismus 16st, so deutet sie doch
wenigstens an, anf welche Weise man suchen muss den
Dimorphismus von der Isomerie zu unterscheiden, und sie lisst
erkennen, dass, in gewissen Fillen, der eigentliche Dimorphis-
mus, d. h. die Krystallisation identischer Molekel in zwei
verschiedenen Krystallsystemen, je nach dem Zustand des um-
gebenden Mittels, wohl zulissig ist, wenn er auch den augen-
blicklich in der Mineralogie am meisten anerkannten Auf-
fassungen widerspricht.

Ein Bericht tiber die vorliegende Abhandlung wurde
von Herrn Cauchy in der Académie des Sciences am
6. August 1849*) verlesen (sieche Comptes rendus, Band XXIX,
Seite 133).

Es sei mir am Schlusse gestattet, dem berithmten Bericht-
erstatter zn danken filr das Wohlwollen, mit dem er meine
Arbeit gewtirdigt hat.

¥ Mitglieder der Commission: die Herren Biot, Beudant, Du-
frénoy, Regnault, Lamé, Berichterstatter Cauchy.
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Die vorliegende Bravats'sche Arbeit ist im Journal de
I'Eeole Polytechnique (T. 19, XXXIII® cahier, p. 1—128) er-
schienen. In den Gesammelten krystallographischen Abhand-
lungen, welche unter dem Titel Etudes cristallographiques im
Jahre 1866 herausgegeben wurden, bildet sie den zweiten
Abschnitt. Es gingen ihr die kurze »>Notiz tiber die sym-
metrischen Polyeder der Geometrie« und die »Abhandlung
ither die Polyeder von symmetrischer Form« (Ltowville’s Journ.
de math. 14, p. 137—140 bezw. 141—180, 1849) voraus,
deren Uebersetzung im 17. Heft der »Klassiker« versfientlicht
ist. Auch der neuen Uebersetzung liegt der Abdruck von
1866 zu Grunde.

Die Bedeutung der Bravais'schen krystallographischen
Abhandlungen und speciell der jetzt vorliegenden ist nicht
eine rein historische. Denn sie haben nicht nur mittelbar
oder unmittelbar die Anregung zu der weiteren Entwickelung
auf dem Gebiete der Theorien von der Krystallstructur ge-
geben, sondern sie mtissen auch heute noch als ein sehr
wesentlicher Bestandtheil dieser Theorien aufgefasst werden.

Bravats selbst hat nicht vergessen, seines Vorgingers
Frankenheitm Erwhnung zu thun, der thatsichlich die 14 Arten
von Schaaren schon frither gefunden.

Was die Bezeichnungen anlangt, haben wir uns mdglichst
eng an das Original gehalten, daher auch die Ausdrticke bindr,
ternir, u.s. w. beibehalten. Nur in einem Falle erlaubtien
wir uns eine stirkere Abweichung, nimlich in Bezug auf die
Punkte, welche bei Bravads »Sommets« heissen. Dem Vor-
gange von Sokncke folgend, haben wir diese Punkte als Gitter-
punkte bezeichnet, obwohl wir das aus ihnen zusammengesetzte
Gebilde (Assemblage) nicht Raumgitter, sondern, sowohl der
geringeren Abweichung wie der Ktirze wegen, »Schaar« nannten.
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Im Einzelnen bedarf die Abhandlung kaum weiterer Er-
l&uterungen, wenn es uns nur gelungen ist, den Sinn des Ver-
fassers tiberall richtig wiederzugeben. Ks giebt wohl wenige
Arbeiten, die nach nahezu einem halben Jahrhundert die Frische
und innere Abgeschlossenheit besitzen, welche die Bravais’sche
Arbeit auszeichnen, "die wenigsten kdnnen auch wie diese,
trotz der an Umfang und Ergebnissen reichen spiteren For-
schung, mit so grossem Nutzen fiir das Verstdndniss des gegen-
wirtigen Standes unserer Kenntnisse gelesen werden*).

Herrn Dr. M. Radakovié danken wir auch hier fir seine
freundliche Durchsicht des Manuscriptes.

Seite 7, Z. 23 v. o. steht im Original m statt m’.
Seite 15, Z. 6 v. u. steht im Original OR statt O B.
Seite 25, Z. 14 v. o. steht im Original (20) statt (23).
Seste 25, Z. 16 u. 18 v. u. steht im Original

S absind
Vi*a® 4 g*b* 4+ 2ghabcos d
sin 0

Frat g 0f

statt
ab sin J

4= :
Vita* + ¢*b* —2ghab cos §
sin §
YR, & 29k
gt gy o0
Seite 43, Z. 7 v. o. steht im Original
§(nbpd — pdn'd) 4+ 7 (...
statt §mbp'd — pdn'b) + 7 (...

*) In Bezug auf die spiiteren Untersuchungen verweigen wir
auf L. Sohncke, Entwickelung einer Theorie der Krystallstructur
(Leipzig 1879), Aufsiitze von Sokncke und L. Wulff in der Zeit-
schrift fiir Krystallographie (z. B. L. Sokncke, Erweiterung der
Theorie der Krystallstructur, Ztschr. f. Kryst. 14, 426, 1888), Arbeiten
von E. v. Fedorow (Ztschr. f. Kryst.) und das Buch von 4. Schoenflies,
Krystallsysteme und Krystallstructur, Leipzig 1891.
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Seite 44, Z. 1 u. 2 v. o. steht im Original
r=g,y=—h
statt z=h, y=—gyg.
Sette 47, 7. 15 v.. 4. steht im Original 4O’ statt 4 O.
Seite 49, Z. 3 v. u. steht im Original p'n'm” statt pn'm”.
Seite 57, Z. 10 v. o. steht im Original
Z =..... -+ (mn”)z ,
statt Z=..... + (mn')z.
Seite 72, Z. 13 v. u. steht im Original a D statt AD.
Seite 114, Z. 19 v. o. steht im Original ¢ statt a.
Sette 120, Z. 12 v. u. steht im Original 180 — u statt
180 — w. n.

T =
LU T S

N [
~ vk

Druck von Breitkopf & Hartel in Leipzig.
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