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PREFACE.

HE following manual was prepared for the use
of the students of Columbia College, and in its
original form it has been employed as a text-book, not
only in that institution, but in various Colleges, Acad-
emies, High Schools, and other institutions of learning.
The flattering manner in which it has been received
by our most successful teachers of Mathematics, has
induced the Author to publish it in its present revised
form.

In preparing it anew for the press, such alterations
and improvements have been made as have been sug-
gested by the author’s practical experience in its nse
as a college text-book. The opening chapters have
been somewhat simplified, the chapter on logarithms
has been extended, a section on inequalities has been
added, and the whole has been carefully corrected and
revised. It is hoped that these modifications will better
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adapt it to meet the wants of academies and high
schools, without in any way impairing its value as a
college book.

The original design of the work was to bring the
methods of Bourdon within the reach of those who
had not the time, perhaps not the inclination, to study
the more extended and complete work of that eminent
algebraist. In the present edition no attempt has been
made to modify that plan; on the contrary it is be-
lieved that every change made has been in the direc-
tion of a closer resemblance to the great work whose
spirit it would aspire to imitate.

NEw YoRk, June 17, 1875
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MANUAL OF ALGEBRA.

L - oo

CHAPTER 1.

DEFINITIONS AND EXPLANATION OF
SIGNS.

Definitions.

1. Quantity is anything that can be measured, as
number, time, or distance.

A thing can be measured when it can be expressed in terms
of some other thing of the same kind taken as a unif.

The value of a quantity is an expression for that quan-
tity in terms of some assumed unit; as 7 feet, 3 years,
4 pounds.

2. Mathematics is the science that treats of the
relations of quantities, and of the operations that may be
performed on them.

3. Algebra is a branch of Mathematics in which quan-
tities to be considered are represented by letters, and
operations to be performed on them are indicated by gigns.

The letters and signs are called symbols.

In what follows, the expressions 1°, 2°, 8°, &c., stand for firsf,
second, third, &c.
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Explanation of Symbols.
4. The quantities |treated of1in-Algebra are of two
kinds:
1°. Known quantities, those whose values are given;
and,
?°. Unknown gquantities, those whose values are re-
quired.

Known quantities are generally represented by leading
letters of the alphabet; as, a, b, ¢, &c.

Unknown gquantities are generally represented by final
letters of the alphabet ; as, z, ¥, z, w, &c.

When, in the course of an operation, an unknown quan-
tity becomes known, it is often convenient to represent it
by one of the final letters, with one or more accents, as,
z, y", 2", &e. These symbols are read, z prime, y second,
2 third, &c.

6. The signs employed in Algebra are of three kinds:
signs of operation; signs of relation; and signs of abbre-
viation.

The signs of operation are the following :

1°. The sign of addition, +, called plus. When placed
between two quantities, it indicates that the second is to
be added to the first. Thus, the expression, @ + 5, read,
a plus b, indicates that b is to be added to a.

2°. Sign of subtraction, —, called minus. When
placed between two quantities, it indicates that the
second is to be subtracted from the first. Thus, the
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expression, ¢ — d, read ¢ minus d, indicates that d is
to be subtracted from c.

The double sign, *, read plus and minus, is used to
indicate that the quantity before which it is placed, is first
to be added to, and then to be subtracted from, the pre-
ceding quantity. Thus, the expression @ + b is equivalent
to the two expressions, @ + 4, and a — .

If no sign is written before a quantity, the sign + is understood.

3°. The sign of multiplication, x. When placed be-
tween two quantities it indicates that one of them is to be
multiplied by the other. Thus, the expression z x y indi-
cates that x is to be multiplied by g, or that y is to be
multiplied by 2. The quantities z and y are called fac-
tors, and the result of the multiplication is called a
product. If more than two factors are multiplied to-
gether, the result is called a continued product.

Factors represented by letters ure called literal factors ;
in this case the sign of multiplication may be replaced by
a simple dot, or it may be omitted altogether. Thus, the
continued product of z, y, and z, may be represented by
any one of the expressions

TXYX2 T.Y.2 or zyz

4°. The sign of division, =-. When written between
two quantities, it indicates that the first is to be divided by
the second. Thus, the expression, p <+ ¢, indicates that
p is to be divided by ¢g. The operation may also be
expressed by writing one quantity over the other, in the
form of a fraction ; or the sign of division may be replaced
either by a straight, or by a curved line. Thus, the quo-
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tient of » by ¢ may be represented by any one of the
expressions,
piringy | oo 2l cor alp.

5°. The exponential sign. The exponential sign is a
number written on the right, and above a quantity, to
show how many times that quantity is to be taken as a
factor. Thus, in the expressions 23, z4, 2™, the numbers 2,
4, and m, are exponents, indicating respectively that
z is to be taken 2, 4, and m times, as a factor.

The resulting products are called powers. Thus, 2* is
called the fourth power of z.

I no exponent is written, the exponent 1 is always understood.

6°. The radical sign, ,/~—. When placed over a quan-
tity, it indicates that a root of that quantity is to be
extracted. The nature of the root is indicated by a num-
ber placed over the radical sign, called an index. Thus,
the expressions, 4/a, V/a, and %/a, indicate that the
square, cube, and n® roots of a, are to be extracted.

If no index is written, the index 2 is always understood.
The signs of relation are the following :

1°. The sign of equality, —=. When written between
two quantities, it indicates that they are equal to each
other. Thus, the expression, @ = nb, indicates that a is
equal to the product of » and &.

2°. The sign of inequality, <, >. When written
between two quantities, it indicates that they are unequal,
the greater one being at the opening of the sign. Thus,
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the expressions, # > b, and ¢ < d, indicate that a s greater
than b, and that c i8 less than d.

3°. The signs'of proportion,: :: :. The single colon
stands for, 78 fo; the double colon for, as. Thus, the

expression,
a : b ::c: d,

isread, @ s fo &, as ¢ 1s to d.
The double colon is equivalent to the sign of equality

and is often replaced by that sign. Thus, the preceding
proportion may be written,

a:b=c:d
The signs of abbrevialion are the following :
1°. The sign .., stands for the word Aence.

2°. The m'nculum, ——, the b&ar, |, and the

parenthesis, or brackets, (), [], { }, are used to con-
nect several quantities, which are to be operated on as a

single quantity. Thus, each of the expressions,

a+ b Xz, alz, and (a+b)z=,
+b

indicates that the sum of a and & is to be multiplied
by z.
Other signs will be explained in their proper places.

Additional Meaning of the Signs + and —.
6. The signs + and —, besides indicutihg addition
and subtraction, are also used to show the semse in
which a quantity is taken:
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A quantity preceded by the sign + is said to be
positive, or additive; a quantity preceded by the sign
— is said, to \be, megative, or subtractive. If we agree
to call a quantity posizive when taken in any sense, we
must call it negative when taken in an opposite sense.
If we agree to call distances measured toward the right
positive, distances measured toward the left must be
negative ; hence, the sign — written before a quantity
changes the semse in which the quantity is to be taken,
that is, it changes a positive quantity to a negative one,
and @ negative quantity to a positive one. Thus
—(+a) is the same a8 —a, and — (.—a) is the
game as + a.

Definitions.

7. A coefficient is a number written before a quan-
tity to show how many times it is to be taken addi-
tively. Thus, the expression, 3a? is equivalent to a4
a® + a® The number 3 is the coefficient of a® 'The
coefficient may be either nwmerical or literal. Thus, in
the expressions, 32% 3a2? (a + b + c)2% the quantities
3, 3a, and (@ + b + ¢), are coefficients of 2%

If a coefficient is spoken of, without indicating its nature, we
generally mean a numerical coefficient. If no coefficient is written,
the coeflicient 1 is always understood.

8. An algebraic expression is an expression for a
quantity written in algebraic language, that is, by means
of algebraic symbols. Thus, 22% — 332 is the algebraic
expression for fwice the cube of z diminished by three
times the square of y.

The parts of an expression that are connected by the
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gigns + and — are called terms. Terms preceded by
the sign 4, either expressed or understood, are called
positive terms/y thiose (preceded by the sign — are called
, megative terms. Thus, in the expression 3a3—b+ 4c—d?,
* the terms 34? and 4c are positive, and the terms — &
and — @2 are negative.

9. A monomial is a single term, unconnected with
any other by the signs 4+ or —. Thus, 343 7a%c, are
monomials,

A monomial consists of three parts:

1°. A Ulteral part, which may be regarded as the
unit;

2°. A coefficient, which shows how many times the
unit is taken; and

3°. A sign, which shows the sense in which it is
taken.

Thns, in the monomial — 3a%, we may regard the
literal part, a%r, as the wnit; the coefficient, 3, shows
that this unit is taken 3 {fimes; and the sign, —,
shows that it is taken in a negative sense.

10. A polynomial is a collection of terms connected
by the signs 4+ or —. Thus, 34% + ¢ —d, 2ab—_6+d

are polynomials.

11. A binomial is a polynomial of two terms; as,

c + d, (e +f)= %z+y.
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12. A trinomial is a polynomial of three terms; as
a+b+c ?— 2y + 3}, —a+ 358 + 2.

Classification of Terms.

13. Terms are of different degrees, according to the
number of literal factors they contain: those that con-
tain but one literal factor are of the first degree; those
that contain two literal factors are of the second degree;
and so on. Thus, the term 32 is of the first degree,
because it contains but one literal factor; the term
— a? is of the second degree, because it contains two
literal factors; the term — a%2® is of the sixth degree,
because it contains gix literal factors.

The degree of a term is determined by the sum of the expo-
nents of all its letters. .

Two terms are homogeneous, when they are of the
same degree. Thus, the terms 84?2z and g% are homo-
geneous, also the terms a%? and 7a%?.

A polynomial is homogeneous when all its terms are
homogeneous. Thus, the polynomial a®bc — Tazt 4 3852
is homogeneous, but the polynomial 8a% — 7a% + 82?
is not homogeneous.

Two terms are similar, or like, when the combina-
tion of literal factors is the same in both. Thus, the
terms 82%2 and — Va%yz are similar, as are also the
terms 25a%cd® and 2a%cd®. In oider that two terms
may be similar, they must contain the same letters,
and each letter must have the same exponent. The
terms 8a%h and — 7ab® contain the same letters, but are
not similar.
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Definitions.
14. The reciprocal of a quantity is 1 divided by that
1 c

. 1 .
quantity: thus, P axd @ z, are reciprocals of the

&

quantities a, @ + 5, - and ;: The product of any

[y

quantity by its reciprocal, is equal to 1. Thus ab xalb
is equal to 1.

Y 15. The numerical value of an expression, is the
result obtained by assigning a numerical value to each
letter that enters it, and then performing all the indi-
cated operations. Thus, the numerical value of the
expression,

ab + ac + be,
when a =2, $=3, and ¢ =4, is

2x34+2x4+3x4=26.

EXAMPLES.

Find the numerical values of the following expres-
gions, when a =2, 4 =3, c=4, and d =5.

1. abd + cb. Ans. 18.
2. ad—d + b. Ans. 8.
3. bc+ab—ec Ans. 14.
4. (bc + ayb. - Ans. 42
5. (bd — ay(ac — d). "t Ans. 39.
6. (d+¢)(d—o) - Ans. 9.
L ) © Ans .

4
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8 (a*—0)(c+ d). s Ans. 9,
9. abc + cd\+ ad; Ans. 54.
0. 24 % % (c+ d). Ans. 18.

Find the numerical values of the following expres-
gions, when ¢ =5, b =2, c=4, and d = 3.

6 ia q. .
4 4 Ans. 1.

1 - — 54—

a” b T c—d  e+d
a?h . (aP
‘12. (2 x /l) (%= + a) Ans. 46875,
R a?Bd® + 2abed + 1
13. abed + 1 Ans. 121,
‘g CAP— @ abed 4o — 100 + 2
" a+b+d T %4c 2 +d
Ans. 15.
12(a + v 14
. 15. -—(‘-18—)- C=0+ 35X a—p
Ans. 2%.

16. {[a+bxc+d]b+a}xc. Ans. 268,




CHAPTER II,

FUNDAMENTAL OPERATIONS.

1. AopprtiON.
Definitions.

16. Addition is the operation of finding the sim.
plest expression for the aggregate of two or more quan-
tities.

This expression is called their sum.

Explanation.

17. 1f the quantities are similar, the addition may be per.
formed; if they are not similar, the operation can only be indi-
cated. Thus, the sum of 7u% and 4a%, is 11a%, in the same
way that the sum of 7 pounds and 4 pounds, is 11 pounds. The
sum of 8a% and 4%, cannot be expressed by a single term, any
more than the sum of 8 pounds and 4 feet; the sum may, how-
ever, be indicated by writing the quantities one after another,
with their proper signs; thus,

Bac’ + 4b°.
Addition of Similar Terms.

18. To deduce a rule for adding similar terms, let
us take the following examples:
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(1) (2) (3) 4)
+ Ta*hc — i -ea’be +~4abe — 8a%c
+  a?be —  3ae — Ra%c + 5a%bc
+  3a?be —  a%c + Ta%bc — 2abc
+ ba*bc — 8a%c — ba*he + 3a*bc
+ 16a?%c — 14a?%c + 4a%c — Rafbc

In the first example the unit a?bc is taken positively
5 times, 3 times, 1 time, and 7 fimes, that is, it is
taken positively 16 fimes; hence, in this case, the sum
of the monomials is + 16a?%¢c. In the second example
the same unit is taken negatively 8 times, 1 time, 3
times, and 2 {¢imes, that is, it is taken negatively 14
times ; hence, the sum of the monomials, in this case,
is — 14a%ec. .

In the third example the unit a?c is taken positively
11 times, and negatively 7 times, that is, it is taken
positively 4 fimes more than it is taken negatively;
hence, the sum, in this case, is + 4a?bc. In the fourth
example, the unit is taken negafively 10 #imes, and
- positively 8 times, that is, it is taken negatively 2
times more than it is taken positively; hence, the sum,
in this case, is — 2a%bc.

Since we may treat all similar cases in the same
manner, we have the following rule for adding similar
terms:

RULE.

Add the coefficients of the positive and negative
terms separately; subtract the less sum from the
greater, prefixing the sign of the greater; to the
result annex the comumon literal part.
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EXAMPLES.

1. Find the sum of 3ays, — 5ay®, — 2ay®, and Yay®.
Ans. 3ays

2. ;Find the sum of 4cz4, — ez, 3cz4, and — 14ct.
Ans. — l4c

3. Find the sum of 86c?, — 4bc?, — 115c% and — 2bc2
Ans. — 9bc

4. Find the sum of ay, — 4ay, 6ay, and 15ay.
Ans. 18ay.

Addition of Polynomials.

19. The sum of two or more polynomials may be
found by first writing them one after another with
their proper signs, and then reducing similar terms to
their simplest form by the preceding rule. In practice
it is found more convenient to write the polynomials
go that each group of similar terms may be found in
a single column; hence, we have the following rule
for the addition of polynomials:

RULE.

I. Write the quantities to be added so that sim-
ilar terms shall fall in the same column.

II. Add each column of similar terms sepa-
rately, and to the result annex the dissimilar
terms with their proper signs.
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EXAMPLES.
1) ) 3.)
3a — 3bz c+ b+ d 3% — 3y — 4y + 2
9a — bbx  4c —RWa* —2d 32% + Ty — 8y
5a — 4bz  bc + 3ba? 8% — 5yPx + by

17a — 12z 10c'+ 202° — d = 142%y — yx—Ty + 2

(4) (5)

4a + bc + 5d 4cx? + 5dy? — 228 + d

2a + Rbc + 3d 3ca® — 2dy? — 22 —d
3a — 3bc — 2ca® — dy? + 52

9a + 84 Scz® + 2dy? + 22
(6) (*.)

4ab — 4c + 2(a + b) 122% + 2(a + b)23

"Bab + 5¢c + 5@ +8) —1lzty— (a + b)2

ab+ ¢+ 3(a+0) 42% + 4(a + b)2

— 2ab + Tc — 4(a + b) — 32% 4+ 2(a + b))

— ab— c—2(@a+d) 2y + (a+ b)22

5ab + 8¢ + 4(a + b) 322y + 8(a + )2

Find the sums of the following groups of polyno-
mials:

1. a4+b4+c,a+b—c,a—b+c, and —a+ b+ c.
Ans. 2a + 2b + 2e.

2. 2ax + 3by, 3ax + 2by, Tax + by, and 8az + Vby.
Ans. 20az + 13by.

3. 20%— 17ab + 3, 5a®+ 1%ab — 5% 6ab + 1202 — 923,
and 35 + 6ab + 3a. Ans. 22a* + Tab — 82
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4. 2% — o + 2my? — 3%, S — 3zy? — Ba%y + 25,
62% + 6zy? ~=/2h—H yiocEndDrbay? — 2y° — 42° + 8a%y.
Ans. — 228 + 62% + 10zy* — 24°

5.: 2x+3y—42—10, 8y—4x+ 72+ 8, 1124 52—10y—2,
and 16 + 10z 4 12y + 142
Ans. 13z+13y+28z+12.

6. 32% + 2% + 28 + 8wyz, Yt + 2® — 322 — 4dayy,
2+ 32® — 2y® — 2zyz, and gyx+z’+y‘+z‘.
Ans. 92° + 28 + 3zyz.

7. o + 3a%y + 2% — v, 302t — 292% + 18zv—172%),
Rady — 1524 —322% 4 162v, and 172% — 1224 4 628y — 11zv.
Ans. 4zt 4 1428y — 432% + 21zv.

8 ar—0by, z—y, ar—z, and az + 2.
Ans. 3ax +xz— by —y.

9. az + Wz + 4by — 3ay, 2az + bz + 2ay — by, and
4ax + 3by. Ans. Tax + 3bx + 6by — ay.

10. px + qy + rz— ¢, 2px — 29y + 2¢, 3qy — px +4c,
and 7Vpzr — 8qy — rz — 3ec. Ans. 9pz — 6qy + 2c.

11. az® 4+ a*x — 2ax, = — az + 22%, ax® — 2 4 27,
and — Raz — 2a% — 2a2?. -
Ans. 3z’ — &%z — bax — Z.

12. a% — ar® — 2% ax — 2® — a?, — 202 — 20%x — 2a23,
and — 3a%x + 3a? + 302° Ans. — 4a*x — 2® + az.

13. a—2z+4y—3+w 2—w—y—3a—2z and
z+ Y+ 2 Ans. —2a — 2z + 4y — 2
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14. a2’y + bay*® + cx®, dzyR + cz8, and Razdy +
4bdz.
Ans. 3azy + beys + dzy*? + 2z + 4bdz.

Algebraic Sum.

20. The term sum, in algebra has a more extensive
signification than in arithmetic. In arithmetic, the sum
is always greater than either of the parts; in algebra, it
may be numerically less than either. Thus, the sum of
7a?b and —4a%, is 3a%. To distinguish between these
cases, the sum of two or more algebraic quantities, is
called their algebraic sum.

II. SUBTRACTION.
Definitions.

21. Subtraction is the operation of finding from
two quantities a third, which, added to the second, will
give the first.

The first quantity is called the minuend, the second
is called the subtrahend, and the third is called the
difference or remainder.

The remainder obtained by subtracting 3a% from 5a% is 2a%,
because 2a%b added to 8n%b gives 5a’b. In like manner the re-
mainder obtained by subtracting — 3a% from 5a? is 8ah, because
8a’b added to — 3a% gives 5a%. In each of these cases the re-

mainder is found by changing the sign of the subtrahend and
adding the result to the minuend.

Rule for Subtraction.

22. To deduce a rule for subtraction, let us take
the following example:
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Minuend, 4a%c — 12ba?
Subtrakend,' O2d% LO13ba® + 4cy — 528
Remainder, 2a% — 95 — 4cy + 52°

In this example the subtrahend is written under the
minuend so that similar terms fall in the same column;
from the definition of subtraction the remainder must
be

20% — 9bx? — 4ecy + 528,

because this quantity added to the subtrahend gives the
minuend. But this remainder can be found by chang-
ing the signs of all the terms of the subtrahend and
adding the result to the minuend.

Iz like manner we may treat all similar cases; hence,
we have the following rule for subtraction :

RULE.

I. Write the subtrahend under the minuend so
that similar terms shall fall in the same column.

II. Change the signs of all the termms of the
subtrahend, or conceive them to be changed, from

+ to —, or from — to +, and proceed as in
addition.
EXAMPLES.
1) (2.) 3.) (4)
12ab 8abc 13a™ 5a”b%
6ab 4abe 9a™b Ra”b%
6ab 4ahe 4a™b 3a?¥%c

™
3
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(5.) 6. (1) 8)
Tac 10622 LC8abe — 3att™
— 4ac — 3bd + 38a%hc — Satt"
1lac 1383 — 11a%:c 224"
9) (10.) (11)
6a3 — 80 32 —4x% 4 8 dzyd + 42
8a? — 50 528 — 6a%y — 3 — 32y + Tz — 633
36 — 36 — 2+ 22% + 11 T2y — 32 + 62°

12. From 2a + b — ¢, subtract a — b.
Ans. a + 2 —c.

‘13. From 3ac — 2b, subtract ac — b — d.
Ans. 2ac — b + d.

14. From 5ab — 6, subtract — 2ab + 6.

Ans. Tub — 12.
15. From 4y? — 3y + 4, subtract 2y + 2y + 4.
Ans. 2y — by.

16. From 219a® — 117a% + 218ab® + 14508, sulitract
26a8 + 4a% + 61ab® — 100%
Ans. 193a® + 157ab? — 121a% + 15508

17. From «¢ —z + 2y — 32 + w, subtract 22 4 3a
—y+z—w Ans. — 2 — 3z + 3y — 42 + 2.

18. From 528 + 2% — 6292 + 3%, subtract 32% + 4a%
— Tz + o — 2y® Ans. 2P — 32% + xy? + zyt

19. From ¢ — 4zy® + 72%® — 2% + 324, subtract
224 4 328y + 2%° + xyd
Ans. ot — 4a% + 62%? — byt + A
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20. From 2pz°+ ry*— 3qzy, subtract pa® + qzy — ryd.
Ans. pad — 4qzy + 2ryd.

21. From 228 — 32% + 2z1? subtract 2® — xy® 4 45
Ans. a® + 3zy® — 32y — o~

22. From 72* — 2yz + 18z, subtract — 322 — 22yz
—p—2* Ais. 102 + xyz + 182 + p + ¢%

Algebraic Difference. +

23. The term difference has a more extended sig-
nification in algebra than it has in “arithmietic.  In
arithmetic the difference is always less than the minu-
end; in algebra the difference may be greater than the
minuend. Thus, the difference obtained by subtracting
— 4a? from 6a? is 10a®. Hence, the difference between
two algebraic quantities is called the algebraic differ-
ence, to distinguish it from the arithmetical difference.

Of the Sign before a Pa.renthesis.

24. The sign + before a parenthesis indicates that
the signs of all the included terms are to remain un-
changed. In this case the parenthesis may be dropped.
Thus,

A+ (F—2) =a+A—2.

The sign — before a parenthesis indicates that the
signs of all the included terms are to be changed. In
this case the parenthesis may be dropped, provided we
change the signs of all the included terms. Thus,

—(*—2) =d"—+ 2



28 MANUAL OF ALGEBRA.

Any number of the terms of a polynomial may be
enclosed in \@\\parenthesis; (preceded by the sign —,
provided we change the signs of all the included terms.

The following example shows some of the ways in
which a polynomial may be transformed in accordance
with the preceding principles-

42t — 1428y + 4o — 2w + 10,

4zt — (142%y — 4a% + 2w — 10),
4t — 1428y — (— 42% + 2w — 10),
4ot — 1l4a®y + 42% — (2w — 10).

These expressions are all equivalent, the first being the
simplest.
EXAMPLES.

Reduce each of the following expressions to its sim-
plest form:

1. 2% — 3% + 22y — (23 + y° — x9?).
Ans. 2% —3a% + 3zy® — o

2. 3z—{r—3a—(Ry—a)} .
Ans. 2z + 2y + 2a.

3. A—(P—)—{B—(*P—a)} +E— (B*—a?).
' Ans. «® — 302 4 3¢

4 z+y+z—(@—y)—(@H—2—(—y9)
Ans. 2 + 2

Essential Sign.

25. The sign that precedes the parenthesis is called
the sign of operation ; the sign that immediately pre.
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cedes the quantity is called the sign of the quantity ;
and the sigu/that results|fromperforming the indicated
operation is called the essential sign. Thus, in the
expression @ — (— ), which is equivalent to the expre:-
gion « + b, the sign of the quantity & is —, the sign
of operation is —, and the essential sign is +.

From the nature of the signs + and —, (Art. 6),
it follows that if a positive quantity is taken positively,
or a negative quantity negatively, the essential sign of
the result is + ; also, if a posifive quantity is taken
negatively, or a negative quantity positively, the essential
gign of the result is —.

III. MuLTIPLICATION.
Definitions.

26. Multiplication is the operation of finding the
product of two quantities.

The quantity to be multiplied is called the multipli-
cand, the quantity by which it is to be multiplied is
called the multiplier, and both multiplicand and mul-
tiplier are called factors of the product.

The product of three or more factors is called a con-
tinued product.

Rul: for Signs.

27. From Article 25, we deduce the following prin-
ciples:

1°. If a positive quantity is taken any number of
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times positively, or if a negative quantity is taken any
number of times, negatively, the product will be positive;

2°. If a positive quantity is taken any number of
times negatively, or if a negative quantity is taken any
number of times positively, the product will be nega-
tive.

Hence, we have the following rule for signs:

RULE.

If two factors have like signs, their product is
+, if they have unlike signs, their product is —.

Operation of Multiplication.

28. In algebraic multiplication, there may be three
cases: 1° both factors may be monomials; 2°. one
factor may be a polynomial and the other a monomial;
and 3°. both factors may be polynomials.

1°. When both factors are monomials : 4

Let it be required to find the product of 3a%c and
4082, The product is indicated thus,

3a%bc x 4a%Hict.

It is shown in arithmetic that the order of the fac-
tors may be changed without affecting the value of the
product. We may therefore combine the similar factors
of the indicated product. The product of the factor
3 of the first monomial and the factor 4 of the second
monomial iz 12; the factor @ is taken twice in the first
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monomial and three times in the second, hence it is
taken 5 times, in|;the regmired. product; the factor &
is taken once in the first monomial and twice in tlie
second, hence it is taken 3 times in the required pro-
duct; in like manner the factor ¢ is taken 5 times in
the required product; hence,

3a%c x 4a¥hct = 12a°cS.

In like manner we may find the product of any two
moromials; hence, the following rule for the multipli-
cation ot monomals:

RULE.

Multiply the coefficients todether for a new co-
eﬁ‘icwlgt after this write all the ﬁetters in the
two pwnomta'ls/ _g"wm,g to éach “an exponent o(/ual ‘
to the sum of its exponents in the two factors.

The sign of the product is determined by the rule that like
signs give + and unlike signs —.

EXAMPLES.
(1.) (2) 3.) (4.)

3abc TaPb3c Bwzty®s 8aaty®z
dxy 3a%bc 2zy 3atry?

2abezy  2ANaBP  bwddyld  atrdyis

5. Multiply 7abc by 5ac. Ans. 35a%c3.
6. Multiply 3az by Vac. Ans. 2la’cz.
7. Multiply 2ay by 3a%ry. Ans.  6afry?,
8. Multiply 2a%% by 3aa® Ans. 6atydzrh
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9. Multiply 12a%z - by 4a®y. Ans. 48a’zy.
10. Multiply, 12a":by, 3a7 Ans. 36am+r.
11. Multiply 7a"2™ by 24z Ans. 1dgPam+1,

The rule just given may be extended to find the con-
tinued product of any number of monomials. In this
case, the sign of the product will be + when the num-
ber of negative factors is even, and — when the num-
ber of negative fuctors is odd.

12. Find the continued product of 8abe, Va®hz, and
3abz.

Multiplying the coefficients 8, 7, and 8 together, we have 168,
which- is the coefficient of the product: addine the exvonents
of #,1,8,and 1, we have 5 for the exponent of # in the product;
in Lke manner we find 8 for the exponent of b in the prodact, 1
for the exponent of ¢, and 2 for the exponent of z; hence, the
required product is 168a°0%ca?, Ans.

13. Find the continued product of — 3pqr, — 2p*gr8,

and 4priz. Ans. 24 g%,
14. Find the continued product of — 3m®d, 4md?
and 5mnd. Ans. — 60m?*2ndt,

15. Find the continued product of — iaz’, — gazz,

1 9 o

and — ga”z‘. Ans. — g %

?°. When one factor 18 a polynomial and the other a
monomial : '

If each term of a polynomial is multiplied by the
same quantity, the aggregate of the results will be the
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product of the polynomial by that quantity; hence, we
have the following' 'rulé’for’/maltiplying a polynomial
by a mounomial:

RULE.

Multiply each term of the polynomial by the
monomial, and connect the results by their proper
signs.

EXAMPLES.

1. Multiply 3a% — 22y + 2z by %az.
Ans. 6a%bx — 4az®y + 2axz.

3

Multiply 52® — 32y + y* by — 4day.
Ans. — 2028y + 122%% — days

3. Multiply — 732 + 328 — 2y by — do*w.
Ans. 282%3 — 122"y + 8%~

»

e

Multiply 2" — Raz*'y + y* by 3zy".
Ans. 3z™ty" — Gazmyrt 4 3ryn T

3°. When both factors are polynomials:

From what precedes, we have the following rule for
multiplying one polynomial by another:

RULE.

Multiply every term of the multiplicand by
each term of the multiplier and reduce the poly-
nomial result to its simplest fornu.
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EXAMPLES.
(1) (2)
22 4 Rz + a? - 2w + a*P
z+ a : 20% — 2ab?
28 + 2ax® + ax 40808 4 2a°8
az? + 2a% + a® — 4055® — 2a'ht
2 4 3a2® + 3ax + a®. 4a%0? — 2a50® — 2a'bt.

It will be found convenient to arrange the terms of the poly-
nomials with referepce to some letter; that is, to write them
down, so that the first term shall contain ihe highest power of
that letter; the second ‘term, the next lower power, and so on
to the last term. The letter with reference to which the arrange-
ment is made, is called the leading letter. In the first of the
above examples, the leading letter i8 «; in the second, it is a.
The leading letter of the product is the same as that of the
factors, .

3. Multiply 2* — 2y + »® by =z + 9.
Ans. 28445
4. Multiply #* — 2y + 4* by 22 + oy + 42
Ans. @ + 233 + oA
5. Multiply 322 — 2zy + 5 by 2? + 22y — 6.
Ans. 3¢ + 42%y — 4a%y? — 1327 4 222y — 30.

6. Multiply 2% — 2%y + 2%y — a%y® + 2%t — 295 + o

by =z + v. . Ans. 27 + 9.
7. Multiply z4—22% + 42%?—8zy®+ 1644 by z+2y.
Ans. 5 4 325

8. Multiply 27a® — 13ad + 56 by 7Ta® + 32
Ans. 189at — 91a%h + 62a%h* — 13ab® + 504
9. Multiply a*+ 8 + 2 —ab—ac—bc by a+d+c.
Ans. ad + B 4 8 — 3abe.
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10. Multiply a* 4 a®%% + a¥%? + ab® + & by a —b.
Ans. a5 — 15

11. Multiply 2a + bc — 20* by 2a — bc + 282
Ans. 4a® — P + 4b% — 4U°.

12. Multiply 4ad — 2ac by 6ab + 3ac.
Ans. 24030 — 623

-

13. Multiply a + bz by a + cx.
Ans. a? + abx + acx + bea®.
14. Multiply a® + 3a% + 3al® + & by a® — 3a%
+ 3ab® — . Ans. a® — 3a't? + 3a%t — PO
15. Multiply a" + 24™" 4 ab® by a™ — 1™

Ans. a™t 4 2a°0" + a™t'BP — arb* — 2amb™ — abPt.

16. Multiply 2™ + y™ by 2" + y™ -
Ans. a* 4 22"y + o

Find the continued product of the following groups
of polynomials:
17. 2—10, z+ 1, and 2 + 4.
Ans. 2° -— 5a® — 46z — 40.
18. 2—35, z—6, z— 17, and z + 8.
Ans. a* — 1028 — 372* + 6462 — 1680.

19. a+2z, b+ 2 and ¢+ =z
Ans. 28 + ar* + b2* + c® 4 abz + acx + bex + abe.

20, 22 —a*, B—azx + a* and 22 + axr + @
Ans. 28 — at
2l 2" — 4™, 2™ + y™, and 2" — Yy~
Ans. zmts xayzm — x"myn + yzuﬂ-n'
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IVotoDvision
Definitions.

29. Division is the operation of finding from two
quantities a third, which multiplied by the second, will
produce the first.

The first is called the dividend, the second the
divisor, and the third the quotient.

Division is the reverse of multiplication. In mnltiplication we
have two factors given to find the product; in division we have
the product and one factor given, to find the other factor; hence,
the rules for division must be the reverse of those for multipli-
cation.

Division of Monomials.

30. Let it be required to divide 120t by 3a%%
The operation can be indicated as follows:

Dividend, 12a%b%c* .

.Dim'sor: S = 40%bc®, Quotient.

The quotient must be such a monomial as multiplied
by the divisor will produce the dividend; hence, its
coefficient must be a number which multiplied by 3
will produce 12, and the exponent of each letter must
be a number, which added to the exponent of the same
letter in the divisor will give the exponent of that letter
in the dividend (Art. 27). The quotient is therefore
4a%c®. Since we may treat all similar cases in the same
manner, we have the following rule for dividing one
monomial by another:
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RULE.

Divide the coefficient of the dividend by that
of the divisor for a new coefficient; after this
write all the letters in the two monomials, giving
to each an exponent equal to the excess of its
expo;wnt in, the dividend oven thot },n the divisor.

‘..J.tn7 gl '/t('( <
i rrom the rule for signs in multiplication (Art. 27), it follows
that the quotient of terms having like signs raust be +, and that
of terms having unlike signs must be —.

EXAMPLES.

(1) (R)

+16a%%cd 2 — 18a°Pcytzs
Faad = T “babatyy =~ ST

(3.) (4)
+ 15a%a%ytss — 2Apiysts ,
R = — 3azyz Ty - 3y*az.
5. Divide 21fg%h by 1fy. Auns. 3gh.
6. Divide 84a%% by — 12azy. Ans. — Taz?
7. Divide — 36a%° by 18ab. Ans. — 2ab.
8. Divide — 25a%%* by — 5%~ Ans. bapr
9. Divide 724 by — 36a%? Ans. — 205,
10. Divide —14a%%* by — Tazs Ans. 2azy.
11. Divide 14a2% by %Vaxz. ' Ans. 23
12. Divide — 24f¢*%h by G6g. Ans. — 4fgh.

13. Divide a%%%® by a®f and that result by ad%>
Ans. a*d

0.
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14. Divide 300a%® by 10ac and that result by 6a%.

Ans. be.
15. Divide — 25a®** by — ba%bc Ans. bal?.
16. Divide — 36az®y® by — 9az’y. Ans. 4zyt.

Explanation of the Exponent 0.

31. In dividing one monomial by another it often
happens that the exponents of a letter are the same in
both dividend and divisor, in which case that letter
disappears from the quotient. It may however be re-
tained with the exponent 0. Thus, by the rule, we
have,

m m
:;—mza""'za"; but Z—ﬁz y =1

From this we infer, that, the 0 power of any quan-
tity is equal to 1, and that 1 ts equal to the O power
of any quantity. Any quantity may therefore be intro-
duced inlo a term, as a factor, by giving it the expo-
nent 0.

Explanation of Negative Exponeats.

32. If the exponent of any letter in the dividend is
less than the exponent of the same letter in the divisor,
the exponent of that letter in the quotient will be neg-
ative. Thus, by the rule, we have,

a?.
as

a?
a— -8
F=07% but

2~

=l‘ coatdi=
as’

Hence, we infer that a quantity with a negative ex-
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A Tal -

ponent 13 equivalent to tkmmpratal of the same quanﬁu
with an equal positive exponent:

We also infer that e facfor may be transferred from
the denominator to the mumerator of a fraction, or the
reverse, by changing the sign of its exponent.

These conclusions are in accordance with the principle explained
fn Art. 6; for if a positive exponent indicates that a quantity is to
be taken a certain number of times as a factor, an equal negative
exponent should indicate that the quantity is to be taken the same
number of times as a divisor.

It will be shown hereafter that quantities having negative ex-
ponenis can be operated on by the rules that are given for oper-
ating on quantities with positive exponents. This principle often
enables us to change an indicated quotient to a simpler form with-
out altering its value. Such a change is called reduction.

EXAMPLES, .
(1) ()
Tathle 7 _ 7 6ablc o . 2
P G C B A A
15ab% 1 3c
3. Reduce B Ans. 3a %%, or b
aye Yoy o 17
4. Reduce 5y Ans. 5 %, or 5y
o 2392 012 4
5. Reduce 6rga Ans. 4% z3 or 72"
— 8a-1g-2 i 2
6. Reduce I Ans. — %4 or — pov
— 6a~8z4
7. ‘Reduce —m___w. Ans. 2az.
_ 663
8. Reduce 72a%® + 1243 Ans. 6a~15%, or —.

RECF =W
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— 36azt) | 1
9. Reduce (-ﬁa—%_) = 3azb. Ans. — a
10. Redunce (144 + 7y2) + 222 Ans. y%’

Division of Polynomials by Monomials.

33. By reversing the rule for multiplying a poly-
nomial by a monomial, we have the following rule for
dividing a polynomial by a monomial :

RULE.

Divide each term of the polynomial by the
monomial, and connect the quotients by their
proper signs.

EXAMPLES.

(1) (2)
6ab—8ax 440y 10a%z —152%

= 36— 4z + 2ay. 7 = 23,

3. Divide bzy + 202% — 4bazy by bzy.
Ans. 1 + 42 — 9a.
4. Divide — 9a%c — 12ab% + 15abc® by — 3abe.
Ans. 3a + 4b — 5¢.
5. Divide l4a%ry® — Taby* — 13y* by 7Tad2%s
Ans. 2a1z72 — g%z %y — A3a32"%y.
6. Divide 27" — 18a’"‘b" —21a® by 3a™
Ans. 9 — 6a™0" — Yar ™,
7. Divide 12a4a + z)* — 18a3(a + )3 + 24a%(a + z)b
by 6a¥(a + ) Ans. 2a? — 3a€ + z) + 4(e + z2
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Division of Polynomials.

34. To deduce. lalxulel fop/dividing one polynomial by
another, take the following example:

Dividend. Divisor.
92% 4 122° + 162 +8 |3z + 2
92° + 62° 32? + 2z + 4; Quotient.
622 + 16z
622 + 4z
12z + 8
12z 4+ 8

0 Remainder.

The dividend and divisor are both arranged with ref-
erence to the same letter; the quotient of the first
term of the dividend, by the first term of the divisor,
is therefore the first term of the quotient. The pro-
duct of the divisor by this term, subtracted from the
dividend, gives a new dividend, which is treated in the
same way, and so on to the end of the process.

For convenience of multiplication, the divisor is written on the
right of the dividend, and the quotient is written under the divisor.
Iu all other respects, the operation is entirely similar to division in
Arithmetic.

Since all similar cases may be treated in the same
manner, we have the following rule for the division of
polynomials :

,(;.,/J " ] RULE.

I. Arrange both polynomials with reference te
the same letter.
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II. Divide the first term of the dividend by the
first term of the divisor, for the first term of the
quotient. Multiply the divisor by this term, and
subtract the product from the dividend.

II1. Divide the first term of the remainder by
the first term of the divisor, for the second term
of the quotient. Multiply the divisor by this term,
and subtract the product from the first remainder,
and so on.

IV. Continue the operation, until a remainder
is found equal to 0, or one whose first term is not
divisible by that of the divisor.

If a remainder is found equal to 0, the division is exact. If a
remainder is found whose first term is not divisible by that of the
divisor, without giving rise to fractions, the exact division is im-

possible. In that case, write the last remainder over the divisor
and add the result to the quotient already found.

EXAMPLES.
(1)
6a%% 4 13a% + 6ax | 20%* + 3ax
6a%2® + 9ax? 30z + 2
4a%? 4 6ax
4a?z® + 6Gax
. 0
. (2')
b + a¥x + a*z + ax? — 2z la + =
at + otz o+ oz — 2z
+ 0% + aa? ¢+z
+ a*x + ax?
— 2

Here the quotient is fragtional, and the.division is not, exact.
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(3)
14zl DIDe-20M
1—2 |14 2 + 222 + 2° +, ete.
+ 22
+ Rz — 222
+ 2
+ 222 — 228
+ 28

In this example, the operation does not terminate, but may be
continued to any desired extent.

EXAMPLES.
1. Divide a2 4 4az + 42® by a + 22.
Ans. a + 2.
2. Divide a® — 3a% + 3a2® — 2® by a — 2.
Ans. ad — 2az + 2°
3. Divide a® + 5a% + 5a2® + 2® by a + .
Ans. a? 4 4azx + 22
4. Divide a* — 4a® § 6a%? — 4a® + y* by a®—2ay
+ 9 Ans. a® — 2ay + 4~
~4-6. Divide a* — % by a® + a®% + ab® + B2
) Ans. a—b.
= 6. Divide 122¢ — 192 by 3z — 6.
Ans. 42° 4 82 + 16z + 32.
v 7. Divide a% — 3a%? + 3a%* — y* by 2 — 35y
+ 3zt — oo Ans. 28 + 32% + 3zt + o5
8. Divide 2* 4 a*y™ + y* by a™ 4 2"y" + y™
Ans. =™ — 2™y + o™
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9. Divide a?* — ¥ + 2bc — & by a—b + ¢

Ans. a +b—c.
10. Divide 24 — 6a%? — 16zy® — 154% by 2% 4 2y
+ 392 Ans. 22 — 2y — by

11. Divide az®— a%2 — ba® + 8 by az — b
Ans. 22 — ax — b.
. 12. Divide mp2® + mgz* — npa? — mrz — nqz + nr
b}\mz - n - Ane P+ g —r.

13. Divide a3%® — a8z + a*® + 2a% — 2a? + 20z + a2
—ax®—a% by a*x + 20 — 2% Ans. ar —a + 2.

14. Divide —2a %% 4+ 17a™2® — 527 — 24a%2® by
2a %3 — 3azt. Ans. — a73a? + Ta~128 + 8afat

15. Divide a® —3a%r + 2® by a + 2.
328

Ans. o® — dax + 420 — ——.
a+z
16. Divide a® + a®* + 2a%°% — b by a’—ab-{—l;2

ab‘— 3b°

3 2
Ans. a® + a% + alﬁ+2lﬁ+ F—ab T B

17. Divide 28 + a2 + bz + ¢ by = —r.
a4 br4-c

Ans. z’+ra:+aa:+r3+ar+b+ —

18. Divide 1 + 2z by 1 — 3a.
Ans. 1 + 5x 4 152% + 4528 + &ec.

19. Dmde 14+2 byl—z—2%
Ans. 1 + 3z + 4a° + 128 4+ &e.

20. Divide 1 by 14 a.
Ans. 1 —z + 22 — a8 + 2t + &c.
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V., . UseruL ForMuLAS,
Definitions.

35. A formula, is an algebraic expression of a
general rule, or principle.

Formulas are used to shorten algebraic operations,
such as the formation of powers, factoring, and the
like.

Illustration.

36. Let the fo]lowmg formulas be verified by actual
multlphcatlon

@E+y) = (@+y) @+y = 2+ 2y + P
@—9P = @—y) @—y) = &*—2@y+ 4
=+ -y = -9

If we suppose z and y to represent any two quan-
tities, and then translate these formulas into words, we
have the following principles :

" 1°. The square of the sum of any two quantities, is
equal to the square of the first, plus twice the product

of the first and second, plus the square of the second.

2°. The square of the difference of eny two quanti-
ties, 18 equal to the square of the first, minus twice the
product of the first and second, plus the square of the
second.

8°. The product of the sum and difference of any
two quantities, s equal to the square of the first, minus
the square of the second.
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The method of applying these principles is shown in
the following

EXAMPLES.

1. Let it be required to find the square of 2a + 3.

The square of 2a, is 4a?; twice the product of 2z and 3z, is
1202 ; the square of 8z, is 92°.

Hence, by the first principle,
(2a + 8z = 4a? + 12az + 92°.
2. Find the square of 2z — 3z. By the second
principle, we have, as before,
(2¢ — 32)? = 4a® — 12z + 92°
3. Find the product of 2a + 3z, and 22 — 3z. By
the third principle, we have, as before,
(e + 32) (2¢ — 32) = 4a® — 922

In like manner let the following operations be per
formed :

4. Find the square of az + by.

Ans. a*r* + 2abzy + b5

5. Find the square of 7z* + 332
- Ans. 4974 4 422%R + 9yt

6. Find the square of 8abd 4 4cd.
Ans. 64020 + 64abed + 16c3d>

7. Find the square of 2ac — 3d.
Ans. 4a2c® — 12acd + 9d=.

8. Find the square of 16zy — 7y
Ans. 256232 — 224xy® + 4944




10.
11,

12.

USEFUL FORMULAS. 47
Find the square of 2ab — cd.
Ans) 4020 — 4abed + d>

Find the product of 22 + 3z, and 2a¢ — 3z.
Ans. 4a? — 923,

Find the product of 7b + 4¢, and 76 — 4e.
Ans. 4912 — 16¢%

Find the product of 8zy + 32% and 8zy — 322
Ans. 64xy? — 924

By reversing these operations, the squares and pro-
ducts above found may be resolved into binomial fac-

tors.

The following additional formulus may be verified by
actual multiplication, or division, with the exception of
the ninth and tenth. The demonstration of these will

v be given in the appendix.

™~

4°.
5°.
6°.
1°.
8°.

9°.

10°.
+ g

(z+a) (x+b) =2*+ (a + b)z + ab.

@+ 2y +4) (b —y) =2~
@F—zy+9) (+y) =2+

@ +2y+9) (@ —2y +9) =2+ 23 o
@+y) (-9 @+y) =2 -4t

——z; :i”n =201 4 avty + 2y 4 e 4y~
"

mn
?E_zw_=z¢m—u+rm—hr+w—hyh+ &e.
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VI. Facroring.
Defiditions:
37. Factoring is the operation of separating, or re-
solving, a quantity into factors.

No general rule can be given for factoring: in most cases the
speration is performed by inspection and trial. The methods of
proceeding are best illustratcd by examples.

Methods of Factoring.

38. If every term of a polynomial contains the same
monomial factor, that factor is one factor of the poly-
nomial, and the other factor is equal to the quotient
of the polynomial by the monomial factor.

EXAMPLES.
1. Factor the polynomial 8a%? + 4a’z.

Here, we see that 44z is a factor common to each term, hence
it is one of the required factors. Dividing by 4a’z, we have the
quotient, 3z + a, which is the other factor; or,

802 + da*z = 40%22z + a).

In like manner, the following polynomials may be
factored.

2. Factor 7a?hc® — 28abe. Ans.  Tabc(acd — 4).
3. Factor 4zty? — 22%A Ans. 2%} 222 — 1).
4. Factor 6z%?2 + 12245 Ans. 6zy*(z + 2y).
5. Factor 2a%b + abc — abd. Ans. ab(2a + ¢ — d).
6.

Factor 7a%y? — T2y + Tayz.
T Ans. 12y —y + 2).

7. Factor 15a%d + R0acd — 15acd?

Ans. bacd(3a + 4c — 3d).
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39. If two terms of a trinomial are squares, and the
third term is\equal/ to twice the product of their square
roots, the trinomial may be factored by means of prin-
ciple 1°, Art. 35.

8. Factor a? + 2ab + P2 Ans. (a + b) (¢ +0).
9. Factor 423 + 12zy + 942
Ans. (2z + 3y) (2z + 3y).
10. Factor 22 4 12z + 36. Ans. (z + 6) (z + 6).
11. Factor 4zt 4 42% + 42 .
' Ans. (22 + y) (R2* + ).
12. Factor 4422 4 12abc + 9%
Ans. (2ab + 3c) (Rab + 3c).
13. Factor 16atyt 4 8a%y'2? + y'2t
Ans. (4a%? + ;:/’z’) (4a*y® + y*2).

40. If two terms of o trinomial are squares, and the
third term is equal to minus twice the producf of their
" square roots, the trinomial may be factored by means
of principle 2°, Art. 35.

14. Factor a? — 2ad + B2 Ans. (@ — b) (e — b).
15. Factor a*?—2acz+c% Ans. (az—c) (ax—c).
16. Factor 42? —dzy + 42 Ans. (Rz—y) Rz—y).
17. Factor 9a%%? — 24a2bc + 16422

Ans. (3ab — 4ac) (3ab — 4ac).
18. Factor 4xt—4ay+ 42 Ans. (222 —y) (222—y).
19. Factor 36a2* — 24zy + 442

Ans. (62 — 2y) (6z — 2y).

20. Factor 4a%? — 4ayz + 22

Ans. (Rzy — 2) Rzy — 2).
3 \ ’
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41. If the two terms of a binomial are squares, and
have contrary;signs, [ the)|binomial) may be factored by
means of principle 3°, Art. 35.

21. Factor a? — Ans. (¢ + b) (@ — b).
22 Factor 42? — 932 Ans. (22 + 3y) (2 — 3y).
23. Factor a?? — Pd? Ans. (ac + bd) (ac — bd).
24. Factor 9a%2? — 16a%2
Ans. (3ax + 4ay) (3az — 4ay).
25. Factor 2bathiat — 422
‘ Ans. (5a2%® + 2) (5a? — 22).
26. Factor 49z — 1632 - Adns. (Ta?+4y) (T2*—4y).

The following examples may be factored by means of
formula 4°, Art. 35:

. B4+ 18324+ 4R =22+ 6+Nz+6x"7

=(z+ 6)(z+ 7).
8. A4 w—15=*3+5—-38)2—3x5

= (z — 3) (z + 5).
29, 2 —1524+56=2*— (T +8)x—7 x—8
- = (z—"7)(z—8).

30, 22— 2—MR=224+(8—-9)2—-9x%x8
= (z + 8) (zr —¢2).
The following examples may be factored by means of
formulas 5°, 6°, 7°, and 8°, Art. 35: .
31, 8a® — 8 = (2a — b (4a® + 2ab + ).
32.. a8 + 64mS = (a + 4m) (a® — Aam + 16m?).

33. 16a* + 36¢28® + 81 !
= (4a® + 6ab + 98*) (4a® — 6ad + 9BY).
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34, o't — 81ct = (a2 + 9¢%) (a%?—9c%)
2l (@%%)£9¢%) (ab + 3c) (ab — 3c).

Let the following miscellaneous examples be factored:

4 36, 9aty? + 24a%y 4 16234
Ans. (32%y + 4zy?) (32% + 4xy?).

36. 422 — 122y + 992 Ans. (2 — 3y) (2¢ — 3y).

37. a* — A Ans. Aab + d) (ab — d).
38. 2% + 9z + 18, Ans. (z + 6) (z + 3).
39. 2a%? — 2% . Ans. 22%a + b) (@ — b).

40, a® — B + 2c — 2
Ans. @— (b—cR ={e+b—c)a—5b+c).
41. at — 9a%? — 6abc® — A
ans. at—Bab+ &) = (a®+ 3ab+?) (a*—3ab—c2).



CHAPTER III.

GREATEST COMMON DIVISOR, AND
LEAST COMMON MULTIPLE.

I. GreaTEsr ComMmoON Divisor.

-

Definitions.

42. A common divisor of two quantities, is a
quantity that will divide both without a remainder.
Thus, 3a%, is a common divisor of 9a%?% and 3a%?— 64813,

43. A simple or prime factor is one that cannot
be resolved into any other fuctors.

Every prime factor, common to two quantities, is a
common divisor of those quantities. The continued pro-
duct of any number of prime factors, common to two
quantities, is also a common divisor of those quantities.

44. The greatest common divisor of two quan-
tities, is the continued product of all the prime factors
that are common to both.

It is called the greatest common divisor, because it is greater
with respect to its coefficients and exponents than any other
common divisor.

There are two methods of finding the greatest com-
mon divisor: by factoring, and by continued division.
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Method by Factoring.

45. If bothquantitiésccan. (be resolved into prime
factors by the methods already given, the greatest com-
mon divisor may be found by the following

RULE.

I. Resolve both quantities into prime factors.

II. Find the continued product of all the
prime factors common to both; it will be the
greatest common divisor required.

EXAMPLES.

1. Let it be required to find the greatest common
divisor of 42abz and 7Oacz:

Factoring, we have,

42abz = Ta x 2 x 8b,
Macz = Ta x 2z x be.

The factors 7a and 2z are common : hence, the greatest com-
mon divisor is 7a x 2z, or 14az.

2. Find the greatest common divisor of 3aa® 4+ 34°
and 2ay + 22y
Factoring, we have,

x4+ 82 = 8z(a+2),
2ay +2zy = 2y (a+7);

hence, the greatest common divisor is @ + 2.

3. Find the greatest common divisor of 2a%— 4a%
+ 2ab? and 2a® — 208*:
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Factoring, we have,

2a® — 4u%h +/ab?
2at—al?

2@} = 2db H.Y) = 2a(a — D) (@ = D),
2a(a® — b?) = 2aa —0) (@+d);

hence, the greatest common divisor is 2a(a — b), or 2a® — 2ab.

4. Find the greatest common divisor of 56acdaz®y and
R4afry. Ans. 8az’y.

5. Find the greatest common divisor of 4a% — 4acx
and 3a%¢ — 3agz. Ans. a(a — z), or a® — ax.

6. Find the greatest common divisor of z® — 3% and
2 — R Ans. z —y.

7. Find the greatest common divisor of 4¢2 — 927 and
4¢ — 12cx + 922 Ans. 2 — 3.

8. Find the greatest common divisor of 4a2® — 4azy?
and 12a%2® — 12a%> Ans. 4az® — 4ay?

9. Find the greatest common divisor of 2a%z 4 4a%z

+ Rab’x and 4a%d + 8abz® + 4i%=d.
Ans. 2a% + 4abr + 2%,

The principles just explained, together with those given in
arithmetic, (Complete Arithmetic, Arts. 53-56), enable vs to find
the greatest common divisor, when the quantities considered are
monomials.

Method by Continued Division.

46. The general method of finding the greatest com-
mon divisor of any two polynomials depends on the fol-
lowing principle: ’

1°. If the first of two given polynomials is divided
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by the second and a remainder found, the greatest comi-
mon divisor of this remainder and the second polyno-
mial is the greatest common divisor of the givem poly-
nomials.

To demonstrate this principle let M and N be two
polynomials, whose greatest common divisor is D; also
let M be divided by N, and denote the quotient by Q
and the remainder by R. Then, from the nature of
division, we shall have,

M=NQ+ R

Now, any quantity that will divide M will divide its
equal NQ + R, and the reverse; also, any quantity
that wil divide N will divide Q times N, or NQ:
hence, any quantity that will dividle M and N will
divide R, that is, R contains all the facters that are
common to M and N; in like manner, any quantity
that will divide R and N will divide NQ + R, and
consequently its equal M, that is, M contains all the
factors that are common to R and N: hence, the
greatest common divisor of R and N is also the
greatest common divisor of M and N, which was fo be
shown.

In applying the principle just explained, the opera-
tions may be simplified by means of the following ad-
aiconal principles:

2°.  The monomial factors common to each polynomial
may be suppressed; if, however, any jactor so sup-
pressed is common fto the two, it must be set aside as
a factor of the greatest common divisor.



56 MANUAL OF ALGEBRA.

3°. Either polynomial may be multiplied by any
JSactor that is not contained in the other.
From the principles given above, we deduce the fol-

lowing rule for finding the greatest common divisor of
two polynomials:

RULE.

I. Suppress all the monomial factors of each
polynomial ; if any factor suppressed is common
to the two, set it aside as a factor of the com-
mon divisor.

II. Multiply the first polyromial by the sim-
plest factor that will make its first term divisible
by the first term of the second polynomial; then
divide this result by the second polynomial, con-
tinuing the division as far as possible.

III. Take the second polynomial as a dividend,
and the first remainder as a divisor, and pro-
ceed as before; and so on, till a remainder is
found that will divide the preceding divisor.
This remainder, multiplied by the [factors ses
aside, will give the greatest common divisor.

In dividing the first polynomial by the second, any
partial remainder may be multiplied by such a factor
as will make its first term divisible by the first term
of the second polynomial.

EXAMPLES.

1. Let it be required to find the greatest common
divisor of 16¢2®+ 48a% + 36a?, and 12aa24 10azx — 12a.
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Suppreseing the factor 4a? in the first, and 2a in the second,
and setting aside the factor 2a, which is common to both, we have

the. polynomials,
422 + 122 + 9, and 62® + 65z — 6;
multiplying the first by 3, and proceeding according to the rule,
we have the
FIRST OPERATION.
122 + 86z + 27 | 62® + 60 — 6

122° + 102 —12 | o
26z + 39, first remasnder.

Suppressing the factor 13 in the first remainder and proceeding
as before, we have the

SECOND OPERATION.

6z + 52 — 6 _2a:+8

62’ + 9z 8z — 2
—4r— 6
—4z—6
0, second remainder.

Hence, the greatest common divisor is 2a(2z + 3).

2. Find the greatest common divisor of 28—5a2+ 72z—3
and 2? + 2z — 12.

FIRST OPERATION.

o — 522 + Tr— 8 _a:"+:c—12
ad + x’—lz.'p lc—6
—62? + 192 — 38
bl Ll
2%z — 6 , first remainder.

Suppressing the factor 26 in the first remainder, we have the
following
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OPERATION.
4+ 2—-12 |z—38
2 — 8 z¥4
4z — 12
4z — 12
0, second remasnder.

Hence, # — 8 is the required common divisor.

3. Find the greatest common divisor of 3a%% — 3a%8
and 6a2® — Bay?. Ans. "3a(z — y).

Find the greatest common divisor of the polynomials
in each of the following examples:

4, Of a>—4 and a® + 4a + 4. Ans. a + 2.
5. Of a® — ab® and a? + 2ad + B2 Ans. a + b.
6. Of 25— 2% and 2% — A Ans. 22— B
7. Of 2* 4+ 22 —3 and 2° + 52 + 6. Ans. z + 3.
8. Of 32% + 32y and 32® + 6xy + 3y

Ans. 3z + 3y.

9. Of 2* + az® — a%x — a* and 2% + a?x® + at.
Ans. 2 + ax + a

10. Of 202* 4+ 22 — 1 and 252 + 52° — z — 1.
: Ans. 5z — 1.

Application to three or more Quantities.

47. To find the greatest common divisor of three, or
more quantities, we first find that of the first and second
quantities; then that of the result and the third quan-
tity; and so on to the last: the.final result is the re-
quired divisor. '
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EXAMPLES.

1. Find the greatest common divisor of 2a%? 4a2%p¢,
and 82%.

The greatest common divisor of 2a%? and 4z%?, is 22°, which
exactly divides S8z®y; hence, 2z* is the divisor required.

2. Find the greatest common divisor of 2? + 5z + 4,
2?4+ 2 — 8, and 2® + Tz + 12.

The greatest common divisor of the first and second, is z + 4,
and that of this result and the third polynomiai, is z + 4, which
is the divisor sought.

Find the greatest common divisor of each of the fol-
lowing groups of quantities:

3. Of 3a"™', 6a™2*. and 2la™ 'z
. Ans. 3ar 'L,

4. Of 4az?y, 16aba?®, and 24acs? Ans. 4az?
5. Of %a® + Tab, 4ab + 40?, and Ruc + 2bc.
Ans. a + b
6. Of 32® — 6z, 2% — 42?% and 2% — 2ay.
Ans. 2* — 2.
7. Of 32% 4 6zy, 22y + 4y% and 4xz + 8zy.
Ans. z + 2y.

8. Of 3a® — 303 3a% + 6ab + 30% and 3axy+ 3bzy.
Ans. 3(a + b).

9. Of 22 —9, a® — 32— 18, and 2* + 11z + 24.
Ans. = + 3.

10. Of 22—3z—28, 2*—11r428, and 2?—15x+ 56.
Ans. z —".
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11. Of #A—522+4 6, #A—"72® +12, and 24+422°—15.

Ans. 2* — 3.
12. Of x84+ 5224+ T2 +3, 28 4 323 —x — 3, and
28 + 22 — 5z + 3. Ans. z + 3.

II. Least CommoN MULTIPLE.
Definitions.

48. One quantity is a multiple of another, when
the former can be divided by the latter without a re-
mainder. Thus, 84%, is a multiple of 8, also of a? and
of b.

49. A quantity is a common multiple of two or
more quantities, when it can be divided by each, sepa-
rately, without a remainder. Thus, 24a%? is a common
multiple of 6az and 4a%.

50. The least common multiple of two or more
quantities, is the simplest quantity that can be divided
by each, without a remainder. Thus, 12a%%?2, is the
least common multiple of 2a2z, 4ad?, and 6a2b%22.

There are two methods of finding the least common
multiple of two or more quantities: the method by fac-
toring, and the method by means of the greatest common
divisor. )

Method by Factoring.

51. To deduce a rule for finding the least common
multiple by the method by factoring, let it be required
to find the least common multiple of 12a%;, 27az® and
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30a%zy. Resolving these quantities into their prime fac
tors, we have,
2x2x3aax, 3 x3x3azzzr, and 2 X3 xbSaaazy.

In order that the required multiple may be divisible
by the first of the given quantities, it must contain the
factor 2 fwice; in order that it may be divisible by the
second quantity, it must contain each of the factors 3
and z three times; and in order that it may be divisible
by the third quantity, it must contain the factor a, three
times and each of the factors 5 and y, once: it is there-
fore equal to

2% 2x3 x3x3 x5aaazzzy, or 540a%%y.

Since all similar cases may be treated in the same
manner, we have the following

RULE.

I. Resolve all of the quantities into their prime
‘factors.

II. Take each factor the greatest number of
times it enters any of the quantities, and form
the continued product of these factors; it will be
the common maultiple required.

EXAMPLES.

1. Find the least common multiple of 6z&® and
13a%,
Factoring, we have,
Bab® = 2 x 8abb, and 18a% = 2 x 8 x 8aab.

Hence, the required multiple is
2 x 8 x 3aabb = 18a%b°.
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2. Find the least common multiple of 6a3zy, 8ua?

and 12z%3
Factoring, we have,
6a’zy = 2. 3aaxy,
8az? = 2.2.2a2z,
1222 = 2.2.8zayy;

hence, the least common multiple is,
2.2.2.8.aarzyy. or 24a’2.
3. Find the least common multiple of a? — & and
a® — 2ab + & :
Factoring, we have,

at— b =@+d@—2»
@ —2b+ b = (a—b)(a—1D);

hence, the least common multiple is

. (e—b)(a—0b)(a+b), or a®—ab®>—a’ + b

Find the least common multiple of each of the fol-
lowing groups of quantities: )

4. Of 152%* and 62%. Ans. 30232

5. Of 32%z, 6zy® and 9zyz. Ans. 18z%3.
6. Of 3al? 6ac®, 4cd, and &3 Ans. 12abcd.
vt

. Of az — bz, ay — by, and 2%>
Ans. ax¥y? — by
8 Of n—0, a®— 1 and a® — 2adb + B?
. Ans. (a — b)? (e + b).
9. Of 82%z — y), 1525z — y)? and 122%(2? — »?).
Ans. 1202522 — 9?) (= — ).

10. Of 2a%a + z) and dav(e — 2).
: Adns. da’x(a? — a?).

~
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"Method by Means of the Greatest Common Divisor.

52. If the/qnantities' ' cannot"be factored conveniently
by methods already given, their least common multiple
may be found by means of the greatest commor divisor.
This method depends on the following principle:

The least common multiple of two quantities is equal
to ome of the gquantities multiplied by the quotient, ol-
tained by dividing the other quantity by their greatest
common divisor.

To demonstrate this principle let P and P’ denote
any two quantities, and let 1) be their greatest com-
mon divisor; let Q and Q' be the quotients of P and
P’ by D. Then, we have,

P=QxD, and P =Q x D.

Since Q and Q' have no common factor, their least
common multiple is Q x Q'; consequently the least
common multiple of P and P, is D x Q x Q'; or,
since P = DQ, we have the least common multiple
equal to P x Q, which was to be shown.

From the preceding principle we have the following
rule for finding the least common multiple of two
quantities:

RULE.

Find their greatest common divisor; divide one
of them by it, and multiply the other by the quo-
tient.

EXAMPLES.

1. Find the least common multiple of a%— 23 and

a® — 22,
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Their greatest common divisor is a —z. Hence, their least
common multiple is,

a? —
a.—

2
:— x (a®— %), or a'+ a’z —ax®— 2t

2. Find the least common multiple of 22 —1 and
422 — 1,

The greatest common divisor of the two, is 2z — 1: hence, the
required multiple is,

_2.:—1
. 2z —1

x (422 —1) = 4o — 1.

3. Find the least common multiple of 2? + 7z 4 12, .
and 2? 4 8z + 15. Ans. (x + 3)(z + 4) (z + 5). ]

If there are more than two quantities, we find the least com-
mon multiple of the first and second, then that of this result and )
the third, and so on, to the last. J

Find the least common multiples of each of the fol- ‘
lowing groups of quantities: ‘

4. Of 8a% 12a% and 20a% Ans, 120at,
5. Of 2 + 62+ 6, 2 + 22 — 8, and 2?4 Tz ¥ 12.
_ Ans. (2® + 2z — 8) (2* + 52 4 6).
6. Of z—1, 22— 1, and 2® + 42 — 5.
' Ans. (22 —1) (z + ). ;
7. Of 10z(z + y), 8y(x — y), and 5(2% — g?).
Ans. 40zy(2® — 9?).
8. Of 1824z — y), 252%z — w)? and 1225z — ¥)°
Ans. 900252 — ¥)°
9. Of 28— 1, and 2* 4+ 2z — 2.
Ans. a2t 4+ 2P —zx — 2
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10. Of 62? —z— 1, and 22 4 3z — 2.
Ans. 628 + 1123 — 3z — 2.

11. Of a — z, a® — 2% and a3 — 23,
Ans. a* 4 o’z — az® — 24,

12. Of 3:0'3—11:c+6, 22— + 3, 62— Tz + 2
Ans. 62 — 252% + 23z — 6.



CHAPTER 1IV.

FRACTIONS.

I. DEeFINITIONS AND PRINCIPLES.
Definitions.

53. If the unit 1 is divided into any number of
equal parts, each part is called a fractional unit.

Thus, % . % % are fractional unita.

54. A fraction is a fractional unit, or a collection

g, g, %, are fractions.

55. Every traction is composed of two parts: the denominator,
which shows into how many parts the unit 1 is divided; and the
numeraior, which shows how many of these parts are taken, Thus,
in the fraction %, the denominator shows that 1 is divided into &
equal parts, and the numerator shows that @ of these parts are
taken. The fractional unit, in all cases, is equal to the reciprocal of
the denominator.

of fractional units. Thus, 59

56. A decimal fraction is one whose denominator
is some power of 10. In such fractions, the denomina-
tor is usually indicated by a decimal point, which signifies
that the denominator is equal to 1, followed by as many
0’s as there are decimal places. Thus, the expressions,
.034, .0079, are decimal fractions, equivalent to the frac-

tions, 1345 1oy
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5§7. An entire quantity, is one which contains no
fractional part. Thus, 7, 11, a%, 42® — 3y, are entire
quantities.

An entire quantity may be regarded as a fraction whose denomi-

nator is 1. Thus,7=%, ab=“Tb.

58. A mixed quantity, is a quantity containing
both entire and fra.ctionai parts. Thus, 74, 8%, ¢ + b_:’

are mixed quantities.

Principles.

59. Let % denote any fraction, and let ¢ be any

quantity whatever. From preceding definitions, %

indicates that the fractional unit % is taken a times;

also, a_g_ indicates that the same fractional unit is taken

aq times, that is,

@ _ @ ¢ _ 9
5 =5 X0 O g xz=.

Hence, the following principle:

1°. Multiplying the numerator of a fraction by any
quantity is equivalent lo multiplying the fraction by
that quantity.

We infer from what precedes that we may multiply
any quantity by a fraction, by first multiplying that
quantity by the numerator of the fraction, and then
dividing the result by the denominator.
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It is a principle of division that the same result will
be obtained if we divide the quantity @ by the product
of two factors pg, that would be obtained by dividing it
by one of the factors, p, and then dividing that result
by the other factor, ¢, that is,

=G e f= (D)o

Hence, the following principle :

2°. Multiplying the demominator of a fraction by any
quantity, 18 equivalent to dividing the fraction by that
quantity. '

Since the operations of multiplication and division are »
the reverse of each other, we have, from what has been
shown, the following principles:

3°. Dividing the numerator of a fraction by any
quantity, is equivalent to dividing the fraction by that
quantity.

4°. Dividing the denominator of a fraction by any
quantity, is equivalent to multiplying the fraction by
that quantity.

Because a quantity may be multiplied by any quan-
tity, and the result divided by the same quantity without
changing its value, we have the following principle :

5°. Both terms of a fraction may be multiplied, or
divided, by any quantity without changing the value of
the fraction.
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II. TRANSFORMATIONS OF FRACTIONS.
Definitions.
60. The transformation of a quantity is the opera-
tion of changing its form without altering its value.
Fi1rsT TRANSFORMATION. 70 reduce an entire quan-

tity to a fractional form having a given denominalor.

61. Let a be the entire quantity, and & the given
denominator. We have, evidently,

o
= -

Hence, the following
’ RULE.

Multiply the entire quantity by the Ziven de-
nominator and write the product over that de-
nominator.

EXAMPLES,

1. Reduce 3z® to a fractional form whose denomi-
nator is & Ans 36

.

2. Reduce 13z — 2y to a fractional form whose de-
nominator is = — y. Ans, 132 — 162y + 22
z—y.

SecoND TRANSFORMATION. 70 reduce a fraction to
tts lowest terms.

62. A fraction is in its lowest ferms, when its numer-
"~ ator and denominator contain no common factors.
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From principle 5°, Art. 59, we deduce the following

RULES.

Resolve both terms of the fraction into their
prime factors; then strike out all that are com-
mon to both.

The same result is attained by dividing both terms of the
fraction by their greatest common divisor.

EXAMPLES.
l4azx .
1. Reduce —— to its lowest terms.
2lay
Factoring both terms, we have,
40z 22 x Ta
2lay ~ 3y x Ta’
Striking out the common factor 7a, we have,
l4ar 2

2].—(13/ = ?’—y Ans.
2
2. Reduce the fraction %d-—;f—bba, to its lowest terms.
We have,
82 —8° 3a+h(a—b) _ 8a+d)
Ti—db = Ha-p - 4 - Am

Reduce the following fractions to their lowest terms:

16abx? p% ]
3. Y . A?’l& ga-z‘.

12a%cd 3ad
L 16abc * Ans. 4b
5. 4527y Ans bzy

36aba*yz’ " 4ab’
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6. x%% Ans. g—f—j—;’).
. %:‘2 L Ans. }(a + 2).
8. xz—_i_%‘—za—:_?. Ans. T ¢
9. g%yxz_z_%; Ans. 2—;;
10. %:—i;f A Ans. ‘:’%;
11. '323—*(‘:;52“_””;)“2. Ans. 3(2—*:‘;—)
12. %—i—?‘% Ans. éﬁ‘-:}_—l

The last example is solved by finding the greatest common
divisor of the two terms, which is # — 1, and then dividing both
by it. The following examples may be solved in the same manner:

®—9 z—3
13. ZT:Z———ﬁ . Ans. -x—‘:z .
22 — 2az + a? zT—a
W " T0azy + 38 Ans.  sayy
1222 — 152y + 34 122 — 3y
15 o —6ay 1 2ay— g Ans. g

THIRD TRANSFORMATION. Tv reduce a fraction to
the form of a mized quantity.

63. From the nature of the operation of division, we
have the following
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RULE.

Perform the indicdted division, continwing the
operation as far as possible; then write the re-
mainder over the denominator, and add the result
to the quotient found.

EXAMPLES.

1. ‘iif:a—x+a2fz.

2. %:x—l—%—%.

3. azﬁaz-:%?:'a—%_*'a?z'

4 z’+a3+3—2az___ —a )
zr—a z—a

o BB g D

b :1/“’23‘ ?g”liy%fil =% +0+ 3%'

FourtH TRANSFORMATION. 70 reduce a mized quan-
tity to a fractional form.

64. By reversing the rule of Art. 63, we have the
following
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RULE.

Multiply the éntire part by the denominator of
the fraction ; tothe product annex the numerator
with the sign of the fraction, and under the reswlt
write the denominator.

EXAMPLES.
b _ac+b .
1 a+2— c .
2 a4+ ax =a(a—z)+az= a .
a—z a—z a—3z

c _z—y+ec
3. 1+x-—y_ z—y .
P+BP—  (a+bp—

4. 1+

- 2ab - Rab
5 a+ ";:;= 2M;i-:dd+d.
hoerer 8+§a—x2fy'
Toab+od DL BE 24D
\8. xy—ab__.%-'/;__*_zal.’y_ (zy ——xab-*)-gz;_y)

FirrE TRANSFORMATION. To reduce fractions to a
common denominator.

m

b’ n

terms of a fraction may be multiplied by the s
4

65. Take the fractions —, and ; Since 1
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quantity without altering its value (principle 5°), we
multiply both terms of the first fraction by =y, both
terms of the second fraction by &y, and both terms of
the third fraction by dn, which gives

any  bmy bz,

bny’  bny’ bny’
these are equivalent to the given fractions and have a
common denominator. In the same way any other
group of fractions may be reduced to equivalent frac-
tions having a common denominator; hence, the fol-
lowing

RULE.

Find the product of all the demominators for
a common denominator; multiply the numera-
tor of each fraction by the product of the de-
nominators of all the others for new numerators.

EXAMPLES,
1. Reduce 2,—:6, 313, and ‘11, to a common denom-
3 Y z
inator. Ans. 2xfy, 928 and 3y
32y’ 3ay’ 3zy°
3z 2 de-
| 2. Reduce A 3 and 355’ to a common
nominator. b4atr 48ady 12a%
Ans.

T e’ M Tt
Fractions may always be reduced to a common de-
nominator, by the preceding rule; but, if the denomi-
nators have any common factors, the denominator thus
found will not be the least common denominator.
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Taking the example just given, we see that the least
common multiple | of the. given denominators is 12as.
Dividing this by each denominator separately, and then
multiplying both terms of each fraction by the corres-
pouding quotient, we have,

oz 8y g 2
128’ 12a%’ 124%’

which are equivalent to the given fractions, and have
the least common denominator. In like manner we
may reduce any group of fractions to their least com-
mon denominator; hence, the following

RULE.

Find the least common multiple of all the de-
nominators, for a common denominator; divide
this by each denominc®r, separately, and mul-
tiply the quotients by the corresponding nume-
rators for new numerators.

If there are any entire quantities, they may be regarded as frac-
tions whose denominators are equal to 1.

Reduce each of the following groups of fractions to
their least common denominators:

z+a

a a —
7 ‘b', and z

3.

az+a) a b(a — 7)
Ans. ab > ‘E, and —ab——'.
™ and n
L@+ a2y M 1@

Ans. 421((‘12 )), and

na
La(@ — &
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3z 4 1222 45z 40 4823
5. —4—, 6, and '1—5. Ans. —66‘, 6‘6, and W'
20 3c 4d 106 45¢ 12d
6. ]_.5’ F, and %. Ans, —775—, ‘75‘, and %-.
35 5¢8 12¢ 9B 108
7. a, —'4—, and T- Ans. _ﬁ, ﬁ’ and 1—2'-
z z? z8
8. iz T—a and =2
z(l —z)p 2*(1—2) z°
Ans. T=20 @C—ap’ and ———(1 —Zp
a b c
9. 36@, a—'+—z e x,, and 5.
Ans 8bz¥(a*—a*) ax(a—x) bz c(a*—2?)
2(3—2) ° z(a*—2%)’ 2z(a?—2?)’ z(aP—27)°
cx da? b
Eacadi | kel
10. a—2z’ a+2’ and a+z
cx(a + x) da¥(a — ) za — 7)
Ans. a’—a:"*a”—m”and 2
4 5 6
11. 6-—%’ 'z—’, and —13.
428 5z(c — x) 6(c — z)
Ans. 2(c—2z)’ a¥c—z)’ and 2(c—z)’
5 _6 7
Ans 4y(a‘-—z‘) 5y(a"+x’) 6y(a®—2?) and Kai——x‘).
y(@—2)’ y(@—=)’ ya*—=)’ " yla'—)

In what follows, we shall suppose entire and mixed quantities tc

be reduced to fractional forms, and all will be treated together as
fractions.
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III. AppbrrioNn oF FRAcTIONS.
Demonstration of the Rule.

66. Fractions can be added when they have a com-
mon unit, that is, when they have a common denom-
inator. In that case, the numerator of each fraction
indicates the number of times the common fractional
unit is taken, in that fraction; and the sum of the
numerators indicates how many times that unit is
taken in the entire collection; hence, the following rule
for addition of fractions:

RULE.

Reduce the fractions to a common denominator;
then add the numerators for a new numerator,
and write their sum over the comvmon denomi-
nator.

EXAMPLES.

1. Find the sum of e, }z, %, and i—%

Reducing to a common denominator, we have,
4% b 20 Shm
400’ 4ad’ 4o’ 4ad’

(4a® + 4a + 32)b + R

4a’h :

~

hence, the sum is

Find the sums of the following quantities.

P 3 4 2a 4 36 + 4
> o o ™ o Ans. — g
a4+ o 6x? 4 Saz + 8a
S g o W g A e
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4 z;—y, and z;y. Ans. z.
2 3z 5z 103
5 3§ and 7 Ans. x+ﬁx.
2z 1 .
6. 1—;——5‘, and :-l—_'_—z. Ans. 1—z"
2 3 4
T o o o1
: Ans 4-.1,"—5zi_3
(z—1)p °
8. a , and z

(I +a)(e+2) (1—75)(ﬂ‘+f'5)'1

Ans. m-__x).
1 1 1

% e W—a ™ E—a)
1
Ans. —1-:72.
3z—4y —w4+y+1 156z — 4
10. P 3 , and —5
852 — 20y
Ans. —s

IV. SusrractrioN oF FracTiONns.

Demonstration of the Rule.

67. If the minuend and subtrahend have the same
unit, the numerator of the minuend diminished by that
of the subtrahend will indicate the number of times
this unit is contained in the difference; hence the fol-
lowing ‘
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RULE.

Reduce the/ fractions toa (common denominator;
then subtract the numerator of the subtrahend
from that of the minuend for a new numerator,
and write the remainder over the common de-
nominator.

EXAMPLES.
a4+ 22 a— 2
1. From a—3z’ subtract ot %

By the rule,
a+ % a-ﬂc_(a+2a=)’_(a-—2a)’_ 8az

a—2% a+2% a -4 -4 T -4z

9. From 4a+%‘-’, subtract 2a-“‘03b.

Ans. 204+ 30—0)
3. From 5z1-3y, subtract z—gzy'
21z + 23y
Ans. _@—.
a z a + 5°
4. From m, subtract a ¥ . Ans. ag_”;ﬁ‘.

z
5. From z+y,subtractx—y. Ans, 22

z—y z+y 2 — g
6. From a+%, subtract a(‘;;_’;).
Ans. a— 3
7. From 3z + &zl%_l_(_), subtract 2x+3x7—5.
o B
8. From ﬁ, subtract y%z’ Ans. %—z_:zzl
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V. MouLTiPLIcATION OF FRACTIONS.
Demonstration of the Rule.

- 68. Let g and ‘% be any two fractions. It was
shown in Art. 5/b, that any quantity may be multiplied
by a fraction, by first multiplying by the numerator,
and then dividing the result by the denominator. To

multiply % by %, we first multiply by ¢, giving %c’
(principle 1°); then, we divide this result by d, which
is done by multiplying the denominator by d, (prin-

% . that is,

ciple 2°); this gives for the product, 3’

__ac

4 ac
4= W

a
b
Hence, we have the following

RULE.

Multiply the numerators together for a new
numerator, and the denominators for a new de-
nominator.

EXAMPLES.

. Tz 3a
1. Multiply 5y’ by i

The product of the numerators is 21ax, and of the denominators
20cy ; hence, by the rule,

e 8a _ 2laz
5—yXE_2ocy-
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2. Multiply ;-f;, by 228,

‘We have, by the rule,
22 -y _ WEty (z—y) _ Wty
z—y 38 = 8z —y) - 8
In the above example, after indicating the multiplication, we
factored both numerator and denominator, and then struck out the

common factor before performing the operation. It will, in gen-
eral, be found expedient to follow this method.

. z+y ?—y
3. Multiply 2(17‘1/) Y At

Indicating the operation, factoring, &c., we have,

Azty)  __P—y Azt y@—y)@ty) _,
z—y  Pr%Yy+y @—ye+y@+y)

Find the products of the following groups of quan-
tities :

3z% 2a%b 3abxy
4. —47 and —c— . Ans. - % .
Tabf 4% 28fa%p
5 eg M 3o Ans ~gped
Tz 4+ 6 2 1422 4122
6. - 3 N and —5- o Ans. —1—5—— .
A —2——, and a,"—y" Ans. M
—y a a
ab 322 3bx?
8. i—z and Zi‘ . Ans. m .
2 —4 4 da(z—2)
9. 3 and 759 Ans. —5

10, a + g, and &+ -=. Ans. (ax+b)ngx+a)'
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11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

MANUAL OF ALGEBRA.

3+ z, and 2 + 2 Ans. (12+2) (2+4)

4z
’ .

(a :z;b) , and a4fb' Ans. 2x(a + ).
LTSRN T) s, 02D
—1) _
G yal) , and (zztliy’ . Ans. i—l

1 1
m+,—';—-1, and m+’7+1.

Ans. m’+1+l.

ma
¥ z_y o — gt
x—z,and y+z' Ans. 2y
z(a — z) and a(a + z)
a? + 2az + 22’ a® — 2z + 2’
Ans zaz .
a? — 2?
ad—a ad—PB ax
a+bd’ z(a+2)’ and a+a—x'
Ans a*(a — b)
z
z + 213/ , and = —2—% Ans. 22
B—2 -2 a—z and a® —az + 2*
B+ E+r a+ 2’ @+ ax + 2*°
(a — 2)°
Ans. S+ % ad + B

1 1 1
2?4+ 2+ 1, and §—5+1. Ans. :v"'+1+;,.
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2. x+1+§,and x—l-}-é. Ans. z’+1+$.

2 — b 6a — 20 b — 3a
23. iz’ and m. Ans. —m—
a b a b
24. a+b+a-—b’anda+c—b+c'
A (a® + ¥)c

"+ @t b+to

V1. DivisioNn ofF FRAcTIONS.

Demonstration of the Rule.

69. Let it be required to divide g by 5. From
the nature of division, it follows that dividing one quan-
tity by another is equivalent to multiplying the former
by the reciprocal of the latter; Lut the reciprocal of the
fraction f—i is ‘0—1, (Art. 14), that is, the reciprocal of the
fraction is found by inverting its terms; performing the
operation of inverting and multiplying, we have:

c_i_ad.
¢~ be’

Le_a
d T b

>N K

hence, we have the following rule for dividing
tion by another:

RULE.

Invert the terms of the divisor, and
the dividend by the resulting fraction.
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After indicating the operation of multiplication strike
out all the factors./that CareOcommon to the numerator
and denominator.

EXAMPLES.

3a? b a
ad—5 Y g + 8
By the rule, we have,

3a® a _ 8x(a+d) 8aa+d)  8a
TP arb- @—ta aa+d@—0 a—b"

1. Divide

Perform the followihg divisions :

2. %-3—;7:_2, by :6_2_:0:_1 Ans. %.
3. (’;i?’, by Ans. 2 — .
4. z+:—c—i—1, by z—;—i—l. Ans. xifa'
5. 2302 ii“"‘“’, by Tg A (@—a)
6. ﬁ;:g:, by a‘*‘i-a—b!-/i— 5 Ane &zly%mﬂ
", z"'+2+%‘,by§+;—i. ans, T
8. &Z;tj——;—a, y c_-f:; Ans. c%:{?
9. z+y+‘§, by x+y+§. Ans. ;
10. -9 z+ 3 Ans z—3

™D

R4 4z + 4° yz+2- x4+
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11. 1, by £+%+51-. Ans. &—‘Ta‘:—_*:‘;
12. a‘—— by a—% Ans.a'+a+}!+gli
MISCELLANEOUS EXAMPLES.

Simplify the following expressions:
L “’+‘;b+b'+aﬂ_“;b+b2. Ans. a@ + B
2. all_a’2-;-11+ail' Ans. a_‘_4—ii
3. y;1+y;2+y-‘;—7- Ans. y.
4, aﬂz—xy"*'ziy—ziy' Am.ziy.
5. ;y + x2—1.:y - ::y+_zay‘1{,. Ans. xz—y
6. {z+!{:z;}+{l—zf:x;}. Ans. y.
7 S A48 2, 18CGy+15)
2y—3  4P+9  2+3 16g4—81. °
8. lf-x —_ (lfz)ﬂ + (lfz)a' Ans. x 4+ ——— (1_ 2

{w+2g_/_+:f}_._{x+2g_/_ z }
z+y " y) o Yy z+y)’
Ans. 1
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10.

11.

12.

13.

14.

15.

MANUAL OF ALGEBRA.

A — 92420 22 —13z + 42

Py ape B =
ns, @9 zgz—v).
> > 1 1
f—l"r+14'r+1"w—1'
Ans. 2 + 2.
A — azx 4(a + z) 4a(a® — 2?)
be+bz X 3c—2) Ans. spE—a)
a ad—» a(a*—b?)a? a+ bz
5 ® ° Y Botan) Ans.
@ — 22 + o {a+x a—x}
azr + ar® e X"z |
4 a? — 2
" e

2z—1) |, z—a
{a+ b }Taz+1'
a2z + 2) +a(z+86)—1

Ans b(z — a)




CHAPTER V.

1. EquaTions oF THE First DEGREE.
Definitions.
70. AN equation is an expression of equality between
two quantities. Thus,
z=b+c,
is an equation, eipressing the fact that z is equal to

the sum of 5 and ec.

71. Every equation is composed of two parts, con-
nected by the sign of equality. These parts are called
members : the part on the left of the sign of equality,
is called the first member; that on the right, the
second member. Thus, in the equation,

z4+y =a—c,
z + g, is the first member, and @ — ¢, the second member.

Either member of an equation may be 0; in this case the alge-
braic sum of the quantities in the other member is 0.

Classification.

72. Equations are divided into two classes: those con-
taining du¢ ome unknown quantity, and those containing
more than one unknown quantity. Each of these classes
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is subdivided into degrees. In the first class, the degree
is determined by, the exponent of the highest power of
the unknown quantity, in any term; in the second class,
the degree is determined by the highest sum of the ex-
ponents of the unknown quantities, in any term.
Thus,
bx=c, bx+cy=d,

are equations of the first degree;
2?4+ 2px=4q, Ptazy+yp=m,
are equations of the second degree ;
a® + bR+ cx=d, 4+ 2% 4+ 3yx + 4y =5,
are equations of the third degree;
T4prlgri=3s, = YPtarSy+bzy'=d,
are equations of the n* degree.

We shall first consider equaticns of the first degree,
containing but one unknown quantity.

Definitions.

73. The transformation of an equation, is the
operation of changing its form, without destroying the
equality of its members.

74. The solution of an equation, is the operation
of finding such a value for the unknown quantity, as
will satisfy the equation; that is, such a value as,
being substituted for the unknown quantity, will render
the two members equal. This value is called a root
of tke equation.
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75. An axiom is a self-evident proposition.
Axioms.
76. The solution of an equation is effected by suc-

‘cessive transformations, which transformations depend
on the following axioms:

1°. I equal quantities are added to both members
of an equation, the equality will not be destroyed.

?°. If equal quantities are subtracted from both
members of an equation, the equality will not be de-
stroyed.

. 8° If both members of an equation are multiplied
by the same quantity, the equality will not be destroyed.

4°. If both members of an equation are divided by
the same quantity, the equality will not be destroyed.

=0

5°. Like powers of the two members of “an equation
are equal.

6°. Like roots of the two members of an equation
are equal.

Principal Transformations.

77. Two principal transformations are employed in
the solution of equations of the first degree: clearing
of fractions, and transposing,.

First TRANSFORMATION. Clearing of fractions.
78. Take the equation,
o 6 _3

Tt~ 1
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The least common multiple of all the denominators
is 20. If we multiply both members of the equation
by 20, (axiom 3°), each term can be reduced to an
-entire form, giving,

16z 4 12 = 15.

In the same manner, any equs;tion may be trans-
formed ; hence, for clearing of fractions, we have the

following
RULE.

Find the least common multiple of the denom-~
inators, and multiply both members of the equa-
tion by it, reducing fractional to entire terms.

The reduction will be effected, if we divide the least common
multiple by each denominator, and then multiply the quotient by
the corresponding numerator, dropping the denominator

EXAMPLES.

1. Clear the equation, z— 23—:” = %, of fractions;

The least common multiple of the denominators is 12. Multi-
plying both members by 12 (axiom 8°), and reducing to entire
terms, we have,

8z — 8z = 10.

2. Clear the equation, ? - %:v

= g, of fractions.
Ans. 42z — 20z = 75.
Clear the following equations of fractions:

z 3z =z ,
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g Bz 4 o Ans. 13z + 16 = 2=
12 3
r—4 zz—2 b
5. 3 +——6—=§- Am. 2$—8+$—2—10.
zr—4 z—2 b
6. — 3§ —3 Ans. —2z48—2x42=10.
r—3 3z—4
YT =8
Ans. Tz — 21 — 12z 4 16 = 672.
z 3

SECOND TRANSFORMATION. Transposing.

79. Transposition is the operation of changing a
term from one member to the other, without destroy-
ing the equality.

Take the equation,

3z +4 = 5 — 62.

If we add the quantity 6z — 4, to both members of
the equation, (axiom 1.°), we shall have,

32+ 4+6z—4 = b — 6z 4 6z —4;
which reduces to

3z 4+ 6x = 5 — 4.

Comparing this with the given equation, we see that
4 has been transposed to the second member, and — 6z
to the first member, by changing their signs. In like
manner, any term may be transposed; hence, the fol-
lowing rule for transposing:
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RULE.

Any term may be transposed from ome mem-
ber to the other, if we change its sign.

Transpose the unknown terms to the first, and the
known terms to the second members, in the following

EXAMPLES.
1. 132416 = Y2+ 20. Ans. 13z2—%x = 20—16.
2 2 —8 = 10 — 2. Ans. 2z + 2z = 10 4 8. |
3. 72—21 = —12z4+1. Ans. Tz+12z = 1421
4 52+60 = 9—3z.  Ans. 5z+3z = 9— 60.
5 3z—7 = —z—8. Ans. 3z+ 2 = 7—8.

Method of Solving Equations.
80. Take the equation,

"E—i—? __b(z—1)

3 = —10  t+8&

Clearing of fractions, (Art. 78), and performing the
operations indicated, we have,
20z + 210 = 15z — 15 + 240.

Transposing all the unknown terms to the first mem-
ber, and the known terms to the second member, (Art.

79), we have,
20z — 15z = 240 — 15 — 210,

Reducing the terms in the two members, we have

5z = 15.
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Dividing both members by the coefficient of z, we
have,
z = 3.

In the same way, all equations of the first degree,
containing but one unknown quantity, may be solved;
hence, the following

RULE.

I. Clear the equation of fractions, and per-
form all the indicated operations.

II. Transpose all the unknrnown terms to the
first member, and all the known terms to the
second member.

III. Reduce all the terms in the first mem-
ber to a single term, one factor of which is the
unknown quantity; the other [factor will be the
algebraic sum of its coefficients.

IV. Divide both members by the coefficient of
the unknown quantity: the second member will
be the value of the unknown quantity.

EXAMPLES.

1. Solve the equation,

6z+3 Tz + 15
i1 2

Sz — 3.

Clearing of fractions, 110z — 12z — 6 = 77z + 165 — 66;
transposing and reducing, 21z = 105;
dividing by 21, z = &.
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e 2. Solve the equation,
b a
— =0 — .
ar ) bz
Clearing of fractions, ¥ —a%hr = abPr— a*;
transposing and reducing, — (@ + o = — (@ + V);
a® + b 1

dividing by — (a% + ab®), ®= o = @

Solve the following equations:

3.

-10.

11.

3x—4 =z z 1

—=— =3 i3 Ans. z=_2.__
z z z4+5__ 11 _
§—-1+1—2-— i _—T. An& :I:T.12.
fﬂ_f=1, Ans z= —a.
b a
z—1 z—2 z—3
s+ 3 — 1 = 6. Ans. z =1L
z x 1 z x

_____ = —Z, Ans. z =10.

3z —1 6—z_2x—4_54—z

7t T4 12 28

Ans. z=25.
be—%7 3x—2 x—5 Ans x—67
3 7T T 4 S T T8t
z 2z—1) 3zx—4 z __ 80
s~ 5 - 1 tiz 4=

z—a 2z—3b_a—x

3 5 2

= 10a + 115.
Ans. z = 2a + 24b.



- 12,

13.

15.
16.
~17.

18.

~19.

20.

-~ 21.

“R2.
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6z+a 3z—0 _ad—p
10,2 —a Ans. z=5—0°
-az—b_{_g_@ bx —a
4 3— 2 38 ° ;
3
.Ans. x=m.
a4+c  a—c 2 - P
'a+x+a—x_a"——w’ Ans. z = c °
6z + 13 3z+5__ 2 __?
5~ 5 — 5 Ans. z = 3
z—3  z . z—19 _
3 +§_20—— g Ans. z = 23}.
1 1 1
10(z+§)—-6z(5—§)_.23. Ans. z=2.
x 8 —z 542 11
-85 ¢ t7=0
Ans. z=12.
) 4 w—9 4 z—1
Ans. = = Ty
4z 20 — 4z 15
5z 7z — & Ans. = =3¢
T +5 9z — 1 z—9 2w —3
w T 1 5t =%
Ans. z=19.
T+ Z+to=@+Z+h
S S 5k — )
' Ans. == ( —9),
a— by
10z + 17 12z+2_5x—4' Ans. @ = 4

i8 ~ 11z—8" 9
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. 24, 1(3—1)—1(g—x)=§. Am.z:g.

7 2/ 5\3 30 9
20 +1 402 —3z _ 471 — 6z
25. 29 12 9— 2
Ans. z="12.
PROBLEM§.

81. A problem is a question proposed, requiring a
solution.

82. The solution of a problem is the operation of
finding a quantity, or quantities, that will satisfy the
given conditions.

The solution of a problem consists of two parts: the
statement, and the solution of the equation, or equa-
tions of the problem.

The statement consists in translating the conditions
of the problem into algebraic language, the resulting
equations being called the equations of the problem.

The solution of the equations is made by the general
rules for solving equations.

The statement is made by representing the unknown quantities
of the problem by some of the final letters of the alphabet, and
then operating upon these so as to comply with the conditions of the
problem. The method of stating a problem will be best learned
from practical examples.

1. What number 18 that to which if its fifth part
be added, the sum will be equal to 24 ?

Let z denote the number ; then will z denote its fifth part.
From the conditions of the problem,

z+ ; = 24; equation of the problem.
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Clearing of fractions, bz + z = 120,
reducing, 6z = 120,
dividing by 6. z'=-'20, the number required.

" 9. The sum of two numbers is 30, and their differ-
ence 6. What are the numbers ?

Let z denote one number; then will 80 — z, denote the other.
From the conditions, we have,

(80 — z) — z =6 ; equation of the problem.

Transposing and reducing, —2=—24;
dividing by — 2, : z= 12} the two numbers,
80 —2z=18

3. Two couriers start from points distant 200 miles,
and travel towards each other. The first travels 9 miles
per hour, and the second 8} miles per hour. How
long before they will meet, and how far will each have
traveled ?

Let z denote the number of hours; then will 92 denote the

distance the first travels, and 8}z denote the distance the second
travels. From the conditions of the problem, we have,

9z + 8}z = 200.
Solving,
2 = 113, the number of hours required.
. 92 = 102¢, the number of miles the first travels; and
8iz = 9074, the number of miles the second travels.

4. A hare starts 50 leaps before a dog, and makes
4 leaps to the dog’s 3; but 2 of the dog’s leaps are
equal to 3 of the hare’s. How many leaps must the
dog make to overtake the hare?

Let4zw denote the number of leaps that the dog makes: then
will 3 denote the number that the hare makes in the same time;
5 .
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and if we take the length of the hare’s leap as the unit of distance,
the whole distance to be passed over by the dog, will be denoted by

4z
§+50: but the dog passes over a distance of § units at each leap;

hence, in z leaps, he will pass over a distance denoted by §z. From
the conditions of the problem, these two quantities are equal;
hence, we have,

4z 3z
34—50—5.
z = 800. Ans.

6. A. can do & piece of work in 9 days, and B. can
do the same work in 10 days. In how many days can
they both do it together ?

Let o denote the number of days required. If we denote the

1

work by 1, A.clmdo9 of it in 1 day, and in z days he can do

gofit. B.eandol—lﬁofitinlday,a.ndinzdayshecandof%
of it. Bat, from the conditions, the sum of these two will be equal
to the entire work ; that is,

=1,
= 41} days. Ans.

6. If to a certain number its half and its eighth part
be added, the sum will be equal to ¥8. What is the
number ? Ans. 48.

7. A man bought a horse, harness, and wagon, for
250 dollars: he gave for the harness one fourth as much
as for the horse, and for the wagon as much as for the
horse and harness together. What did he give for each *

Ans. $100 for the horse, $25 for the harness, and
$125 for the wagon.

8. A drover sold from a flock of sheep onc half,
and two more; he then sold half that remained, and
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two more, and then he had 22 left. How many had
he at first 2 Ans. 100,

9. If from 3 times a certain number we subtract 8,
half the remainder will be equal to the number itself
diminished by 2. What is the number? Ans. 4.

10. Ten years ago, a boy’s age was 4 of his father’s;
" now, it is } of it. What is the father's age now ?

Ans. 60 years.
11. The sixth part of a number added to its eighth
part gives 56. What is the number ? Ans. 192.

12. Two boys had, together, 35 marbles. One fourth
of the number that the first had was equal to one third
of the number that the second had. How many had
each ? Ans. 20, and 15.

13. A man spent half of his money, and afterwards

~ lost one third of what he had left, when he found that

he had remaining $30. How much had he at first ?
Ans. $90.

14. What number is that, from which if 5 be sub-
tracted, one half the remainder is equal to 15?  A4ns. 35.

15. Divide $116 amongst three persons, so that the
gecond shall have two thirds as much as the first, and
the third shall have two fifths as much as the second.

Ans. $60, $40, and $16.

16. A wheat field yielded 72 bushels, which was divided
between landlord and tenant in sach a way, that for
every five bushels that the landlord received, the tenant
got seven. How many bushels did the tenant receive ?

Ans. 42
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17. The half of a number exceeds its third part by 8. .
What is the number|[? Ans. 48,

18. A sum of money is divided between 4., B., and C,
80 that 4. has $8; B. has as much as 4., together with
one fifth as much as C.; and C. has as much as 4.and
B. together. How much has C.? Ans. $20.

19. There are 180 sheep in two flocks. If 20 are
taken from the second and added to the first flock, the
first flock will then contain twice as many as the second.

How many sheep are there in each flock ?
Ans. 100, and 80.

20. A post stands } in the mud, % in the water,
and 10 feet in the air. What is its entire length ?
Ans. 28 feet.

21. There are two numbers whose difference is 8, and
the first is 5 times the second. What are the numbers ?
Ans. 10, and 2.

22. A merchant gains 14 per cent. on his capital, when
he finds that he has $8436. What was his capital ?
Ans. $7400.

23. A, has 3 times as much money as B.; but if 4.
were to give to B. $100, B. would then have 3 times
48 much as 4. How much have they each ?

Ans. A. 8150, and B. $50.

24. A laborer was engaged for 30 days, on condition
that for every day he labored, he was to receive $2,
and for every day he was idle, he was to forfeit $1.
At the end of the time he received $21. How many
days did he labor? Ans. 17.
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25. A. is twice as old as B., but 10 years ago he was
three times as old: i -How oldis B, now?  Ams. 20 years.

26. Find that number which, being increased by 9,
the sum divided by 2, the quotient diminished by 7,
the result will be 20. Ans. 45.

27. Divide the number 37 into three parts, such that
the first shall be 3 less than the second, and the second
5 greater than the third. Ans. 12, 15, and 10.

28. A man spends § of his income for board, § of
the remainder for clothing, and has remaining §$70.

‘What is his income ? Ans. $630.
“99. Divide 1000 into two parts, so that one of them
shall be } of the other. Ans. 375, and 625.

30. A person after spending 50 dollars more than half
of his income, had remaining 125 dollars more than a
third of it. How much was his income?  Ans. $1050.

31. In a naval action } of a fleet was taken, } of
it sunk, and 2 ships burnt; 4 of the remainder were
afterwards lost in a storm, when 24 ships were left.
How many ships were there in the fleet? Ans. 60.

32. A sum of 990 doliars was divided between A.,
B, and C.; B. received 4 as much as 4.; and C, § as
much as 4. and B. together. How.many dollars did
each receive ? Ans. A.,300; B., 240; and C., 450.

33. A courier 4. starts 1165 of his own steps ahead
of a courier B., and takes 5 steps whilst B. takes but
4; now if 3 steps of B. are equal to 4 of the courier
A., how many steps must B. make to overtake A4.?

Ans. 13980,
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34. The hands of a clock are together at 12 o’clock;
when are they next together? Ans. At 1 h. 58 m.

35. A grazier spent {5 of his money for horses, } for
oxen, and & of the remainder for sheep, when he had
980 dollars left. How many dollars had he originally ?

Ans. 2400.

36. Divide the nnmber 240 into two parts, so that
7 times the first shall equal 5 times the second.
Ans. 100, and 140.

37. In a garrison of 2400 men, there are 3 times as
many cavalry as artillery, and twice as many infantry
ag artillery and cavalry together. How many are there
of each kind?

Ans.” 200 artillery, 600 cavalry, and 1600 infantry.

38. Divide 21000 dollars between A., B., C,, and D.,
go that 4’s part shall be § of B’s; B’s part 4 of Cs;
and C’s part § of D’s. How many dollars will each
receive ?

Ans. A., 3200; B., 4800; (., 6000; D., 7000.

39. A capital wus put out at 6} per cent for one
year, when the capital and interest together amounted
to 1917 dollars. How many dollars were there in the
capital ? Ans. 1800.

40. A boatman rows with the tide 42 miles in 3
hours. In returning, the tide is but § as strong, and
it takes 10§ hours to row the same distance. At what
rate per hour did the tide run in each case?

Ans. 6, and 4 miles.
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41. A cistern can be filled by two cocks; the first
would fill it in 6 70 minutes, and the second in 80 min-
utes. In how many minutes would they both fill it
together ? Ans. 37%.

I1. EquaTioNns oF First DEGREE, CONTAINING
MORE THAN ONE UNKNOWN QUANTITY.

Explanation.

83. If we have a single equation, containing two
unknown quantities, as

2 + 3y = 14,

we may find the value of one of them in terms of
the other, as follows:

14 —3
z:—z—y « e e e . (1)

Now, if the value of y is unknown, that of z will
also be unknown; hence, from this equation alone, the
value of z cannot be determined.

If now, we have & second equation,

3z + 2y = 11,

we may, in like manner, find the value of z in terms
of y,
11 — 2y
g=——F . . ...
If the values of # and y are the same in equations

(1) and (2), we shall have their second members equal
to each other, giving the equation,
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4—3y 11—2
2 T3

, Or 42 —9y —= 22 — 4y.

From which we find y =4; and substituting this
value for g, in either of the equations (1), or (2), we
find 2 =1.

Such equations are called simultaneous.

Simultaneous equations are those in which the
values of the unknown quantities are the same in both.

‘We have seen that it requires two simultaneous equations, con-
taining two unknown quantities, to determine the values of the
unknown quantities. In the same way, it could be shown that it
would require three equations containing three unknown quantities,
four equations containing four unknown quantities, and so on, to
determine the values of the unknown quantities. In general, there
maust be as many equations as there are unknown quantities. The
equations necessary to determine any number of unknown quanti-
ties, constitute a group of stmultaneous equations.

Such equations are solved Ly successive elimination.

ELIMINATION.

84. Elimination is the operation of combining two
equations so as to get rid of one of the uwnkmnown
quantities which enter them.

There are three principal methods of elimination: by
addition, or subtraction ; by substitution ; and by com-
parison.

1°, Elimination by Addition, or Subtraction.
85. Take the equations,

Tz + 6y =20 . . (1)
92 —4y = 14 . . . . . (2
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Multiplying both members of (1) by 4, and of (2) by
6, (axiom 37), we|have;
2z +2y =8 . . ... (3
54z —2y = 84 . . . . . (4)

Adding (3) and (4), member to member, (axiom 1°),

we have,
822z = 164.

Here, y has been eliminated dy addition.
Again, multiplying both members of (1) by 9, and of
() by 7,
63z +54y = 180 . . . . (5)
63z —28y = 98 . . . . (6)

Subtracting (6) from (5), member from member, we

have,
82y = 82.

Here, z has been eliminated by subiraction. In the
same manner, an unknown quantity may be eliminated
from any two simultaneous equations; hence, the

RULE.

Prepare the equations, so that the coefficients
of the quantity to be eliminated shall be numer-
“itcally equal in both; if their signs are unlike,
add the equations, member to member; if alike,
subtract them, member from member,

In preparing the above equations, we multiplied both members
of each, by the coefficient of the quantity to be eliminated in the
other. They may be prepared in other ways. A better way, in
most cases, is to find the least common multiple of the coefficients
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of the quantity to be eliminated; then multiply both members of
each equation by the quotient of this least. common multiple by the
coefficient of the quantity to be eliminated in that equation. In the
first case considered, the least common multiple of 4 and 6 is 12 ; we
might have multiplied both members of (1) by 32, or 2, and of (2)

by 12, or 3, giving,

14z + 12y = 40
27z — 12y = 42.
Whence, by addition,
41z = 82.

Here, y has been eliminated as before, but we have a simpler
equation,

2°. Elimination by Substitution.

86. Take the same equations as before:

T+ 6y =2 . . . . (1)
9% —4y =14 . . . . ()

Finding, from (1), the value of y in terms of =z,
_ 20—
y=—"% - |
Substituting this value of y, in (2), we have,

9% — 4(-20—_ﬁ) = 14.
6
Here, y has been eliminated by substitution. In the
same manner, we may eliminate an unknown quantity

between any two simultaneous equations; hence, the

RULE.

Find from one of the equations the value of
the quantity to be eliminated, in terms of the
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other quantities; substitute this valwe for that
quantity imithe|other -equation.

3°, Elimination by Comparison.
87. Take the same equations as before:

Te4+6y =20 . . . . (1)
9z — 4y 14 . . . . (®

Finding the values of z in terms of y, from each of
equations (1) and (2), we have,

0—6
Tz = 7 y;
14 + 4y
z = 9 .

Placing these two values equal to each other, we have,

20—6y _ 14 + 4y
v T T 9 -

Here, z has been eliminated by comparison. In
game manner, an unknown quantity may be elimin
between any two simultaneous equations; hence, tl

RULE.

Find from each equation the value of the qu
tity to be eliminated ; place these values equa
each other.

Of the three rules given, any one can be used, as may be

convenient. As a general thing, that is employed which gives
to the simplest equations.
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SOLUTION OF GROUPS OF SIMULTANEOUS EQUATIONS
88. Take the group of three equations:

z4+4y—2=1 . . . (1)
bz —2+32=16 . . . (?)
4z ++2=22 . . . (3)
Combining (1) and (2), also (1) and (3), eliminating z
in each case, we have the new group,
19z +8y =62 . . . (4
Z+6y =32 . . . (5)

Combining‘ (4) and (5), eliminating y, we have the single
equation,
29z = 58; coor= 2

Substitnting this value of z in (5), we have,
14 4+ 6y = 32; ..y =3.
Substituting these values of # and y in (1), we have,
6+ 12 — 2z = 10; oz =4

In the same manner, any group of simultaneous
equations may be solved; hence, the

RULE.

I. Combine one equation of the group with each
of the others, eliminating one unknown quantity :
there will result a new group containing one
equation less than the original group.

II. Combine one equation of this group with
each of the others, eliminating a second unknown



EQUATIONS OF THE FIRST DEGREE. 109

quantity : there will result a new group contain-
ing two equations'less than' the original group.

III. Continue the operation until a single
equation is found, containing but one unknown
Juantity.

IV. Find the value of this wunknown quantity
by the preceding rules; substitute this in either
one of the group of two equations, and find the
value of a second unknown gquantity; substitute
these in any one of the group of three, finding a
third unknown quantity; and so on, till the values
of all are found.

In making the combinations, care should be taken to make them
in such a way as to obtain as simple equations as possible. If any
unknown quantity does not enter all of the equations, it will gen.
erally be best to eliminate that quantity first.

EXAMPLES.

1. Solve the equations,

T4, Y
s+i=5.... @
y _
%4+ =1 )
Clearing of fractions,
bz + 8y =% . . . . (9
6z + y = b1 . @

Combining (8) and (4),
13z = 718; sz =6
Substituting in (4),
8 +y=251; . y=15
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2. Solve the equations,

gtz =1 - - - - O
Sy+2u=10 . - - @)
12z — 8y — z =230 . - - - (3)

Combining (1) and (3),
gy—2z = -2 - - * ° @

Combining (2) and (4),
792 = 158; 2z =2
By successive substitution, we have,
=2 and z=4%

Solve the following groups of gimultaneous equations:

3. 3z +4y = 18 z =2
w— y = } Ans. {y:&
4, Tz—3y =1 } A j(z=3
2w+ 2 =1 ns. y =3
5. bz + 3y = 2 } 4 {a;:li
bz— y =1 ns y=2.
6. 4r+ 3y = 6} 4 z=1
8r 4+ 4y = 19 5 ly=4
Y. O0r + g/=12); z =1 ‘
x4 0y = 87 Ans. {y::(i. |
R da By = 17 = ‘
Qy — i = 8} Ans {:;g ‘
B w--dy= 6 —
X §-0y=17} Ans {::;




10.

11.

12.

13.

14.

15.

16.

-~ 17,

EQUATIONS

T+ Yy + 2
5z + 2y'— 8z
W+ y — 2

Wy WY
+ o+
Wi e
I
[ et
w 0
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[=]

~——

If

15

z=1.
Ans. Y = ».
z = 3.

z= 9.

z=2
Ans Y =

z =3

z = 10.
Ans.

y= 4

z =4,
Ans.

y:6.

z=3
Ans.

y=5. ‘

z = 12.
Ans.

y=18.

r =
Ans. y:l.

z = 4.
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19.

20.

21,

22.

23.

24.
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T Yy oz
3t gt 5T A —
LYy % J —
1T 5+ §=238 Ans. Y 60.
r. ¥y, % _ z = 120
2+3+4—62J [
+1’/
z =4
Ans. y=6.
-
34:;— 02y = 01 z = .02
2% + . 4y_12 Ans. {y_2.9.
2z+y  Tz+6y+11 _ 68—dx ‘
+ = z ="
9 18 6
Az g 4 v Ans. _ 4
R e e y==
Z.Y_q_¢* (@b +ac—be)abe
al b ¢ Ans T R rar—p
Yy ,%__ y __ (ac—ab—bc)abe
a+b—1+c y= PR+ aPR—P2
2+ Hy + 2) = 102 z = 62.
y+3xz+2)= 78 Ans. {y = 46.
4+ He+y) = 61 z = 34.
6y — 4z
31—?—1 z = 10.
52 —x :
2y_3z Ans. Yy = 7..
'/—22 z = 3.

y—-2x J
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3 4 1 _ 38 (1
25. ;-——5—y+;— F x_é.
1 1 2 - 61 1
4 1 4_w _1
52 2 "z 10 =T

_ Example 25 may be solved by assuming

1, 1 , 1
a:’:;;, y=§, and 7=,

which gives for the group 25.

. 4y , 38

33—‘—5—-{- z=—5— xl=2.

z y , _ 61 . .

_§+§_+2z__6— . y = 3.

“« oy ,_161J lz’:4.

R I ()

From which the values of z, y, and 2z may readily be

found. :
2 5 1 _ 8 (

v 1 2 48 4 =9
4x+y+z_'72 ns.j!/
51 4 _ 43 , ol
& - t2T 56 \* =3

PROBLEMS.

» numbers whose sum is @, and whose
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Let z denote the greater number, and y the less number. -
From the conditions of the problem, we have, .

z+y

a
z—y=2>

which are equations of the problem.

Solving, by preceding rules, we have,

b b
+9, and y—é—g, Ans.

z =

WX

Since @ and b may be any numbers whatever, we
have these following principles by means of which all
similar cases can be solved :

1°. The greater number is equal to the half sum
of the two numbers increased by the half difference.

2°. The less mumber s equal fo the half sum of
the two nmumbers diminished by the half difference.

2. If 2 is added to the numerator of a certain fraction,
its value will become 3; but if 2 is added to the denom-
inator, its valne will be §. What is the fraction ?

Let z denote the numerator, and y the denominator.
From the given conditions, we have the equations of the
problem,
z + 2 z 1,

v+2° 2"

whence, z =7, and y = 12; hence, the fraction is 5

and

<@
|

3. The hands of a clock are together at 12 o’clock;
when are they next together ?
Let z denote the number of minute spaces passed over by the

minute hand, and y the number of minute spaces passed over by
the hour hand.
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- From the nature of the problem, we have,
z)= y(¥60,
Tz = 12.
e =65, y=0f%.
Hence, they are together at 1 h. 5 m.

This problem has already been solved by means of a single
“unknown quantity ; many of the following problems can also be
solved in the same manner.

4. A person has 22000 dollars at interest, which yields
him 1220 dollars annually; a part bears interest at 5 per
cent., and the remainder at 6 per cent. How many
dollars in each part?

Let 2 denote the number of dollars in the first part, and y the

number of dollars in the second part.
From the conditions of the problem, we have,

. z + y = 22000
zx gy +yx s = 1220.
. @ = 10000, y = 12000.

5. A’s age is equal to twice B's age; 20 years ago,
A’s age was 4 times B’s age. What arc their ages?
Ans. A’s 60; B.’s 30.

6. There are two numbers: the first added to half
the second gives 35; the second added to half the first
gives 40. What are the numbers?  Ans. 20 and 30.

7. A man has three sons: the sum of the ages of
“the first and second is 27, that of the first and third is
29, and that of the second and third is 32. What are
the ages of each? Ans. 12, 15, and 17.

8. Two men are in trade; the stock of the first
increased by one third that of the second, is $1700;
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the stock of the second increased by one fourth that f
the first, is $1800. .What is the stock of each ?
Ans. $1200 and $1500.

9. Find two numbers such that } the first plus §
the second shall equal 43, and } the second plus $ of
the first shall equal 40. Ans. 50 and 60.

10. The sum of the first and second of three num-
bers is 13, that of the first and third 16, and that of
the second and third 19. What are the numbers ¥

Ans. 5, 8, and 11.

11. Bought 100 lbs. of sugar and 80 lbs. of coffee
for 828, and afterwards bought at the same rates 200
lbs. of sugar and 60 lbs. of coffee for $36. What did
each cost per pound? T

Ans. Sugar 12 cents, and coffee 20 cents.

12. There are three numbers; the first increased by
twice the second and three times the third, makes 74;
the second, increased by twice ‘the third and three times
the first, makes 90; the third, increased by twice the
first and three times the second, makes 100. What are
the numbers ? Ans. 20, 18, and 6.

13. A butcher bought of one person 12 sheep and
20 lambs for 44 dollars, and of a second person 7 sheep
and 13 lambs for 27 dollars, at the same rates. How
many dollars did he give apiece?

Ans. $2 for sheep, and $1 for lambs.

14. Divide the number 1152 into three parts, such
that 9 times the sum of the first and second shall be



EQUATIONS OF THE FIRST DEGREE. 117

equal to 7 times the sum of the second and third;
and if 8 times/the| first(be_subtracted from 8 times the
second, the remainder shall be equal to the sum of the
first and third. Ans. 288, 384, and 480.

15. A farmer mixed rye and oats, forming 100 bushels
of the mixture. The rye was worth 96 cents per bushel,
the oats 56 cents, and the mixture 72 cents. How
many bushels did he use of each ?

Ans. 40 of rye, and 60 of oats.

16. A person has two sorts of wine, one worth 40
cents a quart, and the other 24 cents. How much of
each kind must he use to form a gallon worth 112 cents ?

Ans. 1 quart of the first, 3 quasts of the second.

17. A., and B, trade on a joint stock of 833 dollars,
and clear 153 dollars. A.’s share of the gain is 45 dol-
lars more than B.’s. What share of the capital did
each possess ? Ans. A., $539; B., $294.

18. Two laborers, 4., and B., received 51 dollars. A.
had been employed 14 days, and B. 15 days; A. re-
ceived for 6 days’ labor 1 dollar more than B. got for
4 days’ labor. How many dollars did each receive per
day? Ans. A., 1}; B, 2.

- 19. In 80 pounds of an alloy of copper and tin,
there are 7 lbs. of copper to 3 of tin. How much
copper must be added to the alloy, that there may be
11 lbs. of copper to 4 of tin? Ans.. 10 lbs.

20. In 3 battalions there are 1905 troops; 4 the
number in the first, together with § the number in the
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second, is 60 less than the number in the third; } the
number in \the,third, together (with § the number in
the first, is 165 less than the number in the second.
How many are there in each battalion ? :
Ans. 630, 675, and 600.

21. A grocer has three kinds of tea: 12 Ilbs. of
the first, 13 of the second, and 14 of the third are
together worth 25 dollars: 10 of the first, 17 of the )
second, and 11 of the third are together worth 24 dol
lars; 6 of the first, 12 of the second, and 6 of the
third are together worth 15 dollars. What is the value
of a pound of each?

Ans. 50 cents, 60.cents, and 80 cents.

22. A. owes $1200, and B. $2500; but neither has
money enough to pay his debts. Says 4. to B., “lend
me } of your fortune, and I can pay my debts;” says
B. to 4., “lend me § of your fortune, and I can pay
mine.” What fortune had each?

Ans. B., had $2400; and 4., $900.

23. The united ages of a father and son are 80
years; and if the age of the son be doubled, it will
exceed the father’s age by 10 years. What is the age
of each? Ans. 50, and 30.

%4. A. travels uniformly along a certain road, B.
starts an hour afterwards in pursuit, and after 4 hours
finds by inquiry that he is travelling 1} miles per hour
slower than A4.; he then doubles his rate of travel, and
overtakes 4., 63 hours from the time he started in pur-
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snit. At what rate did A. travel, and what was the
rate that B. traveled at- first ?
Ans. A’s rate, 93 miles; B.s, 8%

25. There are 32 gallons of wine in twp casks. If
from the first there be drawn into t! d as much
as there is in the second; then if there be drawn from
the second into the first as much as remains in the
first; and then if there be drawn from the first into
the second as much as remains in the second, there
will be 16 gallons in each cask. How many gallons
were there originally in each? Ans. 22, and 10.

26. A cistern can be filled by 3 pipes. The first can
fill it in 4 hours, the first and second together can fill
it in 8 hours, and the third can fill it in 2 hours.
How long will it take for them all to fill it together,
and how long will it take the second alonc to fill it?

Ans. All in 1h. 12 m.; the second in 12 hours.

27. A cistern has two discharge cocks: they both run
together for two hours when the first one is closed ; the
second one then empties it in 2 hours and 48 minutes.
Had the second one been closed at the end of two
hours, the first one would have emptied it in 4 hours
and 40 minutes. In what time could each empty it
alone ?

Ans. The first in 10 hours; the second in 6 hours.
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III. ExPLANATION OF SymBoLs aND Discus
SION OF PROBLEMS,

Explanations and Principles.
89. The symbol 0 is called zero; the syﬁbol » is
called ¢nfinity ; and the symbol g is called the symbol

of indetermination.
To explain the meaning of these symbols, let us take
the equation,

t=g.....(1.)

Which can be written under the form
dXt=a . . . . . (2)

Any set of values of a, d, and #, that will satisfy
equation (2) will, of necessity, satisfy equation (1).

1°. If we suppose ¢ to be equal to 0, and d to be
finite, that is, to contain a limited number of units,
equation (2) will become

dxt=0.

It is obvious that 0 is the only value of # that will
satisfy this equation. Making ¢ = 0 and ¢#=0 in (2)
and (1), we have, .

0xd=0; and g =0

Hence, we say that 0 mulliplied, or divided, by a finite
quantity is equal to 0.
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2°. If we suppose d to be equal to 0, and a to be
finite, equation, () becomes
_ 00Xt =a
It is obvious that no finite value of ¢ can satisfy the
last equation; this fact we express 'by saying that ¢ is
infinite, that is, that it is greater than any assignable
quantity. Making d =0 and ¢ = » in equation (1),
we have,

a
= «», whence — = 0.
w

(=T

Hence we say that a finife quantity divided by 0 s
equal to infinity, and that a finite quantity divided by
infinity s equal to O.

3° If both @ and d are supposed equal to 0, equa-
tion (2) becomes
O0xt=0

It is obvious that this equation will be satisfied for
every finite value of ¢, (principle 1°). Making ¢ =0
and d =0 in (1), we have

t:g.

0

Which is true for all finite values of ¢ In this case
the equation does not determine the value of #, a fact
that we express by saying that ¢ is indeterminate.
Hence, we say that an indeterminate quantity is one
that has an infinite number of values.

A fraction may reduce to the indeterminate form in consequence
6 -
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of a common factor in both terms, which factor becomes 0, for the
particular hypothesis. | Thus, the fraction
M+ 1)(xz~1)
Az—1)
reduceg to g for the particular value z = 1. If we strike out the

common factor 2 — 1 and then make # = 1, we find the true value of
the fraction to be 7. Before deciding on the nature of the expression

g, we must, therefore, determine whether it results from the exist-

encq of a common factor which reduces to 0 for the particular
hypothesis ; if not it is a true symbol of indetermination,

Definitions,

90. The discussion of a problem consists in mak-
ing every possible supposition on the arbifrary quan-
tities which enter it, and interpreting the results.

An arbitrary quantity is a quantity to which a
value may be given at pleasure.

The method of interpreting results is illustrated in the solution
and discussion of the following problem :

Problem of the Couriers.

91. Two couriers, 4. and B., travel along the same
line, R’ R, in the same direction, R’ towards R, and at
uniform rates; the courier A. travels m miles per hour,
and the courier B., » miles per hour. Now, suppos-
ing them to be separated by a distance a at any epoch,
say 12 o’clock, when are they together?

R Y| B R

Let the position of the rearmost courier, A., be taken as the
origin of distances, and suppose all distances estimated towards B.
to be positive.
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Denote the number of hours from the epoch to the time they are
together Dy ¢.,) Denote, thedistance) the courier B. travels in the
time ¢, by z; then will the distance that the courier A. travels, in
the same time, be denoted by @ + 2.

Then, since the distance traveled is equal to the number of hours
multiplied by the rate per hour, we have the equations :

mw =a+ 2z,
nt = x;
whence, by solving,
a
t =
m—n
Discussion.

92. In discussing the value of #, found in the last
article, it is to be observed that the distance between
the couriers may be assumed at pleasure; hence, a is
arbitrary: the rates of travel may also be assumed at
pleasure; hence, m and » are arbitrary.

From the conditions of the problem, @ can never be
negative; hence, the only sgmmd/tions that can be made
on'a are a >0, and @ = 0. The only suppositions that
can be made on m and %2 are m >%, m <=n, and
m =n. By combining these hypotheses we obtain six
suppositions, as follows :

1°. >0, and m > n. 2°. a>0, and m < n.
3°. a=0, and m > n. 4°, a=0, and m < n.
5°%a>0, and m =n. 6°. a =0, and m=n.

We shall consider these hypotheses in order:
1°% a>0, and m>n; 2% a >0, and m < n.

The first supposition makes the value of £, in ar-
ticle 91, essentially positive, and the second supposition
makes the value of ¢ essentially negative.
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In the first case, A. is behind B. at the epoch, 12
o’clock, and \ig\'¢ontinually (gaining on him; hence, 4.
will overtake B. at some time after 12 o’clock, and the
couriers will be together. 'We therefore interpret the
positive value of ¢ as indicating that the time when
they are together is affer 12 o’clock.

In the second case, 4. is behind B. at 12 o’clock,
and B. is continually gaining on A.; hence, they can
never be together after 12 o’clock : it is plain, however,
that they must have been together at some time before
12 o’clock. We therefore interpret the mnegative value
of ¢ a8 indicating that the time when they are together
is before 12 o’clock.

These results conform to the principle of interpreting positive
and negative quantities as explained in Article 6.

3°. a=0, and m>n; 4° a=0, and m < n.

The third supposition makes the value of ¢ equal
to + 0, and the fourth supposition makes it equal to
— 0.

In both cases the couriers are together at 12 o’clock,
and since they travel at unequal rates, it is obvious
that they can never be together after 12 o’clock, nor
can they have been together at any time before 12
o’clock. We therefore interpret the results + 0, and
— 0, as indicating that no #/me is to he added to, or
subtracted from 12 o’clock, to find the time when they
are together; that is, they are together at 12 o’clock,
and at no other time.




EXPLANATION OF SYMBOLS. 125

5°. >0, and m = n. .

The fifth supposition makes the value of ¢ equal to
a divided by 0, or equal to .

In this case the couriers are separated by the dis-
tance @ at 12 o’clock, and since they travel equally fast
it is obvious that they always have been, and always
will be, separated by that interval. We therefore inter-
pret the result v, as indicating that the interval from
12 o’clock till the time they are together, is greater
than any assignable time, that is, that they are mever
together.

6°. a=0, and m = n.

The sixth supposition makes the value of ¢ equal to

%. In this case the couriers are together at 12 o’clock,

and since they travel equally fast they have always been,
and always will be, together. We therefore interpret
the result g, a8 indicating that there are an infinite

number of times, both before and after 12 o’clock, when
they are together, that is, they are always together.

From what precedes, we see that 0, w, and g, though not

quantities, are nevertheless symbols which, if properly interpreted,
indicate correct answers to problems.

Extension of the Formula of Article or.

93. The formula, ¢ = m—f- , ey be used in

solving other questions similar to the problem of the
couriers.

If we call g, the initial distance, and m — %, the
relative rate of travel, the formula may be expressed by
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saying, the time elapsed is equal to the tmitial distance
divided by the\melative wvelocity:

As an example, let it be required to find when the
hands of a clock are together between 1 and 2 o’clock:
here, 12 o’clock i8 taken as the origin of distance; if
we take the minute space on the dial as the unit, the
initial distance, that is, the distance to be gained, is
60; the rate of the minute hand is 60, that of the hour
hand, 5: hence,

t=_%_ _ 11 hours or 1k 54 min.
60 —5

To find when the hands are together between 2 and
3 o’clock, we have the initial space, 2 x 60, or 120,
and the rates as before. Hence,

120

t = 60———5 — 21‘1— hours, or 2h-10Hmi-n~



CHAPTER VI.

FORMATION OF POWERS.

I. Powers oF MonNomMmiaLs.
Definitions.

94. A power is the product of two or more equal
factors; one of these factors is called the root of the
power.

The product of fwo equal factors is called a second
power,or a square; the product of {Aree equal factors
is called a third power, or a cube; the product of
Jfour equal factors is called a fourth power; and
80 On.

The degree of a power is indicated by its exponent.
Thus, at denotes the fourth power of a; and & de-
notes the n®* power of a.

The root is called the first power, and by analogy a
quantity written with a negative, or with a fractional
exponent is also called a power. Thus, a, denotes the
first power of a; a8 denotes the minus 3 power of a;

di, denotes the 3¢ power of a; a’i', denotes the —3/4
power of a.
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Demonstration of Rule.

95. Let it be required to find the #hérd power of
Ya*z: from the definition of a power and the rule for
multiplication, we have,

(Ta%c)® = Ya*x x Yo%z x Ta*x = 343a%°

In like manner any monomial may be raised to any
power; hence, the following rule for raising a mono-
mial to any power:

RULE.

Raise the coefficient to the required power for ..

a new coefficient ; write after this all the letters,
giving to each an exponent equal to the product
of its original exponent by the exponent of the
power.

If the given monomial is positive, all of its powers are positive ;
if it is negative, its square is positive, its cube negative, its fourth
power positive, and so on. In general, even powers of a negative
quantity are positive, and odd powers negative. These principles
follow from the rule for signe, in multiplication.

EXAMPLES.
1 (3aaty) Ans. 9okt
2. (2a%ya®)s Ans. 8afyz’
3. (— Razy?) Ans. — 8abz¥p.
4. (— 3a%cir)t Ans. 8laPhicBzt.
5. (— dz*p)> Ans. — 343d%2°p.
6. (22%2)% Ans. 32a0y5R.
Y. (— datyt Ans. — doa%ym,
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8 (— a%pA) Ans. 2%y,
9. (4azyP2)d Ans. 64abrdy*A,
10. (— 3a%P®)s Ans. 8lay®.

Powers of Fractions.

96. Let it be required to find the #hiird power of
2%
3y

From the definition of a power, and the rule for the
multiplication of fractions, we have, '

() = 2 2w 2 bt
3by/ — 3by T 3by T 3by — 2’
and similarly for other fractions; hence, the

RULE.

Raise the numerator to the required power for
a new numerator, and the denominator to the
required power for a new demominator.

The rule for signs is the same as in the last article.

EXAMPLES.
a\? a?
1. (5) Ans 7
azr\3 a3
2 (@) A”S Fﬁ .
— 2az\! 16azt
3‘ ('—3y’_) . A _8_]:?
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o (2

o (- 2y

- (g%)

o (-2t
o (-2

4oy

Ans. g4
d3z3

Ans. —W.
axrdy®

Ans. W.
. 81a4y16
Ans. Tepg
4atyp

Ans. W.
Ans 64a8h12c182%
: 729

Extension of the Preceding Rules.

97. The rule for raising a monomial to any power
holds true when the exponents of any of the letters are
negative, or when the exponent of the required power

is negative.

Let it be required to find the square of 3a2r,
and that power of 2a2? whose exponent is — 3: it has
beer? shown that any factor may be changed from the
denominator to the numerator, or from the numerator
to the denominator, by changing the sign of its expo-

nent (Art. 32); hence,
3 \2
Ba )R = (——a ~)

also, (209 = )

9
= o

1

(Raz®)E — st
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Transferring factors to the numerator, we have,

(Baz-4y = 9a-4rs;

also, (2a2%)3 = 2% 856 — ja e,

which results conform to preceding rules.

S TR A A L

b
¥ e

1L

EXAMPLES.
(a2
(z-%y)
(2a2y) 2.
Rz 2y %),
(az’y®7 %)%
(2a—tb-2%)8,
(— 3oty 2,
(Ba—2b5c-2)-s,
(— 22392
(— 22 %y9)t

. (— 3azty iz,

(— 3z tyh),

Powers orF BinowMmials.

ForMuLA.

Explanation.

Ans. a

Ans. oty
Ans. Yxry S
Ans. jatyl,
Ans. a Sz ty95
Ans. 8a~%%.
Ans. — 2z 8y s,
Ans. J5xatics
Ans. — Jar .
Ans. 167813
Ans. jaa4yA
Ans. gy,

BinoMmiaL
L ]

98. A binomial may be raised to any power by the
process of continued multiplication, but when the expo-
nent of the power is greater than 2, the operation is
greatly abridged by making use of the dinomial for-

mula.
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Definitions,

99. The binomial formula, is a formula by means
of which a binomial may be raised to any power, with-
out going through the process of continued multiplica-
tion.

Demonstration.

100. The following powers of z 4 y are found by
actual multiplication :

E+yr=2+y

+yr=224+22y + &

(z+ )P = 2+ 3%y + 3zp® + 9

(@ +yp = o+ 42% + 6% + 4o + 4.

(z + y)* = o + 52y + 102%3 + 102%° + 523 + o5

And in the same way, the higher powers might be
obtained. If we examine the powers already deduced,
we see that they are all formed according to the fol-
lowing laws:

1°. Law or ExproNENTS.—The ezponent of the lead-
ing letter in the first term 1is equal to the exponent of
the power, and the exponent of that letter goes on dimin-
tshing by 1 in each term towards the right il the
last term, where it 18 0: the exponent of the following
letter is O in the first term, and the expoment of that
letter goes on increasing by 1 in each term towards the
right to the last term, where it is equal to the exponent

“ the power.
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2°. Law or CoErFICIENTS.— The coefficient of the
Jfirst term\'is\\U;||\the Ceoefficient) of any succeeding term
18 found by multiplying the coefficient of the preceding
term by the expoment of the leading letter in that term,
and dividing the product by the number of terms pre-
ceding the required term.

Let us assume that these laws of formation hold true
for a power whose exponent is m, m being any positive
whole number. The application of these laws gives,

m—1 _
7 =Y

+y)y =a"+me™y +m .

+m. ”‘_z—l . 7%—29:"—@34- &c., + ym

If both members of this equation are multiplied by
(z + y), the first member of the resulting equation will
be (z + y)~*': to find what the second member will

be, let us perform the multiplication, as indicated below :

Operation.

x”‘-}-mx"’"‘y-}-m.m——;—lx"'"’z+ & + g™

z 4y

™! + mamy + m ._m;z———la:’"“y’ + &e. + zym
™y + mz™ 'y + &e. + may™ 4 ymt!

z"‘*‘+mz"'y+m.'—n-2:—1x"‘“y2+ &e. + mjzy™ 4 ymt!

+1 +m +1

A cer—— S v
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But,
m—1 VLT ) L (m 4+ 1)m
m . 2 +m_m( +1) ) H
m—1 m—2 m—1 m—1(m—2
m.—z—.——:_’——+m. ) =m. 3\ 3 +1)
(m+])m(m—1)
1.2.3
m—1 m—2 m-—3 m m—1 m—2
2 ] ) 4 2 3
_(mtDmm—1)(m—2)
1.9.3.4 ; and so on.

Substituting these results in the product, we have,

(z + y)m+l —_— xm+l + (m + l)xmy + (m + l)mzw—lyﬂ
1.2

(m +1)m(m —1)
+ 1.2.3

. p 4+ &e., + ymtl.

If we examine the (m + 1) power, we see that the
assumed laws of formation hold good in it. Hence,
if the assumed laws of formation hold good when the
exponent of the power is m, they will also hold good
when the exponent is (m + 1).

Now, we have proved by actual multiplication, that
the assumed laws hold good when the exponent is 5;
hence, from what we have just proved, they will hold
good when the exponent is 6. Hence, from the principle
demonstrated, they must hold good when the exponent
is 7; and if for 7, then for 8; if for 8, then for 9:
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and so on, by successive deduction, it may be shown that
the laws hold good for any whole number whatever.

If we denote any whole number by n, we shall have,
from the preceding demonstration,

n —1 n— 1 —2,

+yy =+nm"y+n. 7 2
n—1 n—2

2 7 3

+n. =y + &e. + y*,

which is the &nomial formula.

We have only proved the truth of the formula when n is a
positive whole number; it is, however, true when 7 is either
positive or negative, entire or fractional, as will be demonstrated
in the appendix.

If we change the places of z and y, we shall have,
by the laws of formation,

n —

1 .
A

Y+ =yr+rz+n.

n—1 n—2
2 " 3

+n. 3 + &e. + 2

The second member of this equation is the same as
the second member of the formula already deduced,
taken in a reverse order. Comparing the two, we see
that the coefficients taken in the same order are equal;
this shows that the coefficients of the second member of
the binomial formula, at equal distances from the ex-
tremes, are equal. Hence, in forming any power of a
binomial, it is only necessary to find the coefficients to
the middle of the development; the remaining ones
can be written by taking these in a reverse order.



136 MANUAL OF ALGEBRA.

There is always one more term in the development than there
are units in the exponent of the power; hence, an odd power of a
binomial contains'an'even ' numbér of terms, and an even power
contains an odd number of terms. -

Method of Applying the Binomial Formula.

101. In applying the binomial formula to find any
power of & binomial, we raise the first term to its suc-
cessive powers as high as the #*, and substitute them
for the corresponding powers of z in the formula; we
then raise the second term to its smccessive powers up
to the n™, and substitute them in the formula for the
corresponding powers of y, substituting for n the ex-
ponent of the power.

EXAMPLES.
1. Find the third power of a 4 &.

Here, a takes the place of z, b the place of y, and 8 the place
of n; making these substitutions in the formula, we have,

(@ + b = a® + 3a’ + 8ab® + V2.
2. Find the fourth power of ¢ + d.

Here, ¢ takes the place of z, d the place of y, and 4 the place
of n; making these substitutions, we have,

‘ (c + d)f = ¢t + 46%d + 6c°d® + ded® + dt,

3. Find the fifth power of a + &.

‘We may write the literal parts of each term of the development -

by the law of exponents, giving,
ab, a'h, a*®®, a’h®, abt, and bE,

The coefficients may be formed by the lew of coefficients. The
coefficient of the first term is 1, that of the second is 5, that of the
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third is ——, or 10, and the remaining coefficients are the same,
taken in the reverse order; hence,

(@ + b = a® + 5a®d + 10a%* + 10a%® + 5abt + b5,

4. Find the sixth power of (a 4 3).
Ans. a4 6a%h 4 15a4? + 204303 + 150204 + 6a bt + 25.
5. Find the fifth power of ¢ + d. '
Ans. & + 5ctd + 10AR 4 10308 + 5cdt 4 db.
6. Find the sixth power of ¢ 4 d.
Ans. S+ 665%d - 15cAdR 4 20c%d° + 15¢%d4 4 6¢d® + d°.
7. Find the third power of ¢ — &.

Here, a takes the place of # in the formula, — b the plwoe of y,
and 3 the place of =, giving,

(@—bp = a* — 8a% + Sab® — 3.

If the second power of the binomial is negative, all the odd terms
are positive, and all the even terms negative.

8. Find the fourth power of ¢ — d.
Ans. ¢ — 4c¢d + 6c%d® — ded® + b

9. Find the fifth power of a — b. _
Ans o — 5atb + 10a%° — 100%3 + 5abt — 5.

10. Find the sixth power of ¢ — d.
Ans. 8—6c5d 4 15c42—0c% P + 15%d4 — 6ed® +- dP.

It is to be observed, that any power of the difference of two
quantities may be written out by the two laws for .exponents and
coefficients, provided the signs of the terms be made alternately
plus and minus, as in the above examples.
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Cases in which the Terms have Numerical Coefficients.

102. If the'terms''of' the 'given binomial have nu
merical coefficients, we may form any of its powers by
means of the binomial formula:

11. Find the cube of 2a + 3b.

Here, 2z takes the place of z in the formula, 3b the place of g,
and 3 the place of 7, giving,

(22 + 3b)® = (2a)® + 8(2a)(30) + 3(2a) (30F + B0 . . . (1);
or, performing the operations indicated,
(Ra + 3b® = 8a® + 36a% + 54ab’ + 2%,

Simplification of the Operation.

103. If we examine the second member of equation
(1), Art. 102, we see that each term is made up of
three factors; 1st, a numerical factor; 2d, some power
of 2a; and 3d, some power of 36. The powers of 24
are arranged in descending order towards the right, the
last term being the O power of 2a, or 1; the powers
of 35 are arranged in ascending order from the first
term, which is the 0 power of 3, or 1.

The operation of raising a binomial, in which the
terms have numerical coefficients, is most readily effected
by writing the three factors of each term in a vertical
column, and then performing the multiplications as
indicated below :

Coefficients; . . . 1 4+3 43 +1
Powers of 2a; . . 8a*+4a* +2 +1
Powers of 3b; . . 1 +3b + 98 4 2788

o (2a+3b)® = 843+ 36a% 4 54ab?+ 27158
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The preceding operation hardly requires explanation. In the first
line, we write the, nnmerical coefficients corresponding to the par-
ticuiar power taken from the formula; “in the second line, we write
the descending powers of the leading term down to the 0 power;
in the third line, we write the ascending powers of the following
term from the 0 power upwards. We then maultiply each column
from above downward.

It will be found most convenient to write the powers in the
second line from right to left, beginning with the 0 power.

EXAMPLES.
12. Find the cube of 3¢ + 28.
OPERATION.

Coefficients; . . . 1 +3 +3 +1
Powers of 3a; . . 2a*+ 9a® + 3a +1
Powers of 26; . . 1 +2b 4 48 4 83

o (33 + 20)° = 2704 54a?h -+ 36ab2+ 855

13. Find the square of 7z — 3y.
OPERATION.
Cocflicients; . . . . 1 4+ 2 41
Powers of T; . . . 4922+ Tz +1
Powers of — 3y; .« 1 — 3y +9p

o (T2 — 3y = 492 — 422y 4 9P

14. Find the cube of 2z — 3y.
OPERATION.

Coeffictents; . . .1 +3 +38 + 1
Powers of 22; . . 823+ 422 + 22 + 1
Powers of —3y; . 1 — 3y + 9 — 2P

o (2 — 3y)® = 8a%—362%y+ bayt— 27yd
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15. Find the cube of }z + 1y.

OPERATION.
Coefficients; . . . 1 +3 +3 +1
Powers of dz; . . 2412 + 3z +1
Powers of 3y; . . 1 +3y + 3 + &

~ (32 + 1) = 12 + Y + ot + A

16. Find the fourth power of ja — 36.
Ans. fgat — $a% + Zla®? — b4ab® 4 8144

17. Find the cube of 2az — 35y
Ans. 8a%r® — 36a%a%y? + Sdabiryt — 275%5.

18. Find the fourth power of 2 — &,

5 d
g, TP ARy SCSP  dactzyt | o
" S < P @ T oA

19. Find the fourth power of mz + ny.
Ans. mizt+ 4mdnaty 4 6miniaty? 4 dmndzyS 4 néyt

20. Raise @ — 2z to the fourth power.
Ans. at — 8a%z 4 24a*® — 32az® + 1624,

Verify the following results:
1\3 3 1
1. (x+5)=$8+3$+5+;8.

22.

s @t T &
23. (2% — 1)% = 2% — 3o 4 3o7 — 1,
4, (FP—e")P = % —e™® —3(" — ).

25. (5—4x)* = 625—20002z + 240022 — 1280234 25624,

(z az)"_ a8 3_9; 3a? ab
® x -
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26. (ba*c’d — 4abd?)* = 625a°c*d* — 2000a7bc*d®
o+ 2400afbPctd® —1280a382d" + 256ab'dP.

Powers of Polynomials.

104. The polynomial a+b+c, may be written under
the form, @+ (&+c¢); hence, (a+b+¢)" = [a+(d+¢)]";
also, (2a —z+3y+42)", equal to [(Ra — z)+ (3y+42)]";
and so on, for polynomials containing any number of
terms.

To raise a polynomial to a power, we write it under
the form of a binomial, each term of which may be a
binomial, or some other polynomial; we then form the
powers of these parts, and proceed in the same manner
a8 with a true binomial:

EXAMPLES.

1. Find the cube of @ + (b + ¢\

OPERATION.
1+ 3 + 3 + 1
ad+ a + a + 1

14+ (b+e) + (B+Rc +8) + (¥ +38°c+3bc2 + ¢¥)
a® + (3ab + 3a%c) + (3ab? + 6abe + 3ac?) + (83 +38% + 3bc2 + )

2. Find the square of (¢ — 2) + (3y + 42).

Ans. 4a*—4az+ 2%+ 12ay + 16az— 62y —8zz
+ 992 + 24yz + 1622
Verify the following results: '

8. 1—22+382% = 1 — 6z 4 212® — 442° + 63z
— 5425 4 2728,
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L @—a+P=d—22+ie—fo+ e

5. (z—£_1)8= z’—%—3x’—%+5.

142° 105122

6. (7x9—§+3)2= st — 22 4 BT

6z
——5‘+9.
b\? 2az. » B a
n(etgog) =+ F -G TG

1\? 322 =z 1
— ) — oA o _ T~
8. (x’ z+4)_a, 2:c"+2 2+1'

9. (32 — 2 + 569 = 9a* — 120% + 340°?
— 20al® + 2584

10, (22 — 3z + 42 = 4a% — 1228 + 2527 — 24z + 16,

11, (28 4 222 4 3z + 4)? = 28 4 425 4 102 4- 202®
+ 252% + 24z + 16.



CHAPTER VII.

EXTRACTION OF ROOTS.

Definitions and Symbols.

105. A root of a quantity is one of its equal factors.
If a quantity is resolved into 2 equal factors, one of
_them is called the square roof : the symbol for the
square root is /.

. If a quantity is resolved into 3 equal factors, one
of these factors is called the cube roof : the symbol
for the cube rootis V. :

If a quantity is resolved into # equal factors, one
of these factors is called the #® roof: the symbol for
the n* root is 4/

The operation of finding one of the » equal factors
of a quantity (» being a positive whole number), is called
extracting its »% root.

Another Method of Indicating Roots.

106. Instead of employing the symbols 4/, 4/, 4/,
to indicate the squars, cube, n* roots, it is more con-
venient to employ the fractional exponents, §, %, %,
which indicate the same thing. Thue,

Va= %, %: *, W:ai',... Va = a*,
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It will be shown hereafter, that quantities having
fractional exponents may be operated on by the same
rules as when' they have entire exponents.

Square Root of a Number.

107. The square root of a number is one of its
two equal factors. Thus, 25 = 5 x 5; hence, 5 is the

square root of 25; that is, 425 =5, or (25)'} = 5.

The following table, verified by actual multiplication,
is employed in finding the square root of any number
less than 100.

TABLE.

1 4 9 16 25 36 49 64 81 100. Powers.
1 2 3 4 5 6 7 8 9 10. Roots.

To employ the table for finding the square root of
a number less than 100. Look for the number in the
first line; if it is found there, its square root will be
Sound immediately under <t ; if it is not found there,
it will fall between two numbers in that line, and its
square root will be found between the two numbers im-
mediately below ; the less number of the two will be the
entire part of the root, and will be the true root to
within less than 1.

If a pumber is greater than 100, its square root will
be greater than 10, that is, it will contain Zems and
units. Let N denote such a number, z the tens of
its square root, and y the units; then will

N=@+yp=22+2y+ypyr=22+ 2+ y)y;
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that is, the number is equal to the square of the tens
in its root, plus fwice the product of the tems by the
units, plus the square of the units.

We first find the fens of the root. Since the square
of tens can contain no significant figure less than Aun-
dreds, the two figures on the right may be pointed off,
and the square of the tens will be found in the number
to the left of the point. If we subtract the square of
the tens from the given numbcr, the remainder will
be equal to twice the product of the tens by the units,
plus the square of the units. Consequently, if we
divide the remainder by twice the tens, the quotient
will give the units, or a number greater than the
units. To test it, add it to twice the tens, and mul-
tiply the sum by the quotient found; if the product
is equal to, or less than the remainder, the number
found is the root sought; but if greater, diminish the
last figure by 1, and test as before, till the correct
number is found.

EXAMPLE.

Find the square root of 1764.
. OPERATION.
Pointing off the two right hand figures, 1764 |42
there remains the number 17, the greatest 16
perfect square in which is 16. The square 82 [164
root of 16, or 4, is therefore the number 164
of fens of the required root. 0

Place the figure on the right after the manmer of a
quotient. Subtracting 16 Aundreds (the square of 4

tens) from the given number, we have 164 for a re-
1
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mainder. Doubling the tens, we have 8 fens, which is
contained in 164, (that;is; 8 is contained in 16) 2 fimes ;
adding 2 to 8 fens, that is, annexing 2 to 8 and mul-
tiplying the result “by 2, we find 164, which is equal to
the remainder already found; hence, the required root
is 42.

It the given number contains more than four places,
we point off a period of 2 figures from the right, for
the same reason as before. The operation is then re-
duced to finding the square root of the remaining num-
bers, that is, the fens of the root. In finding this root,
for the same reason us before, we point off another period
of two figures, and the operation then is reduced to
finding the square root of the remaining number, that
is, the tens of the tfens, or the Aundreds of the root.
If the number on the left of the second point, contains
more than two figures, we again point off a period of
two figures, and so on continually : the operation is
then reduced to a successive repetition of that already
explained ; hence, we have the following rule for ex-
tracting the square root of a number:

RULE.

I. Point the nwmber off into periods of two
fisures each, beginning at the units place.

II. Find the greatest perfect square in the first
period on the left, and place its square root on
the right, after the manner of @ quotient in a
division ; then subtract the square of this number
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from the first period, and bring down the next
period for'a' ' remainder:

III. Double the root already found, and see
low often it is contained in this remainder, ex-
clusive of the right hand figure; write this quo-
tient for a second figure of the root, annex it also
to the divisor wsed; multiply the divisor thus
increased by the quotient already found, subtract
this product from the first remainder, and bring
down the next period for a second remainder.

IV. Double the root already found and proceed
as before, continuing the operation till every pe-
riod has been employed. If the final remainder
is 0, the root is exact, if it is not 0, the root
found is true to within less than 1.

EXAMPLES.
1. Find the square root of 273529.

.OPERATION.

273529 | 523
e
102 | 235
T 204
1043 | 3129
3129

0.

2. Find the square root of 61009. Ans. 247.
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Find the square roots of the following numbers:

4096. Ans. 64.| 7. 68492176. Ans. 8276.
582169. Ans. 763.| 8. 1018081. Ams. 1009.
956484, Ans. 978.| 9. 9803161. Ans. 3131.
57198969, Adns. 7563. | 10. 1522756. Ans. 1234.

S ;o ow

Square Root of a Common Fraction.

108. A fraction may be squared by squaring its
numerator and denominator separately (Art. 96): re-
versing the principle, we have the following rule for
extracting the square root of a fraction:

RULE.

Extract the square root of the numerator for
a new numerator, and the square root of the
denominator for a new denominator.

EXAMPLES.

Extract the square root of the following fractions:

25 5 392 196 14
1. 56. . Ans. 6. 4. ‘ig, or T- Ans. 3‘-

256 16 2209 47
2. '6‘% . Ans. '2—5' . 5. —1—9—6' . Ans. IZ.
3, 2—1%. or % Ans. T'Yi 6. 541%,or 1§42, Ans. 7%

Square Roots by Approximation.

109. If the terms of the fraction, after being re-
duced to its simplest form, are not perfect squares, the
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exact root is impossible. In such cases, we may mul-
tiply both terms by:any number that will make the
denominator a perfect square. Then, extracting the
square root of the numerator to the nearest umnit for
a new numerator, and the square root of the denom-
inator for a new denominator, the resulting fraction
will be the true root to within less than the fractional
unit of the root.

EXAMPLES.

Find the square roots of the following fractions,
approximately :

19 38 1
1. § = -13. Ans. Z to Wlth Z:
19 19 x 32 24 1
2. T 8 x33" , Ans. 16 to within — 16"

By increasing the factor introduced in both terms, we may make
the resulting root true to any degree of exactness.

3. % = %Q Ans. 1—4- to within’ %
4 %: igi—g:‘;. Ans. 2 to within
5. 2= 5;;‘——333%’. Ans. T to within 7.
6. % = % Ans. gﬁ to within 21—0

Square Root of a Decimal Fraction.

110. The denominator of a decimal fraction is a
perfect square when the number. of decimal places is
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even, and the number of decimal places in the root of
the decimal is half the number of decimal places in
the given decimal’; 'hence, from'the preceding principle,
we have the following rule for finding the square root
of any decimal fraction, to any degree of exactness:

RULE.

Annex 0's to the decimal till the number of
decimal places is twice the number of decimal
places required in the root; extract the square
root of the result as though it were a whole num-
ber, and point off the required number of decimal
places in the root.

A vulgar fraction may be converted into a decimal, and then the
above rule may be applied. The rule is also applicable to the case
of whole numbers, to which we may annex any number of decimal
0’s. :

EXAMPLES.

Find the square roots of the following decimals,
approximately :

1. 9.6 = 9.600000. Ans. 3.098 to within .001.
2. 765 = 7.65000000. Ans. 2.7658 to within .0001.
3. 15.2379. Ans. 3.90357 to within .00001.
4. 4, or .571428. Ans. 0.755 to within .001.
5. r Ans. 0.24253 to within .00001.
6. 1045 Ans. 3.209 to within .001.
%. 5, or 5.000000. Ans. 2.236 to within .001.
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8. 22. Ans. 4.69 to within .0L
9. 153./V\\ Ans.112.36931 to within .00001.
10. 101. Ans. 10.04987 to within .00001.

Cube Root of Numbers.

/ill. The cube root of a number is one of its
three equal factors. Thus, 27 =3 x 3 x 3; hence, 3
is the cube root of 27; also, 4 is the cube root of
64, because 4 x 4 X 4 = 64.

The following table, verified by actual multiplication,
is employed in finding the cube root of any number
less than 1000:

TABLE.

1 8. 27 64 125 216 343 512 729 1000.
1 2 3 4 5 6 7 8 9 10.

To -employ the table in finding the cube root of a
number less than 1000. Look for the number in the
first line, if found there, tts cube roof is tmmediately
below t; if the number is not in the first line, it will
fall between two numbers in that line, and its root will
fall between the corresponding numbers in the second
line ; the less number of the two will be the entire part
of the required cube root, that 1is, it is the cube root
to within less than 1.

The cube of 10 is 1,000 ; the cube of 2 ¢ens, or 20, is 8,000;
the cube of 3 fens, or 30, is 27,000; and so on up to the
cube of 10 fens, or 100, which is 1,000,000.
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If a number is greater than 1000 its cube root is greater
than 10, that is, it is|made| up)of fens and units. Let &
denote a number greater than 1000, and let the fens of its
cube root be denoted by a and the units of its cube root
by &; we shall have,

N = (a+ b)* = a® + 3a% + 3ab® + B,
which can be placed under the form
I=2a?+ [30*+ (8a + 5) 8] x &. 1)

This formula indicates a method of finding the cube
root of a number greater than 1000. As an illustration
of this method let it be required to find the cube root
of 405,224.

OPERATION.
405 224 | 74
343
Trial Divisor. 3 x 70* = 14700 | g2 224
4 x(3x70+4) = 856
Complete Divisor. . . . 15556| 62 224
0

ExPLANATION.—Because the cube of tens contains no significant
figure of a less denomination than thousands, we point off a period
of three figures from the right ; the cube of the number of tens in
the root will be contained in the remaining period, that is,in 405 We
see from the table that the greatest perfect cube contained in 405 is
848, whose cube root is 7; we therefore write 7 for the number of
tens of the required root. We next subtract 343 from 405 and to the
remainder we annex the second period, giving 62224, which we
regard as a dividend. We see from formula (1) that this dividend is
composed of two factors, one of which is the units of the root and the
other is @ number greater than 3 times the square of the tens of the
root ; hence, if we divide it by & times the square of the tens, the quo-
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tient will be the units of the root or some greater number ; this
quotient, which we call a trial figure, must be tested in the manner
indicated by,the,formula: - |In the present example, 3 times the
square of the tens is 8 x 70?, or 14700, and the trial figure is 4. To
test this figure we form the complete divisor ; this we do by adding
to the trial divisor 4 times the result obtained by increasing 8 times
the tens of the root by the trial figure. This gives the complete divisor
15556, and this multiplied by 4 gives 62224, which taken from the
dividend gives 0 for a remainder. Hence, the required root is 74.

If the product of the completed divisor in any case is
greater than the dividend, we diminish the trial figure by
1 and test as before, and so on till the product is equmal to
or less than the dividend. In the former case the root is
exact, in the latter case it is true to within less than 1.

If the number to the left of the first period on the right
containg more than three figures, the tens of the root
will be made up of ¢ens of tens, or hundreds, and units of
tens, or tens ; and for the same reason ag before, a second
period of these figures must be pointed off from the right,
and so on until the period on the left contains three figures
or less. The root is then found by a continued repetition
of the process above given ; hence the following

RULE.

I. Separate the given number into periods of
three figures each, counting from the units’ place;
the period on the left may contain less than three

i gures.

II1. Find from the table the greatest perfect cube
in the first period on the left, and write its root for
the first fisure of the required root; subtract this
cube from the first period, and to the remainder
annex the following period for a dividend.
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III. Multiply the square of the root already
found by 3, and to the product annex two ciphers
for a trial divisor;- find Wow'many times this is
contained in the dividend, and write the quotient
for a trial fisure of the root; then annex this trial
figure to 3 times the root previously found, multi-
ply this result by the trial figure, and add the
resulting product to the trial divisor for « com-
plete divisor.

IV. Multiply the divisor thus completed by the
trial figure of the root, subtract the product from
the dividend, and to the remainder anncx the
following period for a new dividend.

V. Proceed as before, continuing the operation
till all the periods have been wused.

Notes.—1. If a trial figure proves too great, diminish it succes-
sively by 1’s till it is correct.

2. If the last remainder is 0, the number is a perfect cube, and
the root is exact ; if not, the root is true to within less than 1.

EXAMPLES.
1. Find the cube root of 111,980,168.
OPERATION.

111980 168 | 482
64
1st Trial Divisor. . . 3 x 40° — 480047 950
8 x (3 x 40 4 8) = 1024
1st Complete Divisor. . . . . . 5824]46592
2d Trial Divisor. . 3 x 4802 = 691200 | 1 388 168
2 x (3 x 480 +2) = 2884 .
2d Complete Divisor. . . . . . 694084 |1388168
0

Note.—Here we have three periods. In the first place we find
the cube root of the first two periods to within 1, as explained before ;
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in doing this we find for the first trial figure the number 9, which on
being tested proves too great; we then try 8 and find that it is cor-
rect; we then/\proceed as)(before, using 48 as the part of the root
already found.

2. Find the cube root of 224755712. Ans. 608.

3. Find the cube root of 2460375. Ans. 135,
4. Find the cube root of 11089567. Ans. 223.
5. Find the cube root of 40353607. Ans. 343.
6. Find the cube root of 403583419. Ans. 139,
7. Find the cube root of 115501303. Ans. 487.

Simplification,

112, If the index of the required root iz composed
of two factors, the operation of extracting the root may
be simplified.

Let N be any number, and assume

m

NVN=r . . . . (1)

Raising both members of (1) to the m® power, we
have, '

NN=r™ . . . . 2

Raising both members of (2) to the ~* power, we
have, :
N= . . . . (3

Extracting the mn® root of both members of (3), we
have,
: WN=r . . . . (4

Things which are equal to the same thing are equal
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to each other; hence, placing the first members of (1)
and (4) equal, we have;

VN = ¥ VN
From which, we conclude that the mn® rool of any
number i3 equal to the m® root of the n* root of
that number.

We may, therefore, factor the index and extract the
root of the number that is indicated by one of the fac-
tors, and then the root of the result that is indicated
by the other factor. It will be simpler to begin with
the least factor.

EXAMPLES.
1. Find the fourth root of 923521.

‘We have, 928521 = 961,

and, 4961 = 381
Hence, 31 is the required root.

2. Find the sixth root of 191102976.

‘We have, 4/ 191102976 = 13824,
and V13824 =24 Ans
3. Find the fourth root of 65536. Ans. 16.

Higher Roots of Fractions.

113. It has been shown (Art. 96), that a fraction
may be raised to any power by raising the numerator
to that power for a new numerator, and the denomi-
nator to that power for a new denominator; reversing
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this principle, we have the following rule for finding
any root ofa/fraction;

RULE.

Extract the required root of the numerator for
a new numerator, and the same root of the de-
nominator for a new denominator.

EXAMPLES,

1. Find the cube root of . Ans. §.
2. Find the cube root of &4 Ans. $.
3. Find the cube root of }%§4. Ans. .
4. Find the fourth root of 29§%. Ans. 2%.
6. Find the fourth root of 104§#$. Ans. 3%.
6. Find the sixth root of 11}§. Ans. 1.

Higher Roots by Approximation.

114. If the denominator of a fraction is not an
exact power of the degree indicated, we may multiply
both terms of the fraction by such a number as will
make the denominator an exact power of that degree.
Then, extracting the required root of the resulting nu-
merator to within less than 1, and writing the result
over the required root of the denominator of the frac-
tion, the result will be the true root, to within less
than the fractional unit.

EXAMPLES.

Find the cube roots of the following numbers ap-
proximately :
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173 _ 346 7 e 1
1. 32 64 . Am. Z to Wlthln Z
125 250 6 I |
2. 2?6' = gﬁ. Ans. '8‘ to within g
278000 65 oy
3. 218 = 1000 Ans. 10’ °F 6.5 to within .1.
4. Find the fourth root of —— 210 630

21 87 6561°
) Ans. —g—to within

O

Higher Roots of Decimals.

115. The denominator of a decimal fraction is a
perfect #** power (n being any whole number), when
the number of its decimal places is divisible by #, and
the number of decimal places in its »* root is the
n* part of the number of decimal places in the given
decimal ; hence, from preceding principles, we have the
following rule for finding the »* root of a decimal
fraction to any desired degree of accuracy:

RULE.

Annex O's to the given decimal, till the num-
ber of decimal places is n times the number in
the required root; extract the n™ root of the
result, as though it were a whole number, and
point off the required number of decimal places
in the root.

The rule is applicable to a vulgar fraction, for we
may convert it into a decimal by known rules; it
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it is also applicable to finding an approximate root of
a whole number,

EXAMPLES.

Find the cube roots of the following numbers, ap-

proximately :

1. 5.8. Ans. 1.7967 to within .0001.
2. 102.875. Ans. 4.6856 to within .0001.
3. & Ans. 0.873 to within .001.
4. 4 Ans. 0.941 to within .001.
5. 82 Ans. 4.344 to within .001.
6. 550. Ans. 8.193 to within .001.
7. Find the fourth root of 72.

Ans. 291 to within .01,

Find the sixth root of 28.25.
Ans. 1.745 to within .00_1.

Find the fourth- roots of the following numbers:

9 %. Ans. 1.15 to within .01
10. 81f. Ans. 1.69 to within .01
11. 13. Ans. 1.89 to within .01

12. Find the cube root of 58230.6.

Ans. 38.76 to within .01.

Roots of Monomials.

116. We have seen, (Art. 96), that a monomial can
be raised to any power by raising the coefficient to the
required power for a new coefficient, and giving to each
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letter an exponent equal to its original exponent, mul
tiplied by the exponent of the required power; revers-
ing this principle, we have the following rule for ex-
tracting any root of a monomial :

RULE.

Extract the required root of the coefficient for
a new coefficient ; after this, write all the letters,
giving to each an exponent equal to its original
exponent, divided by the index of the required
root.

This rule, combined with that for extracting any root of a
fraction, enables us to extract any root of a monomial, whether
entire or fractional.

EXAMPLES.

Find the square roots of the following monomials:

1. 92?22 Ans. 3ab%.
2. 49a%hp Ans. Tazyp.
3. _TG_'- Ans. T.

2atrhp Satay
4 Sl T
5. 25a~%~4c? Ans. 5a~1b%.

Find the cube roots of the following monomials:

6. Satbhyp. Ans. 2ab42
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- Sa%y? ‘ 2ay

" s Ans. 3
: 16atyt 2ay

8. Find the fourth root of 635:8 Ans. A

9. Find the cube root of 343278y  Ans. Tz iy

Rule for Signs of Roots.

117. Since the square of + @ is a? and the square
of —a is also a? it follows that a® has two square
roots, + ¢ and —a. Further, since every even power
of a positive quantity is equal to the same power of
that quantity taken with a negative sign, it follows that
every positive quantity has two square roots, two fourth
roots, two sixth roots, &c., which are equal numerically,
but have contrary signs. Thus,

V250 = + 5ab; vV16a%® = + 2ei?; Va®f = + a.

Since every odd power of a quantity has the same
sign as the quantity, it follows that the sign of any
odd root is the same as the sign of the quantity; hence,
the following rule for signs:

RULE.

Every even root of a positive quantity must have
the double sign, + ; every odd 700t of any quan-
tity must have the sign of the quantity.

In the preceding examples, only the numerical value of the
roots have been considered ; hereafter, the proper signs will be
prefixed to the results.
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EXAMPLES.

Find the'\cube | rootOof G 127asz S8y~
Ans. — 3az™'i?

Find the square root of $tatit. Ans. + §a*A
Find the 4th root of a'ma*y'».  Anms. 4 amz*"y™.
Find the cube root of — 512z7%  Ans. — 8a~L

256a24

Find the square root of ———-.
1 9zty? 4 16ad?
ns. 3y "

z&y—}l

¥ind the cube root of % .
9zy 1
Am- + E‘zb_‘§ .

Find the square root of 900a%%~.
Ans. 4 3Caz¥p.

Find the 4th root of 222, Ans. + 3?“7‘

U

Definition of an Imaginary Quantity.

i 118. It is impossible that an even power of a quan-
tity, either positive or negative, should be a negative

i quantity; hence, it is equally impossible to extract any

i even root of a negative quantity. An indicated even

root of & negative quantity, is called an imaginary

quantity. Thus, v/ —4, v/ — a?, v/ — ¥, are imag-
inary quantities.

Square Root of Polynomials.

119. To deduce a rule for extracting the square



EXTRACTION OF BROOTS. 163

root of a polynomial, let ns suppose the root to be
known, and to be arranged with respect to some letter.
We may regard the root as composed of fhe first term
plus the sum of all the other terms. Hence, its square,
which is the given polynomial, will be made up of ke
square of the first term, plus twice the product of the
first term by the sum of all the other terms, plus the
séuare of the sum of all the other terms, (Art. 106).
Now the square of the first term of the root must be
of a higher degree with respect to the leading letter
than any other term. Hence, if we arrange the given
polynomial with respect to any letter, the square root
of the first term will be the first term of the required
square root. If the square of this term of the root is
subtracted from the given polynomial, and the first term
of the remainder divided by twice the first term of the
root, the quotient will be the second term of the root.
The rest of the operation for finding the square root,
is entirely analogous to that for finding the square root
of a whole number, and will be best understood from
an example. Let it be required to extract the square
root of 92t 4 1228 4 282? + 16z 4 16:

OPERATION.

974 + 122° + 2822 4+ 162 + 16 | 322 + % + 4
974

622 + 22 l 1228 + %822 4 16z + 16 . . 1st remainder.
1228 4 42
62 + 42 + 4 | 2422 + 16z + 16 . . 2d remainder.

24z® 4+ 16z + 16
0 . . 8d remainder.
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The polynomial having been arranged with respect
to 2, the square root of the first term is 322 Sub-
tracting 9z* from the given polynomial, and dividing
the first term of the remainder by 62?% which is double
323, we find 2z for the second term, which we add to
the root and also to the divisor. Multiplying the divi-
sor, thus augmented, by 2z, and subtracting the product
from the first remainder, we have a second remainder.
Doubling the root already found, and dividing the first
term of the second remainder by the first term of the
last divisor, we find 4 for the third term. Adding
this to the root and also to the second divisor, and
multiplying the divisor by the last term found, we find
for the final remainder 0; hence, the required root is
322 + 22 + 4.

In the same way, the square root of any polynomlal
may be found; hence, the following

RULE.

I. JAdrrange the polynomial with reference to
some letter, and extract the square root of the
first term for the first term of the root. Sub-
tract the square of this term from the polyno-
mial for the first remainder.

II. Double the root already found, and place
it on the left of the first remainder for a divi-
sor; divide the first term of the first remainder
by this divisor, for the second term of the root;
add, the quotient to the root found, and also to
the divisor ; multiply the divisor, thus augmented,
by the last term of the root found, and subtract
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the product from the ﬁrst remainder for a second
remainder!

ITI. Double the root already found for a sec-
ond divisor. Divide the first term of the second
remainder by the first term of the second divi-
sor for the third term of the root; add this term
to the root and to the second divisor, and pro-
ceed as before, continuing the operation as far as
desirable.

If a remainder is found, equal to 0, the root is exact.
EXAMPLES.

1. Extract the square root of a* — 243+ 3a® —2a + 1.

OPERATION.
A —2B 43 —2a+1|a—a+1

a4
2a’—a|-——2a‘+3a’
_—_—2a"+a2

202 —2 +1 |2 —2 +1

W — 2 +1

T

In finding the several remainders, all of the terms need not be
brought down ; only as many as are needed.

Extract the square roots of the followmg polyno-
mials :

2. 91“—30az+25a’+5a3+9—4—3a2x.

Ans. 3x—-5a——2—



166 MANUAL OF ALGEBRA.

3. 428 + 8az® + 4a%? + 165%° + 16ab% + 1684
Om.dns. 2z® 4 2ax + AR

R a b a b
v 4 ﬁ+a_2+2(5+5)+3 Ans. 2 4+ -+ 1
2. 9 2y =y z. Yy 2
gttty 1% AmatiTg
2?2 4 2 dzy x2 Yz
b gttt %5

T. 2+ 22 + (PP — )2 — 2pgz + ¢
Ans. 23 + px — q.

8. (z+ 22 — 4z — z). Ans. z — a1 —2
9. 9a™ + 6a™+ 4 2Bt — 30amcmt Y ghmi
—10g?m+1cm2, Ans. 8a™ — 5¢™2 + a2m+l.
1423 62 1051z
10. 4924 +9 — 5 — 5 + —5=—-

Ans. T2 — g + 3.

11. 14 2. Ans. 1+g—%2+%—&c.
2 47y
12. yz(4y=+1)+ ( +1)+3 W
Ans. 2y’ + 1.

Higher Roots of Polynomials.

120. We may find the cube root of a polynomial by a
method entirely analogous to that employed in finding the
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cube root of a number, but there is a simpler method of
proceeding. 'The//dividend found 'at each step of the
operation is the result obtained by subtracting the cube of
the root already obtained from the given quantity. But we
only need the first term of this dividend and the first term
of the divisor to find the next term of the root. The
method of proceeding is shown in the following example.
Let it be required to find the cube root of
2% 4 62° — 402° 4 96z — 64.

OPERATION.
284-625—402% 4 962—64 | 22+ 2x—4
(r*+22)3 = 284625+ 12244823 324 . Divisor.
2d Dividend. . . . —1221—4823 etc.
(2 +22—4)8 = 25+ 625— 4025+ 967 — 64
0

ExXPLANATION.—The cube root of the first term, 2°, is 2%; this is
the first term of the required root. Subtracting the cube of z* from
the given polynomial, we have for the first term of the remainder
6x°, which need not be brought down. Multiplying the square of the
first term of the root by 3, we have for a divisor 32* (which will be
the first term of all subsequent divisors). Dividing 62° by 324 we
find 2z for the second term of the root. Subtracting the cube of
2 + 2z from the given polynomial, we find — 1224 for the first term
of the second dividend. Dividing this by 32* we find — 4 for the
third term of the root. Subtracting the cube of 2* + 2z — 4 from the
given polynomial, we find 0 for a remainder; hence the required
root is 2* + 2z — 4.

Other cases may be treated in the same manner; hence,

the
RULE.

I. Arrange the given polynomial with reference
to one of its letters, and extract the cube root of the
first term ; this will be the first term of the root.

II. Divide the second term of the polynomial by
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3 times the square of the first term of the root; the
quotient will be|the second term of the root.

III. Subtract the cube of the first two terms of
the root from the given polynomial, and divide
the first term of the remainder by 3 times the
square of the first term of the root; the quotient
will be the third term of the root.

IV. Continue this operation till a remainder is
found equal to O, or wntil it is shown that the
polynomial is not a perfect cube.

EXAMPLES.
Find the cube roots of the following polynomials :
1. 82 — 1222 + 6z — 1. Ans. 2z — 1.

2. 28 — 628 4 1528 — 202° 4 1522 — 6z 4 1.
Ans. 22 -2z 4 1.
3. 64a* — 288a® 4- 1080a® — 1458z — 729.
Ans. 4a* — 6a — 9.
4, 1 — 6z 4 212® — 4423 4 6322 — 5425 4 2725,
Ans. 1 — 2z 4 322
By extracting the required root of the first and last terms, two
terms of the root may be found, from which the remaining ones

may, sometimes, be determined by inspection ; the whole root may
then be verified as above.

To find the fourth root of a polynomial extract its square
root and then extract the square root of the result.
Let it be required to find the fourth root of
1624 — 1282% + 3842%2 — 512y + 2564%

Extracting its square root, we have 42® — 16zy + 16y?; and the
square root of this polynomial gives 2z — 4y ; which is the required
root. )



CHAPTER VIII

RADICALS.

I. TRANSFORMATION OF RADICALS.
Definitions. -

121. A radical is an indicated root of an imperfect
power of the degree indicated. Thus, /3 and 4/4 are
radicals; they are also called irrational quantities or
surds.

An indicated root of a perfect power of the degree indicated, as
4/9, is a rational quantity under a radical form.

The coefficient of a radical is the factor without
the radical sign. Thus, in the expression, 34/3, 3 is
the coefficient; in the expression 4/3, 1 is the co-
efficient.

122. Radicals are of different degrees, the degree
being determined by the index of the radical. Thus,
4/3 is a radical of the second degree; v/4 is a radical
of the {hird degree, and 4/a is a radical of the n%
degree.

123. Radicals are similar when the radical parts
are alike, that is, when they are of the same degree
and when the quantities under the radical sign are the

game. Thus, 34/ab and 5+/ab are similar.
8
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Notation.

124. It has already been explained that radical
quantities can be written by means of fractional ex-
ponents. The following table indicates the conventional
methods of expressing radicals, powers, and reciprocals:

TABLE OF EQUIVALENT EXPRESSIONS.

vz, 4y, equivalent to 3, y':" .

V7, v ¥*, equivalent to xi, y',l.‘ .
. 1 1

s, y™,  equivalent to =TI

., S

—, —, equivalent to =z ¢, 2z ™.
N
The numerator of a fractional exponent indicates the
power to which the quantity is to be raised, the de-
nominator shows what root of that power is to be
taken, and the sign of the exponent tells us whether
the result is to be regarded as a factor, or as a divisor.
Thus, the expression, x_*, shows us that 2z is to be
cubed, that the fourth root of this cube is to be ex-
tracted, and finally that reciprocal of the result is to
be taken.

Demonstration of Principles.

125. Let n denote any whole number whatever, and
_ assume

”&X'\‘/z=p N )]
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Raising both members of (1) to the #* power, remem-
bering that/(4/@)" @, and 1(4/5)* = b, we have,

b =p" . . . . @

Extracting the #* root of both members of (2), we
have, :

'\7 ab =p . . . . 3)
Things equal to the same thing are equal to each
other; hence, equating the first members of (1) and
(3), we have,

Vax V= +~ab . . . (4
Again, assume
‘ Va
Iy q . . . . (5)
Vb
Raising both members of (5) to the n* power,
a n
Z = q . . . . (6)

Extracting the n® root of both members of (6),

\"/‘§=q....(7)

Equating the first members of (5) and (7),

2___";...(8,

From the principle demonstrated in Art. 112, we

have,
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From equations (4), (8), and (9), we have the fol-
lowing principles;:

1°. The product of the n® roots of two quantities, is
equal to the n™® root of their product, and the reverse.

2°. The quotient of the n® roots of two quantities, 18
equal to the n* root of their quotient, and the reverse.

3°. The m®* root of the n™ root of any quantity, is
equal to the mn® root of that quantity, and the reverse.

These principles are used in the transformation of rad-
icals, that is, in changing their forms, without affecting their
values.

FirsT TRANSFORMATION. 70 reduce a radical to its
simplest form.

126. A radical is in its simplest form when there
is no factor under the sign which is a perfect power
of the degree indicated.

Take the radical, v/a*zys:

Factoring the quantity under the radical signs, we
have,

Vairty® = Vaktyp x ay.

Hence, from principle 1°, we have,
valrty = vVatyp x ‘\/(_t?/ = ar’yv ay.

In a similar manner, other radicals may be simpli-

fied; hence, the following rule for reducing a radical
to its simplest form:



TRANSFORMATION OF RADICALS. 173

RULE.

Resolve the quantity wnder the radical sign
into two factors, one of which is the greatest per-
fect power of the degree indicated. Extract the
required root of this factor, and write the result
as a factor without the radical sign, leaving the
other factor under the sign.

Before pronouncing on the ﬁmihﬁty of two radicals they should
both be reduced to their simplest form.

EXAMPLES.

Reduce the following radicals to their simplest forms:
1. V18a'2%y = 4/16a%® x 3y. Ans. 4a*2+/3y.

9 \/50:;2 L ) Ans 51;\/\2‘
"N i =\ we X 3 "WV 3%
3. Vi@a+12)(@®—2) = V(e+ 2?2 (@ —2).

Ans. (a + z) Va—uz.
4. N2z + P = Va(Raz + )

Ans. av/Raz + 22
2 /24 s/5 3 /192
5. \/%+\/7—2+\/1—25-.
3 1 4
Ans. 2\’/2—5+§\3/§+5\’/;

It will often be advantageous to multiply both terms of a frac-
tion by such a quantity as will make the denominator a perfect
power of the degree indicated, in which case, the factor remaining
under the sign will be entire. Thus, in the 5th example,

8 /34 _ 3 /8x38xb6_2,/,~ ;/E_’ B _1
1/2:5— o5 5V 15 850 4 0o =4 315 = g VIO
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6. 2vi+ vi. Ans 3vI5 4 V15
7. Vi — 4V Ans. 2392y

8. V150 + V1805 + v'320.
Ans. 546 + 19¢/5 + 45

9. V7168 + v a & — V608
Ans. 443 + abva — 24/19.

10. vaz® — 6az + 9a Ans. (z — 3)Va.

1. (=07 + (@8 — ap)t.
Ans. a*bee(c)t + a(a — B)L.

12. (@)t + (1)t Ans. ab(be)¥ + ab(a)b.

13, Vi+iVi+HIvE Ans. }V2+4V+EVE

a*h + a*x a, fbt <z
14. Vb—s——%. Ans. —b‘ b—z'

SECOND TRANSFORMATION.— To introducc & factor
under the radical sign.

127. Take the example, 4a4/%c:

Since 4¢ = 4/16a% the given expression may be
written,

4aV2% = V162 x V2,
which, by principle (1), may be written,

4av2 = V/16a x 2¢c = 1/32%.
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In like manner, any factor without the radical gign
may be introduced, as a factor, under the radical sign;
hence, the following

RULE.

Raise the factor to the power indicated, and
write it as a factor under the radical sign.

EXAMPLES.

Transform the following radicals by introducing the
coefficients, as factors, under the radical signs:

1. 74/3az. Ans. +'14%az.
43/8 3 /12
3. Tav/% + }V12. Ans. v/98a% + V.

4. 943 4 834/3 + 24/8a®
Ans. /243 + /81 + /12848,

5. 44/2a — 21a+/3a — azN/2*.
Ans. V/32a — V/1323a® — Va5,

7 1 3 /1
6. 4\/5_5\/§+12\/I'
anse A/ /B 4

This transformation is used in finding the numerical values of
radicals. Thus, it is easier to find the cube root of 432 than to find
12 times the cube root of }, to which it is equivalent.
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THIRD TRANSPORMATION.—T0 change the index of a
radical.

128. Take the radical, v/3a:
Since 3a is equal to 4/3a x 3a, or 4/9a% we have,

V3a = ¥ voa.
8

But, from principle 3°, V92 = 4/9a%; hence,

V3a = V9.
Here, a radical having an index 3 has been trans-
formed to an equivalent radical, having an index 6.

In like manner,

V2%z = Vi = W (2az)® = W/ (Raz)- &e.

Again, we have from principle 3°,

V19222 = YV ViR
But, /49¢%® = %az; hence,

Vi9¢%? = +/az.

Since we may proceed in like manner in all similar
cases, we have the following

Principles.

1°. The index of any radical may be multiplied by
any number, provided we raise the quantity under the
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radical sign to a power whose exponent is the same
number.

2°. The index of a radical may be divided by any
number, provided we extract that root of the quantity
under the radical sign whose index is the same number.

If a radical is expressed by means of a fractional ex-
ponent, we may proceed as follows:

(a)i is evidently equal to (a)%, gince § = §.
Also, (a)’fg’r is equal to (a)}, since % is equal to };
that is, '
ot = a%; and o7¥ = of.
or, by writing their equivalent expressions,
Va=Vd Wé=7Va
These are the same results as obtained by the rule.
From what precedes, we have the following

Principle.

8°. Both terms of a fractional exponent may be
tiplied, or divided, by the same quantity without .
tng the value of the radical.

_ EXAMPLES.
Verify the following equations :
L V3 + Vi + V5 =5 + V6 + V2.
2. \‘/55 -—'{/57 - {'/E‘:'x/ﬁ — V3 — V7.
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3. 3Vad—2az+2 — 28 = 3vVa—z — 24/2az.

4 VaTZLN P VB Bz + 22— B+ 20z + 20
5. (@)t + @ty = (@)t + @yt
6. ) — @t = @t - @t

FourRTH TRANSFORMATION. 70 reduce radicals to a
common index.

129. Radicals may be reduced to a common index
by means of the preceding principles. ILet it be re-
quired jo reduce the radicals, Va, 45, and /e, to
equivalent ones having a common index: here, the least
common multiple of the indices is 12; reducing each
to the index 12, by the foregoing principles, we have,

Va = Wa, Vb = WH and Vo= W&

Since all other cases may be treated in the same way,
we have the following
RULE.

Find the least common multiple of the indices,
and reduce each radical to that index.

If the radicals are expressed by fractional exponents, we have
simply to reduce these exponents to a common denominator.

EXAMPLES.

1. Reduce 2, @), ()f, and (32, to & common in-
dex. Ans. (22)T%, (3977, (09)TY, and (%)7Y.
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2. Reduce a‘}, B, ci, and di, to a common index.
ns O 2y, (4, and (a0 h

3. Reduce Va+ 2, va—z, and ¥V&® — 22 to a
common index.

Ans. V(a + 2)% V(a — )%, and W(a® — 2%
4. Reduce V%, v/2, and 54/3, to a common index.
Ans. v/, V4, and 5427

5. Reduce az, (bw)’}, (ca:)‘}, and (da:)*, to a common
index.
Ans. (atz8)T%, (3529)T%, (cA4)T¥, and (29T

6. Reduce c2? (dx’)‘}, and (z‘)i, to a common indes.
4ns. (Y, (@9}, and (M

7. Reduce 4/7, 410, and +/1%L, to a common

index. Ans. /49, 4/1000, and +/3gL
8. Reduce 43, +1§, and /1331, to a common
index. Ans. v}, V4%, and V1L

II. FunpamMENTAL OPERATIONS ON RaADICALS.

1°, Addition of Radicals.

130. Radicals cannot be added unless they are sim-
tlar. To determine when they are similar, we must
reduce them to their simplest form; then, if their rad-
ical parts are the same, they will be simwilar, and if we
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regard the common radical part as a unit, we shall
have the following rule for finding their sum:

RULE.

Reduce the radicals to their simplest forms;
then, if they are similar, add tae coefficients for
a new coefficient, and write the sum before the
common radical part.

EXAMPLES.

Find the sums ot the following groups of radicals:

1. 418, /32, 4/50, and V72
Ans. 34/2 + 44/2 + 54/2 + 64/2 = 184/2

2. 24/8; 34/50, and 64/18. Ans. 3172
3. v}, V&, and VH Ans. 4%v/15.
4. 3VE 3V and FVFE Ans. 3 V6.
5. zA/12a%, 2a3/272%, 3a4/48a%% and 5axA/3z.
Ans. 25a%z+/3z.

6. V54278, a4/16a"%, and +/ 2a*".
Ans. (3a% + 2B + a~*%) v/2a"

7. 6v/4a% 24/2a, and +/84% Ans. 94/2a.
8. 243, VIR, 470, and 2P  Ans. 36

9. 3bv/235%, YV/2°, and 8av/2a% o
Ans. 18ab4/2a%F
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ab a*
10. g—5, an d\/(b_c)z b—¢

Ans

a(d + V)
s

20, Subtraction of Radicals.

131 We cannot subtract one radical from another
unless the two are similar. In that case, we have the
following

RULE.

Reduce the radicals to their simplest forms;
then, if they are similar, subtract the coefficient
of the subtrahend from that of the minuend,
and write the remainder before the common
radical part.

EXAMPLES.

1. From 4/320, subtract 4/80.
Ans. 845 — 44/5 = 44/5.

2. From b/27a%, subtract +/2162%.
Ans. — 3a% /b

3. From 4/a%+2a% +ab? subtract 4/a8—2a% + al’.

, Ans. 20Va
4. From §v3 + $V¥, subtract } V5.
Ans. Ve

5. From 4/289a%, subtract /144a%.  Ans. 5ar/3.
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6. From 24/8a%+454/724% subtract 7a4/18a+4 4/50ab%
Ans. (13a — 5b) v/ 2a.

7. From (@ — z) V/a?® — 2? subtract \/w

a—2z’
1
—_ — Vi — 2
Ans.(a z a—z) a 22

8. From 4/81 4 4/192, subtract 4/512.
Ans. 14/3 —8.
3°, Multiplication of Radicals.

132. Since two radicals can always be reduced to a

common index, we may take a4/5, and cV/d, to repre-
sent any two radicals whatever. The indicated product

is,
avb x cVd.

We may change the order of the factors without
changing the value of the product; hence, may write
the product under the form,

acV'b x V.
But, from principle 1°, V% x v/d = +/bd; hence,
avb x cvd = acV'bd;

whence the following
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.

RULE.

Reduce''the' radicals 'to 'a’' common index ; then
multiply the coefficients together for a new co-
efficient, and the quantities under the radical
signs for a new quantity wunder the radical sign,
leaving the index unchanged.

EXAMPLES.

Perform the following indicated multiplications:

1. 348 x 44/48. Ans. 124/384 = 964/6.
2. IVE x 2V3. Ans. {YVE = Ve
3. 4v12 x 3V2. Ans. 124/24 = 244/6.
4. V1 x V12 Ans. 3}V/48 = }v/6.
5. bavas x VB Ane Davak =2
6. V2a® x v/8a%. Ans. V160 = 4023
7. v/8 x 4/b.

Ans. /512 x 4/25 = /12800 = 247200.

/1 3

8. VQX'\/Z
8/1 e/21 _ ¢/21 _ 1 ¢/27
Ans. \/;x\/cz—\/ﬁ—é\/;'
131 1 g/1 131_1 3/1
9. §‘¢; X ‘6'\/%. Ans. 4—8 4—8-—5_6 6.

By combining the above rule with that for the multiplication
of polynomials, complicated radical expressions may be multiplied
together.
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10. Multiply ¥/z + 24/Z + 4, by ¥z + 2z

FIRST OPERATION. SECOND OPERATION.
Wz + oz + 4 e JIRpY ST
Ve + 2z ¥ + 2t
VB4 WD+ Az ot 4 2ot 4 agh

+ 2V + 4vz + 8z + 223 + 4ot + 8

VB4 AT +8V7 + 8z ot + 4a¥ 4 8 4 8t

These results are identical, but the second has been obtained
by following the ordinary rule for exponents; hence, we conclude
that the rule for multiplication is the same whether the exponents

are entire or fractional,

11. (a’ + abat + dz + a:i) X (a* — z‘).
Ans. a — 22

12. (x+§+\/q_+——§—z) X (z+§—«/q+-§).

Ans. 2 + px — q.

= (Vi+v/d) < Gvi-v3)

w (/4 ) « (YD),
Ans. W — ;/;*_b-.

%

a

%
&..I [\Y
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5. (S +3v7—4) % C-{-%Va——?’)
Ans. %2+§«/a_’——_c—’.

16. (Sz* + 2ty 4 32t + w) X (zz* — %)

v
Ans. 16z — 16"

4°. Division of Radicals.
"133. Let av/b and c4/d represent any two radi-
cals, after having been reduced to a common index.

The quotient of the first by the second may be repre-
sented- as follows:

AT _a V0
evd ¢ v
U7 S, &
But, from principle 2°, % = 7’ hence,

a_W_e\'/E
evd ¢V d’

Hence, the following
RULE.

Reduce the radicals to @ common index; then
divide the coefficient of the dividend by that of
the divisor for a new coefficient, and the quantity
under the radical sign in the dividend by that
in the divisor for a new quantity under the rad-
ical sign, leaving the index unchanged.
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EXAMPLES.

Perform the' ‘following “indicated 'divisions

7 3/2 . 13 4/1 . 28 3/10
1. g\/gfz\/g. Ans. ﬁ'\/;.

1. /2 3 /5 7 4 7
& Z\/B - 7\/5' 4ns. 350/ %5 = 30"

3. % vz + 2 bz Ans.

3\/:
3 6"

1. /2 1 4/1 1 6/8 1 6/1 3 ¢/8
4 é\/ﬁ*ﬁ\/é'Am‘i\/z_;Tﬁ\/ﬁ—i\/ﬁ'

5. 2%z + V/4bA
o/ a8

0 T _ @
Ans. 24/8a%8 + V166 = 2 %

By combining the above rule with that for the division of
polynomials, any complicated radical expression may be divided
by another.

9. Divide z 4+ vVzy + y, by vz + Vzy + V.
FIRST OPERATION.

Z+A2y + ¥ | AT+ Ny + Ay
2+ /Py v/ | Wa— N+ VY

- VT +y

— VY = Ny — P
Vo + VP + y
VY + P+ y

0
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SECOND OPERATION.

z+z*1/*+y ‘zl+z*y*+y*
N ¥ S ¥ I ¥ e

bRy
— ot At

dyt + 2yt 4 y
dyt + ooyt 4y
0

These results are identical ; but the second one has been ob-
tained by following the ordinary rule for exponents. Hence, we
conclude that the operation for division is the same, whether the
exponents are entire or fractional.

v (160 — %) + (- 9).

Ans. 8zt + 21:*3/ + }x}y’ + 32

6°. Reduction of Radicals.

134. It is often desirable to transform radical expres-
. a a
sions of the foom ————, and ————, into
Vo + e Vb — e

equivalent expressions, in which the denominator is ra-
tional, that is, which does not contain any radical.

The first form may be thus transformed, by multiplying
both terms by v/% — 4/c; and the second, by multiplying
both terms by v/ + /¢, giving

avb — avc aV'b + ave
——,and ————.
b—c¢ b—c

If only one term of the denominator contains a radical, the same
rule will hold good.
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EXAMPLES.
Render the, denominatorsof the following fractions
rational :
2 2v3 — 4
1. — . eve-"—=
V3 +2 Ane. g
3 3v2 + 343
28— 2yYrrove
Vi_+/3 Ans. 23 .
4 448/3 _ 4 8
a3 4™ —1m =it mY>
3 4-3v2 _ 12 3
5. (V3 —42) + (V2 +1).
Ans. /2 —4/3 + /6 —2.
6. 4 (/5 +1). Ans. /5 —1.
. Wa+z++va—2)+ (Va+2z—va—a).
a a?
Ans. 5 + ;2 — 1.

135. In the solution of certain equations, it often
becomes necessary to extract the square root of expres-
gions of the form, @ + v/3, and a — 3. In some
cases, this operation may be performed, in other cases
it cannot be performed. To investigate a rule for de-
termining when the operation can be performed, and
the manner of performing it, assume

Va+Vb=2z+y . . . : (D

‘/a_x/b'=a:—y R )]
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Squaring both members of (1) and (2),
a+Vb=2+2y+9 . . (3
a— Vb =22—22y+yr . . (4)

Adding (3) and (4), and omitting the common fac-
tor 2,

e=224+94 . . . . (5
Multiplying (1) by (2),
Ve —b=22—9p . . . . (6)
Adding and subtracting (5) and (6),
A = ‘L‘;"’L’Z )
f:““;"z—” .. ®)

Now, if a? — b is a perfect square, its root may be
represented by ¢. Substituting in (7) and (8), and
extracting the square root of each member of both
equatlons, (axiom 5), we have,

a + ¢
2

T =

,and y =
These values, substituted in (1) and (2), give,
7 a+c a—c
1/.a+1/b_\/ 3 +\/ 5= -+ (9
7 _ a+c a—c
71/a—x/b_\/ 3 5— - - (10)
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The square root of the given quantities may be ex-
tracted when ® — 5 is a perfect square, and the roots
may be obtained, by substitution, from (9) and (10).

EXAMPLES.
1. Required the square root of 14+ 64/5=14+ 4/180.

Here, a =14, 5=180, and ¢ = 4/196 — 180 =4 : hence,

Vit + 6v5 ‘/1‘“4 i =5+ 45

2. Required the square root of 18 — 24/77.
Here, a =18, b=2308, and ¢ = 4/324 — 308 = 4; hence,

V18—2V7°'7=‘/2;2_‘/%=\/ﬁ_ﬁ.

3. Required the square root of 94 + 424/5.
Ans. 7 + 345

4. Required the square root of 28 + 104/3.
Ans. 5+ 4/3.

6°. Operations on Imaginary Quantities.

136. An imaginary quantity has been defined to
be an indicated even root of a negative quantity. _
The rule deduced for multiplying radicals requires
some modification, when applied to imaginary quanti-
ties. By the rule already deduced, the product of
V'—4 by v'—3 would be equal to 4/12; whereas,
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the true product is — 4/12, as will be shown here-
after.

Every imaginary quantity of the second degree can,
by principle 1° (Art. 125), be resolved into two fac-
tors, one of which is 4/ — 1; the other factor may be
either rational or irrational. Thus,

vV —4=2¢v/-1, \/:3—=\/§x'\/—1, V—dd=ay—1

The factor, v — 1, is called the imaginary factor,
and the other one is called its coefficient. Thus, in
the expression, 4/3 x v/ — 1, the factor 4/3 is the
coefficient of the imaginary factor v/ — 1.

When several imaginary factors are to be multiplied
together, we first reduce them to the form, av — 1.
We can then multiply together the coefficients of the
imaginary factor by known rules. It remains to deduce
a rule for multiplying together the imaginary factors,
or what is the same thing, for raising the imaginary
factor to a power whose exponent is equal to the num-
ber of factors.

The first power of v/ — 1, is 4/ —1; the second
power, by the definition of square root, is — 1; the
third power, is the product of the first and second
powers, or —1 x 4/ — 1 = — 4/—1; the fourth power,
is the square of the second power, or + 1; the fifth,
is the product of ‘the first and fourth, that is, it is the
same as the first; the sixth, is the same as the second;
the seventh, the same as the third; the eighth, the
same as the fourth; the ninth, again, the same as the
first; and so on indefinitely, as shown in the table, »
being any whole number.

~
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(1/:1)’ =
(V=1 =
('\/:-—1)‘ =
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v—1 (V=11 = 41
it V—1)=+ = -1
—vIL . (WS = — /L
+1. (\/?1)"‘ = 1.

the use of this table, let it be required to

find the continued product of v/ — 4, /' —3, v — 2,
v — 7 and v/ — 8. Reducing these expressions to the
proper form, and indicating the multiplication, we have,

2V =1 x V3V —1 x V2/ =1 x VTV =1 x2/2v/ —1.
Changing the order of the factors, .

(2 x V3 x V2 x V7 x 2V2) (V=10
Hence, the product is equal to, 84/21 x /' —1=84—21.

EXAMPLES.

Perform the multiplications indicated below :

=

—al x V-8 4ns. a x (/' —1)® = —ab.

2 V=@ x V-0 x V-2

Ans. abe(V/ —1)%, = —abev/—1.

8 V—ax V-8B x V-2 x vV—d

Ans. abed (V' —1)* = abed.

4 (4+V—=2) x (8—4=2). dns. 14—+ —2.
. R—V=2) x (@ —4—=2). Ans. 2 —44/—2.
6. B—v—=2) x 3+ V2. Ans. 11
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From what precedes, it follows that the only radi-
cal parts of/any/ power)ofOan.Céxpression of the form,
a + b4/ —1, will be of the form ¢4/ —1.

Properties of Imaginary Quantities.

138. 1°. 4 quantity of the form, a+/— 1, cannot
be equal to the sum of a rational quantity and a
quantity of the form, b/ —1

For, if so, let us have the equality,

avV—1=2z4+bv/—1;

squaring both members, we have,
—a = 2+ Wav —1— B
transposing, and dividing by 25z,
P—a?—2?

Vol="—m
an equation which is manifestly absurd, for the first
member is imaginary, and the second real, and no
imaginary quantity can be equal to a real quantity;
hence, the hypothesis is absurd; and, consequently, the
-principle enunciated is truec.

In the same way, it may be shown that no radical of the second
degree can be equal to an entire quantity plus a radical of the
second degree. ’

°. If, a+ bV —1 = 2 4+ yV—1, then a = 2,
and b=y
For, by transposition, we have,

V=1 = (z—a) + yv—1;
9 :
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but from the preceding principle, this equation can only
be true when 2z —a = 0, or z = a; making this
supposition, and dividing both members of the given
equation by 4/ —1, we have & = y, which was to be
shown.

In the same way, it may be shown that, when
a+ Vb =2+ 4y, we have, a =z, and b=y: that
is, in all equations of this form, the rational and rad-
ical parts, in each member, are respectively equal to
each other.

3°. The product of two factors, of the forms.
z—(a+ 6V —1), and =z — (a — bvV/—1), iz posilive
Sor all reul values of z:
For, performing the multiplication, we find the pro-
duct equal to, '
? — 2azx + a® + B,

which can be written under the form,
(z — a)? + 2
Now, whatever may be the value of . z, the part
(x — a)? will be positive, since it is a square; & is also
positive; hence, their sum, or the required product, is
also positive, which was to be proved.

TII. SoLution ofF RabpicaL EauaTions.

139. Radical equations are equations contaiuing
radical quantities. No fixed rules can be given for solving.
such equations. The methods of proceeding will be best
illustrated by examples.
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EXAMPLES.

1. Given vz +16 = 2+ /%, to find z.
Squaring, B
z+16 =4 +44/2 + 2;
transposing and reducing, B
z

8;
squaring,
z =09
9. Given 1 — 41—z = n(l+ v/1—2), to find .
Reducing, -

1—n=(n+141—-2;

1—m+n =@ +2n+1)(1—2);

squaring,
whence,

Z=(1‘+———n)g.

3. Given Va + 2 — Va —z = Vaz, to find 2.
Squaring and reducing,
. ) 2 — az = 24/a — 2,
squaring again,
407 — 40’z + @'t = 4a° — 4°;
reducing, and dividing by =,
4 (@ + Yz = 4a’;

whence, at
T@+d
. z—1 .\/3—;_1
4, leen.m=4+ 2—,toﬁndz.
Reducing,
Vo—1=44+ 1/_32—_—1;
" or,
'\/5—1 = 8.
Transposing,

Vz=9: =~ z=8L
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c—Z

to find z. \

5. Given i = ———
N@ A+ P 00| VB (e—z) 4
Squaring, !
z (c— 2

at + 2 b"+(c—z)’
clearing of fractions,

b2 + 2% — 2)* = a¥(c — 2)® + (e — 2)*;

reducing,
b2 = a¥(c — 2);
extracting square root,
bz = a(c— 2).
T = ae
a+d

z—a f Va
Vv + 24/a,

6. Given

to find 2.

Reducing,

Va-va = YIVE e

whence,
or, 4z = 44/a.
. z = 16a.

7. Given 84/3z + 81(:164_ 4@ = 16243, to find 2=

Transposing,

81(8 + 44/34/2)
16z — 84/8 8 = = — 2 —;
VBV + (44/2— 4/8) (44/2 + 4/3)

factoring,

e 814/3(1/8 + 44/7)
44/ — £/3) = -
vz - Vi 4z — /8) 4y/Z + 4/3
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reducing,
(A2 + /3P =814/8 = 274/20
extracting cube root, .
4y/z— 4/3 =34/8;
transposing,
4»\/5:3/\/§+ \/5_3:41/5;

dividing by 4, and squaring,

16x8
@=—-16—=3
Solve the following equations:
8. Vz =1+ Vz—09. Ans. z = 25.
9. ¥Vz+ vz —3 = 3. Ans. = 4.
10. Vz—42 = Vz—2. Ans. z = 2.
11. vV4z + 3 = 3. Ans. z = 6.
12. /52 +4 = 2 + V3z. Ans. z = 12.
13. Wz —Va = W7 —a Ans. @ = %‘-’.
2
) = VB ¥ b7 —a Lz =2T2
14, a+ 2 ® 4 5z —a Ans. z 5%
a
S — —2. Ans. z=a—1.
-~ 15. a = m
Nz —2 _z—4 o
16. 3_+3—'\/3:+2' Ans. z = 42%.

197

40241

-1n. x—‘/a’+xx/§:2—1=a. " Ans. z=—p—

18. VZz+a = Va+ Vz—a.

5a
Ans. .z = <
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19.

20.

21.
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Vi—Va—z:—VE_FT— Va—Z  Ans. z=3—:.

Vitz+vV1l—z=v2 Ans. z= 4+ 1

az—1 Vaz —1 81

‘\/aTc+1_4+_é_' Ans. zr=—.
Lyl /Ly /A4
zta=VatVemta

Ans. z—;‘b_’_

- -

— »®—2ab

a+z4+NVE+bz+2 = b. Ans. z=g—5.-

z—9 z—4 4(2—16)
= Ans. z = 56%.

Vits Va2 watd”



CHAPTER IX.

EQUATIONS OF THE SECOND DEGREE.

I. EQUATIONS CONTAINING BUT ONE UNKNOWN
QUANTITY.

Reduction to Particular Form.

140. Any equation of the second degree, containing
but one unknown quantity, can always be reduced to
the form of

2+ 2pz = ¢
Take the equation,
22 Rz + 1)3,
- Lre=6-T+ 3

clearing of fractions, and performing indicated opera-
tions, we have,

622 — 18z + 60 = 72 — 84 + 1622 + 162 + 4;

transposing the unknown terms to the first member,
and the known terms to the second member, we have,

622 + 822 — 162 — 18z — 162 = 72 + 4 — 60

.factoring and reducing, we have,

— 222 — 34z = 16;
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dividing by the coefficient of 2% that is, by — 2,
22 YAz (=1-C18

which is of the required form, 2p, in this case, being
equal to 17, and ¢ being equal to — 8.

All other equations of the same kind may be treated
in the same manner; hence, we have the following rule
for reducing equations of the second degree, containing
but one unknown quantity, to the form

2+ 2z = q:
RULE.

I. Clear the equation of fractions, and per-
form all the indicated operations.

II. Transpose all the unknown terms to the
first member, and dall the known terms to the
second member.

III. Reduce all the terms containing the
square of the unknoun quantity to a single term,
one factor of which is the square of the unknown
quantity ; reduce, also, all the terms containing
the first power of the unknown quantity to a
single term.

IV. Divide both members of the resulting equa-
tion by the coefficient of the square of tfw un-
known quantity.

The resulting equation, is called the reduced equa-
tion.



EQUATIONS OF THE SECOND DEGREE. 201

Solution of the Reduced Equations.

141. The solution of the reduced equation, consiste
in finding such values of the unknown quantity as will
satisfy it, that is, when substituted for the unknown
quantity, will make the two members equal. Every
such value is called a root.

Two cases may arise: first, it may happen that 2p,
or the coefficient of the first power of the unknown
quantity, is equal to 0; in this case, the equation is said
to be incomplete: secondly, it may bappen that the
coefficient of the first power of the unknown quantity
is not equal to 0; in this case the equation is said to
be complete. i

Incomplete equations, when reduced, have but two terms : one
containing the square of the unknown quantity ; the other,a known
term. .

Complete equations, when reduced, have three terms, viz.: a
term containing the square of the unknown quantity, & term con-
taining the first power of the unknown quantity, and a known term.

First Case. Incomplete Equations.

142. In this case, the reduced equation takes the
form,
2 = q;

extracting the square root of both members, we have,
z = +Vg;

hence, we have the following rule for solving incomplete
equations:
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RULE.

Reduce the equation to the form, »* = q, and
extract the square root of both members.

There will be two roots numerically equal, but having contrary
signs. Denoting the first root by 2/, and the second by '/, we have

z’=+4\/f,a.nds”=—ﬁ

EXAMPLES.

Solve the following equations:

L

®

z‘+5=l(‘;—z’—-16.
’ Ans. x’=+3, z' = —3:
8P —4 =2 +2% Ans. 2 = +4, 2" = —4.
3x'8+5_.””3'29=117—-5z=.
Ans. 2’ = 4+ 5, 2' = — 5.
2 4+ ab = 52

Ans. 2' = + }Vab, ' = — }Aab.
(z + a)® = 20z + b.

Ans. 2 = +V/b—ad 2" = —NVb—ad
z+7  z—7 1
B—Tr B+Tz " 213
Ans. 2 = 4+ 9, 2’ = — 9.
xvm=b+z“‘.
Ans. 2 = 4 - b = =0

Va—-2b’ _Va—2b.

2=2 L L /2t2
$+2+ x—_—2=4.

Ans. 2’ = +§x/§, 2’ = —-%‘\/3—3
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Second Case. Complete Equations.

143. The reduced form of the complete equation is,
2+ 2pz = g;
adding p* to both members; (axiom 1°), we have,
2@+ 2z + P =g+ p%;

extracting the square root of both members, (axiom 5°),
we have,

z+p=xVe+7r
transposing p to the second member, we have,

z=—p+Vqg+ 7

hence, there are two roots, one corresponding. to the
plus sign of the radical, and the other to the minus
sign ; denoting these roots by 2’ and z”, we have,

¢ = —p+Ag+p,and 2" = —p— g+,

hence, we have the following rule for solving com
equations of the second degree:

RULE.

I. Reduce the equation to the form, 2?4 2pz
by the rule.

II. The first root is equal to half the coeffi
of the second term, taken with a contrary
" plus the square root of the second mernbey
creased by the square of half the coefficient o)
second term.
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IIT. The second root is equal to half the co-
efficient of the)secord term; taken with a contrary
sign, minus the square root of the second member
increased by the square of half the coefficient of
the second term.

EXAMPLES.
1. Let it be required to solve the equation,
322 — 14z 4+ 15 = 0;
Reducing to the required form,
14
z — fz = —'5,
writing out the roots, we have,
_7 ‘/_ 49 ,_Z_/_ 9.
z‘_3+ 5+9,n.ndz’..8 5+9.
reducing, we have,

1.2 ,_17 _2_5
¥=z+3=8 ad o =z—2=

3 38 8’

These roots may be verified. Substituting 8 for z, in the given
equation, we have,

83x@B—14x84+15 =0;

pubstituting g for =, in the same equation, we have

5\? 5
8 x (5)—14x§+15=0;

which shows that both 8, and §, are roots.

2. Again, let it be required to solve the equation,

_14—9:
z+4+1

= 14:;
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Clearing of fractions, and reducing to the required form,

9
ﬂ’—zz—",

. writing out the roots, by the rule,

_9 81 ,_!_)_ g
z’._§+ 7+§—4,a.ndz’—8 7+64’

reducing, we have,

_8__7T
8

which roots may be verified as before.

3z+4 30—2 _Yz—14
5 z—6 10

3. Given , to find z.

Reducing and writing out the roots, we have,

¥ = 2444/ —432+576, and z' = 24—+/—432+576,
or, z = 86, and 2’ = 12.

In writing out the roots by the rule, it frequently happens that
the quantity under the radical sign is made up of two fractions, or
of an entire part and a fraction, as in examples 1 and 2. In such
cases, the two parts must be reduced to the least common denom-
inator that is a perfect square, and then added together.

Solve the following equations:
4 522 —62—60 = 3. Ans. o — 351, = —3.
5, z—12)(z+2) = 0.

Ans. 2 = 12, 2’ = — 2.
6. ar®— bz = ¢.
7 = b+ Vb +4ac 2 — b—N P+ 4ac

? - 2a
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10.

11.

12.

13.

1.

15.

16.

17.

18.

19.

20.
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10 14-—-22 22 , , 21
?—T=?. Am..’t__3,z'_1—1—
(z+2Ff=2%+8 . Ans. 22 =2, 2" = 2
, 15
422 — 9z = 90. AM.Z’:G,Z":—I.
z—3 z+4 ' "_
m—z_—,?—z;. Am.z-—-—sﬂ,x—4-
B—(a+bz+ab=0. Ans. 2’ =a, 2" =0
@z .1
—3- = g + 11. An& :L" —_ 3, r = —T-
z +z+1=2<}. Ans. 2 =2, ' = — 3.

z

1

z+1
z+4_4z+7__7—z_
3 9 T z-—-3
Ans. 2 =21, 2" = 5.
(z — 1) = 2(2* 4 1).
Ans. 2 = —1, 2" = — 1.

1
#(1-2) = 8z + 2 B
9 + V145 = 2= 4145

Ans. 2 = 5 , = 3

172% 4 192 — 1848 = 0.
Ans. z' = 94, 2’ = — 1L
, d
-+ 74 =8 Ans. 2 =1}, 2" = %
22—10 2z+3 _ L w4
S—x—x—-z'—z' Ans.x_V,z_5.

1 1 l

I
[
b

odns. 2 =11, 2" =

z—1 x+3 3

(]}
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21. z+z2_41=3x—'4. Ans. ¥ = 5, 2" = — 2.
2?41 z—1
22. —2x—+_4—‘—3x-—2. 9
Ans. 2 =1, 2’ = -9
1 (z—1) _ 7
23. $+5+3T—5.
344681 , 3—4/681
Ans. d_-—lr, 7 ——T.
24, 284 (b —z)® = 35. Ans. 2’ =3, 2" = 2.
1200 1200
B THya T
Ans. 2’ = 80, 2" = — 120.

Trinomial Equations.

144. Many equations of a higher degree than the
second, may be reduced to the form of equations of
the second degree, and then solved. One of the most
important classes of such equations consists of what
are called trinomial equations. Such equations con-
tain three kinds of terms, viz.: terms involving the
unknown quantity to any degree, terms involving the
unknown quantity to a degree half as great, and known
terms. Such, for example, as 28—42% = 32, 24—22? = 3.

Every trinomial equation may be reduced to the form

of,
2>+ 22" =9q . ... (1)

in the same way that equations of the second degree
are reduced to the form of,

2 4 2pr = q.
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After an equation is redmced to the form (1) we
may regard 2" as the unknown quantity, and then it
may be solved by the rule given for the solution of
equations of the sccond degree. Having found the
values of 2", we may find the values of z, by extract-
ing the z* root of these. To illustrate, let it be re-
quired to solve the equation,

26, 2% — 42 = 32.

This is of the required form. Writing out the values of 2* by
the rule, we have,

P =2+ 1/3?—{-_4:8, and 73 = 2—«\/32-{-4: — 4.
Whence, by extracting the cube roots of these values, we have,
?=38=2 ad 2'=4/—4

27, o — 2% = 3.

This is of the required form. Writing out the values of 28, we
have, ’

TP =1+483+1=38 and 22=1—4/8+1=—1.

Whence, by extracting the square roots of these roots, we have,

Z = £ 4/8, and w”:iV:i..

28, o8 — 2% = 56.
In this case n = §; hence, we have,
o¥ =3+ 4/56+7=8 and 2 = j— /B8 FF = —7;

ls:uaring each value and extracting the cube root of the result, we
ve,

¢ =4, and 2/ = /49,
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Radical equations may sometimes be transformed so as
to give rise to,trinomial equations. Thus, let it be re-
quired to solve the equation,

2. 2+ V10z4+6 = 9.

Maltiplying both members by 10, and adding 6 to each member
of the resulting equation, we have,

10z + 6 + 104/10 + 6 = 96;

we may now regard 4/10z + 6 as the unknown quantity ; solving
with respect to this quantity, we have,

/102 +6 = — 5 = 4/121
.~ 4/102+6 = 6, and —16;

consequently,
10z + 6 = 86, and 250;

whence 27 = 8, and 2/’ = 25.

Solve the following equations:

30. a4 — 822 = 9.
Ans. ¢ = 438, 2" = + 4/ —1.

31. 284 2028 = 69. Ans. 2 = v/3, 2" = v/ — 23;

Vix + 20 4 —Vz
32. =
4 4+ Vz Vz 64

Ans. 2 = 4, 2' = —3-

33. 424+ 4Vz+2 = 1. Ans. ¢ =4}, 2" =1+
34. 24 A5z +10 = 8. Ans. 2 =18, 2" = 3.
~35. ar + 2V 7% + nax* = (3z — 1)n.

- on n
Ans. ¥ = ——, z"

n—a T On—a
36. 7t — T4a? = — 1225.
Ans. 2 = + 1%, 2" = +5.
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PROBLEMS.

1. Find two/numbersowhose/ difference is 8, and whose
product is 128.

Let z denote the less number; then will z + 8 denote the
greater number ; from the conditions of the problem,

z(x + 8) = 128.
Bolving this equation, we find,
2 = 8, and 2’ = — 16; two solutions,

Hence, the numbers are 8 and 16; also, — 16 and — 8. Either
pair of numbers will satisfy the conditions of the problem, as may
be seen by trial.

In using the second pair, we must remember that — 16 is the
less number, and due regard must be had to the signs.

2. A person traveled 105 miles at a uniform rate.
On his return, he traveled 2 miles per hour slower, and
was 6 hours longer in making the journey. How many
miles did he travel per hour in the first instance ?

Let z denote the number of miles he traveled per hour; then
.y 105
will = denote the number of hours required to make the direct

Jjourncy, and the number required to make the return

. z—2’
journey.

. Bince. he traveled slower on the return journey, he will take a
onger time ; and from the conditions of the problem,

105 105 _
z—3 7 =6

whence, by solving the equation, we find,
2 =7 and 2’ = — 5.

The first solution ig the answer to the given problem ;

t . .
he second solution jg the answer to a problem which
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gives the same equation and which may be enunciated
thus: A persony traveled (105) miles, at a uniform rate.
On his return, he traveled 2 miles per hour faster, and
made the journey 6 hours sooner.

Denote the rate of travel on the outward journey, by — z: then
the rate, on the return journey, will be denoted by —=z + 2; and,
since he traveled slower on the outward journey,

_05 105 oo 105105 _ o

z —z+2 z—2 z

which is the same equation as that obtained before; hence, its
solution should give proper answers to both problems.

When two answers are found to a problem, both of which do not
satisfy the conditions of that problem, it will generally be found
that one of them belongs to the problem as enunciated, and the other
to a similar problem which gives rise to the same equation; hence,
we are to take only that answer which satisfies the conditions of the
given problem.

3. 4. and B. set out from two points at the same
time, and travel towards each other. On meeting, it
appears that 4. has traveled 30 miles more than B.,
and that 4. could travel B’s distance in 4} days, and
that B. could travel A4.’s distance in 6 days. How
far apart were they when they started ?

Let x denote the number of miles that B. traveled; then will
z + 380 denote the number that 4. traveled. Since A. can travel B.’s
distance in 4} days, 4% , or g-g, will denote the number of miles that
A. travels in 1 day. In like manner, "_":;_3(_) , will denote the number
of miles that B. travelsin 1day. The whole distance that A. travels,
divided by the distance he travels in one day, or (z+80) + g—: , gives
the number of days that he travels. The whole distance that B.

travels, divided by the distance he travels in one day, or, z + f;ﬂ) )
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gives the number of days that B. travels. But they travel the same
number of days each. Hence,

)

z+30 _ T

Clearing of complex fractions,

(z + 30) (z + 30) — 622

6 25 °
‘Whence, by solution, we find,

150
— ! — v
o = 150, n.nd:c’_—-—ﬁ.

The first result only satisfies the conditions of the problem.
Hence, B. travels 150 miles, 4., 180 miles, and both together, 330
miles, which is the answer to the given problem.

4. A, B, and C, can together perform a piece of
work, in a certain time. 4. alone can perform the
same work in 6 hours more, B. alone in 15 hours more,
and C. alone in twice the time. In how many hours
can they all perform it, working together ?

Let z denote the number of hours required for all to perform it ;
then will z + 6 denote the number of hours for A. to perform it ;
z + 15 the number of hours for B. to perform it ; and, 2z the num-
ber of hours for C. to perform it.

In 1 hour, A. can perform a portion of the work denoted by
—1—; B. can perform a portion denoted by 1 ; C. can perform
z+6 1 z+ 15 )

a portion denoted by %’ and all together can perform a portion de-
noted by :;; but as the sum of the parts that each can perform is

equal to the part they all can perform, we have,
1 1 1 1

z+6 T T w2

which is the equation of the problem.
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Solving, we have, ‘
z/-.=.8| and @' = — 10.

The first value is the one that satisfies the conditions of the prob-
lem ; hence, the answer is 3 Aours.

5. There are two numbers whose sum is 40, and
the sum of their squares is 818. What are the num-
bers ? Ans. 17, and 23.

6. The difference of two numbers is 9; and their
sum, multiplied by the greater, i; equal to 266. What
are the numbers? Ans. 14, and 5.

7. The sum of two numbers is 73, and their pro-
duct 732. What are the numbers ? Ans. 61, and 12.

8. The sum of two numbers is a, and their pro-
duct is 5. What are the numbers?

(/] / a? a a?
Ans.§+ —b+z,and g—\/—b+z.

9. A person travels 48 miles at a uniform rate; 8
second person’ travels the same distance two hours
sooner, and travels 2 miles per hour more than the
first. At what rate does the first travel? A4ns. 6 miles.

710. A. and B. start at the same time to travel 150
miles. A. travels 3 miles an hour faster than B., and
finishes his journey 8% hours before him. How many
miles does A. travel per hour? Ans. 9 miles.

11. A hollow cubical box, whose sides are three
inches thick, requires for its construction 27} cubic
feet of material. How many cubic feet of water will
it contain ? Ans. 64 cubic feet.
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12. Two square courts are paved with stones a foot
square ; the larger court is 12 feet longer than the
smaller one, and the number of stones in both pave-
ments is 2120. How long is the smaller pavement?

Ans. 26 feet.

13. A person distributes 120 dollars amongst a cer-
tain number of people. The next day he distributes
the same sum amongst a number of people greater by
2. Each of the latter receives 2 dollars less than each
of the former. How many were there in each case?

Ans. 10, and 12.

14. A. and B. set out to meet each other, being
320 miles apart. A. traveled 8 miles a day more than
B., and the number of days before they met, was equal
to half the number of miles that B. traveled in 1 day.
How many miles did each travel per day? v

Ans. A., 24 miles; B., 16 miles.

5. A passenger and freight train set out at the
same time, the former from New York, and the latter
from Albany, distant from each other 144 miles. The
passenger train arrived in Albany two hours after they
met, and the freight train arrived in New York 8 hours
after they met. At what rate did each run?

Ans. 24, and 12 miles.

16. A regiment was ordered to furnish 216 men for
duty, by detailing the same number of men from each
company. But three companies having been detached,
the remaining ones had to furnish each 12 men more
to make up the required number. How many com-
panies were there in the regiment ? Ans. 9.



EQUATIONS OF THE SECOND DEGREE. 215

17. Two partners, 4. and B, gained 360 dollars.
A’s money, was, in trade -12 months, and he received, -
for principal and profit, 520 dollars. B’s money was
600 dollars, and was in trade 16 months. How much
capital had 4.? Ans. 400 dollars.

18. A. and B. travel, at the same rate, towards.New
York. At the 50th mile-stone from New York, 4.
overtakes a flock of geese, traveling 1} miles an hour,
and 2 hours afterwards meets a stage-coach, traveling
2} miles per hour. B. overtakes the geese at the 45th
mile-stone, and meefs the coach 40 minutes before
reaching the 31st mile-stone. ~What is the distance
between 4. and B.?

SOLUTION.

Let z denote the rate of 4.’s and B.’s travel, and supi)ose the cir-
cumstances of the problem to commence when A.is at the 50th
mile-stone.

When B. overtakes the geese, he will have traveled 3}z miles, 5
of which coincide with 5 of A.’s miles. Hence, the distance between
A. and B., is (l%z — ) miles.

A. meets the coach at the (50 — 2) mile-stone, and B meets it

at the (31 +2—;) milestone ; the coach travels, meantime, (gz— 19)
miles. Hence, dividing by the rate of the coach, we have,
B2 — 228
27
to gx—— 19, the distance that A. travels in that time, we have,
(Sz — 57 + 8222 — 2282
3 27
Hence, from the conditions of the problem,

8z — 57 82 —208r 10215
3 % T 8

10z — 15

e 15

, the number of hours between the meetings. Adding

) miles, for the distance between A. and B.

s.oz2=09,and = 25, the number of miles required.
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General Properties of Equations of the Second Degree.

145. It has been shown, (Art. 140), that every equa-
tion of the second degree may be reduced to the form,
B2+ 2Pz =9q . . . . (1)

adding p?® to both members of equation (1), and then
transposing all the terms of the second member to the
first, we have,

@+2p2+p) — @+ =0 .. (2
Factoring the first member, according to the principle
that the difference of the squares of two quantities is

equal to the sum of the quantities multiplied by their
difference, we have,

@+P+VITH) X @+p— VT =0.(3)

Equation (3) may be satisfied in two ways, and only
in two ways, viz.: we may make the second factor of
the first member equal to 0, and we may make the
first factor equal to 0.

Placing the second factor equal to 0, we have,
z2+p—Veg+p2=0; ST =—p+ Vg (4)
Placing the second factor _equal to 0, we have,
z+p+Ve+pP=0; z2=—p—Vg+p*. (5)

These suppositions give the two roots already found,
and those only; hence, we deduce this principle:

1°. Every equation of the second degree has two
roots, and only two.
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If we examine Equation (3), we sce that its first
member is composed of two factors of the first degree
with respect to z, the first term of each factor being
the unknown quantity, and the second terms being the
two roots, each taken with a contrary sign; hence,
we deduce the following principle:

2°. If all the terms are transposed to the first member,
that member may be resolved into two factors of the
first degree with respect to the wunknown quantity, the
first term of each factor being the unknown gquantity,
and the second terms being the two roots, each taken
with its sign changed.

The reverse of this principle, enables us to form an
equation, when its roots are given, for which operation
we may write the following

RULE.

Subtract each root from the unknown quantity,
multiply the results together, and place the pro-
duct equal to 0.

EXAMPLES.
1. Required the equation whose roots are 2 and — 3.

By the rule, (z — 2) (z + 3) = 0, whence,
2?+2—6=0; or, 2 + 2 = 6.

2. Required the equation whose roots are 5 and — §.
13 10
Ans. 28 — ?x = '—3—.
3. Required the equation whose roots are « and .
Ans. 8 — (a + b))z = — ab.
10
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4. Required the equation whose roots are g and %
’

58
Am. 2,"—2— =—1,

7%
5. Required the equation whose roots are —7 and —3.

Ans. 2® 4 10z = — 21.
6. Required the equation whose roots are —g and g

7 15
Ans. x’—zx = '8—.

Let us resume the consideration of equation (1), and
its roots:
Adding the two roots together, we have,
(=2 +Vg+P) +(—p—Ve+7) = —2;
multiplying the two roots together, we have,
(—2+Ve+P) x (—p—Vg+) = —¢.
From these results, we deduce the following additional
principles :

3°. The algebraic sum of the two roots vs equal to the
coefficient of the second term, with its sign changed.

4°. The product of the two roots is equal to the second
member, with its sign changed.

If ¢ is negative and numecrically greater than p?
the quantity under the radical sign, in equations (4)
and (5), will be negative. In this case both roots are
imaginary, (Art. 118); hence, the following principle:

5% If the second member is megative and mumerically
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greater than the square of half the coefficient of the
second termy both \of ithe| roots, will be imaginary.
These principles are used in discussing the general equation of

the second degree.

Discussion of the General Equation,
146. To discuss the general equation,
® + 2pz = g,

we make every possible hypothesis, and interpret the
corresponding results. It is plain, firsf, that both p
and ¢ may be positive; second, that p may be negative,
and ¢ positive; #hird, that p may be positive, and ¢
negative; and fourth, that p» and ¢ may be negative;
these hypotheses give,

The Four Forms.

BrPpx=q . . . . (1)

2 -2z =9q . . . . (2

B+ 2%r=—q . . . (3)

x2 —_— 2])Z = - q . . . (4)
First Form.

Since ¢ is positive, the product of the roots must be
negative, (principle 4°); hence, the roots have contrary
signs ; again, since Rp is positive, the algebraic sum of
the roots is negative, (principle 3°); hence, the negative
root s mumerically the greater.

“Second  Form. _
For the same reason as before, the roots have con-
trary signs; _\since~ 2p .is megative, the algebraic sum
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of the roots is positive, (principle 3°); hence, the positive
root t8 numerically the greater.

Third Form.

Here, ¢ is negative, and consequently the product of
the roots is positive, (principle 4°); hence, the roots have
the same stgn ; and, since 2p is positive, the sum of
the roots must be negative, (principle 3°); hence, both
r00ts are megative.

Fourth Form. -

For the same reason as before, the rools have the
same sign; because 2p is negative, the sum of the roots
is positive, (principle 3°); hence, the roots are both
positive.

If we suppose p = 0, and ¢ not equal to 0, the
first and second forms reduce to

2? = gq.

In this case, the roots have contrary signs, and their
sum is equal to 0; hence, they are equal, with con-
trary signs.

Under the same supposition, the third and fourth
forms become,

2 = —gq.

In this case, the roots have the same sign, and their
sum is 0, which is impossible. But, in this case, the
roots are imaginary, (principle 5°); hence, imaginary
roots indicate that the supposition which gives rise to
them is impossible, or absurd.
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If we suppose ¢ = 0, and » not equal to 0, the
first and third, formsreduceto

2?4+ 2z =0,
and the second and fourth forms reduce to
2 — 2])$ = 0.

In both cases, the product of the roots is equal to
0, which shows that one of them must be 0. In the
first case, the second root is equal to — 2p, and in the
second, it is equal to + 2p.

If we suppose, p = 0, and ¢ = 0, all the forms re-
duce to

# = 0.

In this case, the product of the roots is 0, hence,
one of them must be 0, and their sum is equal to 0;
hence, the other is also equal to 0.

Solution and Discussion of the Problem of the Lights.

147. The solution of the problem of the lights de-
pends on the following principle of physics:

Principle.—The ntensity of a light at any distance
12 equal to its intensity at the distance 1, divided by
the square of the distance.

ProBLEM. Having given the intensitics of two lights,
at the distance 1, and the distance between the lights,
it is required to find a point on the line joining them
which is equally illuminated by both.
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SoLtTION. Let the first Yight be at 4, the second
light at B, and let. B” B' be a straight line passing
through 4 and B. Assume A4 as the origin of dis-
tances, and call all distances to the right positive, then
will all distances to the left be negatire.

R" A R B R

Denote the distance between the lights by ¢, the
intensity of the light 4, at the distance 1, by @, and
that of the light B, at the distance 1, by 4. Suppose
the point R, to be equally illuminated, and denote its
distance from the origin 4, by z; then will the dis-
tance B R, be equal to ¢ — 2.

Since the intensity of the light A4, at the distance 1,
is @, at the distance z it will be %, in accordance with

the physical principle enunciated ; and since thz inten-
sity of the light B, at the distance 1, is 5, at the
—b—. From the
(¢ — =)

conditions of the problem, these two expressions must
be equal; hence,

distance ¢ — z it will be equal to

a_ b o e—ap b
B? (c—azp’ 0 # T a’
extracting the square root of both members, we have,
c—z _ | Vb
z T T Aa

taking the upper sign, we have, for the first value of z,

= v,;cf«/z - ”(«/af«/z>

@)
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taking the lower sign, we have, for the second value of z,

¢ V@O .COI c( Va )
va — b va — Vb

From the nature of the problem, both & and & are
positive, and consequently these values of z are always

real; hence, we see that there are two points on the
line 4 B that are equally illuminated by the lights.

®?)

Tz =

Discussion. The quantities a, b and ¢ are arbitrary,
but inasmuch as the conditions of the problem involve
the necessity of two lights, none of these quantities can
be 0. From the fact that the left hand light was taken
as the origin of distances, the value of ¢ must always
be positive. Hence, there are three, and only three,
suppositions that can be made on a, 4, and ¢:

1°. ¢>0, and a > b;
2°. ¢>0, and a<b; and
3°. ¢>0, and a=A0

First Supposition. ¢ >0, and a > b.
Va

In this case, ————, is a proper fraction, and
Va + Vb prope ’

therefore less than 1; and because the denominator is
less than twice the numerator, it is greater than %;
hence, the first value of z is less than ¢, and greater
than $4c; which shows that the first point of equal
illumination is between the two'lighté, and nearer the
feebler ome.

Va

The denominator of the fraction ———— is less

va— b




224 MANUAL OF ALGEBRA.

than the numerator, and consequently the fraction itself
is greater than 1, that.is, the second value of z is
greater than ¢; which shows that the second point of
equal illumination is in the prolongation of 4 B, and
on the side of the feebler light.

Second Supposition. ¢ > 0, and a < b.

In this case the fractional factor of the first value
of z is positive and less than §; hence, the first value
of z is positive and less than §¢; which shows that the
first point of equal illumination is between the two
lights, and nearer the feebler one. ‘

The fractional factor of the second value of z is
negative, and consequently the second value of z is
negative; which shows that the second point of equal
illumination is to the left of A, that is, it is on the
prolongation of B A, and on the side of the feebler
light.

The results of the first and second suppositions agree
with each other. In both cases the first point is be-
tween the two lights, and nearer the feebler one, and
the second point is in the prolongation of the line join-
ing the lights and on the side of the feebler one.

Third Supposition. ¢ >0, and a = b.

In this case the fractional factor of the first value
of z is equal to }, and consequently the first value of
z is equal to jc; which shows that the first point of
equal illumination is midway bet\_véen the two lights.

The fractional factor of the second value of z is

va
equal to o~ Or to »; which shows that the second
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point of equal illumination is at a distance from A
greater than any assignable distance, that is, there is
but one point’'on-'the"“line-'of' 'the lights that is equally
illuminated by them.

The preceding results have been interpreted in ac-
cordance with the principles already explained. It is
obvious that these interpretations are in strict agree-
ment with the conditions implied in the several sup-
positions.

II. EQUATIONS CONTAINING TWO OR MORE
UNKNOWN QUANTITIES.

Explanation.

148. Two equations of the second degree containing
two unknown quantities cannot, in general, be solved
by preceding methods. When one is of the second and
the other of the first degree, they may be solved. There
are some special cases in which the solution may be
effected, even when both equations are of the second
degree.’

First Special Case.
149. Having given one equation of the second de-

gree and one of the first degree, each containing two
nnknown quantities, we may proceed as follows:

EXAMPLES.
1. Take the two equations,

24+ 1Ry +Pp =8 . . . (1)
z 4+ 3y =11 . . . . .
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Find the value of z in terms of y from (2), and substituting it in
(1), we have,

121/L4/68y + Oy 4 182y 8632 + ¢ = 85;

. 88 18
or, by reduction, ¥— T AR TE
whence, Yy =8 and ¢ = -,

which, substituted in (2), gives,
Z =2, and 2/ = 13§,

In like manner, other similar groups of equations
may be solved.

Solve the following groups of simultaneous equations:

2 2% 4 47 = 202 {z’:ll,z”: 9.
z +y = 20 - Ane. Y= 9 ¢y =11
3. z’+y’=394} 4 {z’=15,z"=—13.
z—y = 2 ) '=13, ' = —15.
4. a:’—2zy+y’=9} Z2="2"'=4
24y =11 Ans. {yz,y—%
5. z +y = 6} {z 5 2" = 1.
2?4 y? = 26 Ans. y=19y"=5.
6. a:’—y“:lG} {x_5,a:”_5.
Ans.
z4+y =8 " ly =3y =3

Second Special Case.

150. Having given two equations of the second de-
gree which are homogeneous with respect to the un-

known quantities, we may proceed as follows:
Take the equations,
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. Z242zy=10 . . . . . . . . . 1)
+zy =15.. .. . . . . . . . (2

Assume y = n2, n being an auxiliary unknown quantity. Sub-
stituting in (1) and (2), we have,

10
. = g 2 = .
2 + na? 10. R rarie SO 3)
15
2, -— . » e
' + na® = 16. A = am+ 1) @)
equating these values of 22, we find,
10 _ 15 . 3
n+1" nan+1)’ TR

substituting this value of » in (3), and the resulting value of z in
(1), we have,

¢ =2 and y = 8.

Only a single pair of values of z and y are deduced. The complete
solution would give four pairs of values.

In the same way, similar groups of equations may
be solved.
Solve the following groups of equations:

8. x’+y‘=61} : Ans. {z:ﬁ.
B—zy= 6 y = 5.
9. z’+xy+y’=37} {z=3.
B—zy+y? =13 Ans. y = 4
10. 22 — 22y = 5} Ans. {2::5.
P+a2 =29 y =2
11. 32:3:22:_1/4-24} Ans. {z=4.
$B =zy — 3 y = 3.
12. 4y - =38 = 64} {x:'?.
2y + 23— 3 = 138 Ans 1y =4
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Miscellaneous Cases.

151. Many other equations of the second degree may
be so transformed as to come within the rules for solu-
tion. Equations of a higher degree than the second
may, also, in certain cases, be reduced, by transforma-
tion, to such forms as to come within the rules already
given. No general principles can be laid down for
making these transformations, each case requiring to be
treated in a manner peculiar to itself. A few examples
are given, to illustrate some of the methods of solution.

EXAMPLES.

1B 24P +24+y=9 . . . . . (1
Voy = 20 . . . . . (2
Squaring (2), and multiplying by 2,

20y =800; . . . . . -
adding (1) and (3),

@ +22zy+9) + @+y = 1720;
regarding (z + y) as a single quantity, we have, by the rule,

x+y=—§t.\le+—f=—};tl,l; .

24+ y=241, and z+y = —43;
taking the first value of z + y, and combining with (8), we have,
z = 25, = 16.
MW z2+y+az2ry=12. . . . . (1)}
4 9p =18 . . . . . ®

From (1) taking only the first value, we have,
Ve+y=—3+4/B+i=<}+3§=28:

.2 +y=9; . . . (8
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dividing (2) by (8), member by member, we have,

®—ry+yPe=21;. . . . . 49
squaring (8), we have,

Z2+0y+yp=8,;. . . . . B
"subtracting (4) from (5), we have,

82y =60; or, zy =20; . . . . . (6)
combining (6) and (8), we have,
2=25 and y = 4.

15, 2 —y = 2 . . . . « . . . (1)
BEPp =212 . . . ... .. @

Raising both members of (1) to the 4th power, we have,
s -4y + 6P -yt + =16 . . . (8
subtracting (8) from (2), and factoring,
 aydx —Goy + 4y = 256; . . (&)

multiplying (1) by 2, squaring, multiplying by ay, and subtractmg
from (4), we have,

2%p = 256 — 162y ;

or,

oy + 8y =
Loy = —4:4/18+16 = —4 +13;
or,
oy =8, zy= —16
Taking the first value zy = 8, and combining with (1), we find,
z = 4 .= 2
16.z’+2zy+y+3z=73} Ans {z=4.
¥+ z +3y = 44 ) y =25,
17. zy = 6 } z =
82 — TP+ 1 =0 Ans. {y=2
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18. 24— 22% + 42 — 49 } Am’{z=3-
P2 p DR = W y=2
z .y_l_l z = 6.
19. 5_5—30} AM.{ |
?+zy = 66 y=>5
20. z=_¢+y==10} Am’{z=3-
z +y = 4 y=1
2. B 4y = 189} Ans. {z=5-
2y + zy = 180 y=+4
b
2 219 _ p z=3,(a*+1).
zT—y 4
ns. 3
B—p= B yzﬁ(a’—l).
23. 927 = 4y } Ans. {z=10-
3zy + 22+ y = 485 y = 15.
24, mz+yn_z_y=78} Ans. {2::9.
zy+z+y = 39 y=3
1 1 1 z =4
25. vy z_ & } Am.{
2y — 2y = 16 ly =2
PROBLEMS.

1. Find two numbers, such that their product, added
to their sum, shall be 47, and their sum, taken from the
sum of their squares, shall leave 62.

Let z and y denote the numbers ; then, from the conditions of
the problem, ’
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@+y)+oy =47 . . . . . Q)
2+pPp—-+y)=6;. . . . . @
multiplying'equation'(l)'by -2, we have,
Wy +2z+y) =94; . . . . . (B
adding (2) and (3), we have,
2+ 2y +9f+ (@+y = 166;
+yy+@+y) =156; . . . . (4

or,

solving (4), with respect to z + y, and taking the first value of
z + y, we have,

c+y=—4+4/6+1=12;. . . . . ¥
substituting in (1), we have,
oy =471-12=285;. . . . . (8

combining (35) and (68),
z = 5, and y = 7: the numbers required.

2. The sum of two numbers is 7, and the sum of
their cubes is 91. What are the numbers ?
Ans. 3 and 4.

3. Required two numbers, whose product is equal to
the square of two thirds the first, and the difference of
whose squares is greater, by 1, than the square of twice
the second. Ans. 9 and 4.

4. Find two numbers, whose sum, multiplied by the
greater, is 209, and whose difference, multiplied by the
less, is 24. Ans. 11 and 8.

5. Find two numbers, such that the sum of their
squares is equal to 181, and the difference of their
squares equal to 19. Ans. 9 and 10.
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I1I. INEQUALITIES.
Definitions .and| Explanations.

152. An inequality is an algebraic expression indi-
cating that one quantity is greater or less than another.
Thus, a > b+ ¢, and @ <b—c are inequalities; the
former indicates that e is greater than & + ¢, and the
latter that a is less than & —¢. The two parts con-
nected by the sign of inequality are called members;
that on the left of the sign is called the first mem- .
ber, and that on the right of the gign is called the
second member.

Of two unequal quantities, that is algebraically the
greater which is nearer to + «, thus

3>2 and —2> —3.

Two inequalities subsist in the same sense when
the greater quantity is either in the first member of
both, or in the second member of both; they subsist
in a contrary sense when the greater quantity is in
the first member of one and in the second member of
the other. Thus, the inequalities,

5>3 and 7>2,
subsist in the same sense; whilst the inequalities,
57 and 3>1
subsist in a contrary sense.
Transformations.

153. The following transformations of inequalities
follow from the preceding definitions and explanations:
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1°. If the same quantity is added to, or subiracted
Jrom, both members of Can inequality, the semse of the
tnequality will not be changed.

Thus, if we have the inequality 13 > 12, we also have
the inequalities

134+2>12+2, and 13 —3>12 — 3.

Hence, we may transpose a term jfrom one member
to the other by changing its sign.

2°. If both members of an tnequality are either mul-
tiplied or divided by a positive quantity, the sense of
the inequality will not be changed.

Thus, if we have the inequality 12 > 6, we also have
the inequalities

12x3>6x3 and ¥>g

This principle enables us to clear an inequality of
fractions by the rule for clearing an equation of frac-
tions.

3°. If we change the signs of Loth members of an
inequality, we must change the sense of the inequality.

Thus, if 3 > 2, we have, —3 < —2.

Solution of Inequalities.

154. The solution of an inequality is the opera-
tion of finding an inequality in which the unknown
quantity shall form one member; the other member is
then a limiting value of that quantity.
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The method of solution is indicated below:
Let it be required ‘to find-a 'limiting value of z from
the inequality
z
3
Multiplying both members by 12 (principle 2°), we have,
— 4z +48< 32— 36;
transposing and reducing (principle 1°), we have,
-z < —84;

z
+4<—4—3.

changing the signs of both members (principle 8°), we have,
Tz > 84;
dividing both members by 7 (principle 2°), we have,
z>12
EXAMPLES.

Find limiting values of z from the following inequali-
ties:

3 1 '

1. Zx—7>5$—5. AM- z>311f'
1 3

2. i 14 > 3% + 1. ’ Ans. z <103

3. 3z—l2+z>—2z+9. Ans. z> 4.



CHAPTER X.

RATIO, PROPORTION, AND SERIES.

I. RaTio, AND PRoPORTION.
Explanation,

155. We are said to measure a quantity when we
find how many times it contains a quantity of the
same kind, taken a8 a standard; the latter quantity
is called the unit of measure.

As the unit is assumed to be a quantity whose value
is known before the measure is made, we call it the
antecedent; because. the value of the quantity to be
measured is found in terms of this antecedent, we call
it a consequent.

Mathematically speaking, the measurement is per-
formed by dividing the consequent by the antecedent;
the result is an abstract number which we call a ratio.
This ratio, prefixed to the unit employed, is the expres-
gion for the value of the quantity to be measured;
hence, we have the following

Definition.

156. The ratio of one quantity to another is the
result obtained by dividing the second quantity by the
L]
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first. "Thus, the ratio of ¢ to 4 is equal to Z’ in which

b is the quantity to' be'measured 'or the consequent,
and a is the unit or anfecedent.

Different Methods of Expressing a Ratio.

157. The ratio of a to & may be expressed by the
symbol g, or, it may be written @:5; in the latter

case the sign :, stands for ¢s confained tn. In both
cases a is the wunif, or anfecedent, and & is the con-
sequent. The antecedent and consequent are called
terms of the ratio, the antecedent being the first term
and the consequent being the second term.

Definitions.

158. A proportion is an expression of equality be-
tween two ratios.

A proportion may be written in two ways. Thus,
if the ratio of @ to & is equal to the ratio of ¢ to ds
we may indicate this equality by either of the following
expressions:

b C—l,.or, a:b: c:d.
c
Either of these expressions indicates that the ratio
of @ to b is equal to the ratio of ¢ to d. The for-
mer may be read @ is contained in & as many times
as ¢ is contained in d; the latter may be read a is

to 4, as ¢ is to d. We may reverse these readings
without error.
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159. There are four ferms in every proportion which
have receiyed A different names with respect to each
other. The first and third are antecedents; the sec-
ond and fourth are consequents. The first and
fourth are extremes; the second and third are
means. The first and second form the first coup-
let; the third and fourth form the second couplet.
The fourth term, is called a fourth proportional to
the other three.

When the second term is equal to the third, it is
said to be a mean proportional between the other
two. In this case, there are but three different terms
in the proportion, and the last term is said to be a
third proportional to the other two.

In the proportion,

- = id, or a:b:: c:d,
c

a and c¢ are anfecedents, b and d consequents, a and
d extremes, b and ¢ means ; 2 °r a:b, is the first
couplet, g, or c:d, is the second couplet, and d is a
Jourth proportional to a, b, and c¢. Also, in the pro-
portion,

g = %, or a:b: b:e

b is a mean proportional between a and ¢, and c is a
third proportional to a and b.

160. Qnantities are in proportion, by alternation,
when antecedent is compared with antecedent, and con-
sequent with consequent.
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161. Quantities are in proportion, by inversion,
when antecedents are made consequents, and conse-
quents are made antecedents.

162. Quantities are in proportion, by composition,
when the sum of antecedent and consequent is com-
pared with either antecedent or consequent.

163. Quantities are in proportion, by division,
when the difference of antecedent and consequent is
compared with either antecedent or consequent.

164. Two varying quantities are reciprocally, or
inversely proportional, when one is increased as many
times as the other is diminished. In this case, their
product is a fixed quantity, as zy = m.

165. Equimultiples of two quantities, are the re-
sults obtained by multiplying both by the same quan-
tity. Thus, ma, and mb, are equimultiples of a and b,
whatever may be the value of m. ’

Principles of Proportion.

166. We shall demonstrate some of the most im-
portant principles of proporticns, adopting both meth-
ods of writing proportions.

Assume the proportion,

a:b::c:d; or ‘b—l =

d
_c;"'(l)

clearing of fractions, we have,

be=ad; . . . . . (2
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hence, the following priuciples:

1°. If four/guantities) arein proportion, the product
of the means is equal to the product of the extremes. '

Conversely, if we divide both members of (2) by ca,

b d
we have, 2= o @:b::c:d; hence,

If the product of two quantities s equal ‘to the
product of two other quantities, the first two may be
made the means, and the second two the exiremes, of
a proportion.

It follows, that of three proportional quantities, Zhe
square of the mean 13 equal to the product of the
extremes. : '

If we multiply both members of (1) by g, and re-

duce the result to its simplest form, we have,

2 = g; or, a:c::b:d . . (3)
whence, the following principle:

2° If four quanﬁties are in proportion, they will
be in proportion by alternation.

Let us assume the proportion,

biig:if oor O =L
a:b::g:f; or a=g ° - (4)
Comparing (4) with (1), we see that their first mem-
bers are equal; hence, their second members must also
be equal; that is,
d

E=§; or,c:d.::y:f; N )
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hence, the following principle :

3°. If the\first | couplets ofi two proportions are the
same, the second couplets will form a proportion.

Consequently, by alternation, if the antecedents of two
proportions are the same in both, the consequents will
be in proportion.

If we take the reciprocals of both members of (1),
we have,

%—_-(%; or, b:a::d

te; . . . (6)
hence, the following principle:

4°. If four quantities are in proportion, they will
be tn proportion by tnversion.

If we add 1 to both members of (1), and also sub-
tract 1 from both members, we shall have,

5 d 5 i .
-d-i-l =E+1’ and E—l —‘—:—1,

whence, by reducing to a common denominator, we have,

b+a _d+c b—a _ d—c
. = o a — ¢ LM

or a:b+a::c:d+ec and a:b—azcid—c

hence, the following principle:

5° If four quantilies are in proportion, they will
be in proportion by composition or by division.

If we multiply both terms of the ratio _, by m, its
value will not be changed (Art. 61), and we have,



RATIO AND PROPORTION. 241

- %:g; or, ma:mb::a:b;’ . . (8)

hence, the following principle:

6°. Equimultiples of two quantities are proportional
to the quantities themselves.

If we multiply both terms of the first member of
(1), by m, and both terms of the second member by
n, the equality will not be destroyed, and we have,

mb = n_d; or, ma:mb:: nc:nd; . . (9)
ma ~ ne
hence, the following principle:

°. If four quantities are in proportion, any equi-
multiples of the first couplet will be proportional to
any equimultiples of the second couplet.
»

If, in Equation (8), we suppose m = 1 + 2, in
which ‘;—) is any fraction, we have the following principle :

8°. If two quantities be increased or diminished by
like parts of each, the results will be proportional to
the quantities themselves.

If, in Eq,uation (9), we suppose, m = 1 j:‘g, and
n=1+ ’;i,,,we have the following principle: ?

9°. If both terms of the first couplet of a proportion
are increased or diminished by like parts of each, and
tf both terms of the second couplet are tincreased or
diminished by like parts of each, the results will be tn

proportion.
11
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A continued proportion, is one in which several
ratios are successively equal to each other; as,

2: d ='£ = g, &c.; or, a:b:ic:d:re:fiig:h,

c e
&c., . . (10)

From the preceding continued proportion, we evidently
have the following equations:

-e

“ bg = ah, &ec.

2:2; whence, da = ab.
%:g; “ b = ad.
b

a=h o w=ua
b_ %

a g

Adding and factoring, we have,
b(a+c+e+g+ &) =ald+d+f+h+ &e);

changing this equation into a proportion (principle 1°),
we have,
b+d+f+h+ & b

Gafctretg+ & —a O

at+ct+e4+g+&c:b+d+f+h+ &Ge:iazbd; (11)

hence, the following principle:

10°. In any continued proportion, the sum of all the
antecedents 1 to the sum of all the consequents, as any
antecedent is to the corresponding consequent.
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Let us assume the two equations,

é=‘—1, and Z:
a ¢’ e

h

55

multiplying these equations, member by member, we

have, B
of _ dh, :
%= o or, ae:bf :: cg:dh; . . (12)

hence, the following principle :

11°. If two proportions be multiplied together, term
by term, the products will be proportional.

This principle may be extended to the multiplication
of any number of proportions, term by term.

II. SERIES.
Definition.

167. A series is a succession of terms, each of
which, after a certain number are known, may be derived
from one or more of the preceding ones, by a fixed law.
This law is called the law of the series.

If a certain number of terms are given, and the law
of the series is known, any number of terms may be
found. There are an infinite number of terms in every
series.

The simplest series are, arithmetical and geometrical
progressions.

Arithmetical Progression.

168. An arithmetical progression is a series in
which each term is derived from the preceding term,
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by adding to it a constant quantity. This quantity is
called the common difference.

If the common ' difference s’ positive, each term is
greater than the preceding one, and the progression is
said to be increasing. If the common difference
is megative, each term is less than the preceding one,
and the progression is said to be decreasing.

Thus, 2, 4, 6, 8, &c., is an increasing arithmetical
progression, in which the common difference is + 2.

The series, 18, 16, 14, 12, &c., is a decreasing arith-
metical progression, in which the common difference
is — 2.

Although there are an infinite number of terms in
every progression, it is customary to speak of a finite
number of consecutive ones, as constituting a progres-
sion. Thus, we call the succession of terms,

3 5 7 9, 11,

a progression of 5 terms.

If the terms of any increasing progression are taken
in a reverse order, beginning at the last, the result will
be a decreasing progression. Thus, the progression,

4, 8, 12, 16,
becomes, when reversed,
16, 12, 8, 4.
If a decreasing progression is, in like manner, re-

versed, the result is an increasing progression.

169. In every arithmetical progression, having a
finite number of terms, there are five quantities espe-
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cially to be considered, viz.: The first term, the last
term, the,mumberof)|terms, the common difference, and
the sum of the terms. When any three of these are
given, the other two may be found. In investigating
rules for the solution of these different cases, let us
denote

the first term by . . . . . a

“ Jast term by . . . . .
“ number of terms by . . . =,
“ common difference by . . d,
“ gum of the terms by . . s

The first and last terms are called extremes, all the
other terms are called arithmetical means.

170. Given a, d, and 7, to find 7:

The second term is, by definition, equal to a 4 d;
the third is equal to the second, increased by d, that
is, it is @ + 2d; the fourth term is equal to the third,
increased by d, that is, it is @ + 34; and so on: hence,
the n* term, or /, is equal to @ + (» — 1)d; or,

l=a+(n-—-1d . . . ()

that is, any ferm s equal to the first term, plus the
product of the common difference by the number of
preceding terms.

EXAMPLES.

1. The first term is 3, and the common difference
is 3. What is the 7th term?

Here, the number of terms preceding the 7th, is 6; hence, by the
rule, the 7th term is, 3 + 8 x 6, or 21.
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2. The first term is 24, and the common difference
— 3; what is/the/5thhterm 2
Ans. 24 44 x —3 = 12.

3. The first term is 1, and the common difference
is 1}; what is the 25th term ?

Ans. 1+ 24 x 1§ = 37.

4, The first term is 1, and the common difference
—4; what is the 13th term ?

Ans. 1+12x —3 = —8.

5. The first term is — 5, and the common differ-
ence 2; what is the 7th term?
Ans. —54+2x6 = 7.

171. Given a, I, and =, to find s:

Having found the #* term, /, the preceding term
is equal to / —d; the term preceding that, ! — 2d,
and so on. If we write out the terms of the progres-
sion, and then write the same terms in a reverse order,
the sum will be the same in both cases; hence, we
have,

8 = a+(a+d)+(a+2d)+ .. .+(—2d)+ (0 —d)+],
8 =14+(—d)+(1—2d)+ ... (a+2d)+(a+d)+a;

adding these equations, term by term, we have,
2B =(a+)+@+)+@+)+ .. +(@+)+(a+)+(a+0);
here, (z 4+ !) is taken n times; hence,

R =n(a+1); or, s = }n(a + ) N )

:}mt is, the sum of the terms is equal to the sum of
te extremes, multiplied by half the number of terms.



SERIES. 247

Formula (2) can be placed under another form, by
substituting) for, ] |its value, taken from formula (1):

s = e+ a+ @m—1d) = na+"2=Vg ()

by means of which, the sum of the terms may be found
more directly than by formula (2).

EXAMPLES.

1. The first term is 2, the common difference is 3,
and the number of terms is 17. What is their sum ?

Ans. 17x2+17’2‘16x3=442.

2. The first term is 4, the common difference — 4,
and the number of terms 20. What is the sum?

1 20 x19 1 55

An8.20)(§+ 2 x-—g-—-—z.

3. The first term is 20, the common difference is

— 2, and the number of terms is 6. What is the sum?

6 x5
P)

4, The first term is 5, the common difference 3,
and the number of terms 12. "What is the sum ?
: Ans. 258.

Ans. 6 x 20 4

X —2 = 90.

5. The first term is — 2, the common difference is
— 3, and the number of terms is 10. What is the
sum ? Ans. — 155.

Formulas (1) and (2), contain five quantities: @, d,
n, I, and 8. If any three are assumed at pleasure, the
remaining two may be deduced from the formulas.
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Geometrical Progression.

172. A geometrical progression is a series, each
term of which is derived from the preceding one, by
multiplying it by a fixed quantity. This quantity is
called the ratio of the progression.

173. If the first term is positive, and the ratio greafer
than 1, each termn is greater than the preceding one,
and the progression is eaid to be increasing. If the
ratio is less than 1, cach term is less than the pre-
ceding one, and the progression is said to be decreas-
ing.

Thus, the series 2, 4, 8, 16, &c., is an increasing
progression, whose ratio is 2.

The series 2, 1, }, 1, &c., is a decreasing progression,
whose ratio is }.

174. If the ratio is megative, the terms of the pro-
gression are alternately positive and negative. The
positive terms make up a progression whose ratio is
eqnal to the square of the given ratio, and the nega-
tive terms make up a second progression, having the
same ratio. Thus, the progression 2, —4, +8, —16,
&c., whose ratio is — 2, is made up of the two pro-
gressions, 2, 8, 32, &c., and — 4, — 16, — 64, &c,
whose ratio in each case is 4.

175. In any geometrical progression, there are five
quantities to be considered, any three of which being
given, the other two may be found. These quantities
ma
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the first term, denoted by . . . . a,
“ last''term]'denoted' 'by' . . . .
- “ number of terms, denoted by . . =,
“ ratio, denoted by . . . . . 7
“ sum of the terms, denoted by .

bl

The first and last terms are called extremes; all
the other terms are called geometrical means.

176. Given a, 7, and 7, to find /: The sccond term
is, by definition, equal to the first multiplied by 7,
that is, it is equal to ar; the third term is equal to
the second, multiplied by r, that is, it is equal to ar?;
the fourth term is equal to the third, multiplied by 7,
that is, it is equal to ar®; and so on to the »* term,
which is equal to ar*~'; hence,

l=a' . . . . . (1)

that is, any term of a geometrical progression s equal
to the first term, multiplied by that power of the ratio

whose exponent 13 equal fto the nwumber of preceding
terms.

EXAMPLES.
1. Find the 7th term of the series 1, 4, 16, &c.
We have, !l = ar! = 1 x 45 = 4096. Ans.
2. Find the 8th term of the series 2, 4, 8, &c.
Ans. 256.
3. Find the 12th term of the series 30, 15, 7§, &ec.
Ans. 1$¢

4. Find the 8th term of the series 5, 25, 125, &ec.
Ans. 390625.
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177. Given a, r, and n, to find s: we have, from
the definitiony
s=a4ar+arr+ ... +ar"? 4+ arl;
S T8= ar + ar’* + ar*? + ar~? + ar*;

subtracting the first of the above equations from the
second, member from member, and factoring, we have,

8(r—1) = a(r—1);

r—1
iR

Had we subtracted the second from the first, we should
have found,

S 8= a

1—r
= - - - - ®

If r is greater than 1, formula (2) will be found more
convenient; if it is less than 1, formula (3) is to be
preferred ; but either may be used in any case.

8§ = a

EXAMPLES.
1. Find the sum of 8 terms of the series 5, 20, 80, &c.
™—1 4 1

s—ar_l —-5.m—109225. Am-

11 2
2. Find the sum of 7 terms of the series 303 §,&c.
2059
4 1458 °
3. Find the sum of 6 terms of the series 64, 32, 16,
&e. Ans. 126.

4. Find the sum of 8 terms of the series 2, — 4,
+ 8, — 16, &. Ans. — 170.
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178. Solving equation (1), Art. 176, with respect te

r, we have)
n~1/1
r = ;, e e e e . (4)

a formula by means of which we can find the ratio,
when the extremes and the number of terms are given.

The same formula enables us to insert any number
of geometrical means between any two numbers. Since
the number of means is equal to the whole number of
terms diminished by 2, we shall have, n —1 =m + 1,
in which m denotes the number of means requxred
substituting in (4), we have,

m+1/ ]
r = h—’ o . o N . (5)
EXAMPLES,

1. Insert 4 geometrical means between § and 81.

We have, r = /81 =} = +/243 = 3. Hence, the
means are, 1, 3, 9, and 27.
81

2. Insert 3 geometrical means between 2 and 5

9 7

y 5, and '4—.
3. Insert 4 geometrical means between 2 and 486.

Ans. 6, 18, 54, 162.

Ans. 3

4. Insert 5 geometrical means between 1 and 611

ans, L1111
"y Ie R

5. Insert 4 geometrical means betWégn 2 and 6250.
Ans. 10, 50, 250, 1250.
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Formula (3), Art. 177, may be placed under the form,

a ar®
I—r 1—v7 (6)

8§ =

If » is a fraction less than 1, and if = is very great,
the numerator, ar”, is very small with respect to the
denominator; and finally, if # = », the value of ar"
is 0. In this case, the value of s reduces to its first
term, and we have,

a
8=1—T e e e e . (7)

179. In every decreasing progression, the value,
l—i—;, is that towards which the sum of the series
approaches, as the number of terms is increased. This
value is called, the limit, or sum of the progression.

EXAMPLES.

1. Find the sum of the terms, 2, 1, §, % &c., to
infinity.

a 2

We ha:ve, 8§ = m = -1—_? = 4. Ans.

2. Find the sum of the terms, §, 1, 3, &ec., to
infinity. Ans. 4.
3. Find the sum of the terms, 1, §, $, &c., to
infinity. Ans. §.
4. Find the sum of the terms, §, 4, 4 &c., to
infinity. Ans. 2%.

5. What is the limit towards which the sum of the
series 1, 4, 1§, &c., approaches, as the number of
terms increases ? Ans. 5.
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6. What is the limit of the sum of the series
1’ *’ '{", &c-? .A.ns- 4.

PROBLEMS.

1. The sum of three terms in geometrical progression
is 21, and the sum of their reciprocals is 4. What
are the terms?

Denote the first term by z, and the ratio by y; we shall have,
from the conditions of the problem,

z+zy+ayf =21 . . . . . (1)}
1 1 1 7
5+a—:y-+m7—i§ A )
From (1) and (2), we find,
21

liy+y =7 ®
7
1+y+y’=T2-zy’. N (]
21 7
;zﬁmy’; or, 2y = 86; or, oy = 6;

substituting the value of zy in (4), we have,
. 7
1+y+y =5 x06p
5
o y’——§ = —-1;

or, —§: 2—5—1'
V=1Vl

using the positive value of y only, we have,
y = 2; whence, 2 = 3.

The terms are, therefore, 8, 6, and 12.

2. The population of a town increases annually in
a geometrical ratio, and in three years the population
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rises from 120,000 10 138,915; by what part of iteelf
is it increased each year?

Let z denote the ratio of increase; from the conditions of the
problem,
12000028 = 138915 ;

8000z = . 9261.
200 = S1; or, 2 = 14;

or,

hence, each year, there is added one-twentieth of its population.

3. The sum of a geometrical progression to an infi-
nite number of terms is 2, and the sum of the squares
of the terms of the same series is 4 What is the
first term, and the ratio of the given progression ?

Let z denote the first term, and gy the ratio; we then have,

z+q:y+wzf+&a=lfy=2; A ¢))
z’+z’y‘+af’y‘+&c.=f%,=§; )
dividing (2) by (1), we have,
z 2
Tvy =3 or, =2+2%; . . . (8

from (1), we have,
z=2-2; . . . . « @

from (3) and (4), by eombi;mtion,

z=1 and y = §;
the series is, therefore,

1+3+3+3+ &

4. The population of a town increases annually in
geometrical progression, and in four years is raised from
10,000 to 14,641; by what part of itself is it increased
each year ? ‘ T Ams. o5
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5. Find 4 numbers in geometrical progression, such
that the sum of the means is 36, and the sum of the
extremes 84. Ans. 3, 9, 27, and 81.

6. Insert 3 geometrical means between } and §4.
Ans. $, %, H-

II1I. INDETERMINATE COEFFICIENTS.
Definitions and Explanations.

180. An identical equation is an equation that
is true for all values of the unknown quantities that
enter it. Thus,

a? —
—z

ar +b = axr + b, and = a4+,
are identical equations.

Every identical equation containing but one unknown
quantity, can be reduced to the form of,

pP+ez+r2+ & = p' + gz + r'2 4 & (1)
or, by transposition, to the form,
=2+ @—9)+ (r—1r)2 + &. =0 (?)

Because equations (1) and (2) are true for all valucs
of z,.it follows-that 2 is indeterminate (Art. 89); the
coefficients of the different powers of z are therefore
coefficients of indeterminate quantities, and for this rea-
son they are called indeterminate coefficients.
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Principle of Indeterminate Coefficients,

181. Since equation (I) is true for all values of z,
it must be true when 2 = 0; making z = 0 in that
equation, we have, p = p'. Suppressing p in the first
member of equation (1) and its equal p' in the second
member, and then dividing both members by z, we
have,

g+rz+ & =¢ +rz+&. . . (3)

which is an identical equation because it is only a
modified form of equation (1); hence, equation (3) is
true for all values of .

Making # =0 in (3), we have as before ¢ = ¢'.
Suppressing ¢ and ¢' in (3), dividing by 2 and then
making z = 0 in the resulting equation, we have
r =7, and so on indefinitely. Hence, we have the
following principle : :

In any identical equation, containing but one inde-
lerminate quantity, the coefficients of the like powers
of this quantity in the two members, are separately
equal to each other.

If all the terms of an identical equation are transposed to one
member, as in equation (2), article 180, the coefficients of the differ-
ent powers of the unknown quantity are separately equal to 0.

Extension of the Preceding Principle.

182. If an identical equation contains two or more
indeterminate quantities, it may be shown by a simi-
lar course of reasoning, that the coefficients of the like
powers and combinations of powers of these quantities,
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in the two members, are separately equal to each other;
hence, the féllowing general principle :

In any tdentical equation containing any number
of indeterminate quantities, the coefficients of the like
powers and combinations of powers of these quantities,
in the two members, are separately equal to each other.

Application to Series.

183. The principle of indeterminate coefficients may
be used in developing algebraic expressions into series.
To illustrate the method of proceeding, let it be re-

2 + 3z .
S¥dc 52 Ot °
series arranged with respect to the ascending powers
of z:

quired to develop the expression

Assume the equation,

2 + 3z _
Sr ke = PH@ Pttt & (1)

and suppose it identical; clearing of fractions, we have,

243 =3p+4p|x+5p | 2+ 5¢ | 2+ &c.;
+ 3¢ + 4¢q + 4r
+ 3r + 3s
from the principle of indeterminate coefficients, we have,
2 = 3p, Lp= &
. 3 = 4p + 3q, g = 3
0 = 5p + 49 + 3r, Lor = — §4%
0 = 5¢ + 4r + 3s, s = 12l &c.;
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substituting these values in (1), we have the required
series,

2+3z 2.1 34, 121
ST A =37  tae &

In like manner, any similar expression may be developed
into a series; hence, the following

RULE.

Assume the given expression equal to a series
of the form, p + qx + ra? 4 &e., in which p, q,
r, &c., are quantities to be determined ; clear the
equation of fractions, and place the coefficients of
the like powers of the wunknown quantity in the
two members separately equal to each other; then
find, from the resulting equations, the valwes of
P q, 1, &c., and substitute these values in the
assumed development.

EXAMPLES.

1— . .
1. Develop 1T :, into a series.

OPERATION.

1—2
i3z=-P+e+1rd+ed+ &;

clearing of fractions,

1—”=P+9,z+'rlz’+s 2 + &e.;
+p +q +7r
equating coefficients,
l=pv o p=1,
_l=q+p’ Y og=—2
0=1‘+q, Lor =2
0=s+mn 8 = —2 &c.:
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substituting, we have,

1~z
1+2

=1-—2% + 2* — 23 &c.

The law of the series is evident, and any number of terms may
be written out by means of this law.

1l—2 . .
. ——, int
8. - Develop 1254 into a series.
OPERATION.
1—2
l—m——p+.qz+n‘+n‘+&c.,

clearing of fractions, we have,

l—z=p+gq|ec+r|2®+ 8|+ &c;
+p| +¢q| +7
+pl +¢
equating coefficients,
1 =p, . p=1
—-1=q+p g=-2
0=7r+q+0p, r=1
0=8+r+4g 8 =1, &;

substituting, we have,

R el R R Y T T S AT
l+z+ 2@
3. Develop i+ gx’ into a series.

' Ans. 1+5x+15x‘3+45x3+135x‘+&c
4. Develop %-'-—%—xz, into a series.

Ans. 1 + 3z + 42 4 728 + &e.

If the numerator of the fraction contains the unknown quantity
to a higher power than the denominator, we first reduce it to a
mixed quantity, in which the numerator o1 the fractional part is of
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8 less degree than the denominator, and then develop the fractional
part, by the rule, annexing the result to the entire part.

1+ a® —2a8 .
5. Develop -—i————, into a seriea.
a—2z
Reducing to a mixed quantity,
1+az‘:_z_’ = 24+ 1 :
a—2 a—2o

developing, by the rule,

. = =1+£,-+£:+&c.
a—2 a @ a
1+ a2 —2* 7 z @ o
" Ta—s S T¥tetgtgtatd

Application to Partial Fractions.

184. It the denominator of a fraction can be re-
solved into factors of the first degree, the fraction
itself can be resolved into partial fractions having these
factors for denominators, by the principle of indeter-
minate coefficients. The preceding remark is applicable
here, namely, when the degree of the numerator is
higher than that of the denominator, the fraction must
be changed to a mixed quantity, as before. The method
of proceeding is indicated in the following example:

2
1. Resolve the fraction, az2Taza’ into partial fractions:

OPERATION.
3
Assume, 2a , = p g , in which p and ¢ are to
a - a+z a—=2

be determined; clearing of fractions,

2 = pa—pz + qa + ¢qz;
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equating the coefficients of the like powers of z,

2a%\= pa+qa}_
0 =—-p +¢ 1\’
whence, g = a and p = a;

substituting in the assumed equation,

2) _ a + a
@—2 a—2z a+2z

22—z 42 . . S
2. Resolve @—1) @—2)(@—3)" into partial fractions:

OPERATION.

Assume,

cf—-z+2 -_? .9 . T .
z—-1)@—2)@—8 z—1 z—2 -8’

clearing of fractions,
P—2+2 = p@*—b62+6) + qg@®—42+8) + r(@—82+92)

equatipg coefficients, we have,

2= 6p+38¢+2
—1= —5p—49—8r
1= p+ q +r

. p=1 ¢g=—4 and 7r =4

substituting in the assumed equation, we have,

d-2+2 _ 1 _ 4 4
@-1)@—2@—8  z—1 z—23 z-—8°

. 3z — 5 . .
3. Resolve the fraction, F 6758’ .mto partial

fractions. 1 1

7 1
Ans. §.$—4_§.Z—2.
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4. Resolve i:—:,, into partial fractions.

2 3
Ans. —1—z+1+z'
3 — 2 — 422 . .
5..Besolve Tr0—-290d=2’ into partial
fractions.
1 1 1
Ans.

it ti—ati—z

If the denominator is of the second degree, it can
always be resolved into two factors of the first degree,
by placing it equal to 0, and finding the roots of the
equation ; then, the factors will be found by subtract-
ing each root from the unknown quantity.

We have hitherto sapposed that the factors of the
denominator are unequal. When some of the factors
are equal, we proceed as in the following example : -

32— Tz 4+ 6

6. Resolve W

, into partial fractions.

8*—72+6 _ p 9 L T
z—1 ~ (@—1p (—1p z-—1’

Assume, .

clearing of fractions,

82 —-Tz+6 =p+gz—1)+r2z*—2 +1);
equating coefficients

=p—q-rrT
-T7T=q-2r ;
8 =17

S p=2 ¢g=-—1 and =8

substituting in the assumed equation, we have,

8#-T2+6 _ 2 1 8
@—1» T @—-1 (-1 =z-1°
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Resolve ———;, into partial fractions.

1 1
"1t z=1

(1)

Ans

z + 22

Resolve (E——l)a

, into partial fractions.

3z Rz

Ans et T—i)

_z—_|_):,a, into partial fractions.

(=
1 1 1
Ans. (z—1)8 + (z — 1) tr=1

Resolve

» N
F-1)(@—2

4 1 1
Ans. 3z—2) 2z—1) + 6(z + 1)

Resolve , into partia’ fractions.




CHAPTER XI.

LOGARITHMS.

Definitions.

185. The logarithm of a number is the exponent
of the power to which it is necessary to raise a fixed
number to produce the given number. The fixed num-
ber is called the base of the system.

186. If we denote any positive number, except 1,
by a, any positive number whatever by =, and the
exponent of the power to which it is necessary to
raise a, in order to produce =, by 2, we shall have
the exponential equation,

=n . . . . . (1

In this equation, @ is the dase, n any positive num-
ber, and z is the logarithm of »n. It is plain, that a
- cannot be negative, neither can it be equal to 1, be-
cause every power of 1 is equal to 1.

If, whilst a remains fixed in value, we suppose n to
assume in succession every valne from 0 to , the
corresponding values of =, taken together, will consti-
tute what is called a system of logarithms. Since
there are an infinite number of different values that
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may be attributed to @, it follows, that Zhere are an
tnfinite number, of | 8ystems-, of ~logarithms. Of these,
two only are in general use, viz.: the system whose
base is 10, called the common system; and the sys-
tem whose base is 2.718281828..., called the Napier-
ian system.

In what follows, we shall designate common logarithms by the
symbol log, Napierian logarithms by the symbol /, and logarithms
taken in any system whatever, by the symbol Log.

187. If we make ¢ = 10, in equation (1), we have

the equation,
10¢P=2 . . . . . (2)

If » is made equal to 1, in equation (), the cor-
responding value of # is 0; if » is made equal to 10,
the corresponding value of z is 1; if » is made equal
to 100, the corresponding value of z is 2; and so on;
hence, we have, from what precedes,

log 1=0
log 10=1,
log 100 = 2,

log 1000 = 3, &ec.

For all values of # between 1 and 10, the correspond-
ing logarithms lie between 0 and 1; that is, they are
fractions less than 1, and are generally expressed deci-
mally. For all values of n between 10 and 100, the
corresponding logarithms lie between 1 and 2; that is,
they are equal to 1 plus a decimal. The logarithms
of all numbers betweem 100 and 1000, lie between 2

and 3; that is, they are equal to 2 plus a decimal.
12 -
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In general, a logarithm is composed of two parts: anm
entfire part, called, the characteristic; and a decimal
part, sometimes called the mantissa.

Logarithms are used to facilitate numerical compu-
tations, where they serve to convert operations of mul-
tiplication and division into the simpler ones of addition
and subtraction. The following principles indicate the
methods of applying logarithms to arithmetical compu-
tations.

Principles of Logarithms,

188. Let a denote the base of any system of loga-
rithms, m and » any two numbers, and z and y their
logarithms. We have, from equation (1),

FF=m . . . . . (3)
e =n; . . . . . 4

multiplying (3) and (4), member by member, we have,
@t = mn;
whénce, from the definition,
z+y = Logmn; . . . (5)
hence, the following principle:

1°. The logarithm of the product of two numbers s
equal to the sum of the logarithms of the two numbers.

If we divide (3) by (4), member by member, we have,

aV = %;
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whence, from the definition,
x—y:Log%;. N ()]
hence, the following principle :

2°. The logarithm of the quotient is equal to the
logarithm of the dividend diminished by that of the
divisor.

If we raise both members of (3) to any power denoted
by p, we have,
ar® — mrP;

whence, by definition,
- px = Log m?; . . . . (7)
hence, the following principle :

3°. The logarithm of any power of a.number is equal
to the logarithm of the number multiplied by the ex-
ponent of the power.

If we extract any root cf both members of (3), de-
noted by 7, we have, '

a’ = v'm;
whence, by definition,
‘;zLogV'm' N ()
hence, the following principle :

4°. The logarithm of any root of a mumber is equal
to the logarithm of the number divided by the index
of the root.
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The applications of the above principles require a
table of logarithms. . A table of logarithms, is a
table by means of which the logarithm corresponding
to any number, or the number corresponding to any
logarithm, may be found.

The principles above demonstrated, give mse to four
practical :

RULES.
1°. To find the product of two or more numbers :

Find the logarithms of the factors from a table,
and take their sum ; then find the number cor-
responding to the resulting logarithm, and it will
be the product required.

' 2°. To find the quotient of ome mumber by an-
other :

Find the logarithms of the dividend and divisor
from a table, and subtract the latter from the
former; then find the number corresponding to
the resulting logarithm, and it will be the quo-
tient required.

3°. To raise a number to any power.

Find the logarithm of the number from a table,
and multiply it by the exponent; then find the
number corresponding to the resulting logarithm,
and it will be the power required.

4°. To extract any root of a number.

Find the logarithm of the number from a table,
and divide it by the index; then find the nwmnber
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corresponding to the resulting logarithm, and it
will be the\root\ reqisired.

No practical examples can be given to illustrate the preceding
rules, without a table of logarithms. A few examples of trans-
formation are annexed, which show the methods of proceeding in
the employment of logarithms.

EXAMPLES.
abe
dar’

From equations (5) and (6), using common logarithms, we have,

1. Transform the equation, z =

logz = loga + logb + logc — logd — log f.
a't®
V'

From equations (5), (6), (7), and (8), we have,

2. Transform the equation, z =

logz = 7Tloga + 8logb — §loga = 6} loga + 8logd.

vy
Ans. logz = $loga + 4logd + $loge
—$logf— % logyg.

3. Transform the equation, z =

: . V5 x V6
4, Transform the equation, z = ———=.
eq V3 x V2
Ans. logz = }log5 + §log6 —4log3 — }log?2.
a? —
5. Transform the equation, z = Va _i,)_x_?’a.
V(a + b)c®

Ans. lbgz = $log(@a—25) +4loga+ $log3
—}log (@ + 8) — g loge.
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Solve the following equations:
6. 7 =13.

Taking the logarithms of both members, we have,
log 13

zlog 7 = log 13. Sz = g 7" Ans

5y 2 __log2 —log3
v (7) -3 Ans. %= fog5 —log7"
8 a = c Ans. z = %8¢ —lga

log &

¥z _ __(log 5\?
9. 3% = 5. Ans. ’”"(1og3)'
10. abv

4
my nz
Taking the logarithms of both members of the first
equation, we have,
zloga + ylogd = loge
Combining this with the second of the given equations,
we find,

” — mlog c ond ¥ — nlog ¢
" mloga + nlogd’ y_mloga+nlogb'
11. (a® — ¥)*V = (a — b)*=
_ log (a — )
Ans. z = 1+1—_0g(a+b)'

General Properties of Logarithms.
189. There are certain general properties of loga-

rithms that may be discovered by a discussion of the

exponential equation,
=n . . . . . (1)
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In this equation, the arbitrary quantities are ¢ and =.

1°. If we make n =1, the corresponding value of
z will be 0, whatever may be the value of a, since
a® = 1; hence,

The logarithm of 1, in any system, t8 equal to O.

2°. It we make n — a, the corresponding value of
z will be 1, whatever may be the value of @; hence,

The logarithm of the base of any system, taken in
that system, is 1.

3°. If we suppose ¢ > 1, say 10, for example, we
shall have,
102 = n.

If n =1, the value of z, or the logarithm of 1, is
0; if » = », the value of z, or the logarithm of «,
i8 . The logarithms of all numbers between 1 and
», lie between 0 and «, that is, they are positive.

If » is less than 1, z must be negative, giving
1
10=

tion, because

= n; if » = 0, 2 will be infinite, in the last equa-
% = 0, therefore, 2 = — », in the
given equation, that is, the logarithm of 0 is equal
to — «; hence,

In any system whose base is greater than 1, the loga-
rithms of all numbers greater than 1, are positive ;
the logarithms of all mumbers less than 1, are mega-
tive ; the logarithm of w, 18 + w, and the logarithm
of 0 18 — w».



M2 MANTAL OF ALGEBEA.

4°. If we suppose a < 1, say %, for example, we

shall have,

1

=™ O 10 = n;
in this case, the positive values of = correspond to the
negative values of # in the preceding case; and the
negative values of z, to the positive values, in the
preceding case; hence,

In any system whose base is less than 1, the loga-
rithms of all numbers greater than 1, are negative; the
logarithms of all numbers less than 1, are positive ; the
logarithm of w, 18 — w, and the logarithm of 0, is
+ »n.

5°. Since, for every valune of z between — «» and
+ w, that is, for every real value of z, the values
of n lie between 0 and + «, whether a is greater or
less than 1, it follows that there are no real values
of z, which, substituted in the equation, a® = n, will
make n negative; hence,

There are mo real logarithms corresponding to nega-
tive mumbers.

Although there are no logarithms of negative num-
bers, we may multiply negative numbers by means of
logarithms. We first regard the numbers as positive;
and, having applied the rules, we then give the proper
sign to the result, according to the rule for signs.
Thus, to multiply 27 by — 435, we find the product
of 27 and 435, and give it the minus sign.
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Logarithmic Series.

190. Let it be required to develop Log (1 + y) into
a series arranged according to the ascending powers of
y. If we make y = 0 in the expression Log (1 + y),
it reduces to Log 1, which is equal to 0; hence, the
geries must be such that it will reduce to 0 when
y = 0, that is, every term must contain y as a fac-
~ tor. We may therefore assume the series,

Log(1+9) = My + N+ Py + Q¢ + & (1)

in which M, N, P, &c.,, are constants to be deter-
mined. Since equation (1) must be true for all values
of y, we may write z for y, giving the equation,

Tog (1 +12) = Mz + N2+ PP+ QA + &c. (2

Subtracting (2) from (1), member from member, and
remembering that

Log (1+y)— Log(1+Z)—L°g(1+z) I“’g( !11*:—:)

we have,

Log (1+172) = M(y-z)+N(yz—z=)+P(gs—zs)+&c 3)

Every term of the second member of (3) is divis-
ible by y — 2 by means of formula 9, Art. 36.

Wntmg y for y in equation (1), we have,

Log(1+"{+,) i)+ 72+ i) vee @
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Placing the second member of (4) equal to the second
member of \(3),/and dividing 'both by y — 2z, we have,
M y—2z

1+2+N(1+z)’

+PE’{I:§:+&0. = M+ Ny + 2)

+ Py + y2 + #) + &e.

Since this equation is true for all values of y and
2, make z = y, and we shall have,

M

which is an identical equation ; clearing of fractions, we
have,

Y+IP| Q| g te
+ M

+ 2N + 3P

Making the coefficients of the like powers of y in the
two members equal (Art. 178), we have,

M=NM
0=2N+¥, . N=_-%
0 =3P4+2N, . P=_N_ X
3 3
3P M
0=4Q+3P, » Q= "0 = —",
&ec., &e.

Substituting these values of N, P, @, &c., in equation
(1) and factoring, we have,

Log(1+y) = M{y—L+L %+ &) @)

which is the logarithmic series.
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The quantity M is a constant that depends on the
base of the'system.’''It"is''called 'the modulus.

In the Napierian system M — 1, and the logarithmic
series in this case becomes

10+9) =9-L+2 %46 . ()

This series is not suitable for computing the logarithms
of numbers. To deduce a series for this purpose, we
write — y for y in equation (7), which gives,

2
l—p)=—y—L ¥ ¥ g . (8
Subtracting (8) from (7), member from member, re-

membering that I(14+y) — 7 (1—y) is equal to l(l + z),
we have,

TE I R

1+y z+1 1
If we now make T—y= 2’ whence y = w1’
we have,
241\ 1 1 1
1 )—2(2z+1+3(2z+1)3+5(2z+1)6+&c‘)

Replacing (-z—-:}) by its equal I(z + 1) — Iz, and

transposing /z to the second member, we have,

1 11
%+ 1T 3@ T Bt i)

5+ &c)

(10)

This formula enables us to compute 1(#+ 1) when we
know the value of 7z

1(z+1) =lz+~(



CHAPTER XII.

GENERAL THEORY OF EQUATIONS.

I. PROPERTIES AND TRANSFORMATIONS.
General Form.

191. Any equation containing but one unknown
quantity, and whose exponents are whole numbers, may
be reduced to the form,

+prt gt & stz +u =0 (1)

In this equation, » is a positive whole number, but
the coefficients p, ¢, &c., may be either positive or
negative, entire or fractional, real or imaginary. The
method of reducing equations to the form (1), is analo-
gous to that given for reducing equations of the second
degree to the form,

@+ Pz = ¢;

and since the reduction can always be made, we shall
hereafter, in speaking of equations, suppose them re-
duced to the form of equation (1), unless the contrary
is expressly mentioned.
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Roots.

192. Any value of z, either real or imaginary, which,
if substituted for z in equation (1) will satisfy it, that
is, make the two members equal, is a root of the equa-
tion. It has been shown that every equation of the
first degree has onme roof, and that every equation of
the sccond degree has fwo roofs; we shall assume that
every equation of the #n* degree has at least ome root,
either real, or imaginary.

Properties and Transformations.

193. In this and the following articles it is pro-
posed to demonstrate the most important properties and
transformations of equation (1), article 191.

First Property.

If a is a root of equation (1), the first member of
that equation is divisible by = — a.

For, if we divide the first member of equation (1)
by # — a, and continue the division till a remainder
is found that does not contain z, and if we denote
that remainder by n and the quotient obtained by m,
we have,

4 prt + &+ tz+u = (z—am + n (2).

Now, if @ is a root of the proposed equation, it will
reduce the first member of (2) to 0, when substituted
for ; it will also reduce the first term of the second
member to 0; hence, #» is also equal to 0, that is, the
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remainder is 0, and consequentfy the first member is
exactly divisible 'by'z'-L'a;’ ' which-‘was to be shown.

Second Property.

194. If the first member of equation (1) is ezacily
divisible by = — a, then 13 a a root of the equation.

If we divide the first member of equation (1) by
z — a, a8 explained in the last article, the remainder
n will be equal to O, and equation (2) will reduce to
the form,

4+ prt 4+ &+ lz+ u = (z—a)m. (3).

If, in (3), we make z —a, the second member re-
duces to 0; consequently, the first member also reduces
to 0, which satisfies equation (1); hence, ¢ is a root
of (1), which was to be shown.

It follows from the preceding propositions that we can ascertain
whether a polynomial containing z, is exactly divisible by z — a, by
substituting @ for # in the polynomial : if the result is 0, the poly-
nomial is divisible by # — a; if not, the polynomial is not divisible
by z—a.

Third Property.

195. Equation (1) has as many rools as there are
units tn n, and it has no more.

It is assumed that the equation has one root; let
that root be denoted by @: then will 2 —a be a factor
of the first member, and the first term of the other
factor will be 2"!'; the exponents of z in the suc-
ceeding terms of the .second factor will be less than
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n — 1; hence, equation (1) may be written under the
form,

(z—a) @+ par+ &e. + 24+ u')=0 . (4).

Now, equation (4) may be satisfied in two ways, viz.:
by placing the first factor equal to 0, or by placing
the second factor equal to 0. In the latter case, we
have the equation,

4 peri4&e. +tc+u =0. . . (5)

Now, equation (5) has at least one root; let that root
be designated by &; then it may be shown as before,
that equation (5) can be written under the form,

(z—20) (4 p'z 3+ &e. + 'z + u") = 0; . (6)
which reduces equation (4) to the form of,
(z—a)(z—0)(z" %+ p'z* 24 &c.+ t"'z 4+ ") = 0 . (7).

In the same manner as before, it may be shown that
the second factor of the first member of (6) can be
placed equal to 0, and factored, giving

@—c)(@3+p"v + &e. + "'z + u'"') = 0;
which reduces equation (4) to the form,
(z—a)(z—b)(z—c)(z" 3+ p"z* + &c. 4 "'z + ©"') = 0.

By continuing the process, it may be shown that the
first member will ultimately be resolved into just as
many binomial factors, of the form, (z — @), (z — &), &c.,
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as there are units in n. Hence, equation (1) may bo
written under the form;

(z—a) (z—b) (z—c)...(z—k) (z—=0) = 0. . . (8).

Equation (8) may be satisfied, by placing either of
the factors, z — a, z — b, &c., equal to 0, and either
factor being placed equal to 0, gives a root. Now,
gince there are n factors, the equation has =z roots,
and since the equation cannot be satisfied except by
making one of the factors equal to 0, there are only
n roots; which was to be shown.

It is to be observed that some of the roots, and consequently
some of the binomial factors, may be equal to each other.

Applications of the Third Property.

196. If both members of equation (8) are divided
by any one of its binomial factors, the resulting equa-
tion will be freed from the corresponding root.

EXAMPLES.

1. One root of the equation, 2% — 92® 4 262 — 24 = 0,
is 4; what does the equation become when freed of
this root?

OPERATION.
®—92 + 22 —24 |2z —4
» — 4 2—5z + 6
— 6z + 28z .
— 522 + 20z
6z — 24
6z —

0
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hence, the required equation is,
206z .46 = 0,
which may be solved by known rules.

2. One. root of the equation, 2® — 37z — 84 = 0, is
+ 7; what does it become when freed of this root ?

Ans. 2+ Tz + 12 = 0.

3. One root of the equation, 28—1142416z + 84 = 0,

i8 —2; what does the equation become when freed of

this root ? Ans. 2® — 13z 4+ 42 = 0.

4. One root of the equation, 2% + 72® — 4z — 28 = 0,
is —7; what does the equation become when freed of

this root ? Ans. 22 —4 = 0.
5. One root of the equation, 28—122%+4 47z — 60 = 0,
i8 3; what are the other roots? Ans. 4 and 5,

6. One of the roots of 2% + 922 4 26z + 24 = 0, is
—4; what are the other two? Ans. —2 and — 3.

7. Two roots of the equation, 2% — 1228 4 482 — 68z
+ 15 = 0, are 3 and 5; what are the other two?

Ans. 2 + 4/3, and 2 — /3.

8. Onme root of the equation, 28 — 62* 4+ 11z — 6 = 0,

is 1; what are the other two? Ans. 3 and 2.

From equation (8), we deduce the following rule for
forming an equation whose roots are given:
RULE.

Subtract each root from the wunknown quan-
tity; multiply the resulting binomials together,
and place the product equal to 0.
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EXAMPLES.
1. Find the equation whose roots are 1, 2, and 3.

Subtracting each root from z, we have the binomial factors,
z—1, -2, and z—8;

multiplying these together, and placing their product equal to 0,
we find,

¢ — 62 +11z—6 = 0,
which is the required equation.

2. Find the equation whose roots are — 7 and — 4.
Ans. 2® 4+ 11z 4 28 = 0.
3. Find the equation whose roots are 3, 4, and — 7.
Ans. 28 — 37z + 84 = 0.
4. Find the equation whose roots are — 1, —4, and

— 8. Ans. 28 4 1322 4 442 4+ 32 = 0.
5. Find the equation whose roots are —2, —2, 4 4,
and — 4. Ans. x* 4 428 — 1223 — 642 — 64 = 0.
6. Find the equation whose roots are equal to — 3,
— 3, and — 3. Ans. a8 4 922 + 7z 4+ 27 = 0.
7. Find the equation whose roots are 2, 3, 5, and
— 6. Ans. zt — 4a® — 292% + 1562 — 180 = 0.

8. Find the equation whose roots are 1, 2, and — 5.

Ans. a% 4 2 — 13z + 10 = 0.

9. Find the equation whose roots are 3, 4, — 1, and

— 6. Ans. a* — 3122 + 422 + 712 = O.

10. Find the equation whose roots are — 3, — 4,
2+34/—1, and 2 —34/—1.

Ans. -zt 4 328 — 322 + 43z + 156 = 0.
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Simplification of the preceding Rule,

197. The results in the preceding article were found
by actual multiplication; they might have been found
by means of two simple laws. To demonstrate these
laws, let @, 8, ¢, . . . k, I, denote the roots of an
equation of the form (1); then will its first member
be equal to

Z—a)@—0)(x—c)...@—Fk)(z—1).

If we perform the multiplication as far as three factors,
we have the result shown below:

zT—a
z—0b
*—(a+ b))z + ab
z—c

B—a | 2+ ac | z — abe
— b + be

—c + ab

Examining this product of three factors, we see that
it is subject to the following laws of formation :

17, The exponent of z, in the first term, i3 equal to
the number of factors, and it goes on diminishing
by 1, in each term, to the right, to the last term, where
it 1s 0.

R°. The coefficient of the first term is 1; that of the
second term 1is equal to the algebraic sum of the roots
with their signs changed ; that of the third term 1s
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equal to the algebraic sum of the different products of
the roots with their signs changed, taken tn sets of 2;
and the coefficient of the last term 13 equal to the con-
tinued product of all the roots with their signs changed.

By a process analogous to that used in deducing the
binomial formula it may be shown that these laws hold
good for finding the product of any number of binomial
factors of the kind considered; hence, we bhave the
following rule for forming an equation whose roots
are given:

RULE.

I.- The exponent of the unknown quantity in
the first term is equal to the nwumber of roots,
and goes on diminishing by 1, in each term, to
the right, to the last term, where it is 0.

II. The coefficient of the first term is 1. To
find the remaining coefficients, change the signs
of all the roots; find the aldebraic sum of the
results, and it will be the coefficient of the second
term ; find the algebraic sum of the different
products of the results taker two in a set, and it
will be the coefficient of the third term ; find the
algebraic sum of the different products of the
results taken three in a set, and it will be the
coefficient of the fourth term ; proceed in this
way, to the last term, which will be equal to the
continued product of all the results.

The last term, that is, the term that contains the 0 power of the
unknown quantity, is called the absolute term.
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If the sum of the positive roots is numerically equal to the sum
of the negative roots, their algebraic sum will be 0, and conse-
quently the coefficient'of ‘the 'second'term of the equation will be 0,
and that term will disappear from the equation; conversely, if the
second term is wanting, the sum of the positive roots is equal to the
sum of the negative roots.

EXAMPLES.

1. Find the equation whose roots are 1, 5, and 9.

The coefficient of 22, is 1; the coefficient of 22, is —1 —-5—9
— 15 ; the coefficient of 2, is (—1 x —5) + (—1 x —9)
(=5 x —9) = + 59, and the absolute term is, —1 x —5 x —9
— 45 ; hence, the required equation is,

i+

2t — 162° + 59z — 45 = 0.

2. Find the equation whose roots are —3, —4, —5,
and — 6. -

The coefficient of z#, is 1; the coeficient of 23, is 8 + 4 + 5 + 6
= 18; the coefficient of 22, i8 3x4+8x5+3x6+4x5+4x6+5x6
= 119; the coefficient of z, i8 8x4x5+8x4x6+8x5x6+4x5x6
= 843 ; and the absolute term is, 8 x4 x5x 6 = 360 ; hence, the re-
quired egnation is,

¢ + 182® + 1192° + 842z + 360 = 0.

3. Find the equation whose roots are —1, —2,
and 3. Ans. 2 —Tx —6 = 0.

4. Find the equation whose roots are — i, —%,
1

and — }. 7

7
Ans. x3+§x2+3—2—x+é—4—=0.

5. Find the equation whose roots are }, 4, and }.
1

31 1
Ans. x‘—%zz—f—gx—% = 0.
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First Transformation.

198. Every' equation of “the" form (1), whose coeffi-
cients are fractional, can be reduced to another equa-
tion of the same form, whose coefficienis are entire.

Take the equation,

7 7 1 _
Substituting for z, the fraction % , in which y is a

new unknown quantity, and % an arbitrary quantity;
we have,

o1y Ty, 1 _,.
ptsetneta="
multiplying both members by 4%, we have,
% R
P+g¥+59+tg=0 . (@

Since % is arbitl:a.ry, we give it such a value as will

3 —78,—':, 377?’ anfi 6%’ whole numbers.
This can always be done; because, if we make % equal
to the least common multiple of the denominators, the
different powers of % will be divisible by each denomi-
nator separately, and consequently, the coefficients will
be whole numbers. Making % = 64, equation (a)
becomes,

make the coefficients

48 + 56y + 896y + 4096 = 0.

It often happens, that a less value of % will make
the coefficients entire, as in the above example. Re-
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solving the denominators into factors, the coefficients

become,
Tk ¥ ad i

2.2.2° 2.2.2.2.2° 2.2.2.2.2.2°

We see that £ = 2.2.2, will render all of these
T BV 4 and 8.
Hence, the transformed equation is,
v+ +14y+ 8 = 0.

If the roots of the last equation are known, those of the given

equation may be found, by dividing each by 8, since z = g
EXAMPLES.
. 7 11 25
1. Transform the equation, 2% — ga:? +365 g = =0,

into one whose coefficients are entire, that of the first
term being 1.

Making =Y, and multiplying both meimbers by #,
T, 11 25k
vy =0
The fractional coefficients, with their denominators factored, are,

T R %R
8’ 2.2.3.8 2.2.2.8.8°

makirg £ = 2 x 8 = 6, these coefficients become,
— 14, 11, and - 75;
hence, the transformed equation is,
P—142+11y -7 = 0.

Any root of this equation, divided by 6, gives the correspondmg
root of the assumed equation.
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. 41 1 1
2. Transform the equation z* — %z’ + gz —30= 0,

into one whose!/coefficientsCare| értire.
Ans. gb — 4142 + 300y — 900 = O.

. 2 1 1
3. Transform the equation, z5— %a?-}- 30550 = 0,

into one having entire coefficients. :
Ans. y* — 122 + 150y — 84375 = 0.

. 1 1 1
4. Transform the equation, 2% + ;z' + 16 + a= o,
into one whose coefficients are whole numbers.
Ans. ¥+ 9P +y+1=0.

Second Transformation.

199. An equation of the form (1), may be trans-
Sormed tinto another of the same form, tn which the
roots are any multiple of those of equation (1).

For, substitnting in (l), for z, and multiplying
through by &", we have,

Yoy Ry L Yy u = 05 (9)

Equation (9) is of the same form as (1), and since
y = kz, each root of (9) is equal to % times the cor-
responding root of equatlon (1); % may be entire or
fractional.

EXAMPLES.

1. Transform the equation, 2* — 7z 4+ 12 = 0, into
another in which the roots are twice as great.
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If we make z = g, the resulting equation is,

%’_%’14.12:0; or, y’-—l.+48=0.

2. Transform the equation, 23 — 42 — 21 = 0, into
another whose roots are three times as great.
Ans. P — 12y — 189 = 0.

3. Transform the equation, 2 — 4z — 32 = 0, into
one whose roots are half as great.

Ans. -2y —8 = 0.

4. Transform the equation, 2? 4 11z 4 28 = 0, into

one whose roots are twice as great.
' Ans. y? + 22y + 112 = 0.

5. Transform the equation, 2%+ 42%—122°—64z — 64
= 0, into one whose roots are half as great.
Ans. 4+ 2P —3y*—8y—4 = 0.

Third Transformation.

200. An equation of the form (1), may be reduced
to another of the same form, whose roots differ from
those of the given equation by any given quantity.

For, let us make, 2 = y 4 r, in (1), y being a new
unknown quantity, and r being arbitrary; the resulting
equation will be,

G+r)»+py+r)+ ..ty +7)+u =0

Developing the different powers of y + 7, by the
binomial formula, arranging the results according to the

descending powers of y, and denoting the coefficients of
13
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the n —1, n—2, &c., powers of y, by p, ¢, &ec,
we have,

[ ]
CHIY (Y. P+ Ly +u =0, . (a)

an equation of the proposed form, whose roots are less
than those of (1) by 7, since ¥y = z — r, by hypo-
thesis.

The operation of making this transformation is some-
what tedious, but a simple rule may be deduced for
finding the coefficients of the transformed equation, that
will render the transformation sufficiently expeditious:

Equation (a) was derived from (1), by making
Zz = y + r; hence, if we make y = z — r, in equa-
tion (a), the resulting equation will be identical with
equation (1); making this substitution, we have,

E—rr+p(z—ry'+... +8@@—1P+ (z—71)
+2 =0 . . (d)

Now, if the first member of (3), or what is the
same thing, the first member of equation (1), is divided
by z — r, the remainder will be equal to %', the coeffi-
cient of ¢, in equation (a): the quotient obtained is,

(z—=r)4p@E—r)2. ... +8@—1)+1.

If this quotient is divided by z — », the remainder
will be #, the coefficient of y, in equation (a). If the
second quotient be divided by # — r, the remainder
will be the coefficient of 42 in equation (@); and so on.
Continuing this process of division, the successive re-
mainders are the coefficients of the transformed equa-
tion, taken in a reverse order.
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EXAMPLES.

1. Find an equation whose roots are less by 2, than
those of the equation, 2% — 62 — 7z + 60 =

OPERATION.
22 —622— Tz +60 |z —2
2 — 22 P-4z —16 |z —2
—4f — Tz 22— 2z z—2|2—2
— 42 + 8z —22—-15 2—-2 1
—15¢+60 —2+ 4 O
—15z + 30 —19

+ 30

Here, we divide 2* — 62 — 7z + 60, by 2 — 2, and find a
quotient, 2°® — 4z — 15, with a remainder, + 30; we next divide
2 — 4z — 15, by 2 — 2, and find a quotient, z — 2, with a re-
mainder, — 19; we next divide 2 — 2, by z — 2, and find a
quotient, 1, with a remainder, 0 : hence, the transformed equa-
tion is,

y‘ - 19y +80 = 0.
The roots of the given equation are, 4, 5, and — 8, and those of

the transformed equation are, 2, 8, and — 5, as may be shown by
forming the equations in the two cases.

2. Find an equation whose roots are greater by 1,
than those of the equation, 28 4 422 4 52 4+ 7 = 0.
Ans. P+ 9 +5 =

3. Find an equation whose roots are less by 1, than
those of the equation, 28 — 72z + 7 = 0.
Ans. P+ 32 —4y+1 = 0.

4. Find an equation whose roots are greater by 10,
than those of the equation, #* + 42284663224 4664z = 0.
Ans. gh+ 2P + 393 + 4y — 12340 = 0.
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Synthetic Division.

201. The operation of successive division may be
abridged by the method of synthetic division, which
will now be explained, as far as necessary for our pur-

pose.
If a polynomial of the form,

T4 prt gt 48P+ T+,
is divided by a binomial of the form, # —r, or z + 1,
the quotient will be of the form,
1 4 p'z? 4+ &e. + 'z + 1,
and the remainder will be independent of 2.

Now, as our object is to find the remainder, we need
only consider the coefficients in the dividend, divisor,
and quotient; to illustrate, let us take example 1, Art.
200: writing down the coefficients only, we have,

OPERATION.

1—6— 7+60|1—2
1-2 T—4—-15|1-2
—4—7 1-2 1—-2|1-2
—44+ 8 —2—-15{1—-211

— 15 + 60 —2+ 4 0

—15 + 30 —19

+ 80

Proceeding as in the previous article, neglecting the different
powers of z in each term, we find the first remainder equal to 30,
the second remainder equal to — 19, and the third remainder equal
to 0.

But this operation may be abbreviated ; for, if we examine the
process we see that the first term of the quotient in each division
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is 1, the second term of the quotient is obtained by multiplying the
first term by the second term of the divisor, and subtracting the
result from the/'second 'term’lof theldividend, or, what is the same
thing, multiplying the first term of the quotient, by the second term
of the divisor with its sign changed, and adding the result to the
second term of the dividend; the third term of the quotient is
found by multiplying the second term, by the second term of the
divisor, with its sign changed, and adding the result to the third
term of the dividend: and so on, till the last term of the dividend
has been used : the last result is the remainder required.

The above process, when written out, takes the form,

1—6— 7+60] +2

+2— 8-—8

18t quotient, 1 —4—15+ 30 1st remainder.
Ll

2d quotient, 1 —2,— 19 2d remainder.
+ 2

3d quotient, 1,+ 0 38d remainder.

Here, we have changed the sign of the second term of the divi-
gor, and dropped the first term entirely; the first term of the first
quotient is 1; multiplying 1 by 2, we find 2, which we write under
— 6, and adding — 6 and + 2, we find — 4, which we write for the
second term of the quotient; multiplying — 4 Ly 2, we find —8,
which we write under — 7, and adding — 7 and — 8, we get — 15,
which we write for the third term of the quotient; multiplying — 15
by 2, we get — 80, which we place under 60, and adding, we get 30
for the first remainder, which we point off by a comma.

Commencing the second division, we write 1 for the first term of
the quotient ; multiplying by 2, and adding to — 4, we get — 2, for
the second term ; multiplying this by 2, and adding to — 15, we get
— 19 for the second remainder.

Commencing the third division, we write 1 for the first term of
the quotient ; multiplying by 2, and adding to — 2, we get 0 for the
third remainder ; hence, the required equation is,

¥ — 19y + 30 = 0.

In the same manner, all similar transformations may
be effected, as is shown in the following examples:
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5. Find an equation whose roots are greater by 3
than those of the equation,

¢ — 1728 4 1222 — 33z + 67 = O

Here, the divisor is z + 8, and the second term, with its sign
changed, is — 8.
OPERATION.

1 —17 + 12 — 83 + 67| —38
— 8 + 60 — 216 + 747

20 + 72 — 249, + 814 . . . 1l remainder.
— 8 + 69 — 428
1 —23 +141,— 672 . . . . . . 2 remainder.
— 8+ 18
1 -2, +219 . .. . . .. . . 8 remainder.
- 3
1, =29 . . . . . . . . . . . . Athremainder.

Hence, the required equation is,
¥ — 292 + 2192 — 672 + 814 = 0.

It is not necessary that the coefficient of the first term of the divi-
dend should be 1. It may be any number, and in that case the first
term of each quotient will be the same number.

6. Find the equation whose roots are less by 3, than
those of the equation,

3zt — 428 + 122 4+ 82— 12 = 0.

OPERATION.
8 — 4+ 7T+ 8-— 12| +38

+ 9 + 156 + 66 + 222

8 + 6 + 22 + 74, +210 . . . lst remainder.
+ 9 + 42 + 192

8 +14 + 64 +266 . . . . . . 2d remainder.
+ 9 + 69

8 +23, +1388 . . . . . . . . 8 remainder.
+ 9

8, + 8 4th remainder.
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Hence, the required equation is,
Syt A\ 8B4 1332 (¥ 12066%) + 210 = 0.

If any terms are wanting in the dividend, their place must be
supplied by 0’s.

7. Find an equation whose roots are greater by 3,
than those of the equation, 2 — 2 = 0.
Ans. y* — 12y* + 54y — 108y + 79 = 0.

8. Find an equation whose roots are less by 0.1,
than those of the equation, 2* —1 = 0.
Ans. 43 + 0.3y2 + 0.03y — 0.999 = 0.

9. Find an equation whose roots are greater by 3,
than those of the equation, #* 4 132% + 22 — 11 = 0.
Ans. yt + y® — 62y + 237y — 272 = 0.

10. Find an equation whose roots are less by 2, thun
those of the equation, 2 — 92 4 2022 — 102 — 1 = 0.
Ans. y* — y* — 1052 — 6y + 3 = 0.

If the second term of the divisor used is equal to
the quotient of the coefficient of the second term of
the dividend with its sign changed, by the exponent
denoting the degree of the dividend, the last remain-
der will, from the nature of the case, be equal to 0,
and the second term of the resulting equation will be
0, or wanting. ‘

11. Transform the equation, 28 — 62® + 72z — 10 = 0,
80 that the resulting equation shall want the second

term.
1
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OPERATION.

1 — 6+ /7, + 102

+2 —8— 3
1 —4-—-1,-12. ... .. 18t remasnder.
+3 -4
1 —-2,—-86 ... .. . . 20 remainder.
_+*2
,+0 . . ... ... .. 8d remainder.

Hence, the required equation is,
P—5—12=0.

The roots of the resulting equation are less by 2, than those of the
given equation.

Transform the following equations, so that the result-
ing equations shall want their second terms:

12. 28+ 92— 2+ 4 =0. Ans. 35— 28y + 61 = 0.

The roots of the resulting equation are greater by 3, than those
of the given equation.

13, 2 —8283 4+ 12?2 4+ 32+ 4 = 0.
Ans. y‘—l'?y’-—33y—10 = 0.
Fourth Transformation.

202. An equation of the form (1), may be transformed
tnto another of the same form whose roots are equal
those of the given equation, with their signs changed.

If in (1), we make # = —y, we shall have the
equation,

(=9 +p(—9r'+&e +t(—y) +u=0; (10
which is of the proposed form.
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The following examples show what changes will result
in making the proposed transformation :

First, if the degree of the equation is even, as,
H4+ W -1 4+2—8 = 0;
making # = — y, we have,
P—22p TP —y—8 =0

Here, the coefficients of the terms remain numerically
the same as before, but the signs of the coefficients of
the odd powers are changed. The same will hold true
in all equations of an even degree, when thus trans-
formed.

Second, if the degree of the equation is odd, as,
BTt —2—2z—1 = 0;

making z = — ¥, and dividing both members by —1,
we have,
F+W+yr+%—y+1=0

Here, the numerical values of the coefficients remain
the same, but the signs of the coefficients of the even
powers are changed. The same will hold true in all
equations of an odd degree, when thus transformed.

In both cases, the transformation may be made by changing the
signs of the second, fourth, sixth, &c., terms. We have supposed
the equation complete; when it is incomplete, the wanting terms
must be supplied by 0’s, in making the transformation by the last
rule. ’
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Fifth Transformation.

203. An eguation|ofiithe| form (1), may be transformed
into another of the same form, whose roots are equal to
the reciprocals of those of the given equation.

If we substitute ; for z, in equation (1), we have,

g
yn—z
multiplying both members of this equation, by %, and
writing the terms in an inverse order, we have,

1
1. P

< + 2+ u=o;
yn yn—l + .. yz y - ’

+

m bt 8, s 9.2, P, . 1 _ 4.
v+ oyt oyt Ry o =05 (1)

which is of the required form. The coefficients are
found by writing those of the given equation in an
inverse order, and dividing each by the absolute term.
If any term is wanting in the given equation, the term
at the same distance from the other extreme will be
wanting in the required equation.

EXAMPLES.

Transform the following equations into others whose
roots shall be the reciprocals of those of the given
equations:

1. 243224+ 92+3 = 0.

Ans. ¥ +32+y+3 =0.
2. 4t 4+ 62542 +2 = 0.

Ans. ¥+ ¥+ 3y +2 = 0
3. "P*—%x—2 =0. Ans. ¥+ 3y—3 = 0
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II. DeriveEp EauaTicNs aAND EauaL Roors.
Definitions.

204. A derived polynomial, is one that may Le
derived from a given polynomial, by multiplying each
term by the exponent of the leading letter in that
term, and then diminishing the exponent of the lead-
ing letter, by 1, in each result; the derived polynomial
is also called the derivative; and that from which it
is derived, is called the primitive. Thus, 2% 4 222
+ 3z + 1, being a given primitive polynomial, its de-
rivative is, 32? 4+ 4= + 3.

A derived equation, or a derivative equation, is
one whose members are derivatives of the two members
of a given equation. Thus, 32 + 22 + 5 = 0, being
a primitive equation, its derivative is, 6z + 2 = 0.

EXAMPLES.

Find the derivatives of the following equations:

|
]

1. 22432 +2 = 0. Ans. 42® 4 62

2. x4+ 628 4 202 + 10 = 0.
Ans. 428 4 1822 4+ 40z = 0.
The derivative of the equation,
. +prtt gtttz =0, . (1)
> nz*-1+ (n—1)pz*—?+ (n—2)gz* 3+ ... + 282+ ¢t = 0. . (12).

Equal Roots.

205. We have seen that the first member of equa-
tion (1) is composed of as many binomial factors of the
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form, z —a, z— b, &c., as there are roots, each of
which corresponds to a root of the eqmation. When
the equation Hds'two 'roots (équal 'to a, there will be
two factors equal to z — @, that is, the first member
will be divisible by (z — @)?; when there are three
roots equal to a, the first member will be divisible by
(z — @)% and so on. Te deduce a general rule for de-
termining whether an equation has equal roots, and for
freeing it of them, let us resume the general equation,

T+ pr gt 42z +u=0;. (1)
substituting y + r for z, we have,

G+r+pE+0 He+ )+ sy + )
+tly+r)+u=0;

developing the different powers of y + 7, by the bino-
mial formula, and arranging the result according to the

" ascending powers of y, we have,

™ [+ nr? y+...+0r =0..(a);
+pr') + (n—1)pr~?
+ qrn—z + (n_g)qru—s

+.sr:2 +2sr.
+ ir + ¢
+ u

in this equation, the values of y are equal to the
values of z, in equation (1), each diminished by 7,
since, by hypothesis, we have,

z = y+r; whence, y = z —r.
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Now, r is entirely arbitrary; we may therefore assign
a value to it aty pléasure.coIf -we suppose r to be a
root of equation (1), the coefficient of 39 in equation
(a), will be equal to O, because that coefficient is
what the first member of (1) becomes, when r 18 sub-
stituted for  (Art. 193); making this coefficient equal
to 0, and dividing each of the remaining terms by g,
we have,

nr ! P+, ooty =0 . . (b
+ (n — L)pr~
+ (n — 2)gr

+ 2sr.
+ ¢

Now, the » — 1 roots of equation (b), are equal to
the different values of # — r, in equation (1), that is,
to the results obtained by subtracting the root r of
equation (1), from each of the other roots in succession.
If, therefore, equation (1) has two roots equal to 7,
one of these differences will be equal to 0, that is, one
of the roots of equation (), will also be equal to 0.
But, when z — r is equal to 0, that is, when y is equal
to 0, all of the terms of equation (3), except the first,
reduce to 0, consequently that term must be separately
equal to 0; or,

v + (n— Dpr—=2 + (n — 2)qr=2 +
ot 2+t =0 . . . . (o)

Comparing this equation with equmation (12), (Art.
204), we see that it is what the derivative of equa-
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tion (1) becomes, when for z we substitute r. Hence,
we conclude  that . when equation (1) has two roots
equal to r, its derivative has 1 root equal to r; and
conversely, when the derivative has 1 root equal to r,
the primitive has 2 roots equal to r.

By a similar course of reasoning, it may be shown
that, when equation (1) has 3, 4, 5, &c., roots, each
equal to r, its derivative has 2, 3, 4, &c., roots, each
equal to r; and conversely, when the derivative has
2, 3, 4, &c., roots, each equal to 7, the primitive has
3, 4, 5, &c,, roots, each equal to r; that is, when the
first member of the given equation is divisible by
(x —r? (z—r)3 &c, the first member of its deriva-
tive will be divisible by z — r, (z — 7)? &c., and the
reverse; hence, we have the following rule for deter-
mining whether an equation has any equal roots; and
for freeing the equation from them if it has any:

RULE.

Find the derivative equation; then apply the
rule for the greatest common divisor to the first
members of the primitive and derivative equa-
tions; if no common divisor is found, the equa-
tion has no equal roots; if a common divisor is
found, divide both members of the given equa-
tion by it, and the resulting equation will have
no equal roots.

The operation of finding the values of equal roots, consists in
placing the greatest common divisor found equal to 0, and solving
the resulting equation. When this can be done, the equal roots may
all be found. For each single root of the resulting equation, there



DERIVED EQUATIONS AND EQUAL ROOTS. 303

will be two equal roots in the primitive equation: for each pair of
equal roots in the resulting equation, there will be three equal roots
in the given equation/; | and#o/on;(as/indicated in the preceding dis-
cussion. The equation found, by placing the greatest common divi-
sor equal to 0, is to be treated, in all respects, like an original equa-
tion; and of course, the process for equal roots may be applied to
it; and so on, indefinitely.

EXAMPLES.
1. Eliminate the equal roots from the equation,
25 — 2723 4 222 + 192z — 288 = 0.
The derivative equation is,
bzt — 812 + 44z + 192 = 0.

The greatest common divisor of the first members of the given
equation and its derivative, is, (z — 8) (¢ + 4); dividing both mem-
bers of the given equation by this, we have the equation,

?—22—14r+24 =0,
which has no equal roots.
If wé place the common divisor equal to 0, we have,
z—8)(z+4 =0. oo 2=28 and z = —4.

Hence, the given equation has two roots equal to 8, and two roots
equal to —4. Dividing both members of the given equation, by
(z — 3)? (z + 4)% there results,

z—2 = 0; s =2

The given equation is completely solved, and, in like manner,
many other equations may be treated.

2. Eliminate the equal roots from the equation,
?—52+ 92 — T2+ 2 = 0.
The derivative equation is,
4 —~ 1522 + 182 -7 = 0;
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the greatest common divisor of the first member is,

(@—12;
hence, the required equation is,
2—82+2=0;

which may be solved by known rules. The roots of the given equa
tion are, 1, 1, 1,and 2.

III. SoLution oF HiGHER EauaTiONs,

206. If an equation of the form (1) has equal roots,
it may be freed from them by the preceding principle,
and the resulting equation will be of a lower degree
than the primitive one; which is always to be desired.
We shall, in what follows, suppose that the equation
in question has been freed of its equal roots.

It was shown, in Art. 197, that the absolute term
of an equation of the form (1), is equal to the con-
tinued product of the roots with their signs changed.
When this absolute term is a whole number, and it
may always be made so (Art. 198), and any root is a
whole number, it may often be found by trial; for, we
may resolve the absolute term into its factors, and
then, by the process of synthetic division, we see
whether the first member of the given equation is
exactly divisible by the unknown quantity, increased
by any one of these factors; if so, that factor, with
its sign changed, is a root (Art. 193); if the first
member is not divisible by the unknown quantity,
increased by any one of the factors, then the equation
has no entire roots.
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EXAMPLES.
1. Find the entire root in the equation,
224322492 —38 = 0.

The divisors of — 88 are, +1, +2, +19, + 38.
We see, at a glance, that neither + 1, nor — 1, will satisfy the
equation ; hence, neither —1 or + 1, can be a root.

By applying the rule for synthetic division we see that the first
member of the given equation is divisible by # — 2; hence, + 2is a
root. Dividing both members of the given equation by z — 2, we
have,

2?+6x+19 = 0;

whick: can be solved by known rules. Both of its roots are imagin.

ary, one equal to _5+;/_51, and —5_;/—51.

2. Find the entire root of the equation,
28 — 1222 4 4z + 207 = 0.
The divisors of 207 are,

+1, £3, +9, +23, + 69, and + 207;

testing each factor, we find that the first member of the given equa-
tion is divisible by z — b ; hence, 9 is a root.

When freed of this root, the given equation becomes,
-8 —28 =0,
3+ ‘/'Ol,md 3—\/1“01.

2 2

which gives the roots,

In the same way, the following equations may be
solved :

3. ©#4+3*—6x—8 = 0.

Ans. 2 =2, 2’ = —1, and 2" = — 4.
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4 2* + 97— 1430 = 0.
_11+:\/—399’ AhaCe — —11—2V -——399.

=11, '= R

Nature of the Roots of Equation (1).

207, An equation of the form (1), whose coefficients
are entire, has no rational roots that are irreducible frac-
tions. For, if so, suppose one of these roots to be of the
form ;, an irreducible fraction.

Substituting this fraction for z, in equation (1), and
transposing all of the terms, except the first, to the
second member, we have,

ar a1 a3 a

F=_pF_qF—'..—tb U,
multiplying both members by &', we have,
e x4 = — pat —qath — .. — lab*?t — ubr

b

the first member of this equation is an irreducible frac-
tion, and the second member is entire: which is mani-
festly #mpossible; hence, the supposition that a root
can be an irreducible fraction, is absurd. ‘

Imaginary Roots.

208. If an equation of the form (1), whose coefficients
are real, has any imaginary roots, each must be of the
form a + 54/ —1, or a — 54/ — 1, (Art. 134).
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It may be shown that imaginary roots always enter
by pairs, that/is) lif) (@G @@/ <1, is a root, then will
a—b4/—1, be a root, also; for, substituting a+v— 1
for z, in equation (1), we have,

(@ + V1) + pla + V-1 +
oo a4+ W =1)4+u=0; . . . (a)

if we develop the different powers of a + 64 —1,
by the binomial formula, and perform the operations
indicated, the first member of the resulting equation
will be made up of two kinds of terms, real and
itmaginary. The imaginary terms arise from the cdd
powers of 54/—1, and consequently (Art. 138), they
contain no other imaginary factor than 4/—1; hence,
denoting the sum of the real quantities by m, and the
sum of the coefficients of 4/—1,” by , the equation
becomes, *

m+av—-1=0; . . . (b

but, from principle 2°, Art. 138, equation (8) can only
be satisfied, by making m = 0, and #n = 0.

If we substitute @ — 54/— 1, for 2, in equation (1),
and perform the indicated operations, the result will
differ from that expressed by equation (), only in the
signs of the odd powers of 54/— 1. Hence, the re-
" sulting equation will be,

m—ny—1=0; . . . (¢

but, we have shown that m = 0, and » = 0; hence,
equation (c) is satisfied ; and consequently, the substi-
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tation of @ —b4/—1 for z, in equation (1), satisfies
it, which shows, that| @ 64/— 1 is a root.

If a +64—1, is a root of equation (1), the
first member of that equation must be divisible by
2 — (@+ 54/ —1); and from what has just been
proved, it must also be divisible by z — (@ — b4/ — 1);
and consequently, it must be divisible by the product
of these factors: but, the product of these two factors
is positive for all real values of z (principle 3° Art.
138); we therefore, conclude that the number of imag-
tnary rools i8 always even, since they enter by pairs;
and that the product of all the “binomial factors that
correspond to imaginary roots is positive for all real
values of z. _

The number of real roots, and consequently the num-
ber of imaginary roots, of an equation of the form (1),
can be determined by a principle called Sturm’s
theorem.

Object of Sturm’s Theorem,

209. If we denote the real roots of equation (1),
by a, &, ¢, &c., and suppose them arranged according
to their values, so that e shall be the least algebraically,
that is, nearest to — «w, & the next greater, and so on;
and if we denote the product of all the binomial fac-
tors corresponding to imaginary roots, which is always
positive, by ¥, equation (1) may be written,

(z—-a)(x—b)(z-——c)...Y;O . . (13)

If we suppose £ = — w, each of the factors (z — a),
(z — ), &c., will be negative; and the first member will

e
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be negative, when there is an odd number of real roots,
and positive/ whemwithérecis) am even number; if we
suppose z to increase from — «» towards + w, assum-
ing in succession every possible value, the sign of the
first member of (13), will remain unchanged, until
becomes equal to @, when the first member will be-
come equal to 0; for all values of z, between e and b,
the factor # — @ will be positive, and all the remaining
ones will be negative; hence, the product of all the
factors, or the first member of (13), will have a different
sign from what it had before, that is, the first member
will change its sign from + to —, or from — to +,
when the value of 2 passes the real root z. When z
becomes equal to &, the first member again becomes 0;
for all values of 2 between & and ¢, the first two fac-
tors are positive, and all the remaining ones negative;
hence, in this case, the sign of the first member is the
gsame as in the first instance, that is, the sign of the
first member changes from — to +, or from + to —,
when the value of z passes the real root 5. In the
same way it may be shown, that the sign of the first"
member changes from 4+ to —, or from — to . 4,
whenever the value of 2 passes a real root, and that
it does mot change in any other case.

If, therefore, we suppose z to assume every possible
value, from — » up to 4 «, and determing the
number of times that the first member changes sign, we
ghall have the number of real roots, and consequently
the number of imaginary roots in the equation. The
object of STURM’S THEOREM is, to show the manner of
determining the number of such changes of sign.
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The demonstration of STUrRM’S THEOREM depends on the fol.
lowing principles :

Principles.

210. Let the first member of equation (1), after
having been freed of its equal roots (Art. 205), be
denoted by V, and let the derived polynomial of V
be denoted by V,. If we apply to V and V, the
rule for finding their greatest common divisor, differing
only in this respect, that instead of using the suc-
cessive remainders a8 obtained, we change their signs,
and also take care neither to introduce or reject any
factors except positive ones, we shall ultimately arrive
at a remainder that is independent of z; this remain-
der cannot be equal to 0, because V and V, -have no
common divisor, the equation V = 0 having been freed
of its equal roots.

If we denote the several remainders, after their signs
have been changed, by
V29 VB, LI Vu, V:H-l.} Vu+2 LI VroZ’ Vr—l, Vr'

(which are read V two, V three, &c.), and if we denote
the corresponding quotients by
QU QZ, ... Qru Q-n+1, . . Qr—l’

the operation above indicated may be expressed as fol-
lows:

vV A
V. =%y
Vi Vs
‘Tz - Qz—v“z
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from which we have the following equations:
v =V, Ql - Vz
Vl =V, Q.z - Vs
Vn-—l == Vn Qn - V4l
Vn Vn+l Qm-H - Vn+2
V,.z = Vr—l Qr—l - vr

The quantities V1, Vg, &c., are called derivatéves of V. A value
of z that reduces V or any of its derivatives to 0, is called a 700t
value of the corresponding expression.

|

It is evident from the preceding equations that no
two consecutive derivatives of V can have the same
root value: for suppose the expressions V,; and V,
to reduce to 0 for the value z = %&; then from the
relation between these and V,,, we should have the
latter equal to O for the same value of z; from the
next equation we should in like manner have V,,, equal
to 0; and so on to the last, in which we should have
V, equal to 0, which is impossible; hence, the following
principle :

1°. No two consecutive derivatives of V can reduce
to 0 for the same value of z.

If one of the derivatives of V reduces to 0 for any
value of 2, the preceding and following one will have
contrary signs for that value. Thus, if z = a reduces
V. to 0, we have from the relation between V,, V,,

and V,,;
Vn—\ = - Vn-{-l;

hence we have the following principle:
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2°. If any value of z reduces one of the derivatives of V
10 0, the precediny derivative and the following derivative
will have contrary signs for that value.

If we dcnote what V' becomes when we make z
equal to r + y by the symbol V,_,,,, we shall have
from equation (a), Art. 205,

Vieoy = A+ Ay + A"y + &,

in which A denotes what V becomes when we make
z=r, A' is what V, becomes when we make z =7,
&c.; now, if we suppose r to be a root of the equa-
tion V= 0, we shall have A = 0, and the preceding
equation will become,

Voo = 9(A' + A’y + &)

It is plain that y may have a value so small that
the sum of all the terms within the parenthesis after
A’ will be numerically less than A’; for, if y is made
inappreciably small in comparison with 1, then will A"y
be inappreciably small in comparison with A'; and
since the following terms contain higher powers of y
each will be inappreciably small with respect to the
preceding one; and because the number of terms is
finite, the sum of all after the first, must be less than
the first; hence, when y is inappreciably small in com-
parison with 1, the sign of the sum of the terms
within the parenthesis, must be the same as that of
A’. Now if we make y inappreciably small with re-
spect to 1, first negative and then positive, we shall
have the equations,
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Viey = — y(A' — A"y + &),
Nuss) i 2208 g(A 40A"y + &c.);

in the second of these equations the sign of the sec-
ond member is the same as the sign of A’, and in
the first it is the reverse; hence, the following prin-
ciple:

3°. If we make z inappreciably smaller than one of
the real roots of the equation V = 0, the corresponding
values of V and V, will have conérary signs; if we
make x inappreciably larger than the same root, the
corresponding values of V and V, will have ths same
sign.

It was shown in Art. 209, that as z increases by
inappreciably small increments from — » to + o,
the sign of V changes from + to —, or from — to +,
whenever z passes oue of the real roots of the equa-
tion V=0. In like manner it may be shown that
each of the derivatives of V changes sign whenever z
passes a roof value of that derivative; it is also ob-
vious that no derivative of V can change sign under
any other circumstances; hence, the following prin-
ciple :

4°. Each derivative of V changes sign whenever the
value of x passes a root value of that derivative, and
does mot change sign under any other circumstances.

Demonstration of Sturm’s Theorem.

211. Let us write the quantities V, V,, ..V, ..V,
in a column; then let us substitute the same value of
14
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z in each, and write the signs of the resumlts in a par-
allel column.)  In, passing downcithe column of signs,
whenever two consecutive ones are alike, there is said
to be a permanence; and whenever two consecutive
ones are unlike, there is said to be a variation.

If we now suppose z to increase by inappreciably
small increments from — » to + «, we shall find in
succesgion values that will reduce V or some of its
derivatives to 0, but from principle 1° no value of z
will reduce two consecutive ones to C. There may be
two cases: firsf, when V reduces to 0, and secondly,
. when one of its derivatives reduces to 0.

First. Suppose that any value of z, as z = &,
rcduces V to 0; then is  a real root of the equation
V = 0; it follows from principle 3° that for the value
of z next preceding 4, V and V, have contrary signs,
and there is a variafion; but for the value of 2 next
following %, V and V, have the same signs, and there
is a permanence: hence, every time that the value of
z passes a real root of the equation V = 0, there is
a variation lost, or converted into a permanence.

Secondly. Suppose that any value of z, as z =m,
reduces one of the derivatives of V, as V,, to 0; then
is m a root value of V,; it follows from principle 2°
that V,_; and V,,, have contrary signs for this value
of z; it follows from principle 4° that V, changes
sign when the value of z passes from the value imme-
diately preceding m to the value immediately following
m; it also follows from principles 1° and 4° that
V,, and V,, do not change sign for these values
of =
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Now, for the value of 2z immediately preceding m,
V.1 and V.1, have contrary signs, and V, must have
the same sign as one of them; there is therefore, one
corresponding variation, and but one: for z = m
V.. and V,,; have contrary signs, and V, is 0; there
is therefore, one corresponding wvariation, and but one:
for the value of 2 next followi'ng m, V. and V,,
have contrary signs, and V, must have the same sign
as one of them; there is therefore, one corresponding
variation, and but one: hence, whenever the value of
x passes a root value of any derivative of V, there is
no variation either lost or gained.

We therefore conclude that there is one variation
lost in the column of signs whenever z passes a real
root of the equation V = 0, and that there is no va-
riation either lost or gained under any other circum-
stances ; hence,

If we make x = — w in V and s derivatives,
and write the corresponding signs in a column, and
then if we make z = + ». in the same cxpressions

and write the corresponding signs in a second column,
the number of variations in the first column, diminished
by the number of variations in the second column will
be the mumber of real roots in the equation V = 0.

This is SturM’S theorem.

When we make 2z = —w, or 2z = + », in V, orin any of its
derivatives, the value of the first term in each will be infinitely
great with respect to all the following terms, and consequently,
the sign of each result will be the samo as the sign of its first
term.
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Illustration.

Let it be required to find the number of real roots
in the equation,

#—12224+ 122 —3 = 0.

Here, we have, V = 2¢ — 122* + 122 — 3; finding the first
derivative of V, and suppressing the factor, + 4, we have,
V, = 2 — 6z + 8; dividing V by V,, we find, for a remainder,
— 628 + 9z — 8; suppressing the factor, + 8, and changing the
sign of the result, we have, Vo = 222 — 8z + 1; multiplying
V, by 4, and dividing by V., we bave, for & remainder, — 17z + 9;
changing the sign, we have, V; = 17z — 9; multiplying V, by 289,
and dividing by V3, we find, for a remainder, — 8; changing the
sign, we have, V, = 8; writing these expressions in a column, and
substituting — «», and then + «, for z, we have the results in-
dicated below.

T = --w. = 4+ @&,
V=2 —-1%* + 12¢ — 3, + +
Vi= 28— 6z + 8, - +
Vo= 22 — 8z + 1, + +
V3=17J3—9, -— +
Vi=8, + +

In the first case, there are 4 variations, and in the second, there
are no variations ; hence, all four of the roots are real.

Sturm’s Theorem also enables us to determine the
places of the real roots. If we substitute for , in the
above expressions, any two numbers whatever, the num-
ber of variations corresponding to the less, diminished
by that corresponding to the greater, will give the num-
ber of real roots between the two numbers. Let us
begin by making z equal to 0, 1, 2, &c., until we get
8s many permanences, a3 when z = «; then make z
equal to —1, — 2, &c., until we get as many vari-
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ations, as when z = — . Taking the same example
as before, we)have |the following) results :

= —4, -8, -2 —1, o0 1, 2 8
VvV, + - - - - - - 4
Ve, = - + + + - - +
Vs + + + + + 0 + +
V., = - - - = + + +
V. + + + + + + + +

Hence, we conclude that two of the roots of the given equation
lie between 0 and + 1; one between 2 and 3 ; and one between — 3
and — 4. Here, we have found the values of the roots, to within
less than 1.

In the preceding case, we have seen that + 8 gives the same
number of permanences, as + o ; hence, no real roots lie between
+ 8 and + w; we have also seen, that — 4 and — , give the same
number of variations; hence, no real root lies between them. The
values, — 4 and + 8, are called the limits of the roots of the given
equation ; the former being the inferior, and the latter, the superior
limit.

If we consider the positive roots alone, 0 and 3 are the limits; if
we consider the negative roots alone, — 4 and — 8 are the limits,
In the same manner, the limits of the positive and negative roots of
any equation may be found. It is often useful to determine these
limits, especially when seeking the entire roots of an equation, by
the process of article 206.

EXAMPLES.

1. Find the number, the places, and the limits of the
real roots of the equation, 2® + #* + z — 100 = 0.

OPERATION.
V=a +2+2-—10
V=38 +%+1
Vg: —M+901
Vi = — 2442627
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z2=—-—w, +®», 0, 1, 2, 38, 4, 5.
v, - + —_ - —_ — - +
Vi, + + + + + + + +
Ve, + - + + + + + +
Vi, - - - - - — - —

Hence, there is one real root lying between 4 and 5, which are
the limits of the root.

2. Find the number, places, and limits of the real
roots of the equation, :

24 —82° + 1423 + 42— 8 = 0.

Ans. There are 4 real roots; one between 0 and 1, one between
2 and 8, one between 5§ and 6, and one between — 1 and 0. The
limits are — 1 and 6.

3. Find the number, places, and limits of the real
roots of the equation, 28 — 23z — 24 = 0.

Ans. 8 real roots; one between 5 and 6, one between —1 and
— 2, and one between — 4 and — 5. The limits are, — 5 and + 6.

4. Find the number, places, and limits of the real
roots of the equation, 2% 4 gaﬁ —2—5 = 0.
Ans. There is 1 real root, and it lies between the limits 1 and 2.

Each variation is lost when z passes from the preceding value
to the root value of V; hence, if the greater number substituted

for z is & root of the equation, it is to be counted amongst the roots
sought.



CHAPTER XIII.

APPENDIX.

Object proposed.

212. It is proposed to demonstrate, in the following
articles, several useful principles, which on account of
their difficulty, were omitted from the body of the work.
The subjects embraced, are the principles used in fac-
toring, the binomial formula for any exponent, and the
summation of series.

Principles used in Factoring.

213. First PrINcIPLE. The difference of the like
powers of any two quantities, is divisible by the differ-
ence of the quantities.

To demonstrate this principle, let & and & denote
any two quantities, and m any positive whole number;
then will a™ — o™ denote the difference between the
like powers of any two quantities, and @ — & the dif-
ference between the quantities; if we commence the
division by the rule, we shall have the following

OPERATION.
Cam — b a—>b
am™ — am—lb am—l
am-—l b — bm 3
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the remainder may be factored, and placed under the
form,

bamt —o~);
hence, we have,

a — b
a—b

am—l_bm—l
— 1 —_—
= o 43—

@)

The second member of equation (1) will be entire,
and consequently, the first member will be entire, when
m—l __ 1
a_T—_z‘: is entire: that is, if' the difference of the
(m — 1)® powers of two quantities is divisible by the
difference of the quantities, then will the difference of
the m® powers of the two quantities also be divisible by

the difference of the quantities.

But, we know that the difference of the second powers
is divisible by the difference of the quantities; hence,
from the principle above demonstrated, the difference
of the cubes is also divisible by the difference of the
quantities; it having been proved that the difference
of the cubes is divisible, it follows, from the principle
demonstrated, that the difference of the fourth powers
is also divisible by the difference of the quantities; the
difference of the fourth powers being divisible, it follows,
as before, that the difference of the fifth powers is
divisible; and so on, by successive deduction, it may
be shown that the division is possible when m is any
positive number whatever ; hence, the principle is
proved. _

.- We found the first term of the quotient to be, a1
and if we perform a second partial division, we shall get,
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for the second term of the quotient, ™24, with a sec-
ond remaindery #(a77%=/6m7%);. (dividing again, we shall
find for the the third term of the quotient a™3%82;
and so on. Writing out the quotient, we have,

%}? = @™+ 4" b + @SB+ ... +ab 4 B (2).

The coefficient of each term of the quotient is equal to 1, and
the exponents follow the law explained in deducing the binomial
formula (Art. 100).

SECOND PRINCIPLE. The difference of like even
powers of any two quantities i3 divisible by (he differ-
ence of the squares of the quantities.

For, if we replace @ by ¢® and & by d?, equation ()
becomes,

czm__ dzm

m=c”"""-{—c""‘d”—i—...+¢:2012’"’“+clz"""’.(3).

Whatever may be the value of m, 2m is an even
number, and the second member is entire; hence, the
principle is proved.

THIRD PRINCIPLE.  The difference of Uke even
powers of any two quantities, is divisible by the sum
of the quantities.

For, if we multiply both members of (3) by the
quantity (¢ — d), and reduce, we have, ’

o — g2

S = (= @) (@t A dY) L (4).
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The second member of (4) is entire; hence, the prin-
ciple is demonstrated.

FocrrE PRINCIPLE.  The difference of the like
powers of two quantilies, 18 divistble by the difference
of any other like powers of the two gquantities, if the
exponent in the first case 18 divisible by that in the
second case.

If we replace a4, in equation (2), by c®, and b by
d*, n being a whole number, we have,

"':——:Z: =c"rtem>d ... +dmr L (5)

The second member of (5) is always entire; hence,
the principle is demonstrated.

Firre PRINCIPLE. The sum of like odd powers of
any two quantities 8 divisible by the sum of the quan-
tities.

Let m be any odd number, and let the operation
of dividing a™ + ™ by @ + & be commenced as shown
below :

a® + "
a” + a™
— a1 4 ™

a+b,

b

am—l

factoring the remainder, and writing it over the divi-
sor, a8 a fraction, we have,

xS . (6).

a™1 — bm—l)

=a““1—b( 2+ b
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Since m is an odd number, m — 1 is an even num-
ber, and conséquentlyCtheOquantity within the brackets
is entire, according to the third principle; hence, the
proposition is proved.

The form of the quotient is the same as that of a™ — b by a — b,
except that the terms are alternately plus and minus ; that is,

a™ + o™

a+bd

=a'—a=B+...—a 2+ L. (D).

Value of (a» — b™) + (a — b), when a =b.

214. It has been shown that; when m is a positive
whole number, we have,
a" — "

T = T @ L b 4

in which the quotient has m terms. This is true for
all values of @ and &; hence, it will be true when

m m

a =25 In this case, aa%z , reduces to (6) in con-

sequence of the existence of a factor in both nume-
rator and denominator, which becomes 0 under the
gupposition that ¢ — &; denoting what the true value
of this fraction becomes, when @ = §, by the symbol,
( a—2b
member, we have,

(i; :’;"f)ﬂb: mat . . . (L)

) , and then making @ = & in the second
a=b

It may be shown that equation (1) is true what-
ever may be the value of m; that is, whether m is
positive or negative, entire or fractional.
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First. Suppose m to be a positive fraction, equal

tol—):
q
1 1 » »
Make o =z, and " = y; whence, o = 2, 7 = %,
a=2% and b = ¢*; we have
» »
E—F Py
a—0 By

dividing both terms of the second member, by z — g,

we have, i
i s _(EZ7)
)

®?)

If we make a = b, we have, z = y, in which case,
the numerator of the second member of (2) becomes,
pz?~'; and the denomirater becomes ¢z7-%, as shown
above; hence,

b 4 r 4

(ai-— b“) _prrt  p

a—blos qﬂ_l—qw;

. 1
or, substituting for z, its value, a’ and reducing,

» 2
= _p .
<a—b.,=,—§“ )

hence, equation (1) s true for all positive values of
the exponent.

Secondly. Suppose m to be negative, either entire
or fractional ; that is, let m = — n. We shall have,
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ar— b I el
T——b = —a"b Xa—_"z*,-.(4)

because, ™ — b = —ab™" x (a* — b").

If @ = b, the first factor of the second member
of (4) reduces to — a>; and the second factor re-
duces to 4 ma*~, by the preceding principle; hence,

ar—b — 2n n—1 __ -n—1.
( a—b )a=b_——a— X7la =-" ’ (5)

hence, equation (1) is true when the exponent is mega-
tive, either entire or fractional. 1t is, therefore, gen-
eral ; that is, the equation,

(uﬂ) — ma™!
a—b a=b - ’

s true for all values of m, positive or megative, entire
or fractional.

General Demonstration of the Binomial Theorem.

215. The object of the binomial theorem is to show
how to develop any power of a binomial into a series.
Let us assume the development,

Q+2" =P+ Qi+ B2+ 52+ &e. . . (1)

It is required to find such values for P, @, R, &c.,
a8 will make equation (1) true for all values of m and 2,
that is, such values as will make (1) an identical equa-
tion, (Art. 180.) .

Since equation (1) is to be true for all values of 2,

———— 8
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it must be so when z = 0; making z = 0, in (1),
we have,
1=P or P=1;

substituting this value of P in (1), it becomes,
A+2)"=14+Q+ R+ S8+ & . . (2).
Since (?) is to be true for all values of 2, we may
replace .z by y, giving,
A+y)"=1+4+Qy+ RpP + Sy* + &c.; . . (3)

subtracting (3) from (2), member from member, we
have,

(42— (L+9)" = Qe—9) + BE—¢) + &5 (&)

dividing the first member of (4), by (1 + 2) — (1 + ¥),
and the second by its equal, z — y, we have,

At — (g _ ), o= | By
T —(ty) ~ CHFmy T 55y +8 O

If, in (5), we make 1+ 2z =1+ y, whence z =y,

in accordance with the principle demonstrated in the
preceding article, we shall have,

(I+2)"—(1+y)" — -1
( 1+2)—(Q+y) )1+-=1+y =m(l+2)™,

(Z::Z—,)m': 22, (z:—:%n).='= 322, &c.;

hence, equation (5), under this hypothesis, becomes,
m(l4+2)"'= Q+ 2Rz + 382 + &c.; . . (6)
multiplying both members of (6), by 1 + z it becomes,
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m(l+2)"= Q@+ 2R
4@

multiplying both members of (2), by m, it becomes,

+ 2R

z+3S}z’+&c.; . (M

m(l+ 2)™ = m + mQz + mR2 + mS2 4 &e. . (8).

The first members of (7) and (8) are equal; conse-
quently their second members are equal; hence,

z+ 38
+ 2R

m+ mQz + mR24 &c. = Q + 2R 2 4 &c.
+ ¢ (9)-

Equation (9) is an identical equation, that is, it is
true for all values of m and z; hence, from the prin-
ciple of indeterminate coefficients (Art. 181), the co-
efficients of the like powers of z Yn the two members,
are equal; equating these coefficients, we have,

m = Q, .. Q = m,
m(m — 1)

mQ=2R+Q, .. R = 1.2_,

mR = 38 + 2R, . S = m(m — 1) (m—2).

1.2.3

The law of coefficients is apparent.

Substituting these values in (2), we have,

(1+z)"‘=1+mz+gz(7ln;1)

m(m — 1) (m — 2)
+ 1.2.3

2

A + & (10).

If we replace z by aé’ in (10), and then multiply
both members by a™, and reduce, we have,
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m(m—l)
1.2

= 2) s 4 &, (11)

(a+ o)™ = a"+ma""b+ 2 2

m(m —1) (m —
L VN

which is the binomial formula; it is true for any value
of m, either positive or negative, entire or fractional.

By comparing equation (11) with that of (Art. 100),
we see that they are of the same form; hence, the
formula deduced in Art. 100 is general.

EXAMPLES.

Develop the following expressions:
Vi —z ? 3
1. Va—z; or, (a — )%
- z
dns. a1l 3~ g~ g5 gaan — &)

2. (a2 + )k
3z 38 928

Ans. a3+——+ mﬁ-m-&&
ad -3
3. (a—__z')—s‘; or, a’x(a—:v) .
3z 1028
Ans. 1+7+a,+ & + &e.
1
4, Vi x; or, (1+x)"§.
’ Coans 12482 g
mologtg 1wt
5 (3—12)t.
1 Tz 7 8
Ans. 17/5(1-; 5 +5 ( )”‘2"'81( )x“-g—&c.)
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Summation of Series.

216. The summation of a series is the operation
of finding an expression for the sum of any number
of terms of the series. The method of greatest general
utility, is that by differences. Let a, 4, ¢, d, &c.,
represent the successive terms of any series. If we
subtract each term of this series from the following one,
we shall thus form a new series, which is called the
first order of differences. If, in like manner, we
subtract each term of this series from the following one,
we shall form a new series, called the second order
of differences; and so on, as exhibited below :

a, b, [ d, e, &c.
b—a, c¢—b d—c, e—d, 1storder of diff.
c—b+a, d—2%+0, e—2d+4c, 2d order of diff.
&c., &c.

If we designate the first terms of the first, second, &c.,
orders of differences by dy, dz, &c., we shall have,

d=b—a soob=a+ d

dy=c—2+a e c=a+ 2 + d,

d=d—3+3—a .. d=a+ 3d + 3d; + ds
&e., &e.

If we designate that term of the given series which.
has n terms before it, by 7, we shall find, by con-
tinuing the operation, '
n(n—1)

1.2

n(n—1) (n—2)
1.2.3

T= a+ndl+ d2+ -’ls + &ec. (1)
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This formula enables us to find the (» + 1)* term,
when we know,, the: first. term of the series, and a
sufficient number of the first terms of the successive
orders of aifferences.

Let us take the series,
0, @ a+b, a+b+c, at+b+c+d, &, . . (2).
The first order of differences of series (2) is the series,
a b ¢ d, &c.,, . . . . . (3)

Now, it is clear that the sum of n terms of series (3)
is equal to the (» 4 1)* term of series (2); but the
first term of the first order of differences is a, the first
term of the second order of differences is d,, and so on.
If, therefore, we denote the sum of 7n terms of series
(3), which is the same thing as the (n + 1)* term
of (2), by S, we shall have its value from (1), by
making a =0, dy =a, d, =d,, ds = d, &c.;
hence,

n(n—1 n(n—1) (n—2

(1.2 o, + 2 1.;.(3 )
n(n—1) (r—2) (n—

1.2.3.4

S = na + A

D, + &e. (4.

+

If all the terms of any order of differences become
equal, each term of every succeeding order of differ-
ences becomes 0, and the formula gives the exact sum
of the terms. If the terms of no order of differences
become equal, the formula only gives approximate re-
sults, which will be nearer the true sum, the greater
the number of terms employed.



* APPENDIX. 331

EXAMPLES.
1. Find the sum of n terms of the series,
12 22 3 &2 5 &c

OPERATION.
Series, i, 4, 9, 16, 25, 36, &o
18t order of differences, 8, ° b, 7 9, 11, &c.
2d order of differences, 2, 2, 2, 2, &c
8d order of differences, 0, 0, 0, &o.

Here, a=1, di=38, d=2, di=0, di=0, &c;
“hence, by substitution in (4),

an—1 o na-1)@=2

1.2 1.2.3 2

8S=n+

2. Find the sum of 8 terms of the series,
1, 142 142438 14+243+4, &ec
The first order of differences is,
2, 8, 4, &c.,
the second order of differences is,
1, 1, 1, &e,
and succeeding orders are made up of zeros.
Here, n =8, a=1, di=2, d.=1, d3 =0, &c.; hence,

‘ 8x7 . 8x7x0
\ -— —_—
| §=8+75 %2+ 373

x 1 =8+56+ 66 = 120.

3. Find the sum of 10 terms of the series,
18, 28, 38, 48, 53 &c. Ans. § = 3025
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DAVIES’S COMPLETE SERIES.

ARITHMETIC.
Davies’ Primary Arithmetic.
Davies’ Intellectual Arithmetic.
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Davies’ Practical Arithmetic.
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First Book in Arithmetic, Primary and Mental.
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ALGEBRA.
Davies’ New Elementary Algebra.
Davies’ University Algebra.
Davies’ New Bourdon’s Algebra.

GEOMETRY.
Davies’ Elementary Geometry and Trigonometry.
Davies’ Legendre’s Geometry.
Davies’ Analytical Geometry and Calculus.
Davies’ Descriptive Geometry.
Davies’ New Calculus.

MENSURATION.
Davies’ Practical Mathematics and Mensuration.
Davies’ Elements of Surveying.
Davies’ Shades, Shadows, and Pcrspectwe

MATHEMATICAL SCIENCE.
Davies’ Grammar of Arithmetic.
Davies’ Outlines of Mathematical Science.
|Davies’ Nature and Utility of Mathematics.
Davies’ Metric System.
Davies & Peck’s Dictionary of Mathematlcs.
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THE NATIONAL SERIES OF STANDAKD 8CHOOL-BOOKS.

DAVIES'S INATIONAL COURSE
OF MATHEMATICS.

ITS RECORD.

In claiming for this series the first place among American text-books, of whateves
class, the publishers appeal to the magnificent record which its volumes have earned
during the thirty-five years of Dr. Charles Davies’s mathematical labors. The unremit-
ting exertions of a life-time have placed ¢Ae¢ modern series on the same proud eminence
among competitors that each of its pred had ively enjoyed in a course of
constantly improved editions, now rounded to their perfect fruition, — for it seems
almost that this science is susceptible of no further dewonstration.

During the period alluded to, many authors aud editors in this department have
started into public notice, and, by borrowing ideas and processes original with Dr. Daviese,
have enjoyed a brief popularity, but are now almost unknown. Many of the series of
to-day, built upon a similar basis, and described as ‘‘modern books,” are destined to a
similar fate; while the most far-seeing eye will tind it difticult to fix the time, on the
basis of any data afforded by their past history, when these books will cease to increase
and prosper, and fix a still firmer hold on the affection of every educated American.

One cause of this unparalleled popularity is found in the fact that the enterprise of the
author did not cease with the original completion of his books. Always a practical
teacher, he has incorporated in his text-books from time o time the advantages ot every
improvement in methods of teaching, and every advance 1n science. During all the
years in which he has been laboring he constantly submitted Lis own theories and those
of others to the practical test of the class-room, approving, rejecting, or modifying
them as the experience thus obtained might suggest. In this way he has been aule
to produce an almost perfect series of class-books, in which every department of
mathematics has received minute and exhaustive attention.

Upun the death of Dr. Davies, which took place in 1876, his work was 1mmediately
taken up by his former pupil and mathematical associate of many yeare, Prof. W. G.
Peck, LL.D., of Columbia College. By him, with Prof. J. H. Van Awmriage, of Columbia
College, the original series is kept carefully revised and up to the times.

Davies’s SYSTEM 18 THE ACKNOWLEDGED NATIONAL BTANDARD FoR THE UNITED
BraTEs, for the following reasons : —

1st. It is the basis of instruction in the great national schools at West Point and
Annapolis.

2d. It has received the guasi indorsement of the National Congress.

8d. 1t is exclusively used in the public schools of the National Capital

4th. The officials of the Government use it as authority in all cases involving mathe-
matical questions.

5th. Our great soldiers and sailors ding the natinnal armies and navies were
educated in this system. So bave been a majority of emineat scientists in this country
All these refer to *““ Davies ” as authority.

6th. A larger number of American citizens have received their education from this
than from any other series.

7th. The series has a larger circulation throughout the whole country than any other
being extensively wsed in every State in the Union.
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DAVIES AND PECK'S ARITHMETICS.
OPTIONAL OR CONBECUTIVE.

The best thoughts of these two illustrious nathematicians are combined in the
following beautiful works, which are the natural successors of Davies's Arithmetion,
sumptuously printed, and bound in crimson, green, and gold: —

Davies and Peck’s Brief Arithmetic.
Alno called the ** Elementary Arithmetic.” It is the shortest Pmenhﬂon of the sub-
hools, being a thorough duction te

fect, and is adeguate for all grades in
ractical life, pt for the specialist.
At first the authors play with the little learner for a few 1 by object-teachi

aud kindred allurements ; but he soon begins to realize that study is earnest, as he
Lecomes familiar with impl tions, and is delighted to find himself master of
important results. .
he second part reviews the Fundamental Operations on a scale proportioned to

the enluarged intelligence of the learner. It establinhes the General Principles and
Properties of Numbers, and then proceeds to Fractions. Currency and the Metric
System are fully treated in connection with Decimals. Compound Numbers and Re-
duction follow, and finally Perventage with all its varied applications.

An Index of words and principles coucludes the book, for which every scholar and
most teachers will be grateful. How much time has been spent in searching for a half-
furgotten detinition or principle in a former lesson !

Davies and Peck’s Complete Arithmetic.

This work certainly deserves its name in the best sense. Though complete, it is not,
like most others which bear the same title, cumbersome. ‘These authors excel in clear,
lucid demonstrations, teaching thie science pure and simple, yet not iguoring convenient
methods and practical applications.

For turning out a thorough business man no other work is so well adapted. He will
have a clear comprehension of the sci as a whole, and a working uaintance
with details which must serve him well in al' emergencies. Distinguishing features of
the book are the logical progression of the subjects and the yreat variety of practical
problems, not puesles, which are heneath the dignity of educational science. A clear-
mim}ed critic 'has said o Dr. Peck’s work that it is free from that juggling with
numbera wh.wh some authors falsely call * Analysis.” A series of Tables for converting
ordinary weights and measures into the Metric Systemn appear in the later editions.

2 4 { 4

PECK'S ARITHMETICS.

’ . .
Peck’s First Lessons in Numbers.
This book hegins with pictorial illustrations, and unfolds gradually the sci of
numbers. It noticeably simplities the subject by developing the princgples of addition
aud subtraction simultaneously ; as it does, also, those of multiplication and division.

Peck’s Manual of Arithmetic.

This book is designed especi i
2 pecially or those who seek sufficient instruction to carry
them successfully through practical life, but have not time for extended study.

Peck’s Complete Arithmetic.

This completes the series but is a mu i
? . ch briefer hook than most of the complete
:.rnlt‘ltlme'tlcs, and is recommended not ouly for what it contains, but also for whst is
It may be said of Dr. Peck's bouks mo: i

- Pec re truly than of any other series published, that

ik S sl n it ol a hal syt i of v
, thus, i i

and maving unn %6 Of Ly u.;nm l,f.ym@y the working value of the book
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BARNES!'S, NEWoMATHEMATICS.

In this series JosEpr FICKLIN, Ph. D,, Pr of Math tics and Ast

in the University of Missouri, has combined all the best and latest msum;.ofx pnctla:l
and experimental teaching of arithmetic with the i of many disting
- mathematical authors. f

Barnes’s Elementary Arithmetic.

Barnes’s National Arithmetic.

‘I'hese two works constitute a complete arithmetical course in two books. 5 "

They meet the demand for text-books that will help students to acq the gre:
amount of useful and practical knowledge of Arithmetic by the smallest expenditure of
time, labor, and . Nearly every topio in Written Arithinetic is introduced, and its
principles mnstrm y exercises in Oral Arithmetic. The free use of Equations ; the
concise method of combining and treating Properties of Numnbers; the treatment of
Multiplication and Division of Fractions in ¢wo cases, and then reduced to ome; Can-
cellation by the use of the vertical line, especially in Fractions, lnterest, and Proportion ;
the brief, simple, and greatly superior method of working Partia) Payments by the
“Time Table” and Cancellation ; the substitution of formulas to . ¢reat extent for
rules ; the full and practical treatment of the Metric System, &c., indicate their com-
pleteness. A varicty of methods and processes for the sume lopic, which deprive the
pupil of the great benefit of doing a part of the thinking and lubor for him.elf, have
been discarded. The stat t of principles, definitions, rules, &c., is brief and simnple.
The illustrations and methods are explicit, direct, and practical. The great nuinber
and variety of Examples embody the actual business of the day. The very lurge
amount of atter condensed in so small a compass has been atcomplished by econo-
wizing every line of space, by rejecting superfluous matter and obsolete terus, and b
avoiding the repetition of analyses, explanati ons in the advanced topi

and op
which have been used in the more elementary parts of these books.

AUXILIARIES, .

For use in district schools, and for supplying a text-book in advanced work for
classes having finished the course as given in the ordinary Practical Arithmetics, the
National Arithmetic has been divided and bound separately, as follows : —

Barnes’s Practical Arithmetic.

Barnes’s Advanced Arithmetic.

In wany schools there are classes that for various reasons never reach beyond
Percentage. It is just such cases where Barnes's Practical Arithmetic will answer &
good purpose, at a price to the pupil much less than to buy the complete book. On the
other hand, classes having finished the ordinary Practical Arithwetic can pi
with the higher course by using Barnes’s Advanced Arithmetic.

For prinary schools requiring simply a table book, and the earliest rudiments
furviblyd presented through object-teaching and copious illustiations, we have
prepares

Barnes’s First Lessons in Arithmetic,

which begins with the most elementary notions of nunibers, and proceeds, by simple
iteps, to develop all the fundamental principles of Arithmetic.

Barnes’s Elements of Algebra.

J This work, as its title indicates, is elementary in its character and suitable for use,

1) in such public schools as give instruction in the Elements of Algebra : (2) in instita-
tions of learning whose courses of study do not include Higher Algebra ; (3) in schools
whose object is to prepare students for entrance into our colleges and universiti
This book will also meat the wants of students of Physics who require some kncwiadge of
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Algebra. The student’s progress in Algebra depends very largely upon th?ropar treat- .
meunt of the four Fundamentul Uperations. The terms dddition, Subtraction, Multiplication,
and Division in Algebra have a wider meaning than in Arithmetic, and these operations-
have been so detined \as\to ‘$nclude théir arithmetical meaning ; so that the beginner
is sim ly called upon to emlarge his views of those fundamental operations. Much
sttencion has heen given to the explanation of the negative sign, in order to remove the
well-known difficulties in the use and interpretation of that sign. Special attention is
called to ‘* A Bhort Method of Removing Symnbols of Aggregution,” Art. 76. On
sccount of their imgom.nce, the subjects of Fuctoring, Greatest Common Divisor, and
Least Common Multiple have been treated at greater length than is usval in elemen
works. 1p the treatment of Fructions, a miethod is used which is quite simple,
at tlee same time, more general than that usually employed. In connection with Radi
Quantities the roots are expressed by fractional exponents, for the principles and rules
applicable to integral exponents may then be used without modification. The Eguatios
is made the chief subject of thought in this work. It is defined near the beginning,
and used extensively in every chapter. In addition to this, four chapters are devoted
exclusively to the subject of Egmations. All Proportions are equations, and in their
treatment as such all the dificulty commonly connected with the subject of Proportion
disappears. The chapter on Logarithms will doubtless be acceptable to many teachers
who do not require the student to ter Higher Algebra before entering upon the
study of Trigonometry.

HIGHER MATHEMATICS.

Peck’s Manual of Algebra.
Bringing the methods of Bourdon within the range of the Academic Course.

Peck’s Manual of Geometry.
By a method purely practical, and unembarrassed by the details which rather confuse
than simplify science.

Peck’s Practical Calculus.
Peck’s Analytical Geometry.
Peck’s Elementary Mechanics.

Peck’s Mechanics, with Calculus.
The briefest treatises on these subjects now published. Adopted by the great Univer-
sities : Yale, Harvard, Columbia, P'rinceton, Cornell, &c.

Macnie’s Algebraical Equations.

Serving as a complament to the more advanced treatises on Algebra, giving special
attention to the analysis and solution of equations with numerical coefficients.
Church’s Elements of Calculus.

Church’s Analytical Geometry.

Church’s Descriptive Geometry. With plates. 2 vois.

These volumes constitute the ‘* West Point Course” in their several depar ments.
Prof. Church was long the eminent professor of mathematics at West Point Military
Academy, and his works are standard in all the leading colleges.

Courtenay’s Elements of Calculus.
A standard work of the very highest grade, presenting the most elaborate attainable
survey of the subject.

Hackley's Trigonometry.
With applications to Navigation and Surveying, Nautical and Practical G try.
and Geodesy. : .
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