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PREFACE

THERE are few branches of mathematics which have
wider applicability to general scientific work than the
Theory of Errors, and few mathematical implements
which are capable of greater usefulness to the research
worker than the Method of Least Squares. Yet, for
some reason, students are rarely given opportunity to
acquire facility in these lines, the result being that too
many of our scientists and engineers go about their
work without such equipment. It would be almost
impossible to enumerate the variety of ways in which
the ideas relating to these subjects adapt themselves
to even such simple bits of quantitative work as the
chemist or the surveyor is daily called upon to do.
And it is difficult for the writer to imagine how an
elaborate research in any of the exact sciences can
be carried on at all, without the constant application
of these principles throughout both the preliminary
and the final stages of the work. - The satisfaction to
be gained from the application of the theory of pre-
cision alone is well worth all the time necessary to
acquire these subjects. Add to this the fact that the
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vi PREFACE

theory of error distribution has direct theoretical bear-
ing upon certain very important laws and problems of
physics, chemistry, astronomy, and even of biology,
and the reasons|forcstudents’) having -opportunity to
attain the elements of the subject become still more
emphatic.

This small volume embodies the. material used by
the writer as lecture notes during the past twelve
years. It is intended as a presentation of the Theory
of Errors and Least Squares in such a simple and con-
cise form as to be useful, not only as a textbook for
undergraduates, but as a handy reference which any
research worker can read through in an evening or so
and then put into immediate practice. N

It will be noticed that the illustrative examples and
problems are drawn from various branches of science,
suggesting the wide range of possible application. No
attempt is made, of course, at an exhaustive treatment
in such small compass. Some of the special methods
employed by expert computers, often included in larger
works, have been purposely omitted. For the conven-
ience of the student, and in order not to interrupt the
thread of the subject, a few of the more complicated
mathematical discussions have been set apart in the
Appendix and referred to at the appropriate pla.ces.‘
It is not intended that they shall be omitted from the
course when using the book as a text, though the cas-
ual reader may get along very well without them.

The writer wishes to express his appreciation to the
numerous friends who have kindly given aid by way
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of furnishing data for the illustrative examples, or
otherwise. Where material has been taken from other
works, due credit 'has been given for the same.

L. D. W.

CEDAR RarIDS, Iowa,
December, 1915.
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THEORY OF ERRORS AND LEAST
SQUARES

CHAPTER 1
ON MEASUREMENT

1. Definition of Measurement. — To measure a quan-
tity is to determine by any means, direct or indirect, its
ratio to the unit employed in expressing the value of that
quantity. Thus, in measuring a lin¢, we find that it is
a certain number of times as long as the foot or the centi-
meter, and this number is said to be its salue in feet or
centimeters.
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This definition must be clearly understood to be in- -

dependent of whatever process is used in the measurement.
We could measure the area of a polygonal piece of sheet
iron in two ways: either by measuring its sides and angles
and computing its area by geometry, or by weighing it
and comparing its weight to that of a square piece with
unit side. Either of these processes is a true measure-
ment of the area, though neither is a direct measurement.

2. Indirect Measurement. — Indeed, with the excep-
tion of one kind of magnitude, very few measurements
are direct. By this is meant that we do not, in general,
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apply the umt of measure directly to the magnitude ta
be measured. This is done commonly only in the case of
length. We can, in measuring a line, apply the yardstick
directly along the line and determine in this way how
many times greater one is than the other. But we cannot
take a lamp in one hand and a standard candle in the
other and determine the candle-power of the lamp in
any such direct manner.

So far is the above mentioned principle true, that, as a
matter of fact, nearly every kind of measurement is
made to depend, in practice, upon measurements of length.
This will be clear from a number of illustrations.

Angles are measured, not by applying the wedge-like
degree as a unit, but by measuring the length of the arc
laid off on a curved linear scale, or by measuring the
lengths of straight lines connected with the angle and com-
puting the latter from its trigonometric functions.

Time is measured, not by counting the minutes and
seconds in the interval, but by observmg the motion of
the clock hands over a curvilinear scale called the dial,
marked off in spaces of equal length; or by noting the
lengths marked off on the chronograph record by a pen
point which is given a lateral jerk electrically at the
beginning and end of the interval. Every magnitude
measured off on a dial is finally referred to length, as
exemplified by pressure gauges, gas meters, electric me-
ters,. aneroid barometers, etc.

Temperature is measured off as a langth on the stem of
the thermometer.

.
. 0
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de to Atmospheric pressure is measured, and even expressed
iseof  in tnches or centimeters of mercury.
Istick Weight is measured, [in)the final adjustment, by the
how  position of a slide or rider on a linear scale, or in refined
nnot ~ work by the position of the balance pointer at equilibrium,
) the  the sensibility of the balance being known. The common
p i spring balance and its more refined near relative, the Jolly
balance, illustrate the linear principle in another way.
a3 In short, every measuring instrument has some sort of
ot s linear scale, either straight or curved, on which some sort
ngth.  of indicator or pointer moves. ’
The reason for thus referring every kind of measuremert
.Jike  to a simple one of length is mainly the one already referred
cart  to, that length is the only kind of magnitude that can
.the  be conveniently compared directly with its own unit.
,coﬂl' But there is another reason. The eye can estimate a
length with far greater accuracy than the muscles can
aﬁd estimate a weight, the hand a temperature, or the con-
nd  sciousness an interval of time; and this process of esti-
dsy ~ mation plays an all-important part, as will now be seen,
the  in every kind of accurate measurement.
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he 3. Estimation. —The degree of precision with which
wle  an observer can read a given linear scale depends upon
B two things, namely: (1) the definiteness or sharpness of
the marks on the scale and of the pointer or indicator,
and (2) the skill with which the observer can estimate
4  fractional parts of one interval or scale-division. o

The former item may be made clear by comparing the !

R
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4 THEORY OF ERRORS AND LEAST SQUARES

scale and indicator of an ordinary spring balance with those
on a delicate ampere meter or aneroid barometer; or
the graduations on a surveyor’s leveling-rod with those on
a silver-inlaid standard meter bar.

As to the second matter, it is of the utmost importance
that the observer drill himself in this process of estimation.
In no case does the accuracy of a single scale-reading end
with the fineness of graduation of the scale, providing
the scale lines and indicator are sharp and distinet; it
can always be carried a step farther.

It is the custom of practical observers to make estima-
tions of fractional units in fenths, not in halves, thirds,
etc., and to record the readings decimally. No attempt
is made to estimate the hundredths, unless it appears to
the observer that the fraction is exactly one-fourth or
three-fourths, when he would be likely to record .25 or
.75; even this is a doubtful practice. The reading of any
linear scale may be carried, in general, to an accuracy of
one-tenth of the smallest scale-division by the estimation
of the eye alone, or the eye aided by a magnifier if desir-
able.

In many instruments of precision, the linear scale is
provided with some sort of vernier, which is a mechanical
substitute for the estimation of fractional parts of scale
divisions. Descriptions of the different kinds of verniers
in use may be found in any elementary laboratory manual
of physics, or in any encyclopedia. But even the use of
the vernier requires the same sort of skill and judgment as
estimation, namely, a correct idea of linear position and
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coincidence. And in the vast majority of measuring
instruments, no vernier is provided, and the observer
must be able tg estimate tenths-accurately and without
hesitation.

4. The Impossibility of Exact Measurements. — Every
scientist is familiar with the fact that there is no
such thing as an absolutely exact measurement, for the
simple reason that the quantity measured and the unit
of measure are never commensurable.

If we weigh carefully a small piece of metal on a common
balance, a typical result would be 3.9843 grams, and not a
whole number, as four grams. This is, however, only an
approximation to the true weight, even if correct to four
decimal places, just as the number 3.1416 is only an ap-
proximation to the value of =. If a more sensitive bal-
ance is used, the result may be 3.984326 grams; but as the
masses of the piece of metal and the gram weight are in-
commensurable, the true‘weight, even if it were possible
to weigh without the inaccuracies that arise from im-
perfect apparatus and judgment in estimation, would be
inexpressible in grams, and the result obtained could
be true only to the degree of approximation represented
by six places of decimals, that is, to the nearest millionth
of a gram.

What is true of welghmg is true of all measurement, and
it will readily be seen that to obtain the true value of any
actual concrete quantity is as hopeless as to obtain the
true value of V2, or =, or logy 17.
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" 5. Errors of Measurement. — Aside from the mere
incommensurability of magnitudes, there is another and
far more serious hindrance to the obtaining of correct
values by measurement, and this is what is technically
known as error.

Suppose the bit of metal, which was found on the more
sensitive balance to weigh 3.984326 grams, be now weighed
agdin, by the same person, in the same room, on the same
balance and with the same weights. More likely than
not, the result will turn out to be different from the former .
result by some millionths of a gram, perhaps thirty or
forty millionths. This means simply that neither re-
sult is correct, even to the sixth decimal place.

Again, if we go out with a surveyor’s transit of the finest
construction and measure with the utmost care, to seconds
even, each of the three angles of a triangle marked out
by accurately centered stakes on level ground, and add
the three results together, we shall probably find that
their sum differs from 180° by several seconds one way or
the other. We may repeat the operation with equal
care and skill, and get a still different result, perhaps
farther from 180° than the first. This illustration will be
all the more striking, in that in this case the true value
of the sum of the three angles is known from geometry,
while in the case of the weights the true value is not
and can never be known. Even here, the individual
angles cannot be obtained exactly.

" The causes of error in precise measurements are many
and various. A single example will suffice to illustrate
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this. Suppose we wish to measure the distance from one
stake to another with a surveyor’s chain. Two men
carry the chain. , \Each time they advance, one adjusts the
following end to the rear marking-pin, the other sets a
new pin at the leading end, and neither can do this work
with absolute accuracy. They do not stretch the chain
tight enough; they do not hold the chain horizontal in
going up or down hill; they do not follow a straight line;
they do not notice kinks in the chain, and they neglect
the fact that the chain is wearing at the joints and getting
longer. As a consequence of all these small items, and
many others not mentioned, the measurement may in
the end be several inches from the truth if the line to be
measured be very long. This is only one instance showing
how hundreds of little disturbances may combine and
form one final resultant error which may be positive or
negative, great or small, according to which kind of dis-
turbances predominates (that is, whether they tend to
make the result too large or too small), and to whether
they happen to be about evenly balanced or not.

A systematic study of the occurrence of errors gives rise
to a mathematical analysis, based essentially upon the
principles of probability and known as the Theory of
Errors; and our attempts to apply this theory to the re-
sults of measurements, with a view to getting the values
that are probably nearest the truth, have resulted in
the formulation of certain rules embraced in that part of
the error theory known as the Method of Least Squares.
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‘ EXERCISES

6. The following exercises are intended for the use
of students who'have not-done much laboratory work nor
had the advantage of a course in laboratory measurements
or field work. It will be seen that they are largely sug-
gestive, and they may be modified as desired to suit the
circumstances. For advanced students and research
workers they may be omitted altogether.

1. Can you think of any kind of accurate measure-
ment not ultimately employing some sort of linear’
scale?

2. Show wherein the following kinds of measurements
are made to employ a linear scale: area of a piece of land ;
density of a solid; relative humidity of the atmosphere;
index of refraction of a transparent substance; volume of
liquid from a burette.

8. Determine the volume of a material sphere, cylinder
or other geometrical solid in two ways: first by measuring
its dimensions; and second by dropping it into a glass
graduate partly filled with water and observing the
displacement. Do the two results agree? Which do you
consider the more precise method ?

4. Measure a quantity of pure water in two ways:
first by placing it in a glass graduate; and second by
weighing it on a balance and computing the volume.
The weighing may be done in the graduate, which has
been weighed beforehand.
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5. Lay off on a sheet of smooth paper, with a fine, hard
pencil, a line of indefinite length, and mark two points on
it at random somewhat less-than 10 cm. apart. On the
straight edge of a card, mark two points as nearly 10 cm.
apart as possible. By means of direct comparison with
this standard, estimate the length of the first line-segment
in centimeters, writing down the result. Next compare
the unknown line with a cardboard scale marked off in
" centimeters but not in millimeters, observing the num-
ber of centimeters and estimating the millimeters. Finally
_ compare the same line with a millimeter scale, estimating
the tenths of a millimeter. Notice how the three results
agree, all being expressed in centimeters. Repeat this
several times with different line-segments.

6. Devise and perform exercises, similar to Exer-
cise 5, in the measurement of angles, using a large
protractor and circular sectors of paper as measuring in-
struments.

7. Try measuring short intervals of time to tenths of
a second by means of an ordinary watch. In order to test
the results, let the period measured be the time of swing
of a simple pendulum, and measure by the watch intervals
of five, ten, fifteen, twenty and one hundred swings, find-
ing the time of a single vibration from each measurement.
Do the results agree? Have you any greater confidence
in one than in another?

8. Familiarize yourself thoroughly with the use of as
many different kinds of verniers as are available. Before
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using the vernier in each case, estimate the fraction of a
unit in tenths by the eye.

9. Weigh/a/small piece"of iron by means of a Jolly bal-
ance, then on a trip scale, then on an equal arm balance.
Compare the results. In which result have you the great-
est confidence? Why?

10. Weigh a small object several times, with the high-
est degree of precision attainable, on a good balance. The
pointer method should be used. Are the results all equal ?




CHAPTER II

ON THE OCCURRENCE AND GENERAL
PROPERTIES OF ERRORS

7. Errors and Residuals. — The term error has so far
been used somewhat indefinitely, and it will be necessary,
before going further, to explain its exact meaning, as well
as that of another term closely connected with it.

We have seen that different measurements upon the
same quantity generally give different results. These
results evidently cannot all be correet, and it is very un-
likely that any of them is correct, even to the degree of
precision (that is, to the number of decimal places) attain-
able with the instruments and method used. The differ-
ence between the result of an observation and the true
value of the quantity measured is called the error of the
observation. In what follows we shall generally denote
observations by the symbol ¢, the quantities upon which
they are made by ¢, and the errors of the observations by
z, the latter being defined, as just stated, as the difference

r=8-—4q (1)

which will be positive or negative according as the observa-

tion is too large or too small. The student should be care-

ful to remember this definition, and to apply it to such illus-
11
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trations as the following : If a line is exactly 437 feet long,
and the result of a measurement upon it is 436.2 feet, then
the error is 436.2 — 437 = — 0.8 ft.

While we cannot ordinarily obtain the true value of a
measured quantity from one measurement, nor even by
averaging many measurements, the method of least squares
furnishes us, in the latter case, with a means of calculating
what is called the most probable value, which is the closest
approximation to the true value that the series of obser-
vations is capable of yielding. A familiar illustration is
that of a series of direct observations upon a single quan-
tity, in which case the most probable value is simply the
arithmetical average of the several results.

Having obtained the most probable value from a series
of observations in the manner hereafter to be explained,
if we now subtract it from each measured result, we obtain
a series of differences known as the residuals corresponding
to the respective observations. The most probable value -
being denoted by m, and any observation by s, the resid-
ual corresponding to s is

p=38—m. 2)

Thus, the residual bears the same relation to the error that
the most probable value bears to the true value. If the num-
ber of observations be very large, and the observations be
very precise, then the most probable value may be very,
very close to, though never equal to, the true value; and
in that case the residuals will be equally close to the cor-
responding true errors.
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It is worthy of note that, since the true value of a quan-
tity in terms of any arbitrarily selected unit is always an
incommensurable’ number, ‘while'the'most probable value
is commensurable, it follows that the error of any observa-
tion is incommensurable, while the corresponding residual
is commensurable. The true value and the errors are con-
sequently forever unknown and figure only in theoretical
discussions (with such exceptions as have been noted);
and we deal in practice only with their close approxi-
mations, the most probable value and the residuals.

8. Classification of Errors. — It is now very important.
to point out that errors of observation may be divided
naturally into two distinct classes, whose occurrence, and
the methods of dealing with which, are entirely different.

First we may consider those errors which arise from
causes that continue to operate in the same manner .
throughout the series of observations, and which may -
therefore be called persistent or systematic errors. In
many cases, persistent errors not only occur in the same
manner, but have the same value, throughout the investi-
gation, and they may then be called constant errors.

The causes of persistent errors, which are often known
to the observer and may in many cases be eliminated or
avoided by methods presently to be explained, may be,
for the most part, looked for under one or another of the
following heads.

a. Incorrect Instruments. — The instruments or scales
used may not be true. For example, if a 100-foot tape ;
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is actually only 99.99 feet in length, every measurement
on a line made with that tape will tend to give a result one
ten-thousandth too long, no matter how many times the
observation is repeated; or if a clock used in scientific
work gains one second a day, every measurement on an
interval of time made with that clock is just the correspond-
ing fraction too long. (In each of these cases, is the error
positive or negative ?)

_b. Imperfect Setting of Scale. — Owing to carelessness
or accident, the scale on a measuring instrument, though
truly graduated, may be displaced from its proper
position by a small amount. This is well illustrated by
the mercurial barometer, on which the scale must be
adjusted at each reading, to allow for the rise and fall of
mercury in the reservoir; and a clock which, though
running at the proper rate, has been set a little ahead or
behind the true standard time, is an analogous. case.

¢. Defective Mechanism. — No instrument is absolutely
perfect from a mechanical standpoint, and every instru-
ment of precision must be frequently tested if we would
rely upon the results of its use. The arms of a balance are
never really equal, and, what is worse, they are continually
changing their relative length, owing to changes of tem-
perature. Nor has it been found possible to construct
a clock that will run with absolutely constant rate, even
at a constant temperature and in a vacuum.

d. False Indicator Settings. — In very delicate instru-
ments, such as the balance or the aneroid barometer,
the indicator frequently comes to rest, on account of
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friction, in a false position. In the case of the aneroid
barometer, it often suffices to tap the dial gently, in order
to make the indicator assume its true position. The same .
may be said of the magnetic compass-needle.

e. Known External Disturbances. — It is often the case
that persistent errors are introduced by external causes

.whose nature is well understood, but which cannot be
avoided. Thus, a heated body under experimental in-
vestigation always radiates some heat, in spite of the most
elaborate precautions; and the length of a measuring rod
or tape is certain to vary with changes of temperature.

f. Personal Equation and Prejudice. — Every observer
exhibits peculiarities or habits of observation which cause
him to have a tendency toward persistent error in the
same direction. Thus, one observer may continually
overestimate in the estimation of tenths, another will under-
estimate; a time observer requires a certain definite
interval to respond to a stimulus, that is, to obey a signal
of any sort. This unconscious, persistent error on the
part of an observer is called his personal equation.

Somewhat analogous to personal equation is what may
be called  prejudice. After an observer has made one
measurement of a quantity on a fixed scale, and made the
estimation of tenths, there is a natural tendency for him
to allow his first estimation to affect the subsequent ones.
This difficulty is often met with in the use of the vernier,
where it is necessary to judge as to which line coincides
most nearly with its fellow on the scale.

The second class of errors referred to at the beginning
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of this article comprises those whose causes are temporary,
existing through only one observation, and disappearing
entirely upon a slight change of conditions. Such errors
are not recognizable, and sometimes not even suspected,
until their existence is demonstrated by the discrepancies
between successive observations when all known disturb-
ances have been eliminated. These are known as acci-
dental errors.

Accidental errors may also be subdivided, as follows.

a. Those Due to External Causes. — Accidental errors
may result from causes entirely foreign to the observer
and of so complex a character as to be incapable of analysis.
For example, in sighting a mark with a surveyor’s transit,
a sudden gust of wind may imperceptibly sway the in-
strument for a moment, or someone may, without the ob-
server’s knowledge, knock against the tripod and jar the
telescope slightly out of place. In making delicate mag-
netic measurements, such rapid changes as often take
place unexpectedly in the earth’s magnetic field may
momentarily affect the equilibrium of the needle. In
sighting at a star with a telescope, currents of air in the
upper atmosphere may cause it to waver and appear for
a moment to one side of its mean apparent position. In
using a balance, the zero of equilibrium may change
slightly during the course of a single weighing, owing,
perhaps, to an unsuspected fluctuation of tempera-~
ture.

It will thus be seen that observations of all kinds are
affected by multitudes of such causes, which are of greater
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or less importance, but which all tend to affect the accuracy
of the results. :

b. Accidental ; Errors of| Judgment. — Aside from per-
sonal equation and prejudice, the observer himself is sub-
ject to fluctuations of judgment, both as to the adjustment
of his instrument and as to the estimation of tenths. An
attempt to analyze in detail the causes of these internal
tendencies to err in judgment would belong to the realm
of psychology; but we may mention as prominent among
them the influences of imperfect vision, optical illusion,
inattention and fatigue, the last mentioned cause probably
affecting the others in a very large degree.

Some of the methods commonly employed in dealing
with persistent errors are briefly mentioned in Art. 10.
It is, however, the study of accidental errors, and of the
laws which are found to govern their occurrence, that
constitutes the special office of the method of least squares.

9. Mistakes. — Entirely distinct from errors, in the
sense heretofore used, are those inaccuracies which are
due purely to carelessness, and which should properly be
called mistakes. They consist in such blunders as reading
the wrong number on the scale, reading one number and
putting another down in the notes, reading a vernier back-
ward instead of forward, making a miscount in timing
- a pendulum, etc. Mistakes are usually easily detected,
and there is no remedy except vigilance and careful check-
ing. When measurements are made more than once the
checking is a simple matter.

(o]
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10. General Methods of Eliminating Persistent Errors.
— In Art. 8 are enumerated several causes of persistent
errors, with illustrations of each. Though their discussion
does not properly belong to the general theory of errors,
it may not be out of place to describe here some of the
methods commonly employed in dealing with them,
especially as the theory of errors is frequently applied in
the processes of correction here referred to. The treat-
ment of the several sources of persistent errors will be
taken up in the same order as they are mentioned in’
Art. 8, and designated by the same letters.

~ a. Incorrect Instruments. Adjustment and Standardiza-
tion. — As it is never certain that an instrument measures
in true units, it is necessary to test it before relying upon
the results of its use. (The tests may in-some cases be
made long after the measurements.) An instrument may
sometimes be adjusted correctly, and remain so; more
commonly it gets out of adjustment again, from wear or
othercauses. Actualadjustment may often beinconvenient
or impossible. ‘A more approved practice is standardiza-
tion, which will apply to nearly every case. This consists in
comparing the instrument with a standard and determining
the true value of each of its scale divisions or units, and
then, instead of trying to adjust the instrument, simply
making the necessary corrections on the observations.
(Where standardization extends over a whole scale, it -
is commonly called calibration.) Thus, the astronomer
seldom corrects his clock; he simply determines its error
from the stars at intervals, and thus deduces its error in
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rate, which is all the information needed at any time.
Laboratory weights are seldom correct when purchased,
and moreover they losé ongaim/weight by wear or corro-
sion; hence they should be compared from time to time
with standards kept for the purpose. Numerous illustra-
tions of the kind will occur to the reader. .

b. Imperfect Setting of Scale. Differential Method. —
The error due to imperfect setting of the scale may often
be eliminated by the differential method, which consists
-in reading the position of the indicator when it should be
at zero, then again when it is affected by the quantity to
be measured, and taking the difference. This method
applies only when the scale divisions are equal throughout
the scale. The process is one very generally employed,
as it has further advantages than the one here stated;
very frequently it is the only method practicable. The use
of a level and leveling rod in surveying illustrates the latter
point, as does almost any kind of comparator; and when
one wishes to weigh a portion of liquid, he must needs
subtract the weight of the empty vessel from the weight
of the vessel and contained liquid.

c. Defective ~Mechanism. Compensation. — Instru-
mental errors may often be made to react against them-
selves and automatically disappear. When this can be
done, it is by far the best method of elimination. A
simple example is the process of ““ double weighing,” in
which the effect of inequality in the arms of the balance
is removed by weighing with the object first on one pan,
then on the other, and taking the mean. (Strictly, the
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geometrical mean should be used.) If a spirit level,
resting upon an imperfectly adjusted base, be simply
reversed, end to end, the half-way point hetween the two
positions of the bubble will indicate its true position as
well as if it were in adjustment. The graduated circles
used on surveying instruments, spectrometers, and the
like, are usually provided with two diametrically opposite
verniers, so that the error arising from the vernier system
being out of center with the circle itself may disappear
on taking the mean of the readings of the two verniers.
In using a galvanometer it is well to reverse the current
and read the deflection both ways on the scale. An in-
teresting application of the method to the elimination of
unknown external disturbance is the scheme devised by
Rumford for neutralizing the effect of radiation in calori-
metric measurements. A preliminary experiment is made
to determine by what amount the temperature of the calo-
rimeter will be raised; and then the initial temperature is
so adjusted that it is about the same amount below the
temperature of the surrounding air at the beginning of
the experiment as it is above it at the close, so that practi-
cally the same amount of heat is absorbed during the first
half of the operation as is radiated during the last half.
d. False Indicator Settings. Oscillation. —In cases
where the indicator comes to rest in a false position, due
to friction, the difficulty may often be removed by not
allowing the indicator to come to rest at all, but reading
it while still oscillating. This method has the further
advantage of saving time in such instruments as the bal-




PROPERTIES OF ERRORS 21

ance and undamped galvanometers or magnetometers.
In order to compensate for diminishing amplitude, one
more reading should be taken at one extreme of the swing
than at the other, as in the following balance pointer
readings and reduction:

Lerr RrieaT
78 13.1
8.0 13.0
8.1 2)26.1

3)23.9 13.05
7.97
1305

2)21.02
10.51 True reading.

This result is much more quickly obtained and more
accurate than one obtained by letting the pointer come to
rest. .

e. Theoretical Corrections for Known External Disturb-
ances. — When the manner in which external disturbances
operate is known, and their magnitude determined, the
errors due to them are eliminated by simply applying the
computed corrections. The temperature and stretch
corrections applied to the steel tape in precise chaining,
and the temperature corrections necessary with instru-
ments, such as the barometer and pyknometer, depending -
upon the density of a liquid or the capacity of a hollow
vessel, are familiar examples. Instead of employing
Rumford’s compensation in using the calorimeter, the
amount of radiation per minute may be previously noted
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and allowed for in the reduction of the results. The re-
fraction error in the observed altitude of a star, or in long
range leveling, the, vacuum. correction in weighing, etc.,
are further familiar examples. It is for the purpose of
obtaining data for such corrections that many investiga-
tions of the behavior of physical phenomena under varying
conditions are carried on; indeed, this work constitutes a
large part of quantitative scientific research.

f. Corrections for Personal Equation and Prejudice. —
Personal equation may be eliminated, either by deter-
mining by means of specially devised experiments what
the personal equation of the observer is for a given kind of
measurement, or by arranging matters so as to make the
personal error act in opposite directions in the two halves
of the observation; or by a very different method, —
that of employing a number of different observers on the
same measurement, whose errors will tend to compensate
in the long run, like accidental errors.

The effect of prejudice may often be avoided by altering
the conditions. Thus, when repeatedly using the differen-
tial method, the whole measurement may be shifted each
time toa different part of the scale. The oscillation method
is not subject to prejudice, since, though the true reading
lilay be the same in the successive observations, the oscilla-
tions approaching it will not be. An experienced observer
will not allow prejudice to influence him to any greaf extent.

11. Exercises Leading to an Understanding of Error
Distribution. — Before attempting any introduction to the
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methods of dealing with accidental errors in measurement,
it is necessary that the student recognize the existence of
a law governing, their occurrence, and become to some
extent familiar, through experience, with the operations
of that law. To this end, it is deemed worth while to
introduce at this point a number of laboratory exercises
or experiments, in which the phenomenon to be studied is
the distribution of errors as governed by the law of chance.
The term ‘‘ laboratory ” refers to the method only; the
exercises may be performed at one’s study table without
any special apparatus.

1. No better analogy to the behavior of accidental
errors can be found than in the manner in which shots
fired at a target are found to distribute themselves with
respect to a point fired at. To illustrate this experi-
mentally, take a sheet of ordinary foolscap or other ruled
paper and with a black pencil make the ruled line nearest
the middle of the
sheet heavier than
the others, so as to
be distinctly visible
a few feet away.
Lay the paper on a
board or smooth
book, and place it,
face upward, on the
floor. Take a rather long pencil lightly between the ex-
tended finger-tips of both hands, and standing with the
eye directly over the black line on the paper, hold the

Fia. 1
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pencil, point downward, over the line, and endeavor to
drop it so as to strike the line with the descending pencil-
point. In other words, make the central line a target;
the shots will be self-recorded by the dots on the paper.
Take at least a hundred shots in this manner, each time
trying with all possible skill to hit the central line. Having
done this, prepare another sheet of paper ruled off in a
similar manner (ordinary coordinate paper will do) and
plot on it a curve whose ordinates represent the relative
number of shots found to have struck in each compart-
ment of the ruled target and whose abscissas represent the
distances of the respective compartments from the central
line. In case a shot appears to have struck exactly upon
one of the lines, assign it to the compartment on the side
toward the center. ‘

Can you think of any influence that might, in this ex-
periment, be analogous to a persistent error in measure-
ment? What effect would it have on the curve? Keep
the data for future use.

2. On a sheet of smooth paper, draw a line with a hard,
sharp pointed pencil and mark two points on it about a
foot apart. The exercise is to measure this line with a
metric scale to hundredths of a centimeter, estimating the
hundredths as tenths of a millimeter. In order to avoid
prejudice, it will be well to place a third point somewhere
between the others, and measure the line in two segments,
a and b. Now measure a and b alternately, using the
differential method, until each has been measured, say, a
hundred times. Add the corresponding pairs of values
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and record the sums as the measured lengths of the line.
Find the mean of the hundred values to the nearest hun-
dredth of a centimeter, and record the departure from it
of each of the observations, plus or minus. These de-
partures are the residuals of the observations (Art. 7). It
will be noticed that a large number of residuals have the
same value. Determine how many there are of each
value, separating positive from negative, and plot a curve
whose abscissas represent the values of the residuals and
whose ordinates represent the numbers of residuals having
those respective values. A convenient scale should be
used : for example, on the abscissas, let 1 cm. represent
0.1 mm. of residual, and on the ordinates, let each residual
be represented by a millimeter. Keep the data Sor future
use.

What change would have to be made in the curve if
the abscissas and ordinates were the values and numbers,
respectively, of the true errors instead of the residuals,
supposing that there is any means of knowing the former ?

8. The preceding exercise may be varied by using, for
the measured quantity, an angle of exactly 180°, measuring
it in two segments with a protractor to tenths of a degree.
In this case the true value, and hence the true errors, are
known. Keep the data.

4. Do the curves obtained from the preceding exercises
bear any resemblance to each other? Construct a smooth
curve which seems to be typical of them. Does this curve
resemble any familiar geometrical form? Plot the curve
y = 2%, taking 10 cm. as the unit for both abscissas
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and ordinates and assigning to z the successive values 0,
0.1, 0.2, 0.3, etc., both positive and negative.

8. From the, results of the foregoing exercises, does
there appear to be any relation connecting the magnitude
of an error with the frequency of its occurrence? Can
you assign any reason for such a relation? Do positive
errors appear to occur any more frequently, in the long
run, than negative errors, or vice versa ?

12. Remarks on the Distribution of Errors.—The curve
to which the preceding exercises have introduced us is
commonly called the probability curve, though a better
name would be the
curve of departures,
as will appear later.
Superficially it some-
what resembles the
“ witch,” a typical
case being shown in
Fig. 2. The student

Fia. 2 must not expect that
any curve plotted from the results of such experiments
as the foregoing will be smooth and regular, like the curve
here shown; actual curves are broken and irregular.
But the greater the number of observations or data, the
nearer will the actual departure curve assume the smooth,
symmetrical form assigned by theory.

The results of experiments, as we have seen, and theoreti-
cal considerations, as will appear, both point to the follow-
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ing facts regarding the distribution of accidental errors,
all of which may be deduced from an examination of the
curve.

1. The frequency with which an accidental error of given
magnitude occurs depends upon the magnitude of the error.

2. Large errors occur less frequently than small ones.

3. The error distribution is symmetrical; that is, positive
and negative errors of the same magnitude occur with the
same frequency.

Though these laws do not of course apply absolutely
in any one case, yet they express the general tendency of
error, and, in fact, the general tendency of zall accidental
departures from the normal or mean, as, for example,
the statures of individual people as compared with the
average stature of the race. In theoretical discussions,
the number of observations made, or of data considered,
is regarded as infinite, and the curve as strictly sym-
metrical.

In the case of measurements, with which we are here
concerned, if the results are affected by persistent error
from any source, they will be found to cluster about the
theoretical most probable value of the measured quantity
instead of the true value, there being now an appreciable
difference between the two. The whole curve of errors
now becomes a-curve of residuals, and is merely shifted
a little to one side or the other according as the persistent
error is positive or negative. If, for example, in the second
exercise of Art. 11, the scale used had its spaces slightly too
long, the whole curve would be shifted a little in the
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negative direction, simply because each observation tends
to undervalue the line measured on account of the defect
in the scale. :

From this consideration it is clear that when, as is really
always the case, the true value of the measured quantity
is not given by
the measurements,
a study of the
curve of residuals
will reveal nothing
as to the presence
or absence of per-
sistent errors. The
law of probability
of error is con-
. cerned only with accidental errors, that is, those whose
causes are of temporary duration, — the result, as we
say, of pure chance.
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13. Precision. — On comparison of the results of differ- .
ent sets of measurements, even upon the same quantity,
it is found that the error curve is not of constant form.
Every gradation is met with (Fig. 4), from low, flat curves
to high, pointed ones. This peculiarity may be observed
when we make several series of measurements upon the
same quantity by different methods. The variation is
easily interpreted.

Compare, for example, curves 4 and D. In the case of
A there are nearly as many large errors as small ones.
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For shots fired at a target, this would indicate poor marks-
manship or long range ; in measurement, it means random
judgment, crude instruments, or circumstances which -
render the work difficult. In the case of D, on the other
hand, the number of large errors is very small, the great:
body of results being crowded closely about the mean
and indicating its

position with con-
siderable  definite- /‘\
ness. From this it

is clear that the form
of the error or resid-
ual curve depends
upon the precision

with which the ob-
servations have been
made.

To illustrate what

is meant by pre.cz- Fro. 4 .
sion, let two parties

of observers each make a set of measurements on the dis-
tance between two stakes, the one with a ten-foot pole, the
other with a steel tape. The most probable value deduced
from one set may not differ much from that deduced
from the other, but the residual curves plotted from the -
two sets of results will show considerable difference of
precision, mainly on account of the larger number of
times that the ten-foot pole must be laid down and its
consequent greater liability to error.
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The form of the residual curve may therefore be used as
a test of the efficiency of an observer, an instrument or
a method of measurement. It will be seen later that the
same test can be applied by means of mathematical
formulas, without the labor of plotting the curve (Chapter
VIII).

14. Mathematical Expression of the Law of Error. —
The evident existence of some law governing the distribu-
tion of errors leads us to inquire what that law is, and
whether it is expressible by a simple mathematical rela-
tion. Some of the facts concerning the behavior of errors
have already been deduced; but the theoretical expres-
sion of the law itself, and even the very language in which’
it is expressed, must be reserved until the student has
reviewed some of the fundamental principles of the
theory of probabilities and has been introduced to some of
the special problems in probability upon which the theory
of errors is found to depend. The following chapter is,
therefore, devoted to this subject.



CHAPTER III
ON PROBABILITIES

16. Fundamental Principle. — It is a common remark
that one thing is more likely to happen than another.
In speaking thus, one concedes that either of the two
events may happen, and attempts no prediction as to
which will happen, if either ; yet he recognizes a preponder-
ance of the likelihood of one event over that of the other.

In the kind of magnitude here recognized, that is,
likelihood or probability, there is, in the great majority
of cases, no means of measuring or giving numerical ex-
pression to its relative degrees. It is said that corn
growing on low ground is more likely to be caught by frost
than that on high ground, but there is no means of telling
how many times more likely it is.

It is possible, however, to give such a definite meaning
to the term probability that the relative probabilities of
some simpler events may be calculated and expressed. In
framing such a definition, it is necessary to recognize an
important principle in the operation of chance, governing
the behavior of events whose causes are at least partly
manifest, and lying at the foundation of the whole course
of reasoning that gives rise to the idea of mathematical
probability.

31
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The principle is this. If a number of different events
are equally possible as regards constant conditions (that
s, if there is no persistent reason why one should occur
rather than another), and all are repeatedly given oppor-
tunity to occur, they will in the long run occur with
equal average frequency. The same principle may be ex-
pressed by saying that if we observe events occurring with
equal frequency, we conclude that the constant conditions
under which they occur are uniform.

The principle is well illustrated by the throwing of dice.
If a die is exactly cubical, of homogeneous material
(not “loaded ”’) and the spots do not shift the center of
gravity to. one side, and if it be cast a great number of
times absolutely at random, each face will come up, on
the average, one throw out of six. (Of course these ideal
conditions are not realized in practice.)

We are so accustomed to the operation of this law of
probability in daily experience that it is taken as a
matter of course, like the force of gravitation; yet its
existence is really a mysterv. We are here obliged to
admit that there is a law controlling the operations of
chance, — the one thing that would seem to obey no law.

16. Definition of Mathematical Probability. — Definite
numerical significance may now be given to the probability
of occurrence of certain classes of events.

If an event may occur in a equally possible ways,
and at the same time b equally possible alternatives
are presented in all (including the @ ways in which the
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event may happen), then the probability of the event in
question 13 defined as the ratio

olag;
r=3 3

That is, there are a chances favoring the event out of a
total of b possible chances; and according to the principle
set forth above, if a great number of trials are made, the
event does happen, on the average, a times out of b.

As an example, let us express the probability of draw-
ing an ace from a deck of fifty-two playing cards, the draw-
ing being done absolutely at random. Any one of the
fiftty-two cards may be drawn, so that the total num-
ber of alternatives is fifty-two. An ace may, however,
be drawn in only four ways, viz., by drawing the ace
of spades, the ace of clubs, the ace of hearts or the
ace of diamonds. Here, then, b = 52, a = 4, and the
probability of drawing an ace is ¢, or .

What would be the probability of drawing a red ace? . |
Of drawing the ace of diamonds? 4 |

All problems in probability may be solved by the appli-
cation of the definition expressed in equation (3). But
such direct application would be very difficult in the more
complicated cases, and special rules and formulas are
therefore to be devised which, when properly classified
and applied, greatly simplify such problems. '

From the definition, it follows that probability is a
purely numerical ratio, and depends upon no unit of
measure. Moreover, this ratio cannot exceed unity.
The probability unity would denot,e' certainty, since if an

D
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event may happen in n ways, and only n alternatives are
possible, the event must happen. From this it follows
that if the probability of an event is p, the probability
of its failure to happen is
pP=1-p 4)
For, if the event can happen in a ways out of b, it can fail
to happen in b — a ways out of b, the probability of failure
therefore being
b—a a
220 _1-%_1-p.
b b P

More generally, the sum of the probabilities of all possible
alternatives is unity. '

The probability zero, on the other hand, implies im-

possibility. It may be interpreted as meaning that there
is no way for the event to happen, i.e., a = 0; or in cases
where the total number of alternatives is infinite, or at
‘least extremely large, while the event in question may
happen in only a very few ways, the zero or infinitely
small probability denotes impossibility or at most only
extremely remote possibility. But the distinction be-
tween absolute impossibility and the case in which the
possibility is only remote is of some importance, as will
be seen, in the theoretical discussion of the distribution of
errors.

17. Permutations. — The solution of problems in prob-
ability involves the determination of the number of ways
in which an event can occur, as well as the total number of
possible alternatives. In very simple cases this may be,
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done by inspection. For example, if one is expecting the
arrival of three different persons, A, B, C, it is easy to
determine the probability of their coming in the order
named. There are obviously six different orders in
which they may come; namely, ABC, ACB, BAC, BCA,
CAB, CBA. The probability of their coming in the order
ABC is therefore 3. But let there be a hundred persons
instead of three, and the number of orders becomes so
enormous as to be unmanageable by inspection. We
must then resort to the use of general formulas.

The linear permutations of a number of things are the dif-
ferent ways in which the things may be arranged in a row,
or in which they may occur in order of time. There are,
for example, six linear permutaticns of the letters A, B, C.

There is a general expression for the number of permuta-
tions of @ different things, derived easily by the following
reasoning. Of one thing, there is evidently but one per-
mutation. Of two things, since ‘either may come first,
there are two permutations. Of three things, any one
may come first, and with a given one coming first, there
are two arrangements of the two remaining; therefore
the number of permutations of three things is 3 X 2 = 6.
For four things, by the same reasoning, the number is
4X3X2=24. And in general, the number of per-
mutations of @ things is

Pe=QQ-1(Q-2)-3-2-1=@! (5)

We have here assumed that none of . the @ things are
duplicates. Let us now take a case where there are
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duplicates, as in the group of letters AABBBCCCC. If
we distinguish between the different A’s, etc., the case is,
of course, the same as if the letters were all different.
But if we consider one A, for example, the same as another,
and permute without regard to which of them is being
used in a particular place, the number of permutations
is less. It will be easy for the student to show as an
exercise that if there are, in a number of things, m of one
kind, n of another, r of another, s of another, etc., the total
number being @ = m + n + r + 3 + ---, the number of
distinguishable permutations of the @ things is \
(m - 8) _91___ .

P min!lrlsl... ©
Thus for the above set of nine letters, of which two are
A’s, three B’s and four C’s, the number is

9!
@3o_ 9" _

P Srarar 200
If there is only one thing of a kind in the group, so that
m, n, .. . are each unity, (6) becomes equivalent to (5).

18. Combinations. — The different groups which can
be formed from a number of things, taken so many at a
time, are called combinations. The different combinations
of the three letters A, B, C taken two at a time are AB,
AC, BC. )

If we further take into account the possible permuta-
tions of each combination, we have what may be called
the permuted combinations of the series of things considered,



ON PROBABILITIES 37

Thus the permuted combinations of A, B, C are AB, BA,
AC,CA,BC,CB. It is easier to derive first the general
formula for the number of permuted combinations.

Let the number of permuted combinations of @ things
taken n at a time be designated by the symbol PCo™. If
they are taken two at a time, any one of the @ things may
be taken as the first, and any one of the @ — 1 remaining
things may be taken as the second, so that

PC®=Q(Q —1).

If taken by threes, any one of the @ (@ — 1) permuted .

combinations of two each may constitute the first two,

followed by any one of the @ — 2 remaining things as -

the third. Then
PC®=QQ—-1)(Q—2).

By continuing the same reasoning until there are n things
taken at a time, we readily deduce

PCoq™=Q(Q —1)(Q —2) -+ to n factors. 7

If n = @, this becomesidentical with (5), since all the thmgs
are permuted at once.

To express now the number of combinations of @ things
taken n at a time, without regard to their arrangement, it
isnecessary only to note that the PCo™ permuted combina-
tions include not merely those made up of different things,
but all the permutations of each of the groups of n different
things. Since n things are permuted in n! different ways

(5), there are only i as many combinations as permuted
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combinations. That is,

Co™= QQ—-1) n !to n factors ®)

As an illustration of this problem, let us find how many
different hands at whist, each made up of thirteen cards,
could be drawn from a pack of fifty-two cards. Here
@ = 52, n = 13, and the solution is

(s 525150 - .40

= ’ly f .
T 2.3...13 635,013,559,600

052

Then the probability of drawing any one specified hand is,
by definition, the exceedingly small reciprocal of this
number.

As a final problem in combinations, let there be s series
of things, the number of things in the respective series
being @i, @, ---, @.; to determine how many different
combinations can be formed by taking one thing from
each series.

. The number of combinations of two each which can thus
be formed from the first two series is @,Qs, since each of
the @, things in the first series can be successively com-
bined with each of the @. things in the second. Bringing
in now the third series, each of the @@, combinations just
considered may be combined with each of the @; members
of the third series, making ©:Q,Q: combinations; and so
on. Clearly, then, the number of combinations that can
be so formed from the s series is the product

. Lo, = @1Q2Q3 - Qu. )
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For example, let there be three series of letters:

A, B, ¢

Az Bg Cz *

As B,

Ay
The number of combinations of the form ABC that can
be selected from them is 4 X 3 X 2 = 24. Let the stu-
dent write these combinations.

19. Probability of Either of Two or More Events. —If
the probability of an event A is p,, that of an event B is
s, that of an event C is p., etc., then it is easy to show
that the probability that one or another of these events will
happen i3 ps + ps + p. + -+, it being understood that
only one of these events can happen. For, suppose the
event A may happen in @ ways, the event B in b ways, etc.,
and that the total number of alternatives is T. (In
general, T will be greater than the sum of a, b, etc.; that is,
it is not necessary that any one of the events A, B, etc.
shall happen.) Then by definition, the probabilities of the

respective events are
a

b
Pa = T’ D= i’ ete.
If we designate by X the event of some one of the events
A, B, etc. happening, without specifying which, then,
since the number of ways in which X can occur is a + b
+ .., the probability of X is

pz'—'aL]:i-".:pa‘}‘pb‘}‘ e ) (10)
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As an example, let there be in a bag three balls of iron, two
of glass, five of wood, seven of lead, six of rubber, one of
ivory and four of copper; and let one be drawn at random.

The probability that a metal ball will be drawn is then
5 + 75 + % =3, since a metal ball is drawn if the re-
sult be an iron ball, a lead ball or a copper ball.

This principle of additive probabilities for alternative
events is made use of in estimating premiums on so-called
“joint ” life insurance policies.

20. Probability of the Concurrence of Independent
Events. — Quite a different problem is that of finding the
probability that all of a specified set of independent events
shall occur.” As before, designate the respective events by
A, B, C, etc., their respective separate probabilities by
Pa» Db, €tc.; and designate the event of their all occurring
by Z. Suppose the event A may occur independently in
a ways out of « alternatives, B in b ways out of 8 alter-
natives, etc., so that

P =2 =é ete
a a’ Do B’ .

It is of course understood that when all the events A, B, C,
etc., are given opportunity to happen, some one of the «
alternatives connected with A will happen, some one of the
B alternatives connected with B will happen, etc., but
that only one of each can happen. The total number of
possible outcomes is therefore the number of combinations
that can be formed by selecting one from each group of
alternatives, namely, the product a8y --- (9). Likewise,
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the number of different ways in which the events A, B,
etc., can all occur is the product abc ---. It follows that
the probability, of  all occurring; that is, the probability
of the event Z, is

abc-- a b ¢ -
g = == .= — e =, TN 11)
Pe= ey w' B v DaPbP (

That is to say, the probability of the concurrence of two or
more independent events 13 the product of the probabilities
of the respective evends considered separately. This product
is of course less than any one of its factors.

- To make the meaning of this clear, suppose that it is
known that a person A will spend five hours in a certain
place between 6 A.M. and 6 P.M., and that another person
B will spend three hours there during the same interval,
but nothing is known as to when these hours will be. If
we visit the place at any random moment, the probability
of finding A there at that moment is {5 ; the probability of
finding B there at that moment is . Then the probability
of finding them both there at that moment is f5 X ¥ = f5.
But the probability of finding either A or B there is
T5 + ¢ =4. Let the student analyze this problem more
closely, showing how the values stated for the probabilities
can be deduced from the definition of probability.

21. The Coin Problem. — Suppose that the result of
an experiment may be either one of two things, A and B,
which are equally likely to occur, and that the result must
be one or the other, but cannot be both. The probability
of either result is then 1. Let us determine what is the
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probability, if the experiment be performed @ times, that
it will result n times one way and @ — n times the other.
A coin tossed at random illustrates the problem; for
example, if it be tossed a hundred times, what is the prob-
ability that it will turn up heads thirty-eight times and
tails sixty-two times? Here @ =100, n =38 (or 62).
The required probability is a function of #; and, further-
more, it is evidently the same function of @ — n that it is
of n.

The first thing to determine is, in how many ways the
result A may happen n times out of @. In 100 throws of
the coin, heads may come up 38 times and tails 62 times in
a large variety of ways: for example, 1 H., 2T., 37 H.
and 60 T., in order, would fulfill the condition; or, equally
well, 8H., 5T., 30 H,, and 57 T. The number of ways
in which A may happen n times and B, @ — n times is
readily seen to be equal to the number of distinguishable
permutations of @ things, n being of one kind and @ — n
of the other (Art. 17), which is

" Q=n) _ Q!
Pg™Q )_nI (Q—n)l. (12)
Or, it is equal to the number of combinations of @ things
taken n at a time, since out of the totality of @ events,
the n events A may be selected wherever desired. Hence
another expression for the required number is equation
(8), which the student may readily show to be equivalent
to (12). We shall use equation (12).
Next we must determine the total number of possible



ON PROBABILITIES 43

alternatives. This may be done by adding together the
values of the expression (12) obtained by giving n all
integral values'from'0'to’q. “These'are tabulated below.

n Po(n.Q-n)
0 1
1 Q
2 Q(Q‘l)
21
3 QQ-1D@Q-2)
3!
Q-1 - Q
Q 1

The expressions obtained for Pg®™ 9~ as n varies from

0 to @ are at once seen to be the successive coefficients of

the expansion of a binomial with exponent @, and their
sum is therefore equal to 29. That is,

n=Q Q!

2n-on 1(Q@—mn)! =2 (13)

We now have the two elements of the solution of the

coin problem, namely, the number of ways in which event

A can happen n times and event B, @ — n times, given

by (12), and the total number of alternatives, given by

(13). The required probability of the specified outcome

is therefore
!

Pro-n= T Q-m1 29 (14)
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Thus the probability of the result 38 heads and 62 tails is

P o = 100!
862 381 621 2100°

The reason for introducing the coin problem will appear
later.

22. Important Exercise. — It is now very desirable,
for the purpose in hand, that the student faithfully per-
form the following exercise. Suppose a coin tossed ten
times. Find the probability of each of the following
possible results :

n - 10—n n 10—n

10 heads and 0 tails 4 heads and " 6 tails
9 heads and 1 tails 3 heads and 7 tails
‘8 heads and 2 tails 2 heads and 8 tails
7 heads and 3 tails 1 heads and 9 tails
6 heads and 4 tails 0 heads and 10 tails
5 heads and 5 tails

. Considerations of symmetry will shorten the work. Now
plot a series of points, of which the abscissas shall represent
the quantity n — 5 (n being the assumed number of heads)
and the ordinates the computed probabilities of the re-
spective results, using a convenient scale for each. Does
the resulting curve resemble any other curve that has
hitherto come to your notice? Test the theory by actual
experiment with a coin, or better, a flat bone disk, record-
ing the outcome of every ten throws. This exercise, if
carefully performed and studied, will assist the student
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to a much better understanding of the behavior of error
distribution than he could attain without it.

23. Empirical or Statistical Probability. — As has been
before noted, in the majority of the events of life, the con-
ditions are far too complicated to admit of any such analy-
sis as has been applied to the problems concerning cards,
balls, coins, etc. But it may happen that, when the con-
ditions are sufficiently constant throughout a long series
of observations, the probability of such a complex event
may be deduced from the observed results. It is upon
this principle that reliance is placed upon statistics. As
a very important example, we cannot compute, by any
theoretical formula, the probability that a person ten years
old will live to be sixty. But if the statistics show that
out of every 100,000 persons ten years of age, 58,000 do
live to be sixty, we may conclude that the required prob-
ability is 0.58. In a similar manner it has been deter-
mined that the probability that a person sixty years old
will live one more year is 0.97, since 97 per cent. of those
attaining the age of sixty do live another year. The im-
portance of such knowledge, and its bearing on the practi-
cal problems of the world, such as life insurance, are
self-evident. :

EXERCISES

24. 1. What is the probability of throwing a six in

two throws of a single die? In a single cast of two
dice?
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2. How many possible arrangements are here of the
letters in the word travel? How many distinguishable
arrangements of| the letters in.the word minimum?

8. A hostess wishes to have as guests the same number
of ladies as gentlemen. She has planned to have the
guests find their partners by the matching of colored
ribbons, each guest wearing two colors, there being but five
different colors in all. How many guests may she invite?
Would she be able to distinguish more couples by giving
each guest three colors? Four colors?

4. How many different football elevens could be formed
from a squad of fifteen players? What chance would
any one player have of getting on a picked eleven if it
were chosen by lot ?

6. In a certain organization there are two candidates
for an office and thirty voters. What is the probability
that there will be a tie? That either candidate will re-
ceive a majority of exactly % ?

6. By measuring a number of ordinates of the curve
obtained from the target experiment (Art. 11), determine
empirically the relative probabilities of the respective
errors in aim.

7. Find the number of combinations of three things in
eight; the number of permuted combinations.

8. A student council is to be made up of five members
from each of four college classes, whose respective member-
ships are 150, 105, 75 and 56. In how many different
ways may the council be made up? '
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9. Three things are selected at random from eight,
then returned; and then another random selection of
three is similarly made. What is the probability that
the two selections will be exactly reverse permutations
of the same three things?

10. A new janitor has a bunch of twenty-eight nearly
similar keys, one for each door of the building. What
is the probability of his being able to unlock the first
three doors with only one trial each? Solve also on
the supposition that he marks the keys as he discovers
them.

11. What is the probability that a whole number of
four figures, selected at random, will have two figures
alike and the other two figures alike ?

12. The following data are taken from the American
Experience Mortality Tables used by life insurance com-
panies in computing risks.

Out of 100,000 persons ten years of age,

100,000 live to be at least 10
92,637 live to be at least 20
89,032 live to be at least 25
85,441 live to be at least 30
81,822 live to be at least 35
78,106 live to be at least 40
74,173 live to be at least 45
69,804 live to be at least 50
64,563 live to be at least 55
57,917 live to be at least-60
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49,341 live to be at least 65
38,569 live to be at least 70
Plot a curve representing these data.

18. Find your own chance of living to be at least seventy
years old, using the curvein Ex. 12.

14. Three men are respectively 30, 27 and 22 years old.
Find the probability that they will all live to be 60 or over.

16. Two brothers are respectively 25 and 35 years old,
and their father is 60. The elder is to inherit the estate
if living at the father’s death, otherwise the younger will
inherit it; and at the death of the elder son, the younger
will, if living, inherit the estate from him. Find the prob-
ability that the elder son will own the estate five years
hence; that the younger will own it ten years hence.



CHAPTER IV

THE ERROR EQUATION AND THE PRINCIPLE OF
LEAST SQUARES

26. Analogy of Error Distribution to Coin Problem. —
It was pointed out in Art. 5 that an error in measurement
is the resultant of innumerab[e small disturbances of
different kinds, the presence of many of which may not
be even suspected. These disturbances operate, some in
one way, some in the other; that is, some tend to produce
positive error and some negative. The resultant error
depends on the relation of the number of positive disturb-
ances to the number of negative disturbances. If nearly
all are positive, the error will be positive and large; if
nearly all are negative, a large negative error will result ;
while if about the same number are positive as negative,
the error will be small. This does not imply that the dis-
turbances are all of the same magnitude. By way of illus-
tration, suppose we select from a sand-heap, at random,
a thousand grains of sand, and put eight hundred of them
on the left pan of a balance and two hundred on the other.
There is hardly a remote possibility that the former will
not very largely overbalance the latter. But if we put
five hundred on each pan, there will be little preponder-

" ance one way or the other. And this does not imply, by
E 49
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any means, that the grains are all equal in weight; some
individual particles may be ten times heavier than others.
Now there is a remarkable and useful analogy between
the theory/of'errorCdistribution and the so-called coin
problem (Art. 21), an analogy that the student has no
doubt already observed. It is easily deduced that the
most probable result of a number of throws of a coin is
that they will be half heads and half tails. In general,
this normal result will be departed from in greater or less
degree, so that in one hundred throws we frequently ob-
tain fifty-five heads and forty-five tails, or less frequently;
sixty heads and forty tails, etc. This departure from the
normal or most probable result may be looked upon as
a sort of error. Like an error in measurement, it is com-
plex in character, depending upon the result of each in-
dividual throw. Each throw, head or tail, affects the
final outcome one way or the other, just as each small
disturbance, positive or negative, affects the result of an
observation in measurement. A little consideration of
the two cases will bring out their analogy quite clearly.
We are therefore justified in assuming that the proba-
bility of the occurrence of an error is a function of the
magnitude of the error in much the same manner as the
probability of a departure from the half-and-half result
in tossing the coin is a function of the extent of the de-
parture. It is, in fact, upon this line of reasoning that
Hagen’s deduction of the error equation is based. The
deduction is, however, rather cumbersome, and we shall
follow instead the more elegant method due to Gauss.

e N - e e A LITAT L e e et Rt oD P - WS
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It may be remarked here that the theory of departures
is a very general one and finds application in a large variety
of problems of common experience, such as the distribution
of shots on a/target and‘the‘distribution of given charac-
teristics among the members of a biological group.

26. The Most Probable Value from a Series of Direct
Measurements. The Arithmetical Mean. — If a series
of measurements be made upon a single quantity under
as nearly constant conditions as possible, the result is,
in general, a series of different values, each approximating
the true value of the measured quantity. No one of them
18 the true value, however, and it now becomes a matter of
judgment to select, from all possible values, such a one
as will make the actual distribution of the results appear
most natural. An analogous case would be this: Suppose
that after all the shots had been fired at the target in the
first exercise of Art. 11, the central line aimed at were
erased, and we were required, from the given distribution
of the shots, to judge as to where the line had been; we
could do no better than to select a position that, from the
concentration of shots about it and their symmetry with
respect to it, seems to be the most probable one. Likewise,
in a series of measurements, we are aiming at a true -
value, the most probable location of which can only -be
estimated by an examination of the distributed results.

The symmetry of the distribution of errors in cases where
the true value is known, as also in the analogous coin and
target problems, leads at once to the common axiom of
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experience, that the best value to adopt in the case of a
series of direct observations on a single quantity is the
arithmetical mean or average of the observations. If the
several measured | results"be) designated by sy, 8, «++, 3,
and their mean be m, then the residuals (Art. 7) are re-
spectively ’
' PL=8 —m,
P2 = 8 — m,

P' = 8p — M.
Adding these we obtain
Sp=2—nm=0, ., (15)

which expresses the fact that the arithmetical mean of
the results is the value with respect to whick they are sym-
metrically placed, the algebraic sum of the differences
being then equal to zero; and that therefore this mean is
the most probable value that can be assumed.

27. Gauss’s Deduction of the Error Equation. — Let ¢
represent the unknown true value of a quantity and let a
series of n measurements be made upon it, the number n
being supposed very large. Let the errors arising from
the respective measurements be z;, xz, -+, xs. It has
been seen that the probability of the occurrence of an
error is some sort of inverse function of its magnitude.
Designating the probabilities of these respective errors
by %1, ¥e ***, Ya, this fact may be expressed by the
equations
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f (xl):
f(xs),

. f (‘tn)
It is the form of this functlon f(x) that we are seeking to
determine.

Now, as above noted, we do not know the true value ¢
of the observed quantity, and therefore we do not know
the true errors z. 'We may however assume various tenta-
tive values for ¢ and study the resulting tentative systems
of errors, particularly with a view to selecting that one
which seems most naturally distributed, in accordance
with the notions of error distribution that experience has
taught us. In this sense, therefore, we may think of ¢
and the errors z as variables subject to our control, and the
probabilities y will then vary accordingly. With this
understanding, then, we are seeking to find that system
of values for the 2’s which, as a whole, has the greatest
probability.

If the outcome of a series of measurements be the sys-
tem of errors zy, &3, *-+, Za, this result may be looked upon
as the concurrence of n independent events, each of which
is the obtaining of one of the errors z. Then according
to Art. 20, the probability of this outcome, designated by
Y, is the product of the probablhtles of the separate errors,
namely

Y =y o yn = f(@1) - f(@3) ++- f(a)- (16)
In order, therefore, that the system of z’s shall have the
greatest probability, as required, the value assumed for ¢
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should be such that the expression Y is a maximum;
which condition will be attained when

a¥
2240, an
dq

Differentiating (16)
av_ Y @), Y  df@),

dg flx) dg fz) dg
_|__Y_..M=O,

f) dg
Y[df(x) | df(xs) df (z.)
or dq[f(x,) o T f(x,.)]
- dl;[d log f(@1)+d log f(z2) + +++ +d log f(z»)] = 0.

Now let d log f(x) = ¢(x)dx, where ¢ is another unknown
function of z, thus simply related to f. Then canceling
out the Y,

¢(x1)‘%+¢<xz)%+~m +¢<m% =0. (18)

If the results of the respective n measurements on ¢ be
designated by si, 8z, -+, 3, having definite, fixed values,
then the errors « are (Art. 7)

=8 —4q,

x2=82_q’

Tn=38n—4¢,
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from which, at once,
dz, dx, dz,
—=—=.o.=—=—1. 19)
dg Tda T (O da ¢
(18) then reduces to
é(x1) + ¢(x2) + - +(2,) =0. (20)

We already understand enough of the law of error dis-
tribution to know that when the number of observations is
very large, the number of positive errors of given magni-
. tude about equals the number of negative errors of the
same magnitude, and that therefore the algebraic sum of
the errors is approximately zero. Since in our theoretical
discussion the number of observations is indefinitely
large, we may write, therefore, as another condition
fulfilled by the errors, A

T+ 2+ -+ 2.=0. (21)
It now remains to deduce from the two equations (20) and
(21) the form of the function ¢, from which the original

function f may then be obtained. - It is not difficult to
see that the equations are satisfied if

¢(xl) = Kmh .
¢(233) = Kﬁz,
¢(xs) = Kz,
where K is a constant. A mathematical proof that this is

the necessary relation is given in Note 4, Appendix, being
omitted here to avoid distracting attention from the
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main problem. We may write, then,

¢(x) = Kz; (22)
or since o@)dz = d'log f(z) = d log ¥,
dlog y = Kzdz.
Integrating, log y =3 Ka? + ¢/,
or y = etf#+e, (23)

This is one form of the error equation.

The expression may, however, be so modified as to ex-
hibit the relation to better advantage. We have seen
that the larger the error, the less likely it is to occur:
the larger z is, the smaller is y. Clearly, then, K must be
a negative quantity. Replacing £ K by — 42, and ¢ by
the constant ¢, the equation assumes the more usual and

more useful form
y=ce 7, (24)

This is the most tmportant equation in the theory of errors,
and should be committed to memory.

28. Discussion of the Error Equation. —It will be
interesting to examine equation (24) to see how closely
the law of error thereby expressed agrees with the conclu-
sions already reached. .

The bilateral symmetry of the function y is evident
from the occurrence of z in the second degree only. This
indicates the equal probability of positive and negative
errors of the same magnitude. The function approaches
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zero as  increases in magnitude; which means that very
great errors are extremely improbable. The derivatives
of the function are;

%=_zchzxe-h’z’, (25)
%’;= Z 2ch%eN=1 — 2 k). (26)

From these, since —y =0, %’2 <0 when x =0, there is a

maximum value of y when 2 =0; that is, the €ITOr ZEro
has the greatest probability.

The curve shown in Fig. 5 represents the function,
and has some interesting properties. Its symmetry,
asymptotic character Yi
and central maxi-
mum merely illus-
trate what has just
been deduced from
the equation. The
Y intercept, or maxi- '
mum ordinate, is the oﬁh i, X
quantity ¢, since y=c¢ Fia. 5
when z = 0. If we put @ equal to zero, which is the

%

)
[}
[]
1
'
|
)
1
)
'
D

condition for points of mﬂectlon, (26) gives
1 —2hp2%2=0,

1
=+ —. 27
¥ 7)
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This is the distance OD or 0D’, corresponding to the points
of inflection P and P’. The ordinate of these points is,
by substitution;

e
yi=+ s (28)
and is therefore proportional to c.

The quantity ¢ represents the probability of the error
zero. Now the probability of any given error z is a function
of both ¢ and k, since it changes if we change either ¢
or h. It would thus appear that ¢ and % have something
to do with the precision of the measurements, and that
they are therefore connected with each other. We shall
see later (Art. 54) that this is the case, and also that
there is still another factor in the probability of a given
error, depending upon the value of the smallest scale in-
terval in terms of which the measurements are expressed.

29. The Principle of Least Squares in its Simplest Form.
— We are now in position to make an introductory state-
ment of the important principle which gives this branch
of science its name, — the principle of least squares. Be-
fore we are through with the theory of errors, the principle
will have been stated several times in successively more
complicated forms, as the problems to which it is applied
become more and more general. So far we have been
considering only the simplest case, namely, that of ob-
servations of equal precision upon a single quantity;
and while for this case the method of deducing the most
probable value is clear without reference to the principle
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of least squares, still it will be interesting and instructive
to observe how the assumption of the arithmetical mean
as the most probable value may: be shown to be in accord-
ance with that principle in the simple form here stated.

The simple form of the principle referred to is as follows :

The most probable value of a measured quantity that can

be deduced from a series of direct observations, made with
equal care and skill, 13 that for which the sum of the squares
of the residuals i3 a minimum.
. The law governing the distribution of errors has already
been deduced theoretically, and the experience of number-
less experimenters testifies to its truth. We have there-
fore a right to expect that, when we have made a long series
of measurements upon a single quantity, our observations
will have grouped themselves around the true value in
a manner approximately consistent with the error equation
(24). Then it is logical for us to assume a value for the
measured quantity, such that the results of the measure-
ments will be so grouped with respect to it. This is the
so-called most probable value, and it is the office of the prin-
ciple of least squares, in any case, to point out the way of
arriving at it.

Let the results of the n observations be s;, 83, -+, s,.
Then if we designate the most probable value sought by
m, there will arise a corresponding series of residuals
P1, P2, ***, Pn, €ach of which is found by subtracting m
from the corresponding observation s (Art. 7). If .m
be properly chosen, the residuals derived from it will,
like true errors, be found to be distributed in accordance
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with the exponential law of error probability (24), so that
the probabilities of the respective residuals are

= ce—h’m,)
Yo = w—h’m’)
Yn=cCe =W,

The probability of the simultaneous occurrence of the
assumed system of residuals is then (Art. 27)

Y =YYz o Yn = c"e‘h’(Pl’+Pl’+ +P,.’). (29)

Now if m, and consequently the residuals p, are to be so
chosen that the resulting distribution is the most probable
one in accordance with the law of error, these quantities
must be given such values that the probability Y is as
great as possible. But this will be secured, evidently,
by making p,® + p,2 + --+ + p.? as small as possible, as
will be seen at once from (29). That is to say, m should be
30 chosen that Zp* is @ minimum, which is the principle of
least squares stated above.

In order to find what this required value of m is, we may
write

ZpP=(s1—m)? (2 —m)?+ -+ 4 (8, — m)?
=a minimum.

Hence
ﬁzﬁ ==2[(s1—m)+ (2 —m)+ - + (s, —m)]=0,
or reducing, m=tth -:' +8", (30)

which is simply the arithmetical mean of the observations s.
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EXERCISES

30. 1. Show how, in the first experimental exercise of
Art. 11, the errors of aim may be due to many minor
causes, enumerating as many such possible causes as
you can think of.

2. Find the algebraic sum of the errors of measurement
in the third exercise of Art. 11; also the algebraic sum
of the residuals.

8. Plot the curve y = ce*#, giving the value unity to
each of the constants cand k. This may be done by use
of logarithms (¢ = 2.718---). Let the unit abscissa be
10 squares and the unit ordinate 50 squares. Compare
with the error curves obtained from Exercises 1, 2 and 3
of Art. 11, and with the coin problem curve obtained in
Art. 22.

4. Draw a smooth, symmetrical curve which follows
as closely as possible the irregular curve obtained in
Ex. 3, Art. 11, making it conform to the known prop-
erties of the law of error as represented in Fig. 5. From
this curve, determine the relative probabilities of the
errors of magnitude 0°.1, 0°.2, etc., out to5°. By locating
the points of inflection, find an approximate numerical
value for A.

" 6. Plot the curve represented by
y=2—-2+@—-2)+@—-2+ (6 —-2?+(6—2)
Has it a minimum point? What does this illustrate?
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6. The number of rays in the lower valve of a certain
species of Atlantic mollusk was counted in 508 individual

cases. Of these,
1thad 14 rays,

8 had 15 rays,
63 had 16 rays,
154 had 17 rays,
164 had 18 rays,
96 had 19 rays,
20 had 20 rays,
2 had 21 rays.

Plot a curve in which abscissas represent the number of rays
and ordinates the corresponding number of individuals.

What is the probability that two of these mollusks,
picked up at random, will each have exactly fifteen rays?
(Data from Davenport, Statistical Methods.)

7. Tests were made on fifty schoolboys of equal age to
ascertain strength of grip. The following data (Whipple,
Manual of Mental and Physical Tests) are in hundreds of

grams.
158 210 248 296 348
175 220 262 301 350
193 225 262 310 353
197 225 267 313 . 375
197 225 269 315 375
200 226 270 320 403
205 235 273 323 430
206 244 280 325 440
208 244 290 330 440
210 245 204 346 508
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Arrange a suitable curve showing departures from the
average or normal strength from these data.

8. About two hundred individuals were tested at the
University of Iowa for accuracy of tone perception, the
_ results being expressed by the number of vibrations in
the departure from the true tone (international A, 435
per sec.) that the individual could distinguish. The data
are expressed in per cent.

DEPARTURE, VIB. Per CENT.
1 13.8
2 24.0
3 25.5
5 ' 17.3
8 7.3
12 3.2
17 1.6
23 2.7
30 or over 4.6

Plot a curve representing this distribution, and discuss its
form.

9. Out of a class of exactly 100 college freshmen, the age

of 1 was 16, 2 was 22,
12 was 17, 1 was 23,
31 was 18, 0 was 24,
22 was 19, 0 was 25,
18 was 20, 1 was 26.
12 was 21,

Plot curve and discuss its form.
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10. Out of over 100,000 pubiic school grades examined
by Mr. L. L. Fishwild,

1,(per cent: were 50,
1 per cefit. were 55,
2 per cent. were 60,
2 per cent. were 65,
5 per cent. were 70,
6 per cent. were 75,
13 per cent. were 80,
13 per cent. were 85,
25 per cent. were 90,
23 per cent. were 95,
9 per cent. were 100.

Plot curve and discuss its form.



CHAPTER V

ON THE ADJUSTMENT OF INDIRECT
OBSERVATIONS

31. Observations on Functions of a Single Quantity. —
It has been pointed out that measurements are seldom
made directly upon the quantities whose values are
sought, but are usually made upon functions of them, or
functions involving them - with other unknown quan-
tities. The former case being the simpler, we shall
consider it first.

As a specific problem, let a number of measurements
be made upon the diameter of a circle, with the object of
determining its area. That is, the quantity really sought
is the area, but the direct measurements are made upon the
diameter, a function of the area. Supposing the observa-
tions to be all made in the same manner, the question
arises, what is the most probable value of the area? Isit
the arithmetical mean of the areas computed from the
separate measurements on the diameter, or is it the area
determined by taking, as the diameter, the mean of the
measurements upon it? The two are of course not the
same. ‘ :

This question may be answered by the following general
deduction. The quantity whose most probable value is

v 65



66 THEORY OF ERRORS AND LEAST SQUARES

sought being ¢, and the function of it, upon which the ob-
servations ¢ are directly made, being f(q), there arise the
following approximate statements, known as observation
equations, each of which represents one of the n measure-

ments:

f (Q) =8,

) = 8,

fg 2 31)

f(@) = 8a.
81, 83, ++, 8, are the results of readings on some sort of
scale or measuring instrument applied to the function
directly measured.

The errors of the observations are represented by
81 —f(g), etc., but are not determinate. It is the most
probable value of q that we are seeking, and if this be repre-
sented by m, the residuals of the n observations are

p1= 81 — f(m),
P2 "—:' 32. - :f(’”.")’ (32)
Pn =38, — f(m)

‘There is no reason why the principle of least squares "
should not apply to this case as well as to the case of direct
measurements, since the law of error distribution, or the
““law of departures,” is universal in its scope. As relating
to this sort of measurements, then, the principle of least
squares takes the following form: The most probable
value of an unknown quantity that can be derived from a
set of observations upon one of its functions is that for which -
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the sum of the squares of the residuals arising from these
observations s a minimum. :
The sum above referred to is expressed by

= [s = f(m)+ [s2 = F(m)F+ -+ +[sn — f(m)]2, (33)

in which m may be regarded as a variable whose value is
to be so adjusted as to render Zp? a mlmmum This con-
dition requires that

or, differentiating (33),
—-— — d =
2 [Zs — nf(m)] d—i

s '
fim) = " . (34)

Therefore m, the most probable value of ¢, is that value
whose f-function is the mean of the observations upon
f(@).

Thus, the most probable value of the area of a circle,
as determined from measurements upon the diameter,

is i times the square of the arithmetical mean of the results

of those measurements. A multitude of other illustrations
of this principle will occur to any one familiar with such
work.

32. Observation Equations for More Than One Un-
known Quantity. — Very frequently, in an experimental
research, ogcasion arises to determine, not merely one, but
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several, unknown quantities or constants which are so
involved with each other and with the phenomena directly
observed as to render their separate measurement im-
possible. The following illustrations will make this clear.

In the use of the zenith telescope for finding the latitude
of a station, the quantities first sought are the zenith dis-
tances of two stars selected for the purpose. The sum of
the zenith distances is equal to their difference in declina-
tion, as given in the star catalogues, and therefore depends
upon the results of many very precise measurements
made with other instruments at fixed observatories.
The difference of the zenith distances is measured by means
of the micrometer belonging to the zenith telescope,
as the instrument is rotated from north to south about
the vertical. In this way, neither zenith distance is
separately determined, both being found by the simulta-
neous solution of the equations arising from the above
observations.

Again, it is desired to find the relative proportions of
sodium chloride (NaCl) and potassium chloride (KCI)
in a mixture of the two salts. Or specifically, in a given
specimeén of the dry mixture, to find the number of grams,
z, of sodium chloride and the number, y, of potassium
chloride. First let the sample be weighed, with the result
8. Then 24y = s
The sample is now dissolved and the chlorine precipitated
with silver nitrate (AgNOs), and the total amount of
chlorine present calculated by weighing the precipitated
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silver chloride (AgCl). Denote the total chlorine by s,.
Now, sodium chloride is 0.6123 chlorine, and potassium
chloride is 0.4754 chlorine. Hence in  grams of sodium
chloride and'y grams of potassium chloride, the total

chlorine is 0.6123  + 0.4754 y = s,

which furnishes the second observation equation necessary
for obtaining « and y. This is another instance in which
neither of the unknown quantities is measured separately.

Quite often only certain ones of the unknown quantities
are really desired, the others being merely troublesome
corrections or instrumental constants which must be de-
termined or eliminated. The method of procedure, how-
ever, is the same in this as in any other case.

33. More Observations than Quantities. Normal
Equations. — In the illustrations of the preceding article
there were, in each case, two unknowns, and two inde-
pendent observations were necessary to determine them.
By independent observations are meant observations
made on a different principle, or under such different con-
ditions that the resulting observation equations will have
different coefficients and not merely different absolute
terms. To repeat the process of measuring the sum of
two unknowns, without attempting to find some other
relation between them (as, for example, their difference
or their product), would give no information as to the
separate values of the unknowns.: And, in general, the de-
termination of / unknown quantities requires a knowledge
of I independent and consistent relations between them,
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If measurements could be made without error, the solu-
tion of the ! independent observation equations formed
from such measurements would give us the values of the [
unknowns exactly; more than ! measurements would be
superfluous. But, as in the simpler case of a single un-
known, the existence of accidental errors makes it desir-
able to get as many observations as possible, and to
devise some means of averaging them so as to find the
most probable value of each of the unknowns. This prob-
lem is the most important that arises in least squares.

Let there be n observations upon functions of the / un-
known connected quantities g1, ¢, -**, ¢ (n>0), and let
the series of resulting observation equations be repre-

sented b
4 Y fl (qu @2y ** qt) =38

{2 (q.l’ q.2’ . ] flx) ._3?1 (35)

fn (th, g2 °*° ql) = 8.
Here, as in the simpler cases, there are errors and residuals
obeying the same law of error distribution set forth in
the error equation. We are seeking to obtain the most
probable values, m;, ms, +--, m;, of the unknown (and
unknowable) quantities ¢ that the observations will
furnish, and when these are found, the n residuals will be

given by

o p1 = 81 — fi (my, My, +++, m;),
P2 =82 _f2 (m1, Mg, +--, ml),

Pn = 3n—fn (m, my, -, ml)-

(36)
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The principle of least squares may now be slightly modi-
fied in wording to fit this case, thus: The most probable
values of unknown quantities connected by observation equa-
tions are those which will render the sum of the squares
of the residuals arising from the observation equations a
minimum.

It is possible, through an application of this principle,
to reduce the n residual equations (36) to a number I,
equal to the number of unknowns, which can then be
solved for the most probable values m. The process
may be regarded as finding from the n observation equa-
tions (35) a set of | most probable equations whose solution
will give the most probable values of the unknowns g¢. *

From the principle of least squares, the sum p;? + ps* +
«ss +p,? must be a minimum, and in order that m;, ms,
-+, m; may be so selected that this will be the case, the
first partial derivative of this Zp? with respect to each
of those quantities must be zero. (See any calculus.)
That is,

s~ f (ma, may -, m)=0
omy 5 PR ’
a n
2 [8 _f (ml) me, °*, 'm'l)]2 =0,

ame 4 @7

P n
a_”“' ? [" —f (mly ma, °°, ml)lz =0.

The equations (37) resulting from these differentiations
are the most probable or normal equations required, and
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being ! in number, will yield, on solution, the most probable
values m,, mq, +-+, m;, which are sought.

Equation (34) |is.a normal equation, containing only
one unknown, m.

34. Reduction of Observation Equations of the First
Degree. — In nearly all cases in which the method of least
squares is used in the reduction of observations in accord-
.ance with the foregoing theory, the observation equations
are either all cf the first degree, or they may, by suitable
substitutions, be replaced by equivalent observation
‘equations which are of the first degree. The mathemati-
cal operations required in finding the normal equations
are then comparatively simple, and can be performed with-
out any knowledge of calculus.

Let the = first degree observation equations upon the [
quantities g (corresponding to (35)) be as follows :

cag+hetagt o Fng=3s,

aqu + bzqz + 02(13 + + rzqz =38, (38)
‘ anq1 + b,.qz + c,.qs+ + Tl = Sn.
The residuals will then be
p1 = 81 —(army + bymg + - + rymy),
P2 = 82 — (a2ml + byme + + szx) (39)

Prn= 8y — (a,,ml + b,,me + + rnmz)

Only one term in each of these expressions contains m;, ;
denote the balance of the expression in each case by a single
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letter, as B. Then

p1L=—aym, + B, etc.,

and Zp? = (= aymy + B1)? + -+ +(— apgmy + B,)2

Differentiating with respect to m,, as per equations (37),

_A 2pt==2a,(—amy + By) — -+

8m1
—2a,(—a,m+ B,) =0.

Or dividing by 2 and remembering that — am + B=p
in each term,
- aipy— aapy — o+ — aypy = 0. (40)

This is the normal equation pertaining to m,, and corre-
sponds to the first of equations (37).

This result may be directly obtained by multiplying
each of the residuals (39) by the coefficient of m, in the ex-
pression for that residual, adding the results and equating
the sum to zero.

The remainder of the I normal equations required are
determined with respect to ms, ms, +-+, m; in the same
manner.

The foregoing processes may be summed up in the
following rule: To adjust a set of observation equations of
the first degree, write the expression for the residual corre-
sponding to each observation equation, multiply it by the
coefficient of the first unknown, in that expression, add the
products and equate their sum to zero. The result ts the
normal equation pertaining to the said first unknown.
Do likewise for each of the other unknowns. Then solve



74 THEORY OF ERRORS AND LEAST SQUARES

the | mormal "equations thus formed for the desired most
probable values, my, ma, +++, my. "

- Let the student prove that taking the arithmetical mean
of a number of direct observations upon a single quantity
is merely a special application of this rule.

86. Ilustrations from Physics. — It will be of material
assistance to the student to have presented at this point
a number of actual examples illustrating the application
of least square adjustment in various departments of
exact science. These examples are not “ made up” for
the purpose; they are drawn from actual experimental
notes on research or field work.

1. Bridge Wire. — It was desired to measure the total
resistance of a Wheatstone bridge wire and at the same
time to calibrate it, by comparison with a standardized
bridge of another type. The unknown (and unessential)
resistance of the connections had also to be reckoned with
and-eliminated. The wire was 100 cm. long, and the meas-
urement was conducted by observing the resistance of the
first 10 cm., then of the first 20 cm., etc., and finally of the
whole wire, the connections entering each time as a con-
stant term in the observed resistance. The results follow.

No. Cum. REsIST., No. Cu. ReEsisT.,

MEASURED OnMS MEASURED OBM8
10 0.116 0.595
20 0.205 70 0.675
30 0.295 ©0.760
40 0.388 0.850
50 0.503 0.926
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Let x be the total resistance of the bridge wire, and ¢ that
of the connections. These are the two unknowns, the
first of which/is'te/be obtdined with all possible precision,
the second to be eliminated, as a mere correction. Mathe-
matically they are equally important. The observation

equations are ;. 4 o _ 0.116,

0.2z 4 ¢ = 0.205,
0.3z 4+ ¢ = 0.295,
04z 4 c = 0.388,
0.5z 4 ¢ = 0.503,
0.6 2 + ¢ = 0.595,
0.7z + ¢ = 0.675,
0.8z + ¢ = 0.760,
0.9z 4+ ¢ = 0.850,
1.0z + ¢ = 0.926.

In practice we need not take the trouble to change
symbols in distinguishing between the true and most prob-
able values of the unknown (“¢” and “m ). If zand ¢
now represent the most probable values sought, the first
residual is p; = 0.116 — (0.1 x + ¢), ete. Let the student
apply the rule developed in the preceding article to obtain
the two normal equations, which he will find to be

3.85z + 5.5 ¢ = 3.686,
552+ 10¢ = 5313,
the solution of which gives

x = 0.926 ohms,
¢ = 0.022 ohms.
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Let the student select any two of the observation equa-
tions and solve them for  and ¢, comparing the results
with these most, probable ones.- The accompanying figure

_,é
-
—nﬁ //
-
1A
1
B >
B L L ems.
S 20 3 T40 6 | €0 7 | & | 9 | we
| | ] ] | | ! 1 | ]
Fia. 6

shows the plotted observations, together with the straight

line 0.926-L + 0,022 = R
. 100+ K = R,

upon which they all should lie were there no errors in the
measurements nor irregularities in the wire itself. . The
departures of the plotted points from this most probable
line represent the residuals of the ten observations.

2. Balance Constants.—The general theory of the equal-
arm balance is somewhat complicated, but in the equation
used to express the sensibility in terms of the load, the
various instrumental constants may all be involved in
two quantities a and b, the equation being

a+bw=l-
8
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Here w is the load on either pan (grams) and s the gram
sensibility, or one thousand times the deflection produced
by a milligram weight/laid onjone pan. The constants a
and b are to be estimated from the following observations.

w s w 8
GRAMS 8caLe Div. GRAMB ScaLe Div.
0 2212 50 2389
10 2265 75 2449
20 2320 100 2563
30 2343 125 2590

40 2316

The observation equations are then

a+ 0b=1= 2212
a+ 10b =1+ 2265,
a+ 20b =1+ 2320,
a+ 30b =1+ 2343,
a+ 40b =1+ 2316,
a+ 50b =1+ 2389,
a+ 75b =1+ 2449,
a+100b =1 + 2563,
a+125b =1 + 2590.

The adjustment of these by the foregoing method gives as
the most probable values sought,

a = + 0.0004466,

b = — 0.000000518.

Let the student perform this reduction.
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36. Illustrations from Chemistry.

1. Volumetric Solutions. — It is desired to test certain
acid and  alkalinesolutions .to be used in volumetric
chemical analysis, in order to ascertain their exact strengths.
Two common reagents, in the form of tenth-normal solu-
tions, may be tested first, then others may be compared to
these. If the two reagents chosen be hydrochloric acid
and potassium hydroxide, the following procedure may
be employed.

A quantity of each solution is placed in an accurately
graduated burette, the two burettes being supported
side by side. A small amount (say about 0.2 g.) of finely
pulverized pure calcium carbonate (chalk, CaCO;) is
carefully weighed, placed in a white porcelain dish and
treated with an excess (say about 50 cc.) of the HCI solu-
tion from the burette, the amount being accurately ob-
served. The chalk dissolves and neutralizes part of the
acid, the CO, gas escaping. The porcelain dish is now
set under the KOH burette, and just enough of the alka-
line solution allowed to flow into it to render it exactly
neutral, this point being determined by a drop or two of
methyl orange or other sensitive indicator previously added
to the mixture in the dish. The amount of KOH solution
thus used is also carefully noted. Part of the acid is
neutralized by the CaCQOj; and the remainder by the KOH.
The chemical equations representing the two reactions
are as follows:

72.36 99.32
(I) 2 HClI 4+ CaCO; = CaCl; 4+ CO: + H,0,
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3618  55.70 :
dn) HCl + KOH = KCl + H;0.

The small numbets above the symbols are obtained from
the molecular weights, and represent the relative weights
of the substances engaging in the reaction.

Let ¢ = wt. HCl in 1 ce. HCI sol.
. Unknown.
¢: = wt. KOH in 1 cc. KOH sol.
a = total volume HCI sol. used.
= vol. HCl sol. neutralized by CaCOs.
a — a = vol. HCl sol. neutralized by KOH.
b = vol. KOH sol. used in neutralization.

¢ = wt. CaCOj; powder used.

Then ag: = wt. HCl neutralized by CaCOs.
(a — a)q = wt. HCl neutralized by KOH.
bgs = wt. KOH used.

From (I)

aq:c =7236:99.32 = 0.73,
or aq = 0.73 c.
From (II)

(a — a)q1:bg; = 36.18:55.70 = 0.65,
or aq — aqi= 0.65 bge.
From these two equations « is eliminated by addition,

giving finally
" ag — 0.65 bgy = 0.73 c.
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This is an observation equation, the quantities a, b, ¢
having been measured, and ¢, ¢: being the two unknowns ;
and a series of such experiments (at least two) will yield
the most probable values required. In some of the ex-
periments the CaCO; powder may be omitted entirely,
giving ¢ = 0; but not in all of them. (Why?) -

a b c
Vou. HCI Vor. KOH Wr. CaCOs
SoL. usEp SoL. USED PowDER USED
ce. cc. g )
50.00 - 10.33 0.1779
50.00 7.88 0.1936
11.23 9.98 none
11.25 10.00 none
11.25 10.00 none
11.34 10.10 none

The above data yield the following observation equa-

tions: .
50 ¢ — 0.65 X 10.33 ¢ = 0.73 X 0.1779,

50 ¢, — 0.65 X 7.88¢ = 0.73 X 0.1936,
11.23 ¢ — 0.65 X 9.98¢ = 0,
11.25 ¢ — 0.65 X 10.00 gz = 0,
11.25 ¢ — 0.65 X 10.00 g = O,
11.34 ¢ — 0.65 X 10.10 g, = 0.

Let the student reduce these to normal equations and solve
for the most probable values of ¢; and g..

2. Pyknometer Constants. — The expansion of a pyk-
nometer (specific gravity bottle), like any solid, is in ap-
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proximate accordance with the linear law
V=Vo+ Kt

V being the capacity atitemperature ¢, V', the capacity at
zero and K a constant involving the coefficient of expan-
sion of the glass. The two constants 7, and K must be
experimentally determined from time to time for any
pyknometer that is used in accurate measurements of
density. This may be done by finding the capacity at
several different temperatures over the required range.*
The following is a tabulation of eight such determinations,
using distilled water and corrected for buoyancy of the air.

3 e v ¢ 14
19°.20 25.2628 ce. . 35°.50 25.2687 ce.
19.75 . .2634 39.30 .2691
25.61 .2664 39.75 .2692
30.92 .2681 , 46.45 2734

Let the student form the eight observation equations and
the two normal equations, and reduce for the most prob-
able values of ¥ypand K. (The approximate answers are,
Vs = 25.2509, K = 0.0005244.) B

37. Ilustrations from Surveying.

1. Locating a Distant Station. — Some of the best
writers on surveying strongly recommend the use of rec-

* if the range be large, K will vary somewhat. The range may be
subdivided, say into 10-degree intervals, and the constants found for

each ; or better, a quadratic relation assumed, with three constants. See
Art. 45. ’

(e}
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tangular codrdinates in surveying and mapping; certainly
their use reduces many calculations to a more scientific
basis. The problem in hand is as follows: Given, the

N BA

:
% Fia. 7

coordinates of a number of stations A4, B, C, ete., with
reference to an origin 0, and the bearing of an unknown
station P from each of these stations; to find the most
probable codrdinates of P. For instance, the unknown
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station P is a reef near the coast along which the points
A, B, etc., are located. The numerical data are as follows,
for five stations.

SraTION Cot]»;}nnmul:s g‘r.) BEeaRING OF P VECTOR | ANGLE 0
A 1785 1501 S. 58° 57’ W. PA 31° 3/
B 1372 2020 S. 2 5 W PB 67 55
C 1052 1971 S. 5 20 W, PC |84 31
D 909 1609 S. 4 43 E. PD |94 43
E 620 1533 S. 32 43 E PE |122 43

The vectorial angles in the last column are the angles
made by the vectors PA, PB, etc., with the line drawn
eastward through P, calculated from the given bearings.
Using coérdinates z and y to locate P, and z,, y,, etc., for
A, etc., we can write

Yo=Y _ tang,

T,—
or xtan, — y = x5 tan 0, — y,,
that is,

x tan 31° 3’ — y = 1785 tan 31°3' — 1501,

etc., as the observation equations, there being as many of
these as there are known stations. These equations, being
of the first degree in z and y, may be adjusted in the usual
manner. Let the student do this. (The results should
be, approximately, * = 930, y = 1000; that is, P = 930
E., 1000 N.) :
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2. Relative Levels of Stations. — The next illustration
is taken from Merriman’s Least Squares, and is typical of
many kinds of measurements in which the quantity sought
is measured by’ parts or segments. The same method is,
for example, applied to a number of angles at one station.
Given, a number of determinations on the relative altitudes
of several stations, obtained by precise leveling, to find
the most probable values of their altitudes above one of
them taken as a datum. Following are the results of the

levelings.
A above 0 573.08 ft.

B above A 2.60 ft.
B above 0 575.27 ft. .

C above B 167.33 ft.

D above C  3.80 ft.

D above B 170.28 ft.

D above E 425.00 ft.

E above 0 319.91 ft. (one way)

E above 0 319.75 ft. (another way)

Representing by a, b, etc., the elevations of the respective
stations above O as a datum, the following simple observa-
tion equations at once result.

a = 573.08
b—a = 2.60

b = 575.27
c—b =167.33

d—c =380
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d—b =170.28
d—e = 425.00
¢|=319.91
e = 319.75

The student can readily adjust these in the usual manner.
It will be interesting in this case to compare the adjusted
values of a, b and e with their values as directly measured.

38. Illustrations from Astronomy.

1. Errors of the Transit and Clock.— Astronomical time
is ascertained, at any observatory, by observations upon
the stars. To this end an instrument not unlike a sur-
veyor’s transit is used. It is larger, however, and fixed
on a solid pier, and is incapable of rotating horizontally,
being swung in the vertical plane of the meridian. This
instrument is the astronomical tramsit or the meridian
circle.

When used for time observations, the telescope is set at
the proper angle of altitude for some star to traverse its
field as it crosses the meridian. The exact sidereal time
of meridian passage, or transit, is known as the right
ascension * of the star,-and is given in the star catalogues.
In order to correct the clock, therefore, it is necessary only
to note at what time, by the clock, the star is actually ob-
served to cross the meridian.

* Right ton on the celestial sphere, as shown by the star maps,
is closely analogous to longitude on the earth, only it is usually expressed
in hours, minutes and seconds, reading toward the east. Declination
corresponds to terrestrial latitude.
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On account of the extreme accuracy demanded in as-
tronomical work, this apparently simple procedure re-
quires the elimination of certain recognized instrumental
errors. These are: (1) the level error, arising from the
non-horizontality of the bearings or trunnions on which
the telescope turns, so that its revolution does not exactly
coincide with the meridian plane; (2) the azimuth error,
or failure of this axis of rotation to coincide with the east
and west line, which has a similar effect on the plane
of rotation; (3) the collimation error, due to the fact that
the cross-wires in the telescope, which determine its line
of sight, are not exactly in the optic axis, being a little to
one side of the center of the field. In addition to these,
there is the error of the clock, which is the quantity really
wanted. The level error is ascertained by a direct applica-
tion of the stride level resting on the trunnions and having
a very sensitive graduated spirit-bubble. The other errors
must be found simultaneously from several observations
on different stars, the level error reading being simply a
part of the determination.

Without entering into the applications of spherical as-
tronomy required, it may be simply stated that the ob-
servation equations involved are of the first degree. If

q1 = the true clock error (clock minus true time),
g2 = the azimuth error,
gs = the collimation error,

! = the level error,

all being expressed in seconds of time, then the form of
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the observation equation is

¢+ ag. + cqs = d — b,
d being the apparent clock error, or the time indicated by
the clock at apparent transit minus the true time of transit,
or right ascension, of the star. The quantities a, b and ¢
are known as Meyer’s coefficients, and are calculated from
the following formulas: ’

a _ sin \—9)
cos &

b = C0s (A—0)
cosd

¢ = secd,

in which \ is the latitude of the observatory and & the dec-
lination of the star used. Tables of these coefficients are
at hand in every observatory.

Of course three observations on different stars, at least,
are required to determine ¢; and eliminate ¢; and ¢s. If
more are made, least-square reduction may be applied
to their adjustment. Following is a typical set of data
of this sort, based on the observed transits of six stars.

Iowa City, Iowa, Lat. 41° 40 November 16, 1896
' OBBERVED
DEecLiNA-|  RigHT
Srar TION | ASCENSION %gﬁ::r: ! @ b ¢
8. h.m. s 8.

x Draconis . .| 109° 38’ 428 | 02939.14 | 047 | 2.76 |—1.12 |—-2.97
BCeti . . .|-18 33 26.50 | 03934.07 |044 | 091 | 052 1.05
y Cassiopei .| 60 9 0503072 | 052 477|038 (—0.64 | 191 | 201
o Urs® Majoris | 112 27 |21 121.85|21 2 141|059 | 247 |—0.86 |—2.61
€Cygni . . .| 20 48 |21 8 328121 95214 (059 024 1.13| 115
aCephei . .| 62 9 |2116 6.35|2117 42.64|0.59 |—0.75| 201 | 2.14

cof
$8E
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No allowance has here been made for any error in the
clock’s rate during the progress of the observations.

2. Parallaz/and ProperMotion.— Stellar parallax is the
apparent change in the position of a star, during the year,
caused by the earth’s motion in its orbit. In addition to
this, there is the actual, or “ proper,” motion of the star
itself through space. These two are superposed and pro-
duce one resultant effect upon the star’s apparent pbsi-
tion at any time. Their separation into distinguishable
components is the problem here presented.

Modern astronomical measurements are conducted
very largely by photography. The star in question is
photographed on the same plate with others so immensely
farther away that they have no perceptible parallax or
proper motion, and then the positions of the images are
measured at leisure on very accurate measuring machines.

Let = = the parallax in a given direction,
# = the proper motion in that direction,
s = the measured displacement of the star in that
direction, with reference to its apparent
position at some previous date T days past.

Then the observation equation is shown in practical

astronomy to be '
Y Pr+ Tutec=s

P is the parallax factor, easily calculated from the direc-

tion of the star and the position of the earth in its orbit.

¢ is an unknown constant, depending on the peculiarities

of the measuring machine, and to be eliminated. The
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three unknowns are, then, r, x» and ¢. The coefficients P
and T and the quantity s are varied by making observa-
tions on many, different| dates,jand from the resulting
series of observation equations, the most probable values
of the proper motion and the parallax are obtained. The
latter gives the most probable distance of the star. The
details of the process being somewhat technical, no numeri-
cal example is here given.

39. Observation Equations Not of First Degree. — If
the observation equations are not of the first degree, re-
course may be had to the general method explained in
Art. 33, that is, to the application of the principle of least
squares through the general equations (37). This would
often lead, however, to normal equations that would be
exceedingly inconvenient to solve.

In many.such cases, the difficulty may be at once avoided
by a suitable application of logarithms. A standard
measurement in the physical laboratory, for example, is
the simultaneous determination of the magnetic field of
the earth H and the magnetic moment M of the bar
magnet used for the purpose. One experiment gives the

product, MH = s, 1)

and another the quotient

SIS

= 82, (4:2)

of the unknown quantities. These observation equations
may be made linear by using instead of M and H, as
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unknowns, their common logarithms:
log M + log H = log sy,

(43)
logcM <dog. H= log s,

the most probable values of log M and log H being then
found in the usual manner.
Again, the solubility of a chemical salt is given by the

theoretical formula * ot
5= 3,73 (44)

in terms of the centigrade temperature t. s, is the
solubility of the salt at 0° C. and ¢ is a constant depend-
ing on its heat of solution. s, and ¢ are unknowns, to be
determined for each substance by means of several meas-
urements on 8 at different temperatures. For this purpose
the observation equation may be written
t

273 4+t
the most probable values of ¢ and log s, being the values
directly found. The following data pertain to the solu-
bility of potassium chlorate (KClO3) in water.

log 3o + loge « ¢ =log s, (45)

t 8 (obs.) 8 (cale.)
0° 0.0247

5 0.0299 0317
10 .0406 0402
15 0512 - .0507
20 0672 0634
25 0774 0787
30 .1027 0970
35 1145 .1187
40 .1405 1444

* See Arrhenius, Electrochemistry.
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The eight'observations on ¢ and s furnish eight observation
equations of the above form, which when adjusted give
as most probable,values[log)sy. = —1.6073, whence s =
0.0247; and ¢ = 13.82. The solubility formula for this
substance may now be written in its original form, or more
conveniently retained in the logarithmic form :

14
273 + ¢
from which the values of s given in the third column are
calculated. The student will find it instructive to plot
the observations on ¢ and 3, and also the smooth curve
_ corresponding to the calculated values of s. It would be
difficult to imagine a more typical application of least-
square adjustment than the one just given.

Another method of procedure when the observation
equations are not of the first degree, somewhat analogous
to Horner’s method of approximation for higher algebraic
equations, is explained in Note B, Appendix.

log s = 6.0014

— 1.6073,

40. Observations upon Quantities Subject to Rigorous
Conditions. — It often happens that unknown quantities
involved in observation equations are further connected
by known mathematical conditions, which the final ad-
justed values must rigorously satisfy, For example, the
most probable values of the angles of a triangle could not
be a set of angles whose sum is other than exactly 180°;
the sum of all the percentages in a chemical analysis
must be 100; etc. Observations upon such quantities
are known as conditioned observations.
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Suppose that the results of measurements upon the
three angles of a triangle are

N =31
q2 = 82, (46)
¢I8 == 33.

These are the observation equations. To this list there
must be added a fourth equation, namely :

Q + ¢ + g5 = 180°%, . 47

which is called an equation of condition. It differs from
the others in that it is known to be exactly true, while
the others are not. The three most probable values,
when deduced, must satisfy this equation exactly; the
others must be satisfied as nearly as may be. This equa-
tion of condition cannot, therefore, be classed as an ob-
servation equation and treated like the others.

In general, we may have n observations involving ! un-
knowns, which are further subject to m rigorous conditions,
expressed as equations of condition. m must be less than;
for if equal to it, the unknowns would be absolutely de-
- termined by the given conditions, and the measurements
would be superfluous; and if greater, no set of quantities
could, in general, be found to satisfy all the conditions.

There being fewer conditions than unknowns, there is
an unlimited number of sets of values of the unknowns
which might satisfy the conditions, and we have to de-
termine from the n observations which of these sets is
the most probable.
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Though the m conditions do not give the values of the !
unknowns, they enable us to express m of the unknowns
rigorously in'terns of ‘the' rémaining ones; and if we now -
substitute these expressions for the m unknowns in the
observation equations, the latter may then be adjusted
for the most probable values of the I — m quantities re-
maining. The most probable values of the m replaced
quantities may now also be calculated so that the condi-
tions are exactly satisfied.

Applying this to the case of the angles of a triangle, -
subject to one condition (47), one of the angles, say g¢s,
may be expressed by means of it in terms of the other

two: s =180° — ¢ — ga. a8)
The three observation equations then appear:

=8,
G2 = 32, (49)
180°—q1—q2=ss.

Let the student adjust these and show that the most
probable values sought are

q1 = 81+ 3[180° — (81 + 32 + 33)],
gz = 82+ 3[180° — (51 + 32 + 85)], (50)
gs = 33+ 3[180° — (314 82+ 33)],

the third result following from the other two through sub-
stitution in (48); which shows that the results sought
can be obtained by adding to each measured angle one-
third the discrepancy between the sum of the measured
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angles and 180°, so as to make the sum correct. This is
on the assumption that all three of the measurements
are equally trustworthy: (See Chap. VII.) The same
proceeding is to be followed in every case where the
observation equations represent the separately measured
values of the unknowns, while the one equation of condi-
tion rigorously gives their sum. Cases like this are of
common occurrence.

If the sides of the triangle are measured, as well as the
angles, there will be six observation equations (at least),
and three equations of condition. Of these latter, one
will be the same as (47), the other two arising from the
requirements of trigonometry as to sides and angles.

A case of special importance to the surveyor is the ad-
justment of the sides and angles of a polygon of land. In
addition to whatever measurements are made upon the
lengths and bearings of the sides, there are two rigorous
conditions to be fulfilled, namely : that the algebraic sum of
the projections of the sides on an east-and-west line is zero,
and the algebraic sum of their projections on a north-and-
south lineis zero. 'This adjustment will be found explained
in detail in the more advanced works on plane surveying.

EXERCISES

41. 1. Draw a large triangle on paper with a fine pencil,
and measure with a protractor each of the angles. Form
the observation equations and the equation of condition,
and from them deduce the most probable values of the
angles.



ADJUSTMENT OF OBSERVATIONS 95

2. Lay off on a straight line four point:s, A, B, C, D.
Measure AB, BC, CD, AC, BD, AD.. From these
measurements form ; observation equations and compute
the most probable values of AB, BC, CD. These seg-
ments may be conveniently lettered z, y, 2.

8. The following measurements were made upon a rec-
tangular metallic tank to determine its dimensions:

Length (inside) 27.31 cm.

Width (inside) 16.08 cm.

Depth (inside) 9.67 cm.

Capacity by standard graduates, 4.3217 liters.

Find the most probable dimensions.

4. Draw five lines radiating accurately from a common
point O, the further extremities being 4, B, C, D, E.
Measure with a protractor, by the differential method,
and turning the protractor at each measurement, each of
the angles A0B, AOC, AOD, AOE, BOC, BOD, BOE,
COD, COE, DOE. Determine the most probable values
of the angles A0B, BOC, COD, DOE.

5. The following are the results of an analysis of a cer-
tain medicinal compound :

Salts of calcium 1.26 per cent.
Salts of sodium 2.53 per cent.
Salts of iron 0.23 per cent.

Salts of manganese 0.14 per cent.
Salts of quinine 0.07 per cent.
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Salts of strychnine 0.02 per cent.
Water 95.67 per cent.

Find the most probable values of the several percentages.

6. Six points, supposed to lie on the arc of a circle, have
the following measured coordinates:

z v z v

3.15 2.49 1.07 5.33
2.67 3.72 —0.20 5.98
1.80 4.69 —1.84 6.25

Find the most probable coérdinates of the center and
most probable radius.

7. A steel tape was measured under different conditions
of stretch and temperature, as follows :

CENTIGRADE TEMP. TeNsiON, Ls. Oeps. LenarH, Fr.
0° o . 100.031
20 10 064
25 8 .068
18 12 .063
21 15 .069
15 15 .062

Using the approximate formula
l =1y + at + bf,

in which # = temperature and f = tension, adjust for
the most probable values of o, a, b.
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8. (Adapted from Wright’s Adjustment of Observations.)
Let D be the difference in length of two standard meter
bars at 62° F. and A the difference in their coefficients
. of expansion. Then the difference d in length at any

te@peraturehs d=D+ (- 62)A.

Observations were made as follows:

t d
24°7 . 0.00791 inch
37.1 811 inch
61.7 833 inch
49.3 820 inch
66.8 - 847 inch
71.5 849 inch

Adjust for the most probable values of D and A.

9. Van der Waal’s equation for pressure and volume
of a gas at absolute temperature T may be put in_the form
TR — va + pv*b + &b = prd.

The measurements of Amagat on air at moderate pressures
and at 16° C. (289°.1 absolute) were published as follows :

P IN cM. MERCURY pv
76 1.0000
2000 0.9930
2500 9919
3000 - .9908
3500 9899

4000 ' 9896
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Form the observation equations by the method of Note B,
Appendix, and adjust for a, b, R.

10. The) electrical conductivity of selenium is found to
vary with the intensity of light falling on it according to

the equation S
C= \/a\/f+ b.

The following data were furnished by Dr. F. C. Brown.

INTENSITY [ g‘;’gg% INTENSITY ] g‘;’gg%
0 83 33 319
3 188 4 348
11 250 50 361
17 285 100 446
25 303

Adjust for the most probable values of a and . (NoTk.
— In working the above problem, it will be found
necessary, as is sometimes the case, to use caution in
dropping decimal places, as the normal equations hap-
pen to be quite “ sensitive’’ to slight changes in the
coefficients.) '

11. The EM.F. of a thermo-couple for a given tem-
perature difference ¢ between junctions may be represented
by the equation

e = at + btz
The following values for a copper-tellurium couple with
one junction at 0°, in which e is in volts, were furnished
by Mr. W. E. Tisdale. .
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¢ % t L4
t
50 0.000243 150  0.000254
82 242 162 262
92 245 180 265
100 248 186 267
113 249 190 266
117 250 195 267
128 252 200 268
140 : 251

Calculate the most probable values of the coﬁstants a
and b. Plot the curve.

12. In a sine intensity magnetometer, let the pole
strength of the bar magnet be P, the distance between its
poles [, and the distance from its center to the needle pivot
a. & is the needle deflection and H the horizontal inten-
sity of the earth’s magnetism. The equation connecting
these quantities is '

?HizPl+—I-)H£=aﬁsin6.
The following data were obtained at a station where

H = 0.1884 (c.g.s.).

a (cM). ‘ & ' a (cM). 3
20 24° 17 40 1° 49"
25 12 46 45 1 35
30 6 48 50 1 27
35 3 26

Find the most probable values of P and I Use the
method of Note B, Appendix.
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18. The specific volume of a certain liquid was meas-
ured at different temperatures by a quick secondary
method which was known to have certain small persistent
errors. . At/ three! of (theCtemperatures, known as “ tie
points,” the specific volume was also measured by a more
laborious absolute method, free from the said sources of
error. The results follow:

Toae., C. ! Sp. VoL., ' Sp. VoL.,

SECONDARY ABSOLUTE
23°.0 0.952750
23.5 2879
24.0 3003
245 3177 0.953322
25.0 3339 3488
25.5 3505
26.0 3678
26.5 3840 ' 4059
27.0 4012
27.5 4187
28.0 4366
28.5 4526
29.0 4701
29.5 4872
30.0 5075
31.0 5426

In order to correct all the data in the second column, use
was made of the equation

Y=A4AX+ B,
in which X is the specific volume by the secondary method

and Y the corresponding corrected value, 4 and B being
assumed constant. By using the values of X and Y at
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the three  tie points,” find the most probable values of
A and B and correct all the secondary data accordingly.

14. A glass/\sinker)Cused 'for precisidn measurements
of liquid density by the Archimedes buoyancy method,
was calibrated for expansion, the data being as follows :

Treuxre. C. VoL. SINKER (cC.)
24°.0 34.03894
24.5 3907
25.0 3984
25.5 4085
26.0 ) 4102
26.5 o 4134
27.0 4191
27.5 4203
28.0 4231
28.5 4240
29.0 - 4290
30.0 4393

Find the most probable zero volume and coefficient of ex-
pansion of the sinker, assuming a linear relation.

16. Guthe and Worthing’s formula for the vapor pres-
sure of water at temperature #° C. is

a
lOglo p= 7.39992 - m

From the following data, find the most probable values of
a and b.
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t p (MM. oF MERCURY)
10° 9

20 17

30 32

40 ' 55

50 92

60 149

80 355
100 760

16. The angles and the sides of a triangle ABC were
measured, with the following results.

Angle 4 51° 9’
B 95 4
C 3351

Side BC 1721.3 ft.
AC 22075
AB 1233.0

Introduce the necessary geometric conditions and adjust
for the most probable values of sides and angles.

17. Draw accurately a large quadrilateral ABCD and
its two diagonals AC and BD. Measure with a millimeter
scale the four sides AB, BC, CD, DA, and with a protrac-
tor the angles DAB, DAC, CAB, ABC, ABD, DBC,
BCD, BCA, ACD, CDA, CDB, BDA. Introduce the
eight necessary geometric conditions and adjust for the
most probable values of the sides and angles of the quad-
rilateral.
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If the diagonals had also been measﬁred, how many

conditions would be introduced ?

18. Adjust the transit observations given in Art. 38.

19. (Adapted from Crandall’s Geodesy and Least
Squares.) Adjust the following transit observation equa-

tions for z, y, 2.

— 0072+ 141y + =2

— 0.65,

+ 0682+ 1.00y + 2 = + 0.18,
+ 0522+ 102y +2 =+ 0.13,
+251x— 267y + 2=+ 3.96,
— 0732+ 213y + 2z = — 1.88,
+ 0752+ 101y + z = + 0.02,
+0532+1.02y +2 =+ 0.13,
+ 068+ 1.00y + 2z = + 0.44,
+08lz+ 102y + 2z = + 0.29,
+ 0092+ 127y + 2 = — 0.76.

20. In the following observation equations the un-
knowns n and K are constants of metallic reflection.

V1 +K2|:l —3%sin’¢ 1

—K?
n*(1 + K?)

sin? ¢
K[l +n“’(1 + K?)

2:|= sin ¢ tan ¢,

2:|= ta;l 2y.

Assuming that approximate values of n and K are known,
transform these into observation equations of the first
degree by the method of Note B, Appendix.



CHAPTER VI
EMPIRICAL FORM.ULAS

42. Classification of Formulas. —If we examine into
the many formulas employed to represent natural or
physical laws, it is found that they fall into two fairly
distinct classes, which may be called, respectively, rational
and empirical formulas.

To the former class belong those which have been de-
duced through processes of mathematical reasoning from
the elementary and established laws of the science to
which they pertain; hence the term rational. Such, for
example, are the equations for the motion of falling bodies,
the expressions for electric or gravitational force at a
point, the equations of the balance, the error equations
for the astronomical transit, etc. In these there appear
certain constants or coefficients, the determination of which
is often a matter of greai:. scientific importance.

Empirical formulas, on the other hand, are those whose
form is inferred wholly from the results of experiment
or observation, and which have not been deduced theoreti-
cally. Some of the best examples of these are to be found
in engineering, such as the formulas for the flow of water
in pipes and channels, or for steam pressure as a function
of temperature. Empirical formulas also contain con-

104
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stants, which are determined in exactly the same manner
as if the formulas were rational, and whose determination
depends upon experimerntand measurement.

A closer examination into the subject reveals, however,
the fact that the boundary between these two classes is by
no means a sharp one, for the reason that a very large
proportion of the rational formulas purporting to represent
natural laws have been deduced upon more or less em-
pirical and approximate assumptions, which have been
adopted for the sake of simplicity of form, or for want of
better information. In fact, it may well be doubted
whether there exist any absolutely rational formulas per-
taining to material magnitudes. Even Newton’s great
law of gravitation has its experimental basis; and it is
possible that some future investigation in astronomy may
demonstrate it to be inaccurate.

43. Uses and Limitations of Empirical Formulas. —
Empirical formulas owe their existence to the fact that in
many cases no rational.formula can be deduced to repre-
sent the law of behavior of a phenomenon, but that,
nevertheless, experiment shows some law is being obeyed
which appears to be simple in character and is therefore
presumably expressible, at least approximately, in mathe- .
matical symbols. Not being able to trace the mechanism
operating between cause and effect, on account of its com-
plexity or for other reasons, the experimenter must seek
more or less blindly for a functional relation that will
satisfactorily connect them. It may happen that the
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finding of such a relation as accords perfectly with the
observations will throw much light on the nature of the
mechanism itself, and lead to a theory relative to it, which
can be tested by more intelligently directed later ex-
periments. Stefan’s fourth-power law of cooling, which,
though wholly empirical as far as Stefan was concerned,
has led to the important modern theory of radiation, is
an excellent example of this sort.

But the great majority of empirical formulas are con-
fessedly artificial, and reveal nothing of the real nature of
the connection between the phenomena involved. Many
do not even pretend to consistency in the matter of dimen-
sions; the writer has estimated railroad culvert openings,
for example, on the crude working rule that the area of
opening, in square feet, should be equal to the square root
of the drainage area, in acres — an area equal to a length.

Nevertheless these formulas are capable of the utmost
practical usefulness; for by means of them, depending
upon the principle of continuity, we may accurately inter-
polate the values of the unknown function between points
actually observed, and even, in a limited way, extrapolate
beyond the experimental region into conditions unattain-
able in practice.

There is still another class of empirical formulas, more
or less in the nature of scientific curiosities, which repre-
sent, in the experimental region only, a relation between
variables that have no conceivable connection with each
other. It is thus possible to construct an artificial for-
mula which will follow, with fair accuracy, the increase
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in population of the United States, or of a city, with time,
or even the fluctuations of the stock market over a given
interval of time)V -Suchformulds’'are, however, of little
value, as they are merely a sort of cast of a series of statis-
tics which are themselves available ; and since the variable
represented may not even be continuous, interpolation
and extrapolation with any certainty are impossible.

It must also be pointed out that empirical formulas
cannot be allowed to enter into theoretical developments
on the same basis as rational ones, unless their physical
nature is first carefully looked into and the region in which
they are assumed to apply is properly circumscribed.
‘Where the true functional relation (supposing one to
exist) can be dealt with mathematically with safety, an
artificial one closely approximating it may lead, if so used,
to altogether erroneous conclusions.

" 44. Tllustrations of Empirical Formulas.

1. Reduction of Pendulum to Zero Arc. — The Kater’s
reversible pendulum is familiar to nearly every physical
laboratory student as a means of obtaining the accelera-
tion of a falling body, g, or the value of “ gravity.”” When
so adjusted that the time of swing is the same from both
supports, i.., when the knife edges are at conjugate
points, the pendulum swings in a period given by the ideal
simple pendulum formula

T=7r\/:l,
g

in which [ is the distance between the knife edges. The
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determination of g is therefore a matter of measuring the
period of oscillation and the distance l.

This equation jaffords; however, an excellent example of
the class referred to in the last paragraph of Art. 42. For
in its deduction'it is assumed that the pendulum swings
without any kind of friction from a perfectly rigid support,
and that the amplitude of vibration is infinitely small,
none of which conditions is attainable. The writer has
attacked these difficulties in the following manner, with
good results.

Apparatus is arranged to release the pendulum so as to
swing with any desired initial angle of amplitude, and
the time accurately observed for each of several small
amplitudes. The following results, obtained by one of
my students, are typical. ¢ is the half amplitude in
degrees, T the period in seconds.

[ T . T

1° 0.878489 6° 0.878807
2 8543 7 8874
3 8622 8 8938
4 8679 9 8975
5 8740 10 9029

The steady increase of period with amplitude includes
all factors: the true, theoretical increase that would exist
under ideal conditions, and the influences of air friction,
pivot friction and bending of supports. The results
are plotted in Fig. 8, which shows an unmistakable cur-
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vature with downward concavity. The relation is there-

fore not linear, but may be approximately quadratic.
The empirical formula

T =a+b¢ + co? 2y

is now assumed to represent the variable T as a function of
¢. This is treated as a form of observation equation in

f/l/
4

/1/

—0.8790

T sec

—0.8782

— O
o
2

2 5 6 7 8 9 10 5
| T I I A
Fia. 8

which the coefficients a, b, ¢ are the unknowns. The ob-
servation equations and residuals are written out as usual,
the normal equations deduced and solved, with the ap-
proximate results

a = + 0.878400,

b = + 0.000073, .

¢ = — 0.000001,
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which give
T = 0.878400 + 0.000073 ¢ — 0.000001 ¢*  (52)

as the relation desired. In reality only a is wanted, for it
is the value of T for zero amplitude that we are seeking;
that is, the limit approached by T as ¢ approaches zero.
This is 0.878400 sec. By this slight extrapolation, there-
fore, it is possible to extend the experiments into a region
unattainable otherwise. The value of ¢ may now be
calculated from this result and the measured distance
between knife edges.

2. Solubility Formula. — Previous to the theoretical
calculation of a rational formula for solubility in terms of
temperature (Art. 39), the relation was represented by an
empirical formula of simple power terms:

s =a+ bt + ct* + df. (53)

The data given in Art. 39 will suffice for the determination
of the constants a, b, ¢, d, a result being obtained which
will fit the observations nearly, if not quite, as well as
the rational expression. This exercise is left to the stu-
dent. :

8. Gordon’s Formula for Rectangular Columns. — The ul-
timate strength of a rectangular column under compres-
sion is found to depend fundamentally upon how slender
it is; specifically, upon the ratio of its length to its shorter
" transverse dimension. For long, slender columns, the
relation is found to be expressed satisfactorily by the
following formula, in which U is the ultimate compressive
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strength per square inch of cross section, and R the ratio
of length to least width.

otapi-Copy: 5

a and b are the empirical constants to be determined. The
following data refer to white-oak timber columns or posts,
U being expressed in pounds per square inch, and will
serve as a further exercise for the student.

R U R U
10 - 845 25 585
12 820 28 540
15 770 30 510
18 715 35 435
20, 675 38 400
22 640 40 375

a and b should be about 925 and 0.00091, respectively.

45. Choice of Mathematical Expression. — The reader
will now wish to know by what process the form to be
used, as representing the unknown relation between
variables, may be arrived at. There is no general rule
covering this matter. The empirical form once being
settled upon, the calculation of the empirical constants
is a direct process; but the selection of a mathematical
expression which can be made, by the use of proper con-
stants, to fit the facts with sufficient accuracy, is often a
problem calling for the exercise of the highest degree of
ingenuity, especially where there is more than one in-
dependent variable.
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The first step will probably always be to plot the results
of the observations, or the data to be represented, to a
suitable scale on, codrdinate paper. The result will be
some sort of curve, which, if at all regular, will give an
idea as to the nature of the variation, and will often sug-
gest an equation through its resemblance to some well-
known locus, such as the straight line, parabola, etc. A
few general forms have been found especially adaptable.

The equation

y=a+bz+ce?+do? + -, (55)

continued so far as may be necessary, may be used for
curves which are not periodic, nor asymptotic, nor very
irregular. The number of terms to be used will be limited
by the fact that the coefficients of powers that may be
omitted turn out to be negligibly small. This form was
used in two of the three examples in the preceding article,
and might probably have been used with some success
in the third. It was remarked in connection with the
second example of Art. 36 that the volume coefficient of
expansion really varies when carried over a considerable
range. This might have been allowed for by adding a term
involving the square of ¢, with a third unknown constant
coefficient, to those used. When such a form as (55) is
used, it will be well to apply to it the values of = and y
belonging to five or six of the observed points that seem
to lie most accurately on the curve, as a preliminary
calculation, and determine from them approximate values
of an equal number of the coefficients without least squares,
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in order to ascertain where the series may safely be stopped.
It may be found, in this way, that only two or three terms
are necessary, the coefficients beyond these being negli-
gible. ,

The following equations are also quite adaptable to
many physical phenomena, particularly those involving
variables which approach a limit, or in which maxima
and minima do not appear.

y=a+blog (z + K). (56)
z=a+blogy+K). (57)
ax + by + ¢ = xy. . (58)
logy =a+blogz. (59)

(56) is asymptotic in the y direction, (57) in the z direc-
tion; (58) is an equilateral hyperbola, asymptotic in
both directions. The logarithmic formulas may easily
be put into exponential form if desired. The constant K
may sometimes be theoretically assigned.

The equation

ax + by +c =ay (60)

is more general and includes (58). (54) will also be seen
to be a special case of it. The curves represented by (60)
may have maxima or minima and points of inflection.
n may be given a small integral value, as 1, 2, 3, and
a, b, ¢ will be the empirical constants to be determined.
The student will do well to plot these equations, using
assumed values of the constants.

For functions that are apparently periodic, or which

r
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have many ‘ ups and downs’’ in the course of the varia-
tion, there may be used a limited number of terms of the
trigonometric series

Y =a + bsinnx 4 ¢ cos nx
+ d sin 2 nx 4 ¢ cos 2 nx
+fsin3nx+gcos3nx+ -+ . (61)

This is a Fourier’s series, and can be made to fit any curve
with any desired degree of approximation by carrying
it to a sufficient number of terms. The calculation of
the constants may become extremely laborious, and Prof.
A. A. Michelson devised, some years ago, a mechanism
known as the harmonic analyzer, which will give their
approximate values. By the aid of this machine it is
possible to analyze very complicated phenomena, such as
the tides or the variations in terrestrial magnetism, into
harmonic components, and often to reveal their component
causes. But it is also possible, by this means, to express
in an altogether artificial manner such phenomena as
are referred to toward the close of Art. 43. To empirical
formulas of this class applies, particularly, the caution
against treating them on the same "basis as rational
formulas in mathematical analysis.

Very often the problem of selecting the proper form will
be facilitated by giving attention to obvious limiting con-
ditions, such as the fact that effect.is zero where cause is
zero, etc. This amounts to making the selection partly
rational, and only emphasizes the statement that there is
no sharp distinction between rational and empirical ex-
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pressions. After all has been said, however, the sfudent
will still find true the remark, previously made, that this
matter calls for skill and ingenuity of a high order.

EXERCISES

46. 1. Experiments were made upon the index of re-
fraction of a solution of varying concentration and density,
sodium light being used. The results follow :

DEN8SITY z INDEX ¥ DENSITY z INDEX ¥
1.200 1378 1.146 1.365
1.187 1374 1.132 1.361
1.178 1371 1.123 1.359
1.167 1.369 1.115 1.356
1.156 1.367 1.098 1.352

Express the variation by a suitable empirical formula,

_deducing the constants. Would it be safe to infer from

this formula the index for pure water?

2. A galvanometer attached to a thermo-electric couple
gave the following readings y, for the corresponding
differences of temperature x: '

z v z v
0° 0 45° 5.50
20 2.50 50 6.15
25 3.10 60 7.60
30 3.70 70 8.65
35 . 4.30 80 9.90
40 n P 490 90 10.90

4%

Prepare suitable empirical formula, deducing constants.
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8. The following are observed positions of points on a
curve:

z u z v

0 0 5 15.0
1 0.5 6 230
2 2.5 7 31.0
3 6.0 8 405
4 10.5 9 515

Obtain an equation whose graph will fit these points as
nearly as possible, and plot it.

4. The temperature of a heated body, cooling in the
air, was taken each minute for ten minutes, the results
being here tabulated :

TiudE ¢ .Temp. 0 TiME ¢ Teup. 0
0 84°9 6 61°.9
1 799 7 59.9
2 75.0 8 57.6
3 70.7 9 55.6
4 67.2 10 53.4
5 64.3

The temperature of the air was 20°. Deduce an equation
expressing @ in terms of .

6. Measurements were made upon the radioactivity
of a deposit of pure thorium at intervals after its forma-
tion, as follows: :



EMPIRICAL FORMULAS 117

TidEe AcTiviry TmME Acriviry
10 min, 100.0 5 hr. 107.0
20 : 1043 6 101.1
40 110.8 8 89.1
60 115.8 10 78.3
80 118.2 12 68.7
100 119.6 15 56.6
120 119.8 18 46.2
. 3 hr. 117.9 20 40.7
4 113.0 ’

Express the relation as an empirical formula. (Note that
activity will die out with time.)

6. The quantity of discharge @, in cubic feet per
minute, of a 10-inch sewer pipe was found to vary with
the slope (percentage grade) s as per the following
data:

s Q 8 Q
0.1 9 64 2.0 9% 146
0.2 75 3.0 170
04 88 4.0 190
0.6 95. 5.0 208
0.8 108 10.0 279
1.0 116

Work out an empirical formula and plot it.

7. The means of many observations upon a certain
variable star of short period gave the following variations
of magnitude ;
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Tiue (DAYs) Maa. Tme (Davs) Maa.
0 4.65 8 . 4.20
1 4.10 9 3.57
2 3.50 10 3.70
3 3.80 11 3.93
4. 4.00 12 4.07
5 4.10 13 4.35
6 4.40 14 4.64
7 4.65 ‘15 4.40

Represent this variation by as simple a formula as
possible.-

8. The atmospheric refraction R for a star above the
horizon at various altitudes « is given approximately
by the following table, corresponding to temperature
50° F. and normal pressure : '

o R o R

0° 34’ 50” 10° 516"
2 18 6 20 237
4 11 37 40 19
6 8 23 60 033
8 6 29 90 00

Represent these as hearly as possible by means of an
empirical formula.

9. Amagat’s experiments on air at very high pressures
gave the following results:
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PRrESS., ATMOS.

Press.,, ATM™MO8. Vou. Vor.
1 1.000000 2000 0.001566
750 0.002200 2500 0.001469
1000 0.001974 3000 0.001401
1500 0.001709

Represent these by an empirical formula.

10. The current through the field coils of a certain
dynamo was varied and the voltage generated by the
machine simultaneously measured, as follows:

FieLp CURRENT, ARMATURE FieLp CURRENT, | ARMATURE
Amps. Vorrs Amps. Vovrrs
0.000 0.0 1.416 21.0
0.472 8.5 1.650 23.2
0.709 12.1 1.888 25.5
0.943 154 2.125 273
1.180 183 2.360 29.0

Represent these by an empirical formula.

11. The specific gravity of dilute sulph;uric acid at
different concentrations is given in the following table:

PaB ) Sr. Grav. Py LN 8r. Grav.
5 1.033 30 '1.218
10 1.068 35 1.257
15 1.101 40 1.300
20 1.139 45 1.345
25 1.178 50 1.389

Represent these by an empirical formula.
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12. A pyknometer being tested for evaporation was
allowed to stand in a desiccator and weighed at intervals,
as follows:

Sept. 30 3:15 p.M.  44.4226 grams

4:00 p.m. 4223 grams
Oct.2 11:00 a.m. .3855 grams
3:30 .M. .3821 grams
Oct.3  8:00 A.m. .3695 grams
4:00 p.M. .3622 grams

" Find the most probable weight at noon October 1.

18. Simultaneous observations were made upon two
connected variables  and y with the following results:

z ¥ z v
26.5 ° 0.002442 315 0.005315
27.0 2571 320 5607
275 2582 32.5 6039
28.0 2885 33.0 6407
28.5 3165 33.5 6947
29.0 3500 [ 34.0 7238
29.5 3738 34.5 7703
30.0 4311 || . 35.0 8092
30.5 4548 35.5 8438
31.0 4991 36.0 8870

Represent these by an empirical formula.

14. Following are vapor pressures, in mm. of mercury, of
methyl alcohol at various temperatures:

[

L}
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¢ ? t P
0° 30 35° 204
5 40 40 259
10 54 45 327
15 71 50 . 409
20 94 55 508
25 : 123 60 624
30 - 159 65 761

Represent these by an empirical formula.

156. Assuming the form
106~ 1000104 =
15

log n =log N — log s
in which n is per cent. and s is grade, deduce N and a from
the data of Ex. 10, Art. 30. Plot the curve.

16. The following average heights and weights for men
35 to 40 years of age were compiled by the medical director
of the Connecticut Mutual Life Insurance Co.

HeigrT ‘WEIGHT HereHT ‘WEIGHT
5 ft. O in. 131 5 ft. 8 in. 157
1 131 9 162
2 133 10 167
3 136 11 173
4 140 6 O 179
5 143 1 185
6 147 2 192
7 152 3 200

Represent these by an empirical formula.
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17. The Society for the Promotion of Engineering Edu-
cation reports its growth in membership as follows:

YEAr No. MEMBERS YEar No. MEMBERS
1894 156 1905 400
1895 © 188 1906 415
1896 203 1907 . 503
1897 226 1908 675
1898 244 1909 747
1899 i 251 1910 938
1900 266 1911 1040
1901 261 1912 1166
1902 275 1913 1291
1903 326 1914 1358
1904 - 379

Try to calculate the most probable membership in 1915
from these data.

18. Try to represent the data plotted in Ex. 8, Art. 30,
by means of an empirical formula.

19. The following measurements give the average
length of the head in schoolboys at different ages (West,
Science, Vol. 21, 1893) :

Age LeNatH (MM.) Age LENaeTH (MM.)

5 176 14 187
6 177 15 188
7 179 16 191
8 180 17 189
9 181 18 192

10 182 19 192

11 183 20 195

12 183 21 192

13 184

Represent these by an empirical formula.



EMPIRICAL FORMULAS 123

20. Records of the magnetic declination (departure of
compass from the true north) at 25° N. lat., 110° W. long.
over a series of years are as follows ' (U. S. Mag. Tables for
1905) :

1840 9° 28 E. 1875 10° 2¢4' E.
1845 38 1880 25
1850 49 1885 25
1855 10 00 1890 26
1860 09 1895 30
1865 . 16 1900 36
1870 21 1905 48

Represent these by an empirical formula.



CHAPTER VII
WEIGHTED OBSERVATIONS

47. Relative Reliability of Observations. Weights. —
We have hitherto regarded each one of a set of several
observations as having been made with equal mechanical
refinement, care and 'skill, and the results as meriting,
therefore, the same degree of confidence. This assumption
is often, however, far from the truth. The position of a
star, for example, as measured with an engineer’s transit,
i3 less reliable than it would be if measured with a large
meridian circle; and the results of a series of difficult
observations made by a tired research worker in a cold,

. drafty laboratory are not worth as much as a similar
series made by the same person when rested and under
favorable conditions. Again, the mean of a long series of
careful observations upon a quantity is certainly of more
value than the result of a single measurement upon the
same quantity.

It is therefore evident that, in practical work, it is
necessary to employ some means whereby differences in
reliability may be taken into account. This can be done
by using a method of adjustment in which the more
truétworthy results are allowed to have more influence
upon the final most probable values than the less reliable

' 124
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ones, thus glvmg each result a degree of prommence pro-
portional to its reliability.

To accomplish this, it is the practice of observers to
assign to different observations, numbers, which are sup-
posed to represent their relative degrees of reliability,
and which are called weights. Thus an observation to
which the weight 3 has been assigned is considered to
merit only half as much attention in the adjustment as one
with the weight 6; etc.

In order to have some basis of estimation, we may regard
an observation of given reliability as being equivalent to
the mean of a certain number of observations considered
as having standard or unit weight, and this number is
the weight of the observation in question. The assign-
ment of the weight 10 to an observation means that in
the opinion of the observer the result is as trustworthy as
the average of ten observations of unit weight. Any
standard of trustworthiness may be taken as a unit, but
it should be such as to render the weights of all the ob-
servations referred to it simple, whole numbers. It is to
be remembered that weights are purely relative quantities.

The assignment of weights to the several observations
of a set is a task demanding the exercise of skill and
careful judgment. If each observation is actually the
mean of several elementary observations and all are of
the same kind, the matter is comparatively simple, since
there is in this case a numerical basis of estimate. Other-
wise, and especially when the observations are of different
kinds, the assignment is not sc easy. The problem pre-
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sents many analogies to that of giving numerical grades
to pupils.

Like other processes of the sort, the weighting of ob-
servations ‘cannot be covered by any set of definite rules.
It may be suggested that the observer should note and
record in detail the peculiar circumstances, if any, attend-
ing each observation or set of observations which is to
enter into the final adjustment, and allow no source of

unusual disturbance to go unnoticed. Often it is well to
assign weights at the time of the observation, while all.

the circumstances are fresh in the mind, but this should
not take the place of recording the circumstances. It
sometimes happens that some one else examines the original
notes and prefers to assign weights for himself. I recall
a case of this sort, in which the weighting depended solely
upon the records which the observer had kept of the
weather conditions prevailing at the time of each experi-
ment. This was because wind and fluctuations of tem-
perature were causes of marked disturbance in this par-
ticular work.

48. Adjustment of Observations of Unequal Weight. —
In adjusting a set of observations to which different weights
have been assigned, we have but to remember that the
weight w signifies that the observation in question is the
equivalent in importance of w observations of unit weight.
It is therefore necessary only to repeat the corresponding
observation equation w times, and then proceed as usual
with the reduction to normal equations. That is, if the

1



WEIGHTED OBSERVATIONS 127

first observation has weight 2, the second 5, the third 3,
etc., then simply write the first observation equation twice,
the second five times,, the third three times, etc. The
number of observation equations is now Zw, the suth of
the weights. o
" A simple illustration of this is the case of n direct ob-
servations on a single quantity q. If the results are s, s,
-+, 8, with weights w;, w,, -, w,, the most probable value
as deduced on the above principle is

_ w181 + w2 + o+ 4 WSy )
witwe+ - Fw,

_ 2(as)
T Zw

or . (62)
This is called the weighted mean. If all the weights are
equal, it becomes simply the mean.

With observation equations of the first degree involving
several unknowns, the process can be effected by first
multiplying the expression for each residual by the coeffi-
cient of the unknown contained therein (as in‘the rule at
the close of Art. 34), then multiplying by the weight of
the corresponding observation, adding the results and
equating the sum to zero, to form the normal equation.
In this way each residual is represented in each normal
equation a number of times equal to its weight. The
same thing may be attained by first multiplying each
of the original observation equations by the square root
of its weight and then proceeding with the reduction
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as usual. These square roots need only be indicated, by
means of radical signs, as they will disappear on re-
duction.  (Let the student show why the square roots of
the weights should be thus used, and not the weights
themselves.) '

In the reduction of observations upon quantities limited
by conditions (Art. 40), it is evident that the equations of
condition are not to be weighted, but only the observation
equations. In the process of adjustment, the weighting
should be introduced after the conditions have been
involved in the observation equations, but before the re-
duction of the latter to normal equations. Some of the
following examples will illustrate this. _
EXERCISES

49. 1. Measurements were made upon the segments
of a line 4B, formeq by points C, D upon it, as follows:

Mean of 2 observations on AC = 45.10 ft.
Mean of 3 observations on AD = 77.96 ft.
Mean of 2 observations on CD = 32.95 ft.
Mean of 3 observations on CB = 98.36 ft.
Mean of 2 observations on DB = 65.55 ft.
Mean of 4 observations on AB 143.55 ft.

Find the most probable values of AC, CD, DB.

]

2. In one time-observation with a transit instrument,
only five of the-nineteen lines of the reticle were used, viz.,
Nos. 2, 5, 10, 15,.18. A second observation employed
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all the lines. What can be said as to the relative weights
of the two observations, the method of observing being
the same in both cases? (Fig. 9.)

8. In determining the constants of a balance, it was
borne in mind that the instrument was to be used re-
peatedly for the weighing of an ob-
ject varying slightly in weight but
always in the neighborhood of 43 to
45 grams. Hence the sensibility was
measured twenty-five times with a
load of 45 grams, giving a mean
of 2.402 scale divisions per milli- Fra. 9
gram, and only four times with zero load, giving a
mean of 2.767 scale divisions. Determine the most
probable values of the balance constants (Art. 35,
Ex. 2). .

4. Draw a triangle and measure its angles with a pro-
tractor, one angle being measured but once, the second
three times, the third eight times (or some other set of
unequal numbers), all the measurements being made
differentially. Introduce the necessary condition, assign
the proper weights and deduce the most probable values of
the angles. ’

6. The following pointings were made at three sta-
tions in the triangulation of California, using a 50-
cm. direction theodolite (U. S. Coast Survey Report,
1904) :
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StaTiOoN POINTING ON CircLE READING Wr.
Wilson Peak 73° 11’ 407.97 6.1

San Pedro {Sa,n Jusn 118 57 57 51 | 6.1
San Pedro 16 54 50 .29 7.6

Sen Juan {Wilson Poak 84 26 21.08 | 7.6
. San Juan 241 39 01 .29 6.7
Wilson Peak [Sa.n Pedro 308 21 21 .51 | 67

Adjust for the most probable angles.

-

PO

6. The range of magnitude of the variable spectroscopic
binary star a Geminorum was measured by a selenium
photometer on different nights as follows (Stebbins,
Astrophysical Journal) :

RanNeeE Wr. RaNgE Wr. RANGE Wr.,
0.237 5 0.235 3 0.218 4
217 4 197 5 .233 4
.233 5 217 5 .209 3

- 231 5 210 5 224 5
217 5 222 5 227 5
.205 5 213 5 .189 3
207 5 .223 -5 .220 5.
227 5 .250 5. 211 4
231 5 219 | 5

Find the weighted mean of these observations.

7. Following are results from precise leveling in Texas
(U. S. Coast Survey Report, 1911). The weights assigned
are inversely proportional to the squares of the distances
between the stations. :
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METERS WriGHT
Lavernia above Serita . + 57.47 4.8
Thomas above Serita, | . . + 45.73 1.0-
Serita above Stockdale'. B + 10.56 29
Serita above Ruckman . . . + 33.14 0.6
Stockdale above Ruckman . + 23.62 11
Stockdale above Karnes + 30.82 0.6
Ruckman above Karnes + 6.42 18
Ruckman above Bryde . —11.83 0.9,
Karnes above Bryde . . — 18.66 48
Ruckman above Choate. . +20.17 0.9
Bryde above Choate . + 32.65 3.6
Bryde above Pettus . + 23.34 48
Choate above Pettus . —. 9.36 109 '
Bryde above Barroum + 11.51 5.1
Pettus above Barroum . -11.71 79 -
Pottus above Wiess + 26.19 7.5
Choate above Wiess . + 1740 33

Adjust for the most probable elevations above the lowast

station in the list.

8. Experiments were made for the purpose of rating a
Price current meter, used in measuring the velocity .of
streams. The data are the velocity V of the current in
feet per second and the number R of revolutions per second
of the meter (Raymohd, Plane Surveying).

1 4 R Wr. v R Wr.
3.774 1.886 2 1.036 0.466 1
4.544 2.295 1 1.105 0.503 1
4.878 2.464 1 7.142 3.678 1
1.613 0.774 1 2.740 1.342 1
1.316 0.618 1 6.896 3.5562 1

Assume a linear relation and deduce the two constants.



" 132 THEORY OF ERRORS AND LEAST SQUARES

9. Four points, 4, B, C, D, lie consecutively in a straight
line. Thefollowing distancesare measured with a steel tape.

AD . . 28712 (Aveé.of 2)
AB . . 10420
AC . . 24335

BC'.
BD. .
CDh. .

1392.2
1828.6
437.5

Apply ‘the principle that, in chaining, the weights of
similarly measured lines are inversely proportional to the
squares of their measured lengths, and adjust the above

values accordingly.

10. Zenith telescope observations were made at Roslyn
Station, Virginia, upon the latitude of that station with
various pairs of stars, as follows (Chauvenet, Practical
Astronomy). The weights were assigned from the number
of observations involved and the precision with which the
declinations of the stars employed had been measured.

OBsERVED LaT. Wr. OBSERVED LaT. Wr.
37° 14’ 24”.78 0.44 37° 14' 25" .15 0.59
25 .05 .67 25 .22 .67
24 .83 .82 24 84 .67
26 .20 .59 25 .36 .67
25 91 43 26 .02 .62
22 .73 .00 25 .42 44
25 .93 .70 26 .08 44
25 .18 .65 25 .72 .67
25 .89 1.09 25 .70 1.33
25 .79 1.33 25 .93 1.20
24 .53 0.29

Find the most probable latitude..
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11. (Adapted from Chauvenet, Practical Astronomy.)
At a station O of the U. S. Coast Survey, angles were read
on each of four other stations, 4, B, C, D, as follows:

ANaLB WT. ANaLB Wr.
AOB 65° 11’ 52”.5| 3 | COD 87° 2" 24”7.7| 3
BOC 66 24 15.6| 3 || DOA 141 21 21 8| 1

Adjust for the most probable angles.

12. Spectrographic radial velocity measurements were
made upon the Orion nebula, using different spectrum_
lines on different dates, as follows (Lick Observatory

Bulletin No. 19)

Dare LINE VevLociry (Kum.) Wr.
Dec. 8, 1901 H, +17.1 3
16 Hpg 16.1 2
17 Hpg 17.0 2
18 H, 14.8 3

Find the most probable radial velocity.

18. A certain critical coefficient of expansion was

measured several times with different apparatus.

OBSERVED VAL, Wr. OBSERVED VAL. We.
0.0045 3 0.0036 2
39 2 26 2
34 5 27 1
30 4 43 3

Find the most probable value from these data,
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{14. The following data are right ascension corrections
to the Berlin Jahrbuch made by the photographic transit
at. Georgetown Observatory for the star { Ophwchz on
different dates.

Cor. Wr. Cor. Wr. Cor. Wr. Cosr. Wr.
-003s.| 2 [|[+002s.| 2 |—0.01| 3 [[+4+002| 3
- .03 3 .00 2 |- 04| 2 + 02| 3
- .01 1 + .04 1 [+ .03 2 00 2
- .02 0 |- .04 1 |- 02| 3 |- 04| 3
- .03 1 - .05 1 |— .06 2 - 06} 3

P;iild the weighted mean.

"186. (Adapted from Wright’'s Adjustment of QObserva-
trons.) 'The following trigonometric levelings were made
between two terminal stations 4 and B, as follows:

SraTIONS METERS Wr. SraTIONS METERS Wr.
A above 12| 914.96 23 3 above 9 216.46 1
A above 10| 1287.75 17 5 above 9 899.87 1
A. above 11| 1299.27 2 5 above 8 | 1075.77 1
A above 9| 1553.09 5 3 above 8 391.74 1
12 above 10| 372.73 5 7 above 8 901.78 1
12 above 11| 384.41 2 5 above 7 174.45 7
12 above 9| 638.30 3 4 above 3 296.69 60
12 above 8| 814.35 1 7 above 3 509.49 4
10 above 11 11.60 3 B above 3 | 1376.19 14
10 above 9| 265.48 6 5 above 4 387.24 20
10 above 8| 441.10 2 7 above 4 212.75 7
11 above 9| 253.87 1 B above 4 | 1079.50 30
11 above 8| 429.55 10 B above 5 692.35 15
9 above 8 175.37 1
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By pl;ecise spirit leveling, 4 was found to be 39.05 meters
above B, which may be taken as correct. Adjust the
heights of the other stations above B accordingly. f,*

60. Wild or Doubtful Observations. — It sometimes
happens that, in the course of a series of measurements,
results occur which are so doubtful that the observer is
tempted to reject them altogether. In technical language,
their weight is so small as to be seemingly negligible, and it
is a question whether their retention may not do more
harm than good.

The doubt may arise from the existence of unusual or
disturbing conditions, known to the observer. On one
occasion I was making a quantitative analysis to determine
the exact concentration of a solution, and during the proc-
ess of drying, accidentally spilled a few drops of hydrant
water into the residue. My final result was to be an
average from the analyses of several specimens, and the
accident would unquestionably vitiate the result of this
observation; but the specimens were obtained with diffi-
culty and I could ill afford to spare any of the data. Was
the result to be rejected or not ?

Again, suspicion may be due to a marked difference
between the result in question and all the others of the
set. This does not refer to mistakes (Art. 9), which may
usually be easily rectified. To the observer’s best knowl-
edge, the doubtful observation deserves as much weight
as the others, having been made with the same -care;
but he dislikes to retain it, as it is so far out of agreement.
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The former class of doubtful observations should, in
the opinion of the writer, be rejected unless some idea of
the extent of the disturbance can be obtained and due
correction made for it if necessary. What I did in the case
cited was to test the hydrant water and ascertain that
the amount of solids contained in a few drops would not
be sufficient to affect the result at all seriously; but I
gave only half as much weight to this observation as to
the others.

With the latter class the case is more doubtful. Just
because a result differs from the others is no proof that
it is any farther from the truth, especially when the num-
ber of observations is small. In casting out such a result,
one may be throwing away his most valuable observation.
Certain criteria have been proposed for deciding whether
to retain or reject a ““ wild ”’ observation, based upon the .
law of error distribution. Probably the best decision
will be based upon the observer’s judgment, it being borne
in mind that results of observations should not be tampered
with unthinkingly. Where wide deviations occur, it will
be well, if possible, to continue the observations until a
sufficient number are accumulated to show the law of
distribution with some distinctness and symmetry.

61. The Precision Index h.—It was pointed out in
Art. 28 that the quantity & in the error equation has to
do with the precision of the observations (Art. 13), and that
the greater the value of &, the greater is the precision indi-
cated. & may thus be termed the precisiofl index ”’
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or “measure of precision.” We are here naturally led
to inquire what connection exists between the precision
. index and the'weight 'ofCaniobservation. For, if we have
two sets of measurements, one of which is more precise
than the other, the value of & belonging to the error dis-
tribution in one set will be larger than that belonging to
the other; while at the same time the weight of one ob-
servation from the first set is greater than that of one
from the second set.

Let ki and ¢, be the constants in the equation of error
distribution corresponding to the first set, and let w; be
the weight of an observation from that set, supposing
them all to have equal weight; and let A, c;, w, be the
corresponding quantities relating to the second set. The
probability of an error x occurring in the first set is

Y1=cie™™, (63) -

Let the value of the precision index corresponding to a set
in which the observations are of unit weight be k. "This
may be called a “standard index,” though no absolute
value can as yet be assigned to it. An observation from
the first set is equivalent in worth to w, observations
from the standard set, in each of which the probability of
an error z is —_— ‘
Therefore the probability y, of the error « occurring in the
first set is that of its occurring w, times+in the standard set,
which is y*, giving

gy = Y = e, 64)
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The error z being supposed the same in (63) and (64), and
thése equations holding for all values of z, comparison

gives at once Acelytey
Likewise ha? = wal?,
referring to the observations of the second set, having
weight we. That is,

P2 ho?: ha?: oo =wr i we: wat oo, (65)
of the wevfgﬁta of observations are in proportion to the squares
of their precision indices.

In order to illustrate this principle, let the error distri-
bution of the first set be represented by 4, Fig. 10, and

b !
B

Fia. 10

that of the second by B. * A4 represents the more precise set
of measurements. Let the points of inflection be distant
a and b from the y-axis in the two curves respectively.

From (27), Art. 28, - . '
arb=—1_.-1
BV2  hV2
or hiihy=b:a. (66)

Then { 65),
Then from (65) wi:wy = b?: al (67)
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It is thus possible, by means of a study of residual
curves, to estimate the relative weights of observations
made by different\processes, op/with different instruments,
or by different observers. In the next chapter (Art. 59)
will be presented a mathematical means of obtaining the
same information, without plotting the curves. This does
not, of course, refer to the weighting of individual observa-
tions of the same set, which must depend upon the judg-
ment of the observer as to the conditions existing at the
time. :

62. General Statement of the Principle of Least
Squares. — The principle of least squares, already enun-
ciated in three ways adapted to increasingly complicated
cases of adjustment (Arts. 29, 31, 33), may now be deduced
in its general form, which includes all the others as special

. cases.

Let a series of n observations be made, whose weights
are respectively w,, ws, -+, wa, and let the residuals be
P1, Pz ***, Pn. The probabilities of these residuals are

(64) yr = cwle-wx’ﬁm”
Yo = cﬂhe—w#p-"

.yn - c“’nc""n"'m”
in which ¢ and & are the precision constants corresponding

to an observation of unit weight. The probability of the
occurrence of all of this particular set of residuals is

Y= YWYz Yo = ettt o Fong—B(wipt+wapt + o Fwpppt) | (68)
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The most probable set of residuals, and hence those
determined by the most probable values of the unknown
quantities involved. in the observations, are those for which
Y is a maximum, and hence those for which Z(wp?) is a
minimum.

The general statement follows: The most probable
values of unknown quantities connected by observation equa-
ttons to which weights have been assigned are those which
will render the sum of the weighted squares of the residuals
a mintmum. The meaning of the term *weighted

" squares ”’ is obvious from the above.

The rules of Art. 48 for the adjustment of weighted ob-
servations might have been deduced from the principle
as above stated, in the same manner as the deduction
was made for the simpler case of equal precision (Arts.
33, 34).



CHAPTER VIII

PRECISION AND THE PROBABLE ERROR

63. Discontinuity of the Error Variable. — There is
one point in the foregoing discussions of the law of error
that has not been emphasized. In all of the mathematical
work, we have treated the error as if it were a true con-
tinuous variable #, which might have any value whatever
from — oo to + o0. But to assume this would be to assume
an infinitely minute graduation of our measuring scale.
To illustrate the fact, let us suppose that the measured
quantity is an angle. If the error were a continuous
variable, successive measured values of the angle need
not differ by so much as a billionth of a.second, yet might
be different; and the probability of any particular error
out of the infinity of possible ones would be infinitesimally
small. It is thus seen that the variable error x, instead of
varying by infinitesimal increments dz, really has equal
finite discontinuities A, which represent the smallest
fraction of a unit in which the measured results are ex-
pressed. On a surveyor’s transit, for example, A is usually
one minute for single angle-readings; while with the
micrometers used on large equatorial telescopes, angular
measurements are made which may be expressed in hun-
dredths of a second.

141
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The error curve may then be represented as a sort of
stairway with equal treads and unequal risers, and the
errors considered as falling into compartments correspond-
N ing to the several
A’s, just as do the
shots in the target
experiment of Art.
11.

The width of one
of these error “ com-
partments ”’ being A
and its height y, it
may be looked upon as a narrow strip of finite area yA.
y is the probability that an error will fall into the com-
partment to which the ordinate y corresponds. Let us
imagine all the strips placed end to end, the total length
being Zy = 1, since this is the sum of the probabilities
of all possible errors (Art. 16). But the area of this long
strip is the area of the curve:

Fia. 11

A="c hf;w e~ P2 A

T=—0

2050 e#4 . A

=20 e . .

and 4
A A

|l\’)

f A =1, (69)

A being' small, the summation Z in (69) is for practical
purposes represented by the definite integral
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I= j; " ey, (70)
Whence, from (69), A '
C 2—I A (71)

The integral I is a function of &, and when we have de-
termined what function of &, we shall have found the re-
lation between the two constants ¢ and % of the error equa-
tion, which was referred to in Art. 28.

64. Value of the Integral I, and the Relation between ¢
and h. — The evaluation of the definite integral I of the
preceding article is worked out in Note C of the Appendix,
this being a problem belonging to the theory of definite
integrals and an interesting example of a method often
employed in such cases. The result is

_ v
I=f] emode =T 2)

The student who does not care to follow out the proof may
verify the result by plotting the function for two or three
chosen values of % and integrating the curve with a pla-
nimeter. However, the note referred to is not difficult to
read, and students are advised to do so.

Substituting the value of I here obtamed in (71), the
expression for ¢ is found to be

hA
= 73
.c ( )

and is therefore proportional to A.
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We may now write the error equation in a final and more
satisfactory form: BA
Y= Te""", (74)

i

in which the law of error distribution is made to depend
upon the scale-interval A, which is readily obtained from
the recorded observations, and upon a constant k& which
we have come to refer to as the preeision index (Art. 51) and
which, as will be seen later, can also be calculated from the
results of the observations. :

66. Probability of an Error Lying between Given Limits.
The Probability Integral. — An important problem in the
theory of errors is to find the probability that an error
will lie between two given limits X; and X;. This may be
obtained in terms of the precision index 4. For, the result
sought is merely the sum of the probabilities of all errors
between X, and X, which is, by (74)

or replacing A by dz as in equations (69), (70), in order to
convert the summation approximately into an integral,

Yize= i— X' e""‘fdx

V; X

h X1 ki h X1 _
=— dx — —_— e ""’dx. 75)
«/,rj; ’ v,,j; (
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The definite integral ocecurring in (75), viz.,

x hiz?
= T_ o e~ dI,
mw

is simplified by a substitution. Let hx = z, h%? = 22,
hdx = dz; whenz = X,z = hX. We then have

1 (™ _ 1 (= _
=2Ej<: e'dz=v_:r‘]; e~?dz. (76)

This expression Y is commonly called the prob-
ability integral, and is evidently a function of the
upper limit AX. It expresses the probability that
an error will lie between 0 and + X. As applied
to the question of precision, the value of Y itself
is less useful than that of 2Y, which is the proba-
bility that an error will lie between +X and — X,
that is, that a measured result will be within X of
the true value. .

Our problem now requires that we be able to calculate
Y from the given value of R X. Y cannot, however, be
expressed directly as a function of kX, but must be eval-
uated through the use of infinite series. This mathemati-
cal work is given in Note D of the Appendix, to which the
student is referred. Tables of the values of the integral,
thus calculated, are standard, and given in every book on
the theory of errors. In the ‘accompanying table the

values of 2 Y are given, corresponding to the argu-
ment kX.

L
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hX| O 1 2 3 4 5 6 7 8 9

0.0{0.0000(0.0113/0.0226,0.0338 0.0451|0.0564/0.0676|0.0789(0.0901(0.1013
0.1{ .1125)//1236/ .1348))(114569)/11569] .1680| .1790| .1900! .2009| .2118
0.2{ .2227| .2335| .2443| .25560| .2657| .2763| .2869| .2974| .3079| .3183
0.3| .3286( .3389| .3491| .3593| .3694| .3794| .3893| .3992| .4090| .4187
0.4| .4284| .4380| .4475| 4569 4662 .4755| 4847 .4937( .5027| .5117

0.5]0.5205(0.5292/0.5379|0.5465 0.5549|0.5633(0.5716/0.5798/0.5879(0.5959
.6039| .6117| .6194| .6270| .6346| .6420| .6494| .6566| .6638| .6708
.7| .6778| .6847| .6914| .6981| .7047| .7112| .7175| .7238| .7300| 7361
0.8( .7421| .7480| .7538| .75695| .7651| .7707( .7761| .7814| .7867| .7918
.7969| .8019| .8068 .8116| .8163| .8209| .8254| .8299| .8342| .8385

cooo
N>

.0/0.8427]0.8468|0.8508/0.8548 0.8586/0.8624(0.8661|0.8698/|0.8733/0.8768
.8802| .8835| .8868| .8900| .8931| .8961| .8991/ .9020| .9048| .9076
.9103( .9130| .9155| .9181| .9205| .9229| .9252| .9275| .9297| .9319
.9340| 9361 .9381| .9400| .9419| .9438( .9456] .9473| .9490| .9507
.9523| .9539| .9554| .9569| .9583| .9597| .9611| .9624| .9637| .9649

I

O ©DXNOO bhwiomO ©

0.9661/0.9673|0.9684/0.9695(0.9706(0.9716|0.9726/0.9736|0.9745(0.9766
9763 9772 .9780| .9788| .9796| .9804| .9811| .9818| .9825| .9832
.9838( .9844| .9850| .9856| .9861| .0867| .9872| .9877| .9882| .0886
.9891| .9895| .9899| .9903| .9907| .9911| .9915| .9918| .9922| .9925
.9928| .9931| .9934| .9937| .9939| .9942| .9944| .9947| .9949| .9951

et b bk

0.9953/0.9955|0.9957(0.9959(0.9961(0.9963|0.9964(0.9966/0.9967|0.9969
.9970| 9972 .9973| .9974| .9975| .9976( .9977| .9979| .9980| .9980
.9981| .9982| .9983| .9984; .9985| .9985| .9986| .9987| .9987( 9988
2.3| .9989| .9989( .9990| 9990  .9991| .9991| .9992| .9992| .9992( .9993
2.4| .9993| .9993| .9994| .9994| .9994| .9995| .9995| .9995 9995 .9996

SIS
[

2. (0.9953(0.9970{0 9981|0.9989(0.9993|0.9996(0.9998/0.9999(0.9999|0.9999

66. Calculation of the Precision Index from the Re-
siduals. — The table in the preceding article enables us to
find the value of 2 Y corresponding to any given value of X,
providing the precision index % is known. That is, if we
have %, we can find from the table the probability that an
error will not exceed a given value X in numerical value.

Reciprocally, if the value of 2Y corresponding to a
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given limiting error X can be determined by any means,
the same table will give the value of & X and hence of &, just
as a number can be found from its logarithm, or an angle
from its tangent, by interpolation. This may be accom-
plished from a study of the residuals if the number of
observations is large enough.

For, the probability 2 Y that a residual will lie between
+ X and — X may be obtained by finding what propor-
tion of them do lie between these limits. By choosing
several different values of X, as many values for A X may
be found, which may be combined like observation equa-
tions for the unknown quantity h.

While this is rather too laborious a method for practical
purposes, it will be found a very useful means of getting
clearly in mind the relation of % to the precision of the
measurements. We shall therefore apply it, by way of
illustration, to the following results of 144 measurements
upon the length of a line. Of these:

REsiDUALS REsIDUALS
lgave 2178.1feet —1.0|18gave 2179.2 feet 0.1
1 gave 2feet —0.9]18gave 3feet 402
2 gave _A4feet —0.7|10gave A4feet 403
3 gave HSfeet —0.6] 7gave Sfeet 404
4 gave bfeet —0.5| 5gave .6feet 0.5
5 gave .7feet —0.4| 2gave 7 feet 40.6
11 gave 8feet —0.3| 4gave 8feet 0.7
16 gave 9feet —0.2|144 Mean zp?
21 gave 2179.0 feet —0.1 =2179.1 =14.36
16 gave .1 feet 0.0
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The interval A between successive residuals is 0.1 foot.
An examination of the residuals gives the following

facts:

N +X ey

55 are numerically not greater than 0.1 0.3819

89 are numerically not greater than 0.2 0.6166
110 are numerically not greater than 0.3 0.7638
122 are numerically not greater than 0.4 0.8472
131 are numerically not greater than 0.5 0.9098
136 are numerically not greater than 0.6 0.9444
142 are numerically not greater than 0.7 0.9861
142 are numerically not greater than 0.8 0.9861
143 are numerically not greater than 09 0.9930

The numbers in the column headed 2 are simply the

. N
1 f the fraction — ; e.g.,
values of the fraction -7 ; e.g

55

144

0.3819, ete. The

values of kX corresponding to these values of 2 Y, ob-
tained from the probability integral table, are as follows:

D¢ : hX X hX
0.1 0.353 0.6 1.353
0.2 : 0.616 0.7 1.740
0.3 0.838 0.8 1.740
0.4 1.011 0.9 1.907
0.5 1.198

any one of which will give an approximate value of A.
By using the above values, we may write simple observa-

tion equations for A, thus:
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0.1 & = 0.353,
0.2 k = 0.616,
. ~ete.,

which when reduced in the usual manner (Art. 34) give
as the most probable value

h = 2.33.

Using this as the value of & and 0.1 as that of A, and sub-
stituting them in (74), gives as the equation of error distri-
bution for this. case

y = 0.1314¢~5432,

Let the student plot this curve and the actual distribu-
tion of residuals together on the same sheet for the purpose
of comparison. The ordinates had better be laid off on
five or ten times as great a scale as the abscissas, for con-
venience.

67. Approximate Formulas for the Precision Index. —
The foregoing is doubtless as accurate a method of ob-
taining the precision index & as could be desired where the
number of observations is large, and where it can therefore
be assumed that the residuals distribute themselves in
accordance with the error law. It is however too laborious
for practical purposes, and can be replaced by shorter
methods. The first one here presented depends, in fact,
upon the same principle as that used in the foregoing cal-
culation, being simply more direct.

Let there be n observations made upon the unkpown
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quantity or upon functions of it, the errors being z,
Zg,+++, . From (74), the probabilities of these errors
are, respectively,

nh= E—e-h’:},
Vr
Ya= _hé—e—h’,;’
3
hA  _jara
Yn=—=¢€ Wzy ’
3

and the probability of the given set of errors is

Y= (%)nh"e""”". 77)

ks
The most probable value of & that can be afforded by
these observations is the one giving rise to the most
probable distribution of errors, a condition which is
equivalent to the statement that Y is to be a maximum.
Hence, regarding % as a variable and obtaining the condi-
tion for Y a maximum by differentiation of (77), we have
g—}ll-, - (%)ne‘“’”[nh”‘le t1z2% =0,

n
whence h= \/ Tt (78)

This would be adequate if the true errors x were known,
and does very well in any case, where there are many ob-
servations, if we simply use the residuals p instead of the
true errors. The discrepancy between (78) and the value
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obtained by using the residuals is discussed by many
writers at some length, and it is a question whether it de-
serves such attention,; inasmuch as only an approximate
value of & is usually required. It may be easily seen that
Za? is greater than Zp? since by the principle of least
squares Zp? is to be a minimum. Hence if Zp? is to be
used instead of Za? in (78), something must be done to
reduce the numerator as well as the denominator. The
general practice is to make it » — 1 instead of n, a pro-
cedure which has some theoretical support. The formula

for h now becomes 3
b= /Zz;pz (79)

This formula is of the greatest importance in the calcula-
tion of what is known as the probable error (Art. 58). Its
use is somewhat laborious, owing to the necessity of
squaring all the residuals. Another formula for k, first
used by Peters, can be derived upon the following reason-
ing. A

The total number of errors, both 4 and —, is n. * Then
if n, be the number of errors having the particular value z,
their probability is

I PR (80)
n Vg

Let us consider only + errors, the average value of which
is the same as that of all the errors, + and —, taken with-
out signs. The sum of all the + errors is, from (80),

z=®0

2, (ns2) = "—’inf (2e™™%)-4,

z=0 Vﬂ' z=y
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or approximately (see Art. 53),

=0

h (™ n
(n,z) = M2 ze WPy = —
z=0 Vﬁ' e 2 h V; )

The averaée of the + errors, and hence of all the errors
(disregarding sign), is therefore

Zz=0

5 _E(nﬂ)=_l_.
n in  pVx
whence h=—2—, (81)
VrZz

)
This formula, like (78), is in terms of the errors z. In
order to reduce (78) to the expression (79) for k in terms of
the residuals p, the numerator was reduced in the ratio

Vo —1: Vn.

If we apply the same process to (81), at the same time re-
placing the 2’s by the p’s, we obtain as the analogue of (79),

p=Ynn—1) (82)
VxZp '

which will be referred to as Peters’ formula for h, whereas
(79) will be called the standard formula for h.

It is to be noted that the above reasoning applies only
to observations of equal weight. The question of weight,
as related to precision, will be introduced in Art. 59.

68. The Probable Error of an Observation. — We have
heretofore treated the precision of observations in a more
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or less abstract and relative way, and the need is ap-
parent for a more concrete and tangible expression for it.
In short, we desire something that will convey to the
mind an idea of the accuracy attained, in terms of the
units of measurement used. This has been secured in
several ways.

One of the simplest quantities of this sort is the average
residual, taken without reference to sign. Its relation
to the precision index is obtainable from (82), which
gives as the average residual

zp_1 fo=1 -
n AN =’ (83)

or if n is very large, approximately,

Z_ 1 '
P Wt (84)

which is equivalent'to (81).
Again, there is the virtual or radical mean square (R.M.S.)
residual, which from (79) is

NN (85)

n " h 2n "’

or if n is large, approximately,

w1 ,
\/n N2 (86)

The concrete significance of this quantity lies in the fact
that it represents the abscissa of the point of inflection
on the error curve (Art. 28, Eq. 27).
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The most approved expression used for this purpose is,
‘however, the probable error. In Art. 55 it is shown how to
calculate the probability that-an error will not exceed a
given limit X, providing the precision index & is known,
the table of the probability integral being used in the cal-
culation. We may now give the following definition.

Designated by e, the probable error of an observation is
such that the probability that the given observation differs
from the truth by an amount numerically less than e 13
equal to_the probability that it differs by an amount numeri-
cally greater than e.

More briefly, any error is just as likely to be less than
the probable error € as it is to be greater; or in other words,
the probability that an error lies between + eand — eis 4.
In the long run, half the errors will lie within ¢, and half
will exceed it.

Therefore, e is that value of the limit X, appearing in
the argument & X, which corresponds to 2 Y = } = 0.5000
in the table of the probability integral. Interpolation
in this table gives as the value of the argument A X for
which 2 ¥ = 0.5000,

he = 0.4769,
whence the probable error is
e= 2478, (87)

Using the standard formula (79) for k, this gives
¢ = 0.6745 \/ 2t (88)
n—1
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in terms of the sum of the squares of the residuals; or .
using Peters’ formula (82), we obtain Peters’ formula for
the probable, error,

€=0.8453————, 89)
Va(n —1) ¢

in terms of the sum of the residuals without sign. From
Peters’ formula it will be seen that when n is large, ap-

proximately, >
€= 0.85—1;8 ; (90)

or the probable error of an observation is appfoximately
equal to 85 per cent. of the average residual, taken without
sign. This simple rule is sufficiently accurate for most
practical purposes, in the case of a long series of observa-
tions of equal weight.

The notation by which probable errors are expressed
uses the double sign. For example, if the mass of an
object, obtained by weighing, is stated as 24.830726
%+ 0.000014 grams, this means that the probable error of
the weighing is 0.000014 gram. This quantity would be
obtained, as explained above, by taking a series of weigh-
_ings on the same balance under the same conditions,
finding the residuals, and applying (88), (89) or (90).

~ b9. Relation between Probable Error and Weight. —
When the several observations of the same series are
assigned- different weights, the probable error of a single
observation has no significance without further qualifica-
- tion, since the precision index %, and hence the probable
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error, is supposed different for the different observations.
We may express both, however, with reference to obser-
vations of some; selected precision, as those which have
been assigned unit weight. We shall designate by & the
precision index and by e the probable error of observations
of unit weight, and refer to them also as observations of
standard precision. Other observations whose weights
are w, ws, --, have precision indices h, ks, ---, and
probable errors ¢, e, -

We have already deduced the relation between h and w
(Art. 51, Eq. 65). Itis

hyihy: by oo =Ywy: Vg : Ywg: -

From (87), hi:hp:hy: - .=L.1. l—:

€ € €3
Combining these proportions,

1 1 .1 ..

€: €:€3: o : \/E' \'u—;s' , (91)
which expresses the very important principle that the
probable errors of different observations in the same series
are tnversely proportional to the square roots of their weights;
or reciprocally, the weights of observations of the same kind
are inversely proportional to the squares of their probable
errors.

To illustrate this, if the probable error of a measured
quantity obtained by one method is found to be only
one-half as great as that obtained by a less precise method,
then the weight assigned to the former in combining them
should be four times that assigned to the latter. In other
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words, one observation by the former method is worth
four made by the latter.

If ¢ be the probable error, of ~an observatlon of umt
weight, found from (88), (89) or (90), then by the foregoing
principle, the probable error of an observation of weight w
is given by ¢ '

€= "/E' (92)

This will shortly be seen to have an important applica-
tion to the finding of probable errors of adjusted or most
probable values of unknown quantities.

If the probable error of an observation of unit weight
is to be calculated from a series of weighted observations,
we may generalize the reasoning of Art. 57 as follows.
The weights are wy, w,, +--, and the corresponding precision
indices Ay, hy,+--. bk being the standard lndex,

hl = h‘/wl,
hz hVw,,
h,. h‘/w,..

The probabilities of the respective errors are now given by

go= 1B phios _ By iz
™ ™

Yo = ‘/A_ h‘/;ze”"‘”’",

L

Yn= A_k‘/w_,,e"‘"”n’n’.
Vr
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The joint probability, corresponding to (77), is now

Y= ( )‘/wlwz - wy, hre~ W)

from which, by the same reasoning as that leading to (78)
and (79), the standard index of precision is

n—1
h= \2 =(wp?) 93)

Instead of (88) we now have, by substitution of this new
expression for & in (87),

= 0.6745\/‘1—(73%, | 94)

the important standard formula for the probable error of
an observation of unit weight, as obtained from a series
of weighted observations. In this formula, before sum-
ming the squares of the residuals, each square is multi-
plied by the corresponding weight; or, otherwise, each
residual is multiplied by the square root of the corre-
sponding weight. (See Art. 52.)

The same modification may be made in the Peters’
formula (89) to adapt it to weighted observations, giving

¢=08453-2C0wp) (95)
Vn(n — 1)
or if n is large, approximately,
=085 ’i(—il‘i’l (96)

‘which corresponds to (90).
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EXERCISES

60. 1. Two specific gravity bottles, one of which, No.
7701 a, was of the'ordinary type)andithe other, No. 7701 ¢,
~ of a special improved design, were each filled with water
five times at the same temperature, the following being
the results of the weighings, which were made on the same
balance in the same manner:

No. 7701 a No. 7701 ¢
42.602818 45.345518
42.604108 45.345852
42.603512 45.345597
42.602062 45.346437
42.602947 45.346219

Find the probable error of a single filling and weighing
with each of the two bottles, and the relative weights of
a single observation in the two cases.

2. Eighteen measures of a horizontal angle were made
by means of a large Coast Survey theodolite, as follows,
the observations being of equal weight:

13° 31’ 17"7.6 13° 31’ 20" 4

21 5 20 .9
19 .0 23 5
21 5 18 4
26 .2 14 2
17 1 21 0
22 1 21 8
20 1 22 4
17 .9 .6

17
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Find the probable error of a single observation of this
series by means of each of the formulas (88), (89) and (90).

Regarding the mean as an observation of weight 18,
find the probable error'of the mean.

8. Find the probable error of one shot in your own target
experiment of Art. 11, Ex. 1.

4. Find the probable error of one observation in the
series of measurements which you made upon a line in
Art. 11, Ex. 2. Also, find the probable error of the mean.

5. Six separate researches, by different observers, upon
the velocity of light gave the following mean results, with
their probable errors, in kilometers per second :

298000 + 1000
298500 + 1000
299930 + 100
299990 + 200
-300100 + 1000
299944 + 50

Assign the proper relative weights and find the probable
error of an observation of unit weight.

Also, regarding the weighted mean as an observation
of weight Zw, find its probable error.

Explain why the answer to the first part of the problem
" is not 1000, supposing the first observation to be assigned
unit weight. From the answer to the second part, do the
less precise observations add to the value of the whole?
Give reason for your conclusion.
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6. The constant of a Babinet compensator is determined
by measuring the distance between two successive dark

bands as seen through the analyzer. Micrometer readings
were taken as follows: )
18T BAND 2p Banp 1st BAND 2p Banp

267 225 267 225
269 224 265 227
268 226 268 223
267 227 267 227
264 226 264 226
266 226 266 225
266 227 264 227
268 225 267 226
268 224 266 224
264 225 267 226

Find the probable error of one measurement of the differ-

ence in readings; of the mean.

7. Ten measurements were made upon the magnitude
.of a certain bright star, with the following results:

0.600
460
477
500
467

0.470
483
475
490
475

Find the probable error of one measurement and of the

mean.

8. Syntheses of carbonic acid gas made from different
kinds of carbon by Dumas and Stas gave ‘the following
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results (Freund, Chemical Composition). The numbers
represent the percentage of carbon in the gas.

NATURAL ‘GRAPHITE ARTIFICTAL (GRAPHITE Diamonp
27.241 27.237 27.251
.268 253 276

.270 281 .301

258 .307 .263

248 275

Find the probable error of one determination and of the

mean.

9. In a series of base line measurements made with
both steel and invar tapes, the following probable errors
were found (U. S. Coast Survey Report, 1907):

Base LiNe STEEL INvAR

ONE PART IN ONB PART IN
Point Isabel . 1 300 000 2 310 000
Willamette 1 730 000 3 340 000
Tacoma 1 630 000 2 980 000
Stephen . . 1 120 000 2 040 000
Brown Valley 1 420 000 3 110 000
Royalton . 2 260 000 2 460 000

Averaging these, find the relative weights of base line

measurements made with these two tapes.

10. Apply Peters’ formula (95) to find the probable
“error of an observation of unit weight for the data of Ex.

14, Art. 49,
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61. Probable Errors of Functions of Observed Quanti-
ties. — An important phase of the subject of preci-
sion is what may. be termed the ‘ propagation of
error” and illustrated by an example: The prob-
able error of the diameter of a circle, obtained by
measurement, is e; what is the probable error E of
the area calculated therefrom? Or generally, given the
probable error of a measured value of a quantity, to
find the corresponding probable error of any function of
that quantity.

Let the measured quantity be g, and the function

Q=5(9).

Let an observation be made upon ¢ with error z, and let
the corresponding error affecting the function @, as a
result of this, be X. Then if 2 be small, we have ap-

proximately Xiz=dQ:dg,

or X=%m

It may now readily be seen that if ¢ and E are the prob-
able errors of the measured g and of @, respectively, then

d
E= Qe o7)
dq
This may, however, be shown as follows.
If x, s, -, z, are a series of errors committed in

measurements upon ¢, and X;, X3, ---, X, are the resulting
errors in @, then as above,
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X 1= %%ltl,
d
X 2= d—?lzz,
. ‘ X n= %qun 5
or squaring and adding,
2
X2 = (@) ) (98)
dq .

Now from (87), substituting the value of & given in (78),
since the 2’s and the X’s are true errors (not residuals),
the probable error of g is

€ =0.6745 \/ -
n

and that of @, ;
E=0.6745 , /Eni
from which 5ot e
0.6745%’
E*n
2 =
X 0.6745%
The substitution of these in (98) with subsequent reduction
gives (97).

That is, the probable error of a function of a single measured
" quantity is equal to the derivative of the function times the
probable error of the measured quantity.

For example, if the measured radius of.a circle be
g = 9.67 £ 0.02 cm., the computed area is @ = x¢® =
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293.7663 sq. cm., and its probable erroris E = + 2 xg X
0.02 = + 1.215 sq. cm.
In general, Q is a function of several (I) measured quan-

| titles: Q=1(q, @ * @)- (99
Then if i, 25, -+, ; are the errors of the respective values
of qi, g2, -+, q; simultaneously substituted in (99), the
resulting error of @ is given approximately by

et gem (100

Let there be a number (n) of series of observations upon
the ¢’s, each giving rise to an error X as represented in
(100), viz., X1, X3, -+-, X Then approximately,

X2 = (OQ) p +( Q) S 4 o0 + ( Q) Zz?, (101)

which is obtained from the X’s upon squaring (100) and
omitting the product terms of the expansion. This omis-
sion is justified by the fact that there will be in the long
run as many + products as —, and they will be distrib-
uted approximately in accordance with the error law,
and will hence practically cancel each other; whereas,
the square terms are all 4, and must be retained.

By the same reasoning as that employed in the simpler
case following (98), we now readily obtain

(D (e (D aom

of which (97) may be regarded as a special case. The
quantities e, &, -+,  are the probable errors of measured
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values of qi, g3, +++, ¢;, and E the probable error of @ re-
sulting from substituting these values in the function (99).
As special cases of importance, we may take the following :

(@ ¥ Q=EKaq+K+ -+ Kg,
then E =VK%* + K)&* + - +K2?2. (108)
b It Q = Kaiq’ - ¢/,

then E = \/ ((;—?)2612 + (bFQ)zezz + -+ (%Q‘)zexz. (104)

2
Let the student deduce these results.

62. Probable Errors of Adjusted Values.— The dis-
cussions of the probable error heretofore have been con-
fined to the results of single measurements. The values
finally taken as the most probable, for the unknown quan-
tities, from a series of measurements may, however, be more
trustworthy than that of any single measurement, and the
manner of their calculation from the observations enables
us, by applying the laws developed in the preceding article,
to calculate the probable errors of these adjusted values,
regarding them as functions of the observations.

As the simplest illustration, we shall first take the case
of direct observations of equal weight upon a single quan-
tity ¢. The observation equations are

q =3,
q = 38
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there being n observations. The most probable value m
may be given in the form

m=1‘81+132+ cee +lsn.
n n n

This is a function of the form (a) of the preceding article, .
and the probable error is given by (103). Each observa-
tion s has the same probable error, designated by (88),

€=0.6745

n—1
Then by (103) the probable error of the arithmetical
mean m is

Y A R Zp*
_\/n2+n2+ +o= - 6745\/( -, (105)

which is the formula ordinarily applied. It may be ob-
tained at once from (88) and (92) by regarding the arith-
metical mean of n observations of unit weight as an
observation of weight n, as suggested in certain of the
problems of Art. 60.

By a similar course of reasoning, if there are n observa-
tions upon a single quantity having weights wi, ws, -+, w0,
assigned, the probable error of the weighted mean (Art. 48)

is —
Z(wp?)
»=0.6745, [——T+—. 106
€mw = 0.67 5\/§n—1)2w (106)
The general case, in which there are n observations of

different weight upon functions of ! unknowns ¢, g, *--,
g, is somewhat more complicated.* We shall deal only

* Sse article by the author, Popular Astronomy, Vol. XIX,
p 239.
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with the usual problem of first-degree observation equa-
tions, represented by (38), Art. 34. The residuals are
then given, by, (39), from which their numerical values
must first be calculated. The probable error of an ob-
servation of unit weight is now calculated from these
residuals in the usual manner, or by another formula

€= 0.6745\/ ’;""T”?, (107)

which is commonly taken as being more satisfactory, and
which certainly differs little from (94) when = is, as it
should be, large compared with I. (94) may be regarded
as a special case of (107), in which ! = 1.

In many kinds of work, the probable error of an ob-
servation of unit weight is known to the observer through
long experience with his instruments, and need not be
calculated with reference to each -series adjusted. At
any rate, we shall suppose the probable errors of sy, s, -+-,
8, in equations (38) to be known, and designate them by
€, €, -+, .. It is now required to find the probable
errors of m,, msg, ---, m;, which may be designated by
€, & ) &

In the process of adjustment of such a set of observa-
tions as here referred to, there arises a set of  most prob-
able or normal equations, which, from the mode of arriving
at them (Arts. 34 and 48), may be symbolized as follows:

Z(aws) — (Aym1+ Bimg + -+ + Rymy) =0,

ete., or more conveniently,
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2 (aws) = Aymy + Bymg + -+ + Rim,,
2 (bws) = Agmy + Byma + «-+ + Rym,, (108)
2(1'108) A,ml + B;'”bz + + lel

If we represent by E;, E,, ---, E; the probable errors
of the members. of these respective normal equations,
then these E’s may each be expressed in two ways. In
the first place, since the first member of the first normal
equation is

Z(aws) = aywss1 + Gzweds + -+ + AaWasn,

its probable error E,, as a function of the ¢’s, is given by
E2=a,2w: %, +as"w, %+ -+ . +anlwalen?=Z(aw’?), (109)

with similar relations for the other normal equations.
Again, the probable error E; of the second member of the
first normal equation (108), as a functlon of the m’s, is
given by

E\* = A’a?+ Bi’%&*+ .- + R\%?, (110)
with similar relations for E,, Es, +--, E;. Then equating
(109) and (110), and the other similar pairs, we obtain
the system

A%+ B’ + -+ + Ri%? = Z(a’w%?),

Ao% % + By + --- 4+ Ry’ = Z(bw??), (111)

A,”el2 + B,’ez2 + + R,’e, E(r”w’e’)

These equations are of the first degree in &2, €2, -+, ¢?
and may be readily solved for these values, the required
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probable errors themselves being then obtained by ex-
tracting the square roots. 4

The actual process is often not as complicated as might
be supposed, especially when the number of unknowns is
not large. The coefficients 4, B, ---, R appearing in (111)
are already known from the normal equations. The
weights w are simple numbers, frequently all unity. The
work is greatly facilitated by the use of tables of squares
and square roots, and the slide rule. And it may finally
be remarked that, since no great precision is required in de-
termining probable errors, superfluous decimal places may
be dispensed with in the several stages of their calculation.

Another method of calculating the probable errors of
adjusted values from observation equations of the first
degree is given, without proof, in the Appendix, Note E.

63. Probable Errors of Conditioned Observations. —
The laws developed in Art. 61 make possible the extension
of the foregoing processes to the case of observations upon
quantities limited by rigorous conditions (Art. 40). It
will be remembered’ that the m equations of condition
are first used to obtain the value of m of the unknowns
in terms of the others, those values being substituted for
them in the observation equations before adjustment.
The probable errors of the quantities still involved in the
observation equations may now be found as explained
in the preceding article. This being done, the probable
errors of the m eliminated quantities may be found as .
functions of the others, by means of (102).
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EXERCISES
64. 1. (The formula for double weighing on a balance

isW=p+2 _sr’, in which p is the sum of the weights

used, 7, and r; are the pointer readings when object is on
left and right pans, respectively, and s is the sénsibility
of the balance.) For ten weighings of the same object,
the values of r, — 7, were as follows:

096 - 0.93
1.08 0.95
0.99 1.12
. 1.02 1.05
0.92 1.10

The factor 2]—'3 for the load used was 0.0002753. Find

the probable error of one weighing, and of the mean of the
ten weighings. (Does pneed to be given for this purpose ?)

2. Given, the probable errors of two measured quanti-
ties, to find the probable error of their calculated sum or
difference.

8. All of the weighings, the data for which are given
in Ex. 1, Art. 60, were made on the same balance and by
the same method as those giving rise to the data of Ex. 1
of this article. The latter data refer to ten weighings of
the empty bottle No. 7701 a, for which p = 17.423 g.
The former data, referring to bottle No. 7701 a, are for
fillings with pure water at 21° C., at which temperature
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the specific volume of water is 1.001957 cc. per gram.
Find the most probable capacity of the bottle at this
temperature, and. the probable error of the result.

Find the probable error of a single determination of the
capacity, the above data being regarded as five deter-
minations. ’

4. Given, the probable errors of the measured legs of a
right triangle, to find the probable error of the calculated
hypothenuse.

6. Given, the probable error of a measured angle, to’
find the probable error of its sine, derived therefrom;
of its tangent.

6. Find the probable errors of the constants ¥y and K
calculated from the data of illustration 2, Art. 36 (p. 80).

7. Find the probable errors of the constants a, b, ¢
-calculated from the data of illustration 1, Art. 44 (p. 107).

8. (From J. P. Bartlett, Least Squares.) The following
weighted observations were made upon the differences of
longitude of four American observatories :

Cambridge — Washington 23 m. 41.041 s., wt. 30
Cambridge — Cleveland 42 m. 14.875s., wt. 7
Cambridge — Columbus 47 m. 27.713 s., wt. 8
Washington — Columbus 23 m. 46.816 s., wt. 7
Cleveland — Columbus 5m. 12,929 s., wt. 5

The longitude of Washington being taken as 5 h. 8 m.
15.78 s., find the most probable longitude of each of the
other stations, with their respective probable errors.
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9. The probable error of a single observation upon an
angle with a surveyor’s transit is known to be + 1’ 4",
If the angle A of a triangle is measured three times,
B five times and C six times with this instrument, calcu-
late the probable errors of the most probable values of
4, B, C, obtained by adjusting these measurements.

10. Adapt Peters’ formulas to the probable errors of
adjusted values, (105), (106); also te (107).

11. If the current in a galvanometer corresponding to’
deflection & is ¢ = K tan §, find the probable error of a
current determined from a deflection reading whose prob-
able error is 4’.

12. The following table occurs in a certain Coast Survey
report, referring to the probable errors of the various sec-
tions of a base line, in millimeters.

P. E. Dus 10 DvuE T0 DvuE TO

Swc. | Ucmemaney o\ Growapy o | Acommas | p 80 Bun
TaPES Exp. MEas. ECTION
1 +0.21 +0.05 +1.75 +
2 21 .06 0.7¢
3 21 .01 0.54
4 21 02 0.24
5 22 .09 1.72
6 22 . .09 0.54
7 22 .04 2.06
8 22 .13 2.53
9 21 .15 0.30
10 21 A1 1.08
11 21 .09 1.75
12 .21 .08 0.20
13 - 21 12 1.92
14 03 02 0.07
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Fill out the last column and obtain the probable error of
the whole base line.

18. The\most [probable length of the Stanton Base is
13191.3417 + 0.0052 meters. Find the most probable
value and probable error of its logarithm. (Omit unless
at least a seven-place table is available.)

14. The weights of three measured angles, BAC, CAD,
DAE, are 2, 1, 5, respectively. Find the corresponding
weight of the angle BAE obtained by adding the measure-
ments.

15. The probable error of a circle reading on a transit
is 0’.2, and of a pointing at a signal, 0’.1. What is the
probable error of a single differential angle measurement ?

18. The probable error of a setting on a mark being
&, and of a circle reading, &, find the probable error of an
angle measurement by the cumulative method, using n
turns of the circle.

17. The probable error of a scale reading on a cathetom-
eter is 0.07 mm. ; of a setting of the telescope on a mark,
0’.1; and of an adjustment of the level, 0’.07. Find the
probable error of the mean of ten readings on a mark 2
meters from the instrument. If you had to use a cathe-
tometer, would you analyze the probable error in this
way? How would you find it?

18. Following are the results of three series of meas-
urements on the combining weight of lithium, made by
different chemists (Freund, Chemical Composition) :
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Diehl . . . . 59.417 1+ 0.0060
Troost . . . 59.456 + 0.0200
Dittmar, . i+ 59,638 & 0.0173

Weight these results and obtain the weighted mean and
its probable error.

19. Five independent series of determinations of the
atomic weight of silver gave the following results (Freund,
Chemical Composition) : .

107.9401 + 0.0058
107.9406 + 0.0049
107.9233 + 0.0140
107.9371 + 0.0045
107.9270 + 0.0090

Assign weights and obtain the weighted mean and its
probable error.

What would be the effect of a persistent error entering
one of such a series? Might the probable error of a
weighted mean ever be greater than that of any one of the
observations entering into it ?

20. Apply the appropriate Peters’ formula to finding the
probable error of the weighted mean of the observations
of Ex. 14, Art. 49. (See Ex. 10, Art. 60.)’

21. The probable error of the mean of fifty observa-
tions is found to be 0.1 per cent. How many more ob-
servations would be necessary to reduce it to 0.01 per
cent. ?
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APPENDIX

SUPPLEMENTARY NOTES

A. Proof of the Necessary Functional Relation As-
sumed in Deriving the Error Law. (Supplementary to
Art. 27.) — To deduce the form of the function ¢, such
that any set of values of z,, 3, ..., 2, that will render

X=xl+m2+e--+x,.=0 (a)
will simultaneously render .‘ ‘
D = ¢(@1)+ $(x) + - +$(2) =0. ®)

‘Let us add a small finite quantity e to any one of the
z’s, say x,, and subtract it from any other, say z,, making
the new values of these quantities z,” = z, + ¢, 2,/ = 2,
— ¢ This will not alter the condition X = 0, and hence
will not alter the condition ® = 0, since, by the hypothe-
sis, these conditions are to be simultaneous. This necessi-

h '
SR )+ (20 = (2 + O+ bz — o),
orthat (e, + o) o(z)]+ (62, — O — $(2)1 =0,

whatever the values of z,, z, and e.
Dividing through by ¢, this may be written

o(x + € — ¢(xr) _ o2, — €)— ¢(xc) =0.
€ —€
N . 177
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Allowing e to approach zero, this becomes at the limit | wha

P 4 " algel
= ¢(2;) — —— (¢a)=0; T
dxr d:t, igm

or since z, and z, represent any two of the z’s, in general, | ¢,
4 )= o) = o =2 I.
in é(z1) 7 &(x2) dx”cb(xn).

It follows at once that, since the 2’s may be varied in
" any manner among themselves, only so condition (a) holds,

j_x #(z) is a constant, say K. Therefore, integrating, : ;’:
. () = Kz + c. ‘
That ¢ = 0 follows fromv(a‘) and (b) jointly, since substi- ! T
tution in (b) gives | l
‘1’=K(¢1-l;xz+---+x,.)+nc=0, a
the first term of which vanishes by (a). :

|
: i
Hence, necessarily, ¢(r) = Kz, |
which is Eq. (22), Art. 27. |

B. Approximation Method for Observation Equations
Not of the First Degree. (Supplementary to Art. 39.) —
This method requires that the values of the unknowns be

very approximately known beforehand, as by choosing
~ such of the observation equations as, when solved simul-
taneously, will yield values for all of them. Attention is
then given to the unknown small corrections that must be
applied to these approximate values; a procedure some-

e — = =
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what resembling Horner’s method of approximation for
algebraic equations.

The approximate values, however obtained, being des-
ignated by ai, asr+ry qrand| the corrections required by
q’1, ¢'s, =+, ¢'1, the true values of the unknowns are

q=a+4q,
7= a + q,2:
S @)
G =a+ qlz-

Let the non-linear observation equations to be dealt with
be typified by

flgs, g, @) =s. @
The substitution of the values (¢) in (d) gives
f(al + q,b a2+ Q'z, oy ot qll) =3, (0)

an observation equation in which the unknowns are the
small corrections ¢’1, ¢’s, -, ¢/, Expanding the first
member of this by the general Taylor’s theorem,

fla+q'y, a4 qs -, a4+ ¢ =f (a1, az, -+, ;)

+q'1if(a1,_ ag, *°° al) +¢1'2‘if(¢1, ag, °*° al) + oo
day day

+ q,l_a— f(al: ag, °°°y al) + R:
aa;

R being the remainder of the series, which involves
higher powers of the very small corrections ¢';, ete.,
and which may therefore. be mneglected without serious
inaccuracy.
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Denoting f(a1, az, -, o)) by F,
oF
b by a,
oF
E by b’
oF
%, by r,

we may therefore replace (¢) by ‘
Ftaq1+b¢s+ - +rdi=35,
or aq'1+bg's+ -+ gy =4, f)

in which s’ denotes s — F.

This is an observation equation of the first degree, and
may be used as such, in combination with other observa-
tions similarly obtained from their respective originals,
for finding the most probable values of the corrections.
This being done, the most probable values of the unknown
quantities themselves are found by adding the most

“probable corrections to the approximate values a.

C. Evaluation of the Integral j.‘.e"'"'dx. (Supple-
mentary to Art. 54.) — Equation (70) is

00
= —h
I —j(; e Pdde, ~
This may be transformed into :

{ =%fo eHohdz =11 @
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The new integral I’ is independent of 4. For, let
hx = 2, then hdx = dz, and

te g — (-2
1/ j; e tdamf, iz (h)
Returning, however, to the original form of I’ in (g),
multiply it by e~"dh:
tg=Pgh = (Te=Q+em
T'e*dh= f e hdk)dz.

I’ and z being independent of &, we may integrate both
members of this equation with respect to h as a parameter,
assigning the limits 0 and o to this integration also,

thus: ” j;we_,,. I = jo'“’[ jo‘ et hdh]dx. (@)

Now the integral within the brackets is readily de-
termined :

® 1
—Q+OW | pdp —Q+ah 2
fo ¢ hdh 2(1+x2)j:e 2(1+?:)hdh
R S
2(1 +2?)
Substituting this in () gives

o 1* de T
! - —_—— —_——
Ij;e dh—2 o 1+22 4

But by Eq. () the integral fo “¢™dh in the first mem-
ber is equal to I’. Hence I'*= z, and from (g)

' _Vr

I 24’

which is equation (72).
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D. Evaluation of the Probability Integral. (Supple-
mentary to Art. 55.) — The value of the integral

Y——f | (76)

may be found when X <1 by developing e™ into &
series’ and integrating tbe terms separately. By Mac-
laurin’s theorem,

I
=+ st
whe_nce
hx GX)?, 1 (X 1 (RX), . .
AL _BY = -
e O T T i ©)

This series converges rapidly for values of £ X less than or
equal to unity, and may therefore be employed in the
calculation of Y in this case. When kX > 1, however, it
is divergent. We may write

ferttem f{ Y2 ﬂ;;_m]dg?.

Integrating successively by parts, P
1 1
-2 _————p—
Jorsda 2z° T2

=_—+4xs+4f"d"

e? e ? 3¢ 3.5 (e *
et " 3¢ 3-5fe” g
2x+4x‘°‘ 82° 8 a8
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A 1,1 _3 35
=212 sn T 164
3.5:7 3.5-7-9
T 3220 + 64 1! ] (k)

hX © 0
R N R ™
-J_ T -
=5 gt ()
(See Note C.)¢ The value of the integral in this last ex-
pression can be found by applying the limits £ X and
o to the successive terms Qf (k), giving

® 1 1
-2 — p—(hX) —_
j;x” dz = e oIx T 1KY

3 1 15 1
teaxr 6 T ] (m)

which converges rapidly when 2X > 1. Equation ()
will now give values for the integral appearing in Y for
this case.

Therefore, for h X <1, use series (j); for X >1, use
series (m) substituted in (/). (76) will then yield the
values of the probability integral desired. Let the
student verify these calculations for, say, kX = % and
X =2.

E. Outline of Another (Method for Probable Errors
of Adjusted Values. (Supplementary to Art. 62.) — The
method referred to at the end of Art. 62 is given here
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without proof. (See Merriman, Method of Least Squares,
Art. 74.)
Let the normal equations found from the observation
equations be
Aymi + Bymgy + -+ + Rym; = K,
Aymy + Bymg +- - + Rem; = K,

A,ml + Bgmz + + lel Kb

in which the quantities K take the place of Z(aws), etc.,
‘in equations (108). Let the literal form of these quanti-
ties K be preserved throughout the solution of the normal
equations, which will then yield '

m = a1K1 + BIKZ + b + leb
my = K1 + B Ko + -+ + 1K,
(n)
m = a,Kl + Bsz + e )‘zKl:
‘the quantities a, B, -+, X being numerical coefficients of

the literal quantltles K
It may then be shown that the weight of m, 1s —, that of

l

me 13—113—2, that of ms is 1 , ete. 'That is, the weight of any
Y3

most probable value m,, is the reciprocal of the coefficient
of the absolute term K, of the normal equation cor-
responding to m, as K, appears in the solution (n) for m,.

The weights of all the most probable values m,, m,, -,
my; are thus calculated. The probable error of an obser-
vation of unit weight is given by (107), or, as remarked
in Art. 62, may be already known from experience. The
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probable error of éach m may therefore now be found by
dividing this standard probable error by the square root
of the weight of m(92), as-above determined.

F. Collection of Important Definitions, Theorems,
Rules and Formulas for Convenient Reference.

DEFINITIONS

Error. — The result of a measurement minus the true
value of the quantity measured. (Art. 7.)

Residual. — The result of a measurement minus the
most probable value of the quantity, as derived from a
series of measurements. (Art. 7.)

Most Probable Value.— A calculated value of an un-
known quantity, based upon the results of measurements,
such that the residuals arising therefrom will be most
nearly in accord with the normal error distribution.
(Arts. 7, 29.)

Adjustment. — The process of obtaining from the results
of measurements the most probable values of the unknown
quantities sought. (Chap. V.) .

Observation Equation. — An equation, in general only
approximately true, connecting one or more unknown
quantities, or functions of them, with the result of a
measurement. (Art. 31.)

Normal Equation. — An equation, in general one of a
set of simultaneous equations, whose solution gives the
most probable values of the unknowns involved in the
observation equations. (Art. 33.)
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Equation of Condition. — An equation expressing a theo-
retical condition which must be exactly satisfied by the cal-
culated most probable values of the unknowns. (Art. 40.)

Empirical Formula. — A formula expressing a relation
between variables, whose mathematical form is inferred
from the results of experience or experiment, and which
is not deduced theoretically. (Art. 42.) _

Wetghts. — Numbers assigned to observations, or to
the adjusted values of unknowns, representing the relative
degrees of confidence which the respective observations
or values are supposed to merit. (Art. 47.)

Wetghted Mean. — The most probable value of a single
unknown quantity obtained by multiplying each obser-
vation upon that quantity by its weight, adding the prod-
ucts, and dividing by the sum of the weights. (Art. 48.)

" Probable Error.— A theoretical quantity ¢, so related
to the precision of a system of observations, that the
probability of the error of any observation or adjusted
value being numerically less than e is equal to the proba-
bility of its being numerically greater. (Art. 58.)

RULES AND THEOREMS

1. Principle of Least Squares. — (@) The most prob-
able value of a measured quantity that can be deduced
from a series of direct observations, made with equal care
and skill, is that for which the sum of the squares of the
residuals is a minimum. (Art. 29.) V

(0) The most probable value of an unknown quantity
that can be deduced from a set of observations upon one
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of its functions is that for which the sum of the squares of
the residuals is a minimum. (Art. 31.)

(¢) The most'probable! values“of unknown quantities
connected by observation equations are those for which
the sum of the squares of the residuals of those equations
is a minimum. (Art. 33.) '

(d) The most probable values of unknown quantities
connected by weighted observation equations are those for
which the sum of the weighted squares of the residuals is a
minimum. (Art. 52.)

2. Rules for Adjusting Observation Equations of the
First Degree. — (a) Write the expression for the residual
corresponding to each observation equation, multiply it
by the coefficient of the first unknown, in that expressmn,

add the products, and equate their sum to zero. The .

result is the normal equation pertaining to the said first
unknown. Do likewise for each of the other unknowns.
Then solve the normal equations thus formed for the
desired most probable values of the unknowns. (Art. 34.)
(b) In the case of weighted observation equations, after
multiplying the residual by the coefficient of the unknown,
multiply again by the weight of the corresponding obser-
vation; then add and proceed as above stated. (Art. 4@)
3. Weight and Precision Index. — The weights of ob-
servations are directly proportional to the squares of their
precision indices. (Art.51.)
. Weight and Probable Error. — The weights of obser-
vations are inversely proportional to the squares of their
probable errors. (Art. 59.)
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FORMULAS
1. The Error Equation. (Art. 54.)

L7 gy
v v;e (74)
2. Formulas for the Precision Index. (Arts. 57, 59.)

(a) For observations of equal precision, standard for-

mula, 1

h= 5 2 P’ 79)
(b) For weighted observations, standard formula,
n—1
h= \/2 Z(wp?) ) (93)

(¢) Peters’ formula, disregarding signs of residuals,
observations not weighted,

Va(n—1)
VxZp
3. Formulas for the Probable Errors of Observations in
Terms of Restduals. (Arts. 58, 59.)
. (a) Probable error of single observation, no weights,
standard formula,

b= (82)

2
€=0.6745,| 2. (88)
n—1

(b) With weights assigned, probable error of single ob-
servation of unit weight, standard,

¢-06745\/E(“” ). . (94)
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(¢) For an observation of unit weight, there being ! un-
known quantities, standard,
e 0:6745 %%_f’%) (107)
(d) Peters’ formulas corresponding to the above (a),
(b) and (c), disregarding signs of residuals,

- . |
€= 08453 = | (89)
2(Vwp) |

= 0.8453
‘ Va(n—1)

(95)

Yup)
=0_8453ML.
¢ Vo(n —1)
(¢) Simplified Peters’ formulas corresponding to the

" above (a) and (b), adapted to approximate calculation
when 7 is large, disregarding signs of residuals,

¢ =o.85§nfl- (90)

€= 0.85%17,2 . (96)

4. Formulas for Probable Errors of Functions of Qm;n{w-
ties, in Terms of Probable Errors of Quantities Themselves.
(Art. 61.)

(a) Function @ of a single quantity g,

-4,
E=72 )
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(b) Function Q of several quantities, qi, gs, *+, ¢,

E=\/(aql) a +(g—%) o+ - +(3) o )

(¢) Function @ = Kigi + Kage + -+ + Ky,
E = VK% + Ko?e? + - + K262 (103)
(d) Function @ = Kq:°g® - ¢,

E= \/( ql) e12+(@) o'+ - +(—Q) ot (104)

5. Formulas for Probable Errors of Adjusted Values.
(Art. 62.)
(a) For the arithmetical mean, standard,

m=0.6745 4 /WET) (105)

(b) For the weighted mean, standard,

- [ Z(wp?)
€mw = 0.6745 n—1Zw (106)
(c) Peters’ formulas corresponding to the above (a)

and (b) (Ex.10, Art. 64),
ey =0.8453

nVn—

2(Vup)

€mw = 0.8453 .
Vo(n — 1)Zw

Printed in the United States of America.
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