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PREFACE.

IT is a remarkable fact in the history of science, that the oldest book of
Elementary Geometry is still considered as the best, and that the writings
of Evcwip,at the distance of two thousand ycars, continue to form the most
approved introduction to the mathematical sciences. This remarkable
distinction the Greek Geometer owes not only to the elegance and correct-
ness of his demonstrations, but to an arrangement most happily contrived
for the purpose of instruction,—advantages which, when they reach a cer-
tain eminence, secure the works of an author against the injuries of time
more effectually than even originality of invention. The Elements of Ev-
cLID, however, in passing through the hands of the ancient editors during
the decline of science, had suffered some diminution of their excellence,and
much skill and learning have been employed by the modern mathemati-
cians to deliver them fromblemishes which certainly did not enter into their
original composition. Of these mathematicians, {)r Smson, as he may
be accounted the last, has also been the most successful, and has left very
litdle room for the ingenuity of future editors to be exercised in, either by
amending the text of EvcLip, or by imaproving the translations from it.

Such being the merits of Dr. SiMson’s edition, and the reception it has
met with having been every way suitable, the work now offered to the pub-
lic will perhaps.appear unnecessary. And indeed, if the geometer just
named had written with a view of accommodating the Elements of Evcrip
to the present state of the mathematical sciences, it is not likely that any
thing new in Elementary Geometry would have been soon attempted. But
his design was different; it was his object to restore the writings of EvcLrip
to their original perfection, and to give them to Modern Europe as nearly
as possible in the state wherein they made their first appearance in Ancient
Greece. For this undertaking, nobody could be better qualified than Dr.
Siuson ; who, to an accurate knowledge of the learned languages, and an
indefatigable spiritof research,added a profound skill intheancient Geome-
try, and an admiration of it almost enthusiastic. Accordingly, he not only
restored the text of EvcLip wherever it had been corrupted, but in some
cases removed imperfections that probably belonged to the original work :
though his extreme partiality for his author never permitted him to suppose
that such honour could fall to' the share either of himself, or of any other of
the moderns.

But, after all this was accomplished, something still remained to be done,
since, notwithstanding the acknowledged excellence of EucLip’s Ele-
ments, it could not be doubted that some alterations might be made that
would accommodate them better to a state of the mathematical sciences, so
much more improved and extended than at the period when they were
written. Accordingly, the object of the edition now offered to the public,is
not so much to give the writings of Evcrip the form which they originally
had, as that which may at present render them most useful.



PREFACE.

One ot the alterations made with this view, respects the Doctrine of
Proportion, thé method of tréating Which, as it is laid down in the fifth of
EucLip, has great advantages accompanied with considerable defects ; of
which, however, it must be observed, that the advantages are essential, and
the defects only accidental. To explain the nature of the former requires
a more minute examination than is suited to this place, and must therefore
be reserved for the Notes ; but, in the mean time, it may be remarked, that
no definition, except that of Evcrip, has ever been given, from which the
properties of proportionals can be deduced by reasonings, which, at the
same time that they are perfectly rigorous, are also simple and direct. As
to the defects, the prolixness and obscurity that have so often been com-
plained of in the fifth Book, they seem to arise chiefly from the nature of
the language employed, which being no other than t{at of ordinary dis-
course, cannot express, without much tediousness and circumlocution, the
relations of mathematical quantities, when taken in their utmost generality,
and when no assistance can be received from diagrams. As it is plain that
the concise language of Algebra is directly calculated to remedy this in<
" convenience, I have endeavoured to introduce it here, in a very simple form
 however, and without changing the nature of the reasoning, or departing

in any thing from the rigour of geometrical demonstration. By this means,
the steps of the reasoning which were before far separated, are brought
near to one another, and the force of the whole is so clearly and directly
perceived, that I am persuaded no more difficulty will be found in under-
standing the propositions of the fifth Book than those of any other of the
Elements. R

In the second Book, also, some algebraic signs have been introduced, for
the sake of representing more readily the addition and subtraction of the
rectangles on which the demonstrations depend. The use of such sym-
bolical writing, in translating from an original, where no symbols are used,
cannot, I think, be regarded as an unwarrantable liberty : for, if by that
means the translation is not made into English, it is made into that univer-
sal language so much sought after in all the sciences, but destined, it would
seem, to be enjoyed only by the mathematical.

The alterations above mentioned are the most material that have been
attempted on the books of Eucrip. There are, however, a few others,
which, though less considerable, it is hoped may in some degree facilitate
the study of the Elements. Such are those made on the definitions in the
first Book, and particularly on that of a straight line. A new axiom is also
introduced in the room of the 12th, for the purpose of demonstrating more
easily some of the properties of parallel lines. In the third Book, the re-
marks concerning the angles made by a straight line, and the circumference
of a circle, are left out, as tending to perplex one who has advanced no
farther than the elements of the science. Some propositions also have
been added ; but for a fuller detail concerning these changes, I must refer
to the Notes, in which several of the more diffjcult, or more interesting sub-
jects of Elementary Geometry are treated at considerable length.

CoLLecE or EpINBURGH,
Dee. 1, 1813.



ELEMENTS

orF

GEOMETRY.

BOOK I.
THE PRINCIPLES.

EXPLANATION OF TERMS AND SIGNS.

1. Geometry is a seience which has for its object the measurement of mag-
nitudes.
Magnitudes may be considered under three dimensions,—length, breadth,
height or thickness.

2. In Geometry there are several ,general terms or principles; such as,
Definitions, Propositions, Axioms, Theorems, Problems, Lemmas, Scho-
liums, Corollaries, &c.

3. A Definition is the explication of any term or word in a science, show-
ing the sense and meaning in which the term is employed.
Every definition ought to be clear, and expressed in words that are
common and perfectly well understood.

4. An Agiom, or Mazim, is a self-evident proposition, requiring no formal
demonstration to (i)rove the truth of it ; but is received and assented to as
soon as mentioned.

Such as, the whole of any thing is greater than a part of it ; or, the
whole is equal to all its par's taken together; or, two quantities that
are each of them equal to a third quantity, are equal to each other.

5. A Theorem is a demonstrative proposition; in which some property is
asserted, and the truth of it #equired to be proved.

Thus, when it is said that the sum of the three angles of any plane tri-
angle is equal to two right angles, this is called a Theorem ; and the
method of collecting the several arguments and proofs, and laying
them together in proper order, by means of which the truth of the
proposition becomes evident, is called a Demonstration.

6. A Direct Demonstration is that which concludes with the direct and cer-
tain proof of the proposition in hand.
It is also called Positive or Affirmative, and sometimes an Ostensive De-
monstration, because it is most satisfactory to the mind..
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7. An Indrect or Negative Demonstration is that which shows a proposition
to be true, by proving that ‘some 'absurdity would necessarily follow if
the proposition advanced were false. ’

This is sometimes called Reductio ad Absurdum ; because it shows the
absurdity and falsehood of all suppositions contrary to that contained
in the proposition.

8. ; A Problem is a proposition or a question proposed, which requires a so-
ution.
As, tp draw one line perpendicular to another ; or to divide a line into
two equal parts.

9. Solution of a problem is the resolution or answer given to it. .
A Numerical or Numeral solution, is the answer given in numbers. A
Geometrical solution, is the answer given by the principles of Geome-
try. And a Mechanical solution, is one obtained by trials.

10. A Lemma is a preparatory proposition, laid down in order to shorten
the demonstration of the main proposition which follows it.

11. A Corollary, or Consectary, is a consequence drawn immediately from
some proposition or other premises.

12. A Scholium is a remark or observation made on some foregoing propo-
sition or premises. o

13. An Hypothesis is a supposition assumed to be true, in order to argue
from, or to found upon it the reasoning and demonstration of some pro-
position.

14. A Postulate, or Petition, is something required to be done, which is so
easy and evident that no person will hesitate to allow it.

15. Method is the art of disposing a train of arguments in a proper order,
to investigate the truth or falsity of a proposition, or to demonstrate it to
others when it has been found out. This is either Analytical or Syn-
thetical.

16. Analysis, or the Analytic method, is the art or mode of finding out the
truth of a proposition, by first supposing the thing to be done, and then
reasoning step by step, till we arrive at some known truth. This is also
called the Method of Invention, or Resolution ; and is that which is com-
monly used in Algebra.

17. Synthesis, or the Synthetic Method, is the searching out truth, by first
laying down simple principles, and pursuing the consequences flowing
from them till we arrive at the conclusion. This is also called the Me-
thod of Composition ; and is that which is commonly used in Geometry.

18. The sign = (or two parallel lines),is the sign of equality ; thus,
A=B, implies that the quantity denoted by A is equal to the quantity
denoted by B, and is read A egual to0 B.

19. To signify that A is greater than B, the expression A 7Bisused. And
to signify that A ss less than B, the expression A /B is used.
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20. The sign of Addition is an erect cross ; thus A--B implies the sum of
A and B, and is called;A plus B; .

21. Subtraction is denoted by a single line; as A—B, which is read A
minus B; A—B represents their difference, or the part of A remaining,
when a part equal to B has'been taken away from it.

In like manner, A—B+-C, or A+4C—B, signifies that A and C are w0
be added together, and that B is to be subtracted from their sum.

22. Multiplication is expressed by an oblique cross, by a point, or by simple
apposition : thus, AXB, A . B, or AB, signifies that the quantity de-
noted by A is to be multiplied by the quantity denoted by B. The ex-
pression AB should not be employed when there is any danger of con-
founding it with that of the line AB, the distance between the points A
and B. The multiplication of numbers cannot be expressed by simple
apposition.

23. When any quantities are enclosed in a parenthesis, or have aline drawn
over them, they are considered as one quantity with respect to other
symbols: thus, the expression AX(B+C—D), or AXB+C—D, re~
presents the product of A.by the quantity B4 C—D. In like manner,
(A+l?)x (A—B+-C), indicates the product of A+B by the quantity
A—B+-C.

24. The Co-efficient of a quantity is the number prefixed to it: thus, 2AB
- signifies that the line AB is to be taken 2 times; 3AB signifies the half
of the line AB.

25. Division, or the ratio of one quantity to another, is usually denoted by
placing one of the two quantities over the other, in the formof a fraction :

thus, % signifies the ratio or quotient arising from the division of the
quantity A by B. In fact, this is division indicated.

26. The Sguafe, Cube, &c. of a quantity, are expressed by placing a small
figure at the right hand of the quantity: thus, the square of the line
AB is denoted by AB?, the cube of the line AB is designated by AB3;

- and soon.

27. The Roots of quantities are expressed by means of the radical sign /,
- with the proper index annexed ; thus, the square root of 5 is indicated
v/5; v/(A X B) means the square root of the product of A and B, orthe
mean proportional between them. The roots of quantities are some-
times expressed by means of fractional indices: thus, the cube root of

AXBXC may be expressed by 3/AXBXC, or (AXBXC)}, and
#0 on.

28. Numbers in a parenthesis, such as g5. 1.), refers back to the number
of the proposition apnd the Baok in which it has been announced or de-
monstrated. The expression (15. 1.) denotes the fifteenth proposition,
first book, and s0 on. In like manner, (3. Ax.) designates the third
axflom; (2. Post.) the second postulate; (Def. 3.) the third definition,
and so on., ’
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29. The ‘word, therefore, or hence, frequently occurs. To express either of
these words the sign .- is/generally used.

30. If the quotients of two pairs of numbers, or qua.ntmes, are equa.l the.-
quantities are said to be proportional: thus, lf 5= 9 ; then, Aisto B

asC toD. And the abbreviations of the proportlon is,A:B::C:D;
it is sometimes written A : B= C D.

DEFINITIONS.

1. “A Pomr is that which has position, but not magnitude®.” (See
Notes.)

2. A line is length without breadth.
“CoroLLARY. The extremities of a line are points ; and the intersections
“of one line with another are also points.”

3. “If two lines are such that they cannot coincide in any two points, with-.
“ out coinciding altogether, each of them is called a straight line.”

“Cor. Hence two straight lines cannot inclose a space. Neither can two
“ straight lines have a common segment ; that is, they cannot coincide
“ in part, without coinciding altogether.”

4. A superficies is that which has only length and breadth.
¢ Cor. The extremities of a superficies are lines ; and the mtersectlons of -
“one superficies with another are also lines.”

5. A plane superficies is_that in which any two points being taken, the
straight line between them lies wholly in that superficies.

6. A plane rectilineal angle is the inclination of two straight lines to one
another, which meet together, but are not in the same straight line.

B

N. B. ‘When several angles are at one point B, any one of them is ex-
¢ pressed by three letters, of which the letter that is at the vertex of the an-
¢ gle, that is, at the point in which the straight lines that contain the angle

‘meet one another, is put between thg other two letters, and one of these
‘two is somewhere upon one of those straight lines, and the other upon the
‘other line: Thus the angle which is contained by the straight lines, AB,
¢ CB, is named the angle ABC, or CBA ; that which is contained by AB,

# The definitions marked with inverted commas are different from those of Huclid.
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* BD, is named the angle ABD, or DBA ; and that which is contained by
* BD, CB, iscalled the angle DBC, or CBD ; but, if there be only one an-
¢ gle at a point, it may be expressed by a letter placed at that point ; as the
‘angle at E.

7. When a straight line standing on another
straight line makes the adjacent angles equal
to one another, each of the angles is called
a right angle; and the straight line which
:::.nds on the other, is called a perpendicu-

to it.

8. An obtuse angle is that which is greater than a right angle.

/N

9. An acute angle is that which is less than a right angle.

10. A figure is that which is em}osed by one ordmore boundaries.—The
word area denotes the quantity of space contained in a figure, without any
reference to the nature of the line or lines which bmd’ftgu ’

11. A circle is a plane figure contained by one line, which is called the
circumference, and is such that all straight lines drawn from a certain
- point within the figure to the circumference, are equal to one another.

12. And this point is called the centre of the circle.

13. A diameter of a circle is a straight line drawn through the centre, and
terminated both ways by the circumference.

14. A semicircle is the figure contained by a diameter and the part of the
circumference cut off by the diagleter.
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15. Rectilineal figures are those which are contained by straight lines.
16. Trilateral figures| or(iriangles) by three straight lines.

17. Quadrilateral, by four straight lines. '

18. Multilateral figures, or polygons, by more than four straight lines.

19. Of three sided figures, an equilateral triangle is that which has three
equal sides.

20. An isosceles triangle is that which has only two sides equal.

A AR

21. A scalene triangle is that which has three unequal sides.
22. A right angled triangle is that which has a right angle.
23. An obtuse angled triangle is that which has an obtuse angle.

AONWAN

24. An acute angled triangle is that which has three acute angles.

25. Of four sided figures, a square is that which has all its sides equal
and all its angles right angles.

26. An oblong is that which has all its angles right angles, but has not all
its sides equal.

27. A rhombus is that which has all its sides equal, but its angles are not
right angles.
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28. A rholnboid is that wlnch has its opposite sides equal to one another,
but all its sides, are not equal, nor its angles right angles.

29. All other four sided figures besides these, are called trapeziums.

30. Parallel straight lines are such as are in the same plane, and which,
being produced ever so far both ways, do not meet.

POSTULATES.

. LET it be granted that a straight line may be drawn from any one point .
to any other point.

2. That a terminated straight line may be produced to any length in a
straight line.

3. And that a circle may be described from any centre, at any distance
from that centre. :

Tt

AXIOMS.

. Trines which are equal to the same thing are equal to one another.
. If equals be added to equals, the wholes are equal.

. If equals be taken from equals, the remainders are equal.

I equals be added to unequals, the wholes are unequal.

If equals be taken from unequals, the remainders are unequal.
Things which are doubles of the same thing, are equal to one another.
. Things which are halves of the same thing, are equal to one another.

. Magnitudes which coincide with one another, that is, which exactly
fill the same space, are equal to one another.

9. The whole is greater than its part.
10. All right angles are equal to one another.

11. “Two straight lines which intersect one another, cannot be both pa-
s rallel to the same straight line.”

I N N
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_ PROPOSITION I. PROBLEM.
T'o describe an equilateral triangle upon a given finite straight line.

Lot AB be the given straight line ; it is required to describe an equi-
lateral triangle uponit.

From the centre A, at the dis- C
tance AB, describe (3. Postulate)
the circle BCD, and from the cen-
tre B, at the distance BA, describe
the circle ACE ; and from the point
C, in which the circles cut one an-
other, draw the straight lines (1.
Post.) CA, CB to the points A, B;
ABC is an equilateral triangle.

Because the point A is the cen-
tre of the circle BCD, AC is equal ‘
(11. Definition) to AB ; and because the point B is the centre of the cir-
cle ACE, BC is equal to AB: But it has been proved that CA is equal
to AB; therefore CA, CB are each of them equal to AB; now things
which are equal to the same are equal 4§ one another, (1. Axiom); there-
fore CA is equal to CB; wherefore CA, AB, CB are equal to one another ;
and the triangle ABC is therefore equilateral, and it is described upon the
given straight line AB.

E

>

PROP. II. PROB.
From a given point to draw a straight line equal to a given straight line.

Let A be the given point, and BC the given straight line ; it is required
to draw, from the point A, a straight line equal to BC.

From the point A to B draw (1. Post.)
the straight line AB; and upon it describe
(1. 1.) the equilateral triangle DAB, and
produce (2. Post.) the straight lines DA,
BD, to E and F ; from the centre B, at the
distance BC, describe (3. Post.) the circle
CGH, and from the centre D, at the dis-
tance DG, describe the circle GKL, AL is
equal to BC.

Because the point B is the centre of the
circle CGH, BC is equal (11. Def) to BG;
and because D is the centre of the circle’
GKL, DL is equal to DG, and DA, DB,
parts of them, are equal; therefore the re-
mainder AL is equal to the remainder (3.
Ax.) BG: But it has been shewn that BC is equal to BG ; wherefore
AL and BC are each of them equal to BG; and things that are equal
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to the same are equal to one another ; therefore the straight line AL is
equal to BC.\//Wherefore, from)the(given point A, a straight line AL has
been drawn equal to the given straight line BC. :

PROP. III. 'PROB.

From the greater of two given straight lines to. cut off a part equal to the
less.

Let AB and C be the two given straight
lines, whereof AB is the greater. Itis
required to cut off from AB, the greater,
a part equal to C, the less.

From the point A draw (2. 1.) the
straight line AD equal to C; and from
the centre A, and at the distance AD,
describe (3. Post.) the circle DEF ; and
because A is the centre of the circle
DEF, AE is equal to AD; but the
straight liné C is likewise equal to AD ;
whence AE and C are each of them equal to AD ; wherefore the straight
line AE is equal to (1. Ax.) C, and from AB the greater of two straight
lines, a part AE has been cut off equal to C the less.

PROP. IV. THEOREM.

If two triangles have two sides of the one equal to two sides of the other, each
to each ; and have likewise the angles contained by those sides equal to
one another, their bases, or third sides, skall be equal ; and the areas of
the triangles shall be equal ; and their other angles shall be equal, each to
each, viz. those to which the equal sides are opposite.®

Let ABC, DEF be two triangles which have the two sides AB, AC
equal to the two sides DE, DF, each to each, viz. AB to DE, and AC to
DF; and let the angle A D ‘
BAC be also equal to the
angle EDF: then shall
the ‘base BC be equal to
the base EF ; and the tri-
angle ABC to the triangle
DEF; and the other an-
gles, to which the equal
sides are opposite, shall
be equal, each to each, 0 E
viz. the angle ABC to the angle DEF, and the angle ACB to DFE.

For, if the triangle ABC be applied to the triangle DEF, so that the
point A may be on'D, and the straight line AB upon DE ; the point B
shall coincide with the point E, because AB is equal to DE ; and AB

* The three conclusions in this enunciation are more briefly expressed by saying, that the

trigngles are every way equal.
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coinciding with DE, AC shall coincide with DF, because the angle BAC
is equal to theangle EDF); wherefore also the point C shall coincide with
the point F, because AC is equal to DF ; But the point B coincides with
the point E; wherefore the base BC shall coincide with the base EF
(cor. def. 3.), and shall be equal to it. Therefore also the whole triangle
ABC shall coincide with the whole triangle DEF, so that the spaces which
they contain or their areas are equal ; and the remaining angles of the
one shall coincide with the remaining angles of the other, and be equal to
them, viz. the angle ABC to the angle DEF, and the angle ACB to the
angle DFE. Therefore, if two triangles have two sides of the one equal
to two sides of the other, each to each, and have likewise the angles con-
tained by those sides equal to one another ; their bases shall be equal,
and their areas shall be equal, and their other angles, to which the equal
sides are opposite, shall be equal, each to each. :

PROP. V. THEOR.

The angles at the base of an Isosceles triangle are equal to one another ; and
if the equal sides be produced, the angles upon the other side of the base
shall be equal.

Let ABC be an isosceles triangle, of which the side AB is equal to AC,
and let the straight lines AB, AC be produced to D and E, the angle ABC
shall be equal to the angle ACB, and the angle CBD to the angle BCE.

In BD take any point F, and from AE the greater cut off AG equal
(3. 1.) to AF, the less, and join FC, GB.

Because AF isequal to AG, and ABto AC, the twosides FA, AC are equal
to the two GA, AB, each to each; and they contain the angle FAG com-
mon to the two triangles, AFC, AGB; .
therefore the base FC is equal (4. 1.) to
the base GB, and the triangle AFC to
the triangle AGB; and the remaining
angles of the one are equal (4. 1.) to
the remaining angles of the qther, each to
each, to which the equal sides are oppo-
site, viz. the angle ACF to the angle
ABG, and the angle AFC to the angle
AGB: And because the whole AF is
equal to the whole AG, and the part AB
to the part AC; the remainder BF shall
be equal (3. Ax.) to the remainder CG
and FC was proved to be equal to GB,
therefore the two sides BF, FC are equal to the two CG, GB, each to
each ; but the angle BFC is equal to the angle CGB ; wherefore the tri-
angles BFC, CGB are equal (4. 1.), and their remaining angles are equal.

“to which the equal sides are opposite ; therefore the angle FBC is equal
to the angle GCB, and the angle BCF to the angle CBG. Now, since
it has been demonstrated, that the whole angle ABG is equal to the whole
ACF, and the part CBG to the part BCF, the remaining angle ABC is
therefore equal to the remaining angle ACB, which are tie angles at the
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bese of the triangle ABC: And it has also been proved that the angle
FBC is equal to'the angle’GCB, which are the angles upon the other side
of the base. :

Cororrary. Henco every equilateral triangle is also equiangular.
PROP. VI. THEOR.

If two angles of a triangle be equal to one another, the sides which subtend
4 wora{aappo:iutotﬁ“m,anduegualtommthr.

Let ABC be a triangle having the angle ABC equal to the angle ACB;
the side AB is also equal to the side AC. ‘
For, if AB be not equal to AC, one of them is A
greater than the other: Let AB be the greater,
and from it cut (3. 1.) off DB equal to AC the
less, and join DC; therefore, because in the tri- D
-angles DBC, ACB, DB is equal to AC, and BC
common to both, the two sides DB, BC are equal
to the two AC, CB, each to each; but the angle
DBC is also equal to the angle ACB; therefore
the base DC is equal to the base AB, and the area
of the triangle DBC is e&u&l to that of the triangle
(4. 1.) ACB, the less to the greater ; which is ab-
surd. Therefore, AB is not unequal to AC, that. B C
is, it is equal to it.

C\on. Hence every equiangular triangle is also equilateral.
PROB. VII. THEOR.

' .

Upon the same base, and on the same side of it, there cannot de two triangles,
that have their sides which are terminated in one extremity of the base
equal to one another, and likewise those which are terminated in the othert
extremity, equal to one another.

Let there be two triangles ACB, ADB, upon the same base AB,and .
upon the same side of it, which have their sides CA, DA, terminated in A
equal to one another; then their sides CB, DB, terminated in B, cannot
be equal to one another. ’

Join CD, and if possible let CB be c
equal to DB ; then, in the case in which .
the vertex of each of the triangles is with-
‘out the other triangle, because AC is .
equal to AD, the angle ACD is equal (5.
1.) to the angle ADC: But the angle

" ACD is greater than the angle BCD;
therefore the angle ADC is greater also
than BCD ; much more then is the angle
BDC greater than the angle BCD. Again, -
because CB is equal to DB, the a.nﬁlo

]

BDC is equal (5. 1.) to the angle BC A
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but it has been demonstrated to be greater than it; which is impossi--
ble. ‘

But if one of the vertices, as D,
be within the other triangle ACB ;
_produce AC, AD to E, F; therefore,
because AC is equal to AD in the
triangle ACD, the angles ECD,FDC
upon the other side of the base CD
are equal (5. 1.) to one another, but
the angle ECD is greater than the’

angle BCD ; wherefore the angle & — —%

FDC is likewise greater than BCD ;

much more then is the angle BDC greater than the angle BCD. Again,
because CB is equal to DB, the angle BDC is equal (5. 1.) to the angle
BCD; but BDC has been proved to be greater than the same BCD;
which is impossible. The case in which the vertex of one triangle is
upon a side of the other, needs no demonstration.

Therefore, upon the same base, and on the same side of it, there cannot
be two triangles that have their sides which are terminated in one extrem-
ity of the base equal to one another, and likewise those which are termina-
ted in the other extremity equal to one another.

PROP. VIII. THEOR.

If two triangles have two sides of the one equal to two sides of the other,
each to each, and have likewise their bases equal ; the angle which is contain-
ed by the two sides of the one shall be equal to the angle contained by the two
sides of the other. .

Let ABC, DEF be two triangles haviné the two sides AB, AC, equal
to the two sides DE, DF, each to each, viz. AB to DE, and ACto DF;

D &

~C

and also the base BC equal to the base EF. The angle BAC is equal to _

the angle EDF.

For, if the triangle ABC be applied to the triangle DEF, so that the
point B be on E, and the straight line BC upon EF ; the point C shall also
coincide with the point F, because BC is equal to EF : therefore BC coin-
ciding with EF, BA and AC shall coincide with ED and DF ; for, if
BA and CA do not coincide with ED and FD, but have a different situa-

1

-



~

OF GEOMETRY. BOOK I. 17

tion, as EG and FG ; then, upon the same base EF, and upon the same
side of it, there/can be two triangles EDF, EGF, that have their sides which
are terminated in one extremity of the base equal to one another, and like-
wise their sides terminated in the other extremity ; but this is impossible
(7. 1.); therefore, if the base BC coincides with the base EF, the sides
BA, AC cannot but coincide with the sides ED, DF; wherefore likewise

* the angle BAC coincides with the angle EDF, and is equal (8. Ax.) to it.

PROP. IX. PROB.

To bisect a given rectilineal angle, that is, to divide it into two equal angles.

Let BAC be the given rectilineal angle, it is required to bisect it.

Take any point D in AB, and from AC cut
(3. 1.) off AE equal to AD ; join DE, and upon
it describe (1. 1.) an equilateral triangle DEF ;
then join AF ; the straight line AF bisects
the angle BAC.

Because AD is equal to AE, and AF is com-
mon to the two triangles DAF, EAF ; the two
sides DA, AF, are equal to the two sides EA, D 0]
AF, each to each; but the base DF is also :
equal to the base EF ; therefore the angle
DAF is equal (8. 1.) to the angle EAF : where-
fore the given rectilineal angle BAC is bisect-
ed by the straight line AF. B r

~ SCHOLIUM.

By the same construction, each of the halves BAF, CAF, may be divi-
ded into two equal parts ; and thus, by successive subdivisions, a given an-
gle may be divided into four equal parts, into eight, into sixteen, and so on.

~

PROP. X. PROB.

To bisect a given finite straight line, that is, to divide it into two equal parts.

Let AB be the given straight line ; it is required to divide it into two equal
arts.
P Describe (1. 1.) upon it an equilateral triangle ABC, and bisect (9. 1.)
the angle ACB by the straight line CD. AB is
cut into two equal parts in the point D. C
Because-AC is equal to CB, and CD common
to the two triangles ACD, BCD : the two sides
AC, CD, are equal to the two BC, CD, each to
each ; but the angle ACD is also equal to the an-
gle BCD; therefore the base AD is equal to the
base (4.1.) DB, and the straight line AB is divi-
ded into two equal parts in the point D.

3
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PROP. XI. PROB.

To draw a straight line at right angles to a given straight line, from a given
‘ point in that line.

Let AB be a given straight line,.and C a point given in it; it is requi-

red to draw a straight line from the point C at right angles to AB.

Take any point D in AC, and (3. 1.) make CE equal to CD, and upon
DE describe (1.1.) the equijateral F
triangle DFE, and join FC; the
straight line FC, drawn from the giv-
en point C, is at right angles to the
given straight line AB. ‘

Because DC is equal to CE, and -
FC common to the two .triangles
DCF, ECF, the two sides DC, CF . - - -
are equal to the two EC, CF, each A D C E B
to each; but the base DF is also equal to the base EF; therefore the
angle DCF is equal (8. 1.) to the angle ECF ; and they are adjacent an-
gles. But, when the adjacent angles which one straight line makes with
another straight line are eqnal to one another, each of them is called a
right (7. def.) angle ; therefore each of the angles DCF, ECF, is a right
angle. Wherefore, from the given point.C, in the given straight line AB,
FC has been drawn at right angles to AB.

PROP. XII. PROB.

To draw a straight line perpendicular to a given straight line, of an unlimited
length, from a given point without it.

Let AB be a given straight line, which may be produced to any length
‘woth ways, and let C be a point without it. It is required to draw a straight.
line perpendiculat to AB from the ’ ‘
point C.

C ‘
Take any point D upon the other

side of AB,and from the centre C, at B

the distance CD, describe (3. Post.) .

the circle EGF meeting ABin F, G :

~ and bisect (10. 1.) FG in H, and join \__/
CF, CH, CG; the saight lineCH, & F ~H__~G B
drawn from the given point C, is per- D

pendicular to the given straight line AB.

Because FH is equal to HG, and HC common to the two triangles FHC,

GHC, the two sides FH, HC are equal to the two GH, HC, each to each,
but the base CF is also equal (11. Def. 1.) to the base CG ; therefore the
angle CHF is equal (8. 1.) to the angle CHG ; and they are-adjacent an-
gles ; now when a straight line standing on a straight line makes the ad-
jacent angles equal to one another, each of them is a right angle, and
the straight line which stands upon the other is called a perpendicular to
it ; therefore from the given point C a perpendicular CH has been drawn
to the given straight line AB.
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PROP. XIII. THEOR.

The angles which ons strasght line makes with another upon one side of it, are
either two right angles, or are together equal to two right angles.

Let the straight line AB make with CD, upon one side of it the angles
CBA,ABD ; these are either two right angles, or are together equal to two
right angles. : . .

For, if the angle CBA be equal to ABD, each of them is a right angle
(Def. 7.) ; but, if not, from the point B draw BE at right angles (11. 1.)

A ) 0]

D -B () D
to CD ; therefore the angles CBE, EBD are two right angles. Now, the
angle CBE is equal to the two angles CBA, ABE together ; add the an-
gle EBD to each of these equals, and the two angles CBE, EBD will be
equal (2. Ax.) to the three CBA, ABE, EBD. Again, the angle DBA is
oqual to the two angles DBE, EBA ; add to each of these equals the angle
ABC; then will the two angles DBA, ABC be equal to the three angles
DBE, EBA, ABC; but the angles CBE, EBD have been demonstrated
to be equal to the same three angles ; and things that are equal to'the same
are equal (1. Ax.) to one another; therefore the angles CBE, EBD are
equal to the angles DBA, ABC; but CBE, EBD, are two right angles ;
therefore DBA, ABC ; are together equal to two right angles.

Cor. The sum of all the angles, formed on the same side of a straight
line DC, is equal to two right angles ; because their sum is equal to that
of the two adjacent angles %BA, ABC.

PROP. XIV. THEOR.

If, at a point in a strasght line, two other straight lines upon the opposite
sides of it, make the adjacent angles together equal t0 two right angles,
these two straight lines are in one and the same straight line.

At the point B in the straight line AB, . .
let the tw}:)ostraight lines ﬁ‘(gJ, BD upon ot A »
the opposite sides of AB, make the adja-
cent angles ABC, ABD equal togethe.

" to two right angles. BD is in the same
straight line with CB.

For if BD be not in the same straight
line with CB, let BE be in the same
straight line with it; therefore, because .
the straight line AB makes angles with ¢ B T D
the straight line CBE, upon one side of ST

H
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it, the angles ABC, ABE are together equal (13. 1.) to two right angles ;
but the angles ABC, ABD are likewise together equal to two right angles :
therefore the angles CBA, ABE are equal to the angles CBA, ABD:
Take away the common angle ABC, and the remaining angle ABE is equal
(3. Ax.) to the remaining angle ABD, the less to the greater, which is im-
possible ; therefore BE is not in the same straight line with BC. Andin
like manner, it may be demonstrated, that no other can be in the same
st\r:.lilghtB line with it but BD, which therefore is in the same straight line
with CB.

" PROP. XV. THEOR.

If two straight lines cut one another, the vertical, or opposite angles are equal.

Let the two straight lines AB, CD, cut one anotherin the point E : the
angle AEC shall be equal to the angle DEB, and CEB to AED. -

For the angles CEA, AED, which the straight line AE makes with the
straight line CD, are together equal (13. 1.) to two right angles : and the
angles AED, DEB, which the
straight line DE makes with the
straight line AB, are also together
equal (13. 1.) to two right angles ;
therefore the two angles CEA,
AED are equal to the two AED, A
DEB. Take away the common E
. angle AED, and the remaining
angle CEA is equal (3. Ax.) to the
remaining angle DEB. In the
same manner it may be demonstrated that the angles CEB, AED are
equal.

qun. 1. From this it is manifest, that if two straight lines cut one an-
other, the angles which they make at the point of their intersection, are
together equal to four right angles. .

Cox. 2. And hence, all the angles made by any number of straight lines

meeting in one point, are together equal to four right angles.

-

PROP. XVI. THEOR.

If one side of a triangle be proddced, the exterior angle is greater than
either of .the interior, and opposite angles.

Let ABC be a triangle, and let its side BC be produced to D, the ex-
terior angle ACD is greater than either of the interior opposite angles
€CBA, BAC. .

Bisect (10. 1.) AC in E, join BE and produce it to F, and make EF
equal to BE ; join also FC, and produce AC to G.

Because AE is equal to EC, and BE to EF; AE, EB are equal to
CE, EF, each to each; and the angle AEB is equal (15. 1.) to the
angle CEF, because they are vertical angles; therefore the base AB



OF GEOMETRY. BOOK I 2l

is equal (4. 1.) to the base CF, and
the triangle AEB to, the triangle
CEF, and the ‘remaining’ anglesto
the remaining angles each to each,
10 which the equal sides are oppo-
site ; wherefore the angle BAE is
equal to the angle ECF; but the
angle ECD is greater than the an-
gle ECF'; therefore the angle ECD,
that is ACD, is greater than BAE :
In the same manner, if the side BC
be bisected, it may be demonstrated
that the angle BCG, that is (15. 1.),
the angle ACD, is greater than the
angle ABC. )

PROP. XVII. THEOR. .
- Any two angles of a triangle are together less than two right angles.

Let ABC be any triangle; an »

_two of its angles together are lesz A
than two right angles.

Produce BC to D; and because
ACD is the exterior angle of the tri-
angle ABC, ACD is greater (16. 1.)
than the interior and opposite angle
ABC; to each of these add the angle
ACB; therefore the angles ACD,
ACB are greater than the angles /

ABGC, ACB; but ACD,ACB areto- B Cc D
gether equal (13. 1.) to two right an-

gles : therefore the angles ABC, BCA are less than two right angles. In
like manner, it may be demonstrated, that BAC, ACB as also CAB, ABC,
are Jess than two right angles. ‘ *

PROP. XVIII. THEOR.

The greater side of every trianglahasihgrmtcrangkoppuitatqit.

Let ABC be a triangle of which the - - A
side AC is greater than the side AB ; the
angle ABC is also greater than the angle
BCA.

From AC, which is greater than AB, D
cut off (3. 1.) AD equal to AB, and join
BD: and because ADB is the exterior
angle of the triangle BDC, it is greater =~ B
(16. 1.) than the interior and opposite
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angle DCB; but ADB is equal (5. 1.) to ABD, because the side AB is
equal to the side AD ;therefore, the angle ABD is likewise greater than
the angle ACB; wherefore much more is the angle ABC greater than
ACB ‘ .

PROP. XiX. THEOR. '

The greater angle of every triangle is subtended by the gnﬁter side, or has
‘ the greater side opposite to .

Let ABC be a triangle, of which the angle ABC is greater than the
angle BCA ; the side AC is likewise greater than the side AB.

For, if it be not greater, AC must either
be equal to AB, or less than it; it is not A
equal, because then the angle ABC would
be equal (5. 1.) to the angle ACB; but it is
not; therefore AC is not equal to AB ; nei-
theris it less ; because thenthe angle ABC
would be less (18. 1.) than the angle ACB ;
but it is not; therefore the side AC is not B
less than AB; and it has been shewn that
it is not equal to AB; therefore AC is greater than AB.

Qi

PROP. XX. THEOR.

Any two sides of a triangle are together greater than the third side.

Let ABC be a triangle ; any two sides of it together are gréater tham
the third side, viz. the sides BA, AC greater than the sidle BC; and AB,
BC greater than AC; and BC, CA greater than AB.

Produce BA to the point D, and make
(3. 1.) AD equal fo AC ; and join DC. D

Because DA is equal to Aé, the an-
gle ADC is likewise equal (5. 1.) to A
ACD: but the angle BCD is greater.
than the angle ACD ; therefore tgl:e an-
gle BCD is greater than the angle
ADC; and because the angle BCD of
the triangle DCB is greater than its an- B C
gle BDC, and that the greater (19. 1.) side is opposite to the greater an-
gle ; therefore the side%)B is greater than the side BC; but DB is equal
to BA and AC together; therefore BA and AC together are greater than
BC. In the same manner it may be demonstrated, that the sides AB,
BC are greater than CA, and BC, CA greater than AB.

SCHOLIUM.

This may be demonstrated without producing any of the sides : thus,
the line BC, for example, is the shortest distance from B to C; therefore
BC is less than BA+4+AC or BA4AC>BC. i
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PROP. XXI. THEOR.

If from the ends of ome side of a triangle, theré be drawn two straight
ines to a point within the triangle, these two lines shall be less than the
other two sides of the triangle, but shall contain a greater angle.  ° f.

Let the two straight lines BD, CD be drawn from B, C, the ends of
the side BC of the triangle ABC, to'the point D within it; BD and DC
are less than the other two sides BA, AC of the triangle, but centain an
angle BDC greater than the angle BAC.

Produce BD to E; and because two sides of a triangle (20. 1.) are
greater than the third side, the two sides BA, . A
AE of the triangle ABE are greater than BE.

‘To each of these.add EC; therefore the

sides BA, AC are grester than BE, EC: b
Again, because the two sides CE, ED, of
the triangle CED are greater than CD, if
DB be added to each, the sides CE, EB,
will be greater than CD, DB; but it has -
been shewn thiat BA, AC are greater than
BE, EC; much more then are BA, AC great»
er than BD, DC. B C

Again, because the exterior angle of a
triangle (16. 1.) is greater than the interior and opposite engle, the exte-
rior angle BDC of the triangle CDE is greater than CED ; for the same
reason, the exterior angle CEB of the triangle ABE is greater than BAC;
and it has been demonstrated that the angle BDC is greater than the
;;ngle CEB; much more then is the angle BDC greater than the angle

AC.

PROP. XXII. PROB.
To construct a triangle of which the sides shall be equal to three gwen
straight lines ; but any two whatever of these lines must be greater than
the third (20. 1.).

Let A, B, C be the three given

straight lines, of which any two - K
whatever are greater than the
third, viz. A and B greater than
C; Aand C greater than B ; and D i
B and C than A. It is required TR
to make a triangle of which the
sides shall be equal to A, B, C,
each to each.

Take a straight line DE, ter-
‘minated at the point D, but un- A—
limited towards E, and make B

(3. 1.) DF equal to A, FG to B,
and GH equal to C; and from 0.
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the centre F, at the distance FD, describe (3. Post.) the circle DKL ;
and from the centre G, at the distance GH, describe (3. Post.) another
circle HLK'; 'and join'KF, KG';' the triangle KFG has its sides equal to
the three straight lines, A, B, C. )
Because the point F is the centre of the circle DKL, FD is equal (11.
‘)ef.) to FK; but FD is equal to the straight line A ; therefore FK is
equal to A : Again, because G is the centre of the circle LKH, GH is
equal (11. Def.) to GK; but GH is equal to C; therefore, also, GK is
equal to C; and FG is equal to B; therefore the three straight lines KF,
FG, GK, are equal to the three A, B, C: And therefore the triangle
KFG has its three sides KF, FG, GK equal to the three given straight
lines, A, B C. .

SCHOLIUM.

If one of the sides were greater than the sum of the other two, the arcs
would not intersect each other: but the solution will always be possible,
Klllren the sum of two sides, any how taken (20. 1.) is greater than the

ird, .

PROP. XXIII. PROB.

At a given point in a given straight line, to make a rectilineal angle equal
to a given rectilineal angle.

Let AB be the given straight line, and A the given point in it, and DCE
the given rectilineal angle ; it is required to make an angle at the given
point A in the given straight line
AB, that shall be equal to the A
given rectilineal angle DCE.

Take in CD, CE any points D,

E, and join DE; and make (22.

1.) the triangle AFG, the sides

of which shall be equal to the

three straight lines, CD, DE, CE, G
so that CD be equal to AF, CE to B

AG,and DE to FG ; and because ¥

DC, CE are equal to FA, AG, D

each to each, and the base DE to

the base FG; the angle DCE is

equal (8. 1.) to the angle FAG.

Therefore, at the given point A in the given straight line AB, the angle
FAG is made equal to the given rectilineal angle DCE.

PROP. XXIV. THEOR.

If two triangles have two sides of the one equal to two sides of the other, each
to each, but the angle contained by the two sides of the one greater than
the angle_contained by the two sides of the other ; the base of that which
has the greater angle shall be greater than the base of the other.

Let ABC, DEF be two triangles which have the two sides AB, AC
equal to the two DE, DF each to each, viz. AB equal to DE, and AC to
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DF; but the angle BAC greater than the. angle EDF; the base BC is
also greater than the base EF,

Of the two' sides DE, DF, let DE*be the side which is not greater than
the other, and at the point D, in the straight line DE, make (23. 1.) the
angle EDG equal to the angle BAC: and make DG equal (3. 1.) toe AC
‘or DF, and join EG, GF. L

Because AB is equal to DE, and AC to DG, the.two sides BA, AC are
equal to the two ED, DG, each to each, and the angle BAC is equal to
the angle EDG, therefore .
the base BC isequal (4.1.) D
to the base EG; and be- '
cause DG is eqnal to DF,
the angle DFG is equal
(5. 1.) to the angle DGF;
but the angle DGF is
greater than the angle
EGF ; therefore the angle
DFG isgreaterthan EGF';
and muchmore is the angle
EFG -greater than the B - P
angle EGF; and because . ‘ : .
the angle EFG of the triangle EFG is greater than its angle EGF, and
because the greater(19.1.)side is oppesite to the greater angle, the side
EG is greater than the side EF; but EG is equal to BC ; and therefore
also BC is greater than EF. .

~PROP. XXV. THEOR.

If two trianglés have two sides of the one equal to two sides of the other, each
to each, but the base of the one greater than the base of the other ; the angle
contained by the sides of that which has the greater base, shall be greater
than the angle contained by the sides of the other.

Let ABC, DEF be two triangles which have the two sides, AB, AC,
equal to the two sides DE, DF, each to each, viz. AB equal to DE, and
AC to DF : but let the base CB be greater than the base EF, the angle
BAC is likewise greater than the angle EDF. .

For, if it be not greater, it must either be equal to it, or less; but the
angle BAC is not equal to the angle
EDF, because then the base BC '
would be equal (4.1.)to EF ; butitis
not; therefore the angle BAC is not
equal to the angle EDF ; neither is
it less ; because then the base BC
would be less (24. 1.) than the bas.

EF; butit is not; therefore the an-
gle BAC is not less than the angle
EDF: and it was shewn that it is
not equal to it: therefore the angle
BAC is greater than the angle EDF. . B
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PROP. XXVI. THEOQR.
If two triangles Aave two angles of the one equal to two angles of the other,
fmdz 1o each ; and one ﬁ oq-uaj; to one side, vis. cither the sides adjacent
to the equal angles, or the sides opposits to the equal angles in each ; then

shall the other side be equal, each to each ; and also the third angle of the
one to the third angle of the other.
Let ABC, DEF be two trian- .

gles which have the angles A - D

ABC, BCA equal to the angles

DEF, EFD, viz. ABC to DEF,

and BCA to EFD, also one side

equal to one side ; and first, let

those sides be equal which are

adjacent to the angles that are .

equal in the two triangles, viz.

?hC to EF; the other huides . ,
all be equal, each to each, viz.

ABto DE,and AC 0DF; and B C E - F

the third angle BAC to the third angle EDF.

For, if AB be not equal to DE, one of them must be the greater. Let
AB be the greater of the two, and make BG equal to DE, and join GC;
therefore, because BG is equal to DE, and BC to EF, the two sides GB,
BC are equal to the two, DE, EF, each to each; ‘and the angle GBC is
equal to the angle DEF; therefore the base GC is equal (4. 1.) to the
base DF, and the triangle GBC to the triangle DEF, and the other angles
to the other angles, each to each, to which the equal sides are opposite ;
therefore the angle GCB is equal to the angle DFE, but DFE is, by the
hypothesis, equal to the angle BCA ; wherefore also the angle BCG is
equal to the angle BCA, the less to the greater, which is impossible ;
therefore AB is not unequal to DE, that is, it is equal to it; and BC is
equal to EF ; therefore the two AB, BC are equal to the two DE, EF,
each to each ; and the angle ABC is equal to the angle DEF ; therefore
the base AC is equal (4. 1.) to the base DF, and the angle BAC to the
angle EDF.

Next, let the sides which are A D
opposite to equal angles in each
triangle be equal to one another,
viz. AB to DE; likewise in this
case, the other sides shall be
equal, AC to DF, and BC to EF;
and also the third angle BAC to
the third EDF.

For, if BC be not equal to EF,
let BC be the greater of them, .
and make BH equalto EF,and B HC E F
join AH; and because BH is ;
equal to EF,and AB to DE; the two AB, BH are equal to the two
DE, EF, each to each; and they contain equal angles; therefore (4. 1.)




OF GEOMETRY. BOOK I. 23
-~

the base AH is equal to the base DF, and the triangle ABH to the trian-
gle DEF, and the other angles are equal, each to each, to which the equal
sides are opposite ; therefore'the angle BHA is equal to the angle EFD;
but EFD is equal to the angle BCA ; therefore also the angle BHA is equal
to the angle BCA, that is, the exterior angle BHA of the triangle AHC is
equal to its interior and opposite angle BCA, which is impossible (16. 1.);
wherefore BC is not unequal to EF, that is, it is equal to it; and AB is
equal to DE ; therefore the two, AB, BC are equal to the two DE, EF, each
to each ; and they contain equal angles.; wherefore the base AC is equal
to the base DF, and the third angle BAC to the third angle EDF.

PROP. XXVII. THEOR.

If a straight line falling upon two other straight lines makes the alternats
sagles equal to one another, these two straight lines are parallel.

Let the straight line EF, which falls upon the two straight lines AB,
CD make the alternate angles AEF, EFD equal to one another; AB is
parallel to CD. ' :

. Forpif it be not parallel, AB and CD being produced shall meet either
towards B, D, or towards A, C; let them be produced and meet towards
B, D in the point G; therefore GEF is a triangle, and its exterior angle
AEF is greater (16. 1.) than the interior and opposite angle EFG ; but it
is a.lsol equal tofit, wlu;t;h i; énll)- ' A
ible : therefore, AB an
poss; s A . ! i

being produced, do not meet to- B

wards B, D. In like manner it

may be demonstrated that they

do not meet towards A, C; but G
those straight lines which meet (¢ D

neither way, though produced
ever 80 far, are parallel (30. Def.)
to one another. AB therefore 1s parallel to CD.

PROP. XXVIII. THEOR.

If a straight line falling upon two other straight Knes makes the eaterior an-
gle equal to the interior and opposite upon the same side of the bine ; or
makes the interior angles upon the same side together equal to two right
angles ; the two straight lines are parallel to one another.

Let the straight line EF, which

falls upon the two straight lines AB, E
CD, make the exterior angle EGB A c

equal to GHD, the interior and oppo- \

site angle upon the same side ; or let it
make the interior angles on the same
side BGH, GHD together equal to two D
right angles ; AB is parallel to CD. C

Because the angle EGB is equal to
the angle GHD, and also (15. 1.) to the r
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angle AGH, the angle AGH is equal to the arigle GHD ; and they are th»
alternate angles ; therefore AB-is parallel (27. 1.) to CD. Again, because
the angles BGH, GHD are equal (hyp.)totworight angles,and AGH, BGH,
are also equal (13. 1.) to two right angles, the angles AGH, BGH are equal
to the angles BGH, GHD : Take away the common angle BGH ; therefore
the remaining angle AGH is equal to the remaining angle GHD ; and they
are alternate angles ; therefore AB is parallel to CD.

Cor. Hence, when two straight lines are perpendicular to a third line,
they will be parallel to each other. ,

'PROP. XXIX. THEOR.
Ifa .ftraight line fall upon two parallel straight lines, it makes the alternate

‘angles equal to one another ; and the exterior angle equal to the interior

and opposite upon the same side ; and likewise the two interior angles upon
the same side together equal to two right angles.

" . Let the straight line EF fall upon the parallel straight lines AB, CD ;
the alternate angles AGH, GHD are equal to one another ; and the exte-
rior angle EGB is equal to the interior and opposite, upon tlie same side,
GHD ; and the two interior angles BGH, Glg(l)) upon the same side are
together equal to two right angles. . ,

For if AGH be not equal to GHD, lét KG be drawn making the angle

KGH equal to GHD, and produce KG to L ; then KL will be parallel to

CD (27.1.); but AB is also paral-
lel to CD; therefore two straight

lines are drawn through the same " ' ‘
point G, parallel 'to CD, and yot 5 (/I‘B

not coinciding with one another,

which is impossible (11. Ax.) The Ke— '\
angles AGH, GHD therefore are \
not unequal, that is, they are equal
to one another. Now, the angle
EGB is equal to AGH (15. 1.); : '
and AGH is proved to be equal *
to GHD ; therefore EGB is like-
wise equal to GHD ; add to each of these the angle BGH ; therefore the
angles EGB, BGH are equal to the angles BGH, GHD ; but EGB, BGH
are equal (13. 1.) to two right angles ; therefore also BGH, GHD are
equal to two right angles.

Cor. 1. If two lines KL and CD make, with EF, the two angles KGH,
GHC together less than two right angles, KG and CH will meet on the side
of EF on which the two angles are that are less than two right angles.

For, if not, KL and CD are either parallel, or they meet on the other
side of EF ; but they are not parallel ; for the angles: KGH, GHC would
then be equal to two right angles. Neither do they meet on the other
side of EF; for the angles LGH, GHD would then be two angles of a
triangle, and less than two right angles; but this is impossible ; for the
four angles KGH, HGL, CHG, GHD are together equal to four right
angles (13. 1.) of which the two, KGH, CHG, are by supposition less than
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two right angles; therefore the other two, HGL, GHD are greater than
tworight angles. Therefore, since KL, and CD are not parallel, and since
tI!{my do not meet’ towards-Li ‘and D, they must meet if produced towards

and C.

Cor. 2. If BGH is a right angle, GHD will be a right angle also;
therefore every line perpendicular to one of two parallels, is perpendicular
to the other.

Cor. 3. Since AGE=BGH,and DHF=CHG ; hence the four acute
angles BGH, AGE, GHC, DHT', are equal to each other. The same is
the case with the four obtuse angles EGB, AGH, GHD, CHF. It may
be also observed, that, in adding one of the acute angles to one of the ob-
tuse, the sum will always be equal to two right angles.

SCHOLIUM.

The angles just spoken of, when compared with each other, assume
different names. BGH, GHD, we have already named interior angles on
the same side; AGH, GHC, have the same name ; AGH, GHD, are called
alternate interior angles, or simply alternats; so also, are BGH, GHC :
and lastly, EGB, GHD, or EGA, GHC, are called, respectively, the op-
_ posite exterior and interior angles; and EGB, CHF, or AGE, DHF, the

alternate exterior angles. :

PROP. XXX. THEOR.

Straight lines which are parallel to the same straight line are parallel to one
' another. A

Let AB, Cb, be each of them parallel to EF; AB is also parallel to
CD

Let the straight line GHK cut AB, EF, CD ; and because GHK cuts
the parallel straight lines AB, EF, the - '
angle AGH is equal (29. 1.) to the an-
gle GHF. Again, because the straight \
line GK cuts the parallel straight lines A._ G
EF, CD, the angle GHF is equal (29.

1.) to the*angle GKD: and it was r

B

-]

shewn that the angle AGK is equal to
the angle GHF ; therefore also AGK \
is equal to GKD; and they are alter- K

nate angles; therefore ABis parallel

(27. 1.) to CD. D

'PROP. XXXI. PROB.

To draw a straight line through alga'ven point parallel to a given straight
ine.

)
Let A be the g}riven point, and BC the given straight line, it is required
to draw a straight line through the point A, parallel'to the straight line
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In BC take any point D, and join - A
AD; and at the point A, in the I y )y
straight line'AD, make/(23.1.) the .
angle DAE equal to the angle ADC ;

and produce the straightineEAtoF. B D C

Because the straight line AD, which meets the two straight lines BC,
EF, makes the alternate angles EAD, ADC equal to one another, EF is
parallel g7. 1.) to BC. Therefore the straight line EAF is drawn
through the given point A parallel to the given straight line BC.

PROP. XXXII. THEOR.

If a side of any triangle be produced, the exterior angle is equal to the two
interior and opposite angles ; and the three interior angles of every triangle
are equal to two right angles.

Let ABC be a triangle, and let one of its sides BC be produced to D ;
the exterior angle ACD is equal to the two interior and opposite angles
'CAB, ABC; and the three interior angles of the triangle, ¥iz. ABC, BCA,
CAB, are together equal to two right angles.
Through the point C draw A
CE parallel (31. 1.) to the ‘
stra.igit line AB ; and because o E
AB is parallel to CE, and AC
meets them, the alternate an-
gles BAC, ACE are equal (29.
1.) Again,because AB is pa- B . C D
rallel to CE, and BD falls upon
them, the exterior angle ECD is equal to the interior and opposite angle
ABC, but the angle ACE was shewn to be equal to the angle BAC;
therefore the whole exterior angle- ACD is equal to the two interior and
opposite angles CAB, ABC; to these angles add the angle ACB,. and
the angles ACD, ACB are equal to the three angles CBA, BAC, ACB;
but the angles ACD, ACB are equal (13. 1.) to two right angles ; there-
fore also the angles CBA, BAC, ACB are equal to two right angles.
Cor. 1. Al the interior angles of any rectilineal figure are equal to
twice as many right angles as the figure has sides, wanting four right angles.
For any rectilineal figure ABCDE can be divided into as many trian-
gles as the figure has sides, by drawing straight lines from a point F
within the figure to each of its angles. And, by the preceding proposition,
all the angles of these triangles are equal D
to twice as many right angles as there
are triangles, that is, as there are sides
of the figure ; and the seme ‘angles are : (o]
equal to the angles of the figure, together
with the angles at the point F, which E
is the common vertex of the triangles;
that is, (2 Cor. 15. 1.) together with four
rin$ ang}es. le':er;fore, t;vice as many
i es as the figure has sides, are
equal at::gall the anglegs‘u:)f the figure, to- A B
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gether with four right angles, that is, the angles of the figure are equal
to twice as many right angles as the figure has sidés, wanting four.

Cor. 2. All the exterior angles of any rectilineal figure are together
equal to four right angles. : :

Because every interior angle
ABC, with its adjacent exterior
ABD, is equal (13. 1.) to two
right angles ; therefore all the
Jaterior, together with all the
exterior angles of the figure,
are equal to twice as many
right angles as there are sides

foregoing corollary, they are
equal to all the interior angles
of the figure, together with

“four right angles ; therefore all

the exterior angles are equal to four right angles.

Cor. 3. Two angles of a triangle being given, or merely their sum, the
third will be found by subtracting that sum from two right angles.

Cor. 4. If two angles of one triangle are respectively equal to two an-
gles of another, the third angles will also be equal, and the two triangles
will be mutually equiangular.

Cor. 5. In any triangle there can be but one right angle ; for if there
were two, the third angle must be nothing. Still less can a triangle have
more than one obtuse angle.

Cor. 6. In every right-angled triangle, the sum of the two acute an-
gles is equal to one right angle. ‘ .

Cor. 7. Since every equilateral triangle (Cor. 5. 1.) is also equian-
gular, each of its angles will be equal to the third part of two right angles ;
so that if the right-angle is expressed by unity, the angle of an equilateral
triangle will be expressed by 4 of one right angle.

Cor. 8. The sum of the angles in a quadrilateral is equal to two righs
angles multiplied by 4 — 2, which amounts to four right angles ; hence, if
all the angles of a quadrilateral are equal, each of them will be a right an-
gle ; a conclusion which sanctions the Definitions 25 and 26, where the
four angles of a quadrilateral are said to be right, in the case of the rectan-
gle and the square.

Cor. 9. The sum of the angles of a pentagon is equal to two right an-
gles multiplied by 5 — 2, which amounts to six right angles ; henee, when
a pentagon is equiangular, each angle is equal to the fifth part of six right
angles, or ¢ of one right angle.

Cor. 10. The sum of the angles of a hexagon is equal to 2 X (6 —2),
or eight right angles; hence, in the equiangular hexagon, each angle is
the sixth part of eight right angles, or § of one right angle.

SCHOLIUM.

When (Cor. 1.) is applied to polygons, which have re-entrant angles,
as ABC each re-entrant angle must be regarded as greater than two right

angles.

-
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And, by joining BD, BE, BF, the ¢
figure is divided into four triangles,
which contain’ ‘¢ight' right-'angles ;
that is, as many times two right an-
gles as there are units in the number
of sides diminished by two.

But to avoid all ambiguity, we shall
henceforth limit our reasoning to
polygons with salient angles, which
might otherwise be named convex:
polygons. Every convex polygon is
such that a straight line, drawn at
pleasure, cannot meet the contour of
the polygon in more than two points.

PROP. XXXIII. THEOR.

The straight lines which join the extremities of two equal and parallel straight
lines, towards the same parts, are also themselves equal and parallel.

Let AB, CD, be equal and parallel straight lines, and joined towards
the same parts by the straight lines AC, BD; AC, BD are also equal and
1

el.

Join BC; and because AB is parallel A B
to CD, and BC meets them, the alternate ;
angles ABC, BCD are equal (29. 1.); and
because AB is equal to CD, and BC com-
mon to the two triangles ABC, DCB, the .
two sides AB, BC are equal tothe two
DC, CB; and the angle ABC is equal to C D
the angle BCD ; therefore the base AC is equal (4. 1.) to the base BD,
and the triangle ABC to the triangle BCD, and the other angles to the
other angles (4. 1.) each to each, to which the equal sides are opposite ;
therefore the angle ACB is equal to the angle CBD ; and because the
straight line BC meets the two straight lines AC, BD, and makes the al-
ternate angles ACB, CBD equal to one another, AC is parallel (27. 1.) to
BD; and it was shewn to be equal to it.

Cor. 1. Hence, if two opposite sides of a quadrilateral are equal and
parallel, the remaining sides will also be equal and parallel, and the figure
will be a parallelogram.

Cor. 2. And every quadrilateral, whose opposite sides are equal, is a
parallelogram, or has its opposite sides parallel.

For, having drawn the diagonal BC; then, the triangles ABC, CBD,
being mutually equilateral (hyp.), they are also mutually equiangular
(Th. 8.), or have their corresponding angles equal ; consequently, the op-
posite sides are parallel ; namely, the side AB parallel to CD,and BD pa-
rallel to AC ; and, therefore, the figure is a parallelogram. :

Cor. 3. Hence, also, if the opposite angles of a quadrilateral be equal,

" the opposite sides will likewise be equal and parallel.

For all the angles of the figure being equal to four right angles (Cor. 8.
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Th. 32.), and the opposite angles being mutually equal, each pair of adja-
cent angles must be equal to two right angles ; therefore, the opposite sides
must be equal ‘and parallel.

- PROP. XXXIV. THEOR.

The oppostte sides and angles of a parallelogram are equal to one another, and
the diagonal bisects it ; that is, divides it into two equal parts.

N e e almete 1 o siaight Lo oiosog wo of s apposite amglon: T o1+ 4

"Let ACDB be a parallelogram, of which BC is a diameter ; the oppo-
site sides and angles of the figure are equal to one another ; and the diam-
eter BC bisectsiit.

Because ‘AB is parallel to CD,and BC A B
meets them, the alternate angles ABC,

. BCD are equal (29. 1.) to one another ; and
because AC is parallel to BD, and BC meets
them, the alternate angles ACB, CBD are .
equal (29. 1.) to one another; wherefore
the two triangles ABC, CBD have twoan- C D
gles ABC, BCA in one, equal to two angles
BCD, CBD in the other, each to each, and the side BC, which is adja-
cent ‘0 these equal angles, common to the two triangles ; therefore their
- other sides are equal, each to each, and the third angle of the one to the

third angle of the other (26. 1.); viz. the side AB to the side CD, and
AC to BD, and the angle BAC equal te the angle BDC. And because
the angle ABC is equal to the angle BCD, and the angle CBD to the
angle ACB, the whole angle ABD is equal to the whole angle ACD:
And the angle BAC has been shewn to be equal to the angle BDC : there-
fore the opposite sides and angles of a parallelogram are equal to one an-
other ; also, its diameter bisects it; for AB being equal to CD, and BC
common, the two AB, BC are equal to the two DC, CB, each to each ;
now the angle ABC is equal to the angle BCD; therefore the triangle
ABC is equal (4. 1.) to the triangle BCD, and the diameter BC divides
the parallelogram ACDB into two equal parts.

Cor. 1. Two parallel lines, inclnded between two other parallels, are

ual.
equn. 2. Hence, two parallels are every where equally distant.

Cor. 3. Hence, also, the sum of any two adjacent angles of a paral-
lelogram is equal to two right angles. ‘

PROP. XXXV. THEOR.

Parallelograms upon.the same base and between the same parallels, are equal
to one another.

i (seE THE 2d AND 3d FIGURES.) :
Let the parallelograms ABCD, EBCF be upon the same base BC, and
between the same parallels AF, BC ; the parallelogram ABCD is equal to
the parallelogram EBCF. 5
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If the sides AD, DF of the parallelo-- A - D
grams ABCD, DBCF opposite to the base
BC be terminated in‘the 'same point D ;
it is plain that each of the parallelograms
is double (34. 1.) of the triangle BDC;
and they are therefore equal to one an- B ¢
other. ’ . -

But, if the sides AD, EF, opposite to the base BC of the patallelograms
ABCD,EBCF, be not terminated in thesame point ; then, because ABCD
is a parallelogram, AD is equal (34. 1.)to BC; for the same reason EF

- is equal to BC ; wherefore AD is equal (1. Ax.) to EF; and DE is com-
mon ; therefore the whole, or the remainder, AE is equal (2. or 3, Ax.) to
the whole, or the remainder DF ; now'AB is also equal to DC; thereiore
the two EA, AB are equal to the two FD, DC, each to each; but the ex-

D E FA ED
Cc

B
terior angle FDC is equal (29. 1.) to the interior EAB, wherefore the base
EB is equal to the base FC, and the triangle EAB (4. 1.) to the triangle
FDC. Take the triangle FDC from the trapezium ABCF, and from the
same trapezium take the triangle EAB; the remainders will then be equal
(3. Ax.)that is, the parallelogram ABCDis equalto the parallelogram EBCF.

PROP. XXXVI. THEOR.

Parallelograms upon cqual bases, and between the same parallels, are equal to
one another.

Let ABCD, EFGH be parallelograms upon equal bases BC, FG, and
between the same parallele AH, —
BG ; the parallelogram ABCD A D E H
is equal to EFGH..

Join BE, CH ; and because
BC is equal to FG, and FG to
(34.1.) EH, BCis equalto EH ;
and they are parallels, and join-
ed towards the same parts by the
straight lines BE, %H : yBut B C F G
straight lines which join equal and parallel straight linestowards the same
parts, are themselves equal and parallel (33. 1.) ; therefore EB, CH are
both equal and parallel, and EBCH is a parallelogram ; and it is equal
(35. 1.) to ABCD, because it is upon the same base BC, and between the
same parallels BC, AH : For the like reason, the parallelogram EFGH
is equal to the same EBCH : Therefore also the parallelogram ABCD is
equal to EFGH. -




-

OF GEOMETRY. BOOK L %

'PROP. XXXVII. THEOR.

Triangles upon the same base, and betiveen' the same parallels, are equal to one
another. ‘

Let the triangles ABC, DBC be upon the same base BC, and between
the same parallels, AD, BC: The
triangle ABC is equal to the trian- A D _F
gle DBC. , ; A\ -

Produce AD both ways to the
points E, F, and through B draw (31.
1.) BE parallel to CA ; and through
C draw CF parallel to BD : There-
fore, each of the figures EBCA, - B C
DBCF isa parallelogram; and EBCA -
is equal (35. 1.) to DBCF, because they are upon the same base BC, and
between the same parallels BC, EF ; but the triangle ABC is the half of
the parallelogram %BCA, because the diameter AB bisects (34.1.) it;
and the triangle DBC is the half of the parallelogram DBCF, because
the diameter DC bisects it ; and the halves of equal things are equal (7.
Ax.) ; therefore the triangle ABC is equal to the triangle DBC.

PROP. XXXVIII. THHOR.

Triangles upon equal bases, and between the same parallels, are equal to one
another.

Let the triangles ABC, DEF be upon equal bases BC, EF, and between
the same parallels BF,AD : The triangle ABC is equal to the triangle DEF.
Produce AD both ways to the points G, H, and through B draw BG
parallel (31. 1.) to CA, tglg through F draw FH parallel to ED: Then
each of the figures GBCA,
DEFH is a pg;allelogram ; G A D H
and they are equal to (36. 1.) \
one another, because they a1
upon equal bases BC, EF, and
between the same parallels
BF, GH; and the triangle .
ABC is the half (34. 1.) of the v
parallelogram GBCA, because B CE F.
the diameter AB bisects it; and the triangle DEF is the half(34. 1.) of
the parallelogram DEFH, because the diameter DF bisects it: But the
halves of equal things are equal (7. Ax.); therefore the triangle ABC is
equal to the triangle DEF,

PROP. XXXIX. THEOR.
Eqgual triangles upon the same base, and upon the same side of it, are between
the same parallels. C

Let the equal triangles ABC, DBC be upon the same base BC, and upon
the same side of it ; they are between the same parallels.
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Join AD ; AD is parallel to BC; for, if it is not, through the point A
draw (31. 1.) AE parallel to BC, and join EC: A D
The triangleVABC, is) équal’(37. 1.)to the tri-
angle EBC, because it is upon the same base

- BC, and between the same parallels BC, AE :
But the triangle ABC is equal to the triangle
BDC ; therefore also the triangle BDC is equal
to the triangle EBC, the greater 1o the less,
which is impossible : Therefore AE is not par- B
allel to BC. Inthe same manner, it may be
demonstrated that no other line but AD is parallel to BC ; AD is there-
fore parallel to it. :

PROP. XL. THEOR.

Eqgyal triangles on the same side of bases whick are equal and in the same
straight line, are between the same parallels.

Let the equal triangles ABC, DEF be upon equal bases BC, EF, in
the same straight line BF, and to- ‘

wards the same parts ; they are be- A D
tween the same parallels.
Join AD; AD is parallel to BC; G

for, if it is not, through A draw gl.
1.) AG parallel to BF, and join GF.
" The triangle ABC is equal (38. 1.)
to the triangle GEF, because they
are upon equal bases BC, EF, and B C E ) 3
between the same parallels BF, .

AG : But the triangle ABC is equal to the triangle DEF ; therefore also
the triangle DEF is equal to the triangle GEF, the greater to the less,
which is impossible ; therefore AG is not parallel to BF ; and in the same
manner it may be demonstrated that there is no other parallel to it but
AD; AD is therefore parallel to BF.

PROP. XLI. THEOR.

If a parallelogram and a triangle be upon the same base, and between the
same parallel ; the parallelogram is double of the triangle.

Let the parallelogram ABCD and the tri-
angle EBC be upong the same base BC and A D H
between the same parallels BC, AE; the
parallelogram ABCD is double of the trian-
gle EBC.
Join AC; then the triangle ABC is equal
(37. 1.) to the triangle EBC, because they
are upon the same base BC, and between the
same parallels BC, AE. But the parallelo-
gram ABCD is double (34. 1.) of the triangle B C
ABC, because the diameter AC divides it
into two equal parts ; wherefore ABCD is also double of the triangle EBC.
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PROP. XLII. PROB.

To describe a parallelogram that shall be equal to a given tnaaglc and have
one of its angles equal to a given rectilineal angle.

Let ABC be the given triangle, and D the given rectilineal angle. It
is required to describe a parallelogram that shall be equal to the given tri-
angle ABC, and have one of its angles equal to D.

Bisect (10 1.) BCin E, join AE, and at the point E in the straight line
EC make (23. 1.) the angle CEF equal to D; and through A draw (31.
1.) AG parallel to BC, and through C draw CG (31. 1.) parallel to EF;
Therefore FECG is a parallelogram : A F Q
And because BE is equal to EC, the ¥
triangle ABE is likewise equal (38.
1.) to the triangle AEC, since they
are upon equal bases BE, EC, and
between the same parallels BC, AG;

therefore the triangle ABC is double
of the triangle AEC. And the paral-
lelogram FECG is likewise double

{41. 1.) of the triangle AEC, because B E C
it is upon the same base, and between
the same parallels: Therefore the parallelogram FECG is equal to the
triangle ABC, and it has one of its angles Cg!]l? equal to the given angle
D: Wherefore there has been described a parallelogram FECG equal to
a gllvell\) triangle ABC, having one of its angles CEF equal to the given
angle

%on. Hence, if the angle D be a right angle, the parallelogram EFGC
will be a rectangle, equivalent to the triangle ABC; and therefore the
same construction will apply to the problem : to make a triangle equivalent
to a given rectangle.

PROP. XLIII. THEOR. !

The complements of the parallelograms which are about the diameter q{' any
parallelogram, are equal to one another.

Let ABCD be a parallelogram of which the diameter is AC ; let EH,
FG be the parallelograms about AC, that is, through which AC passes, and
let BK, KD be the other p:trallelogmms,
which make up the whole figure ABCD, A D
and are therefore called the complements ;

The complement BK is equal to the com- M 4
plement KD. E

Because ABCD is a parallelogram and
AC its diameter, the triangle ABC is
equal (34. 1.) to the triangle ADC: And
because EKHA is a parallelogram, and
AK its diameter, the triangle AEK is
equal to the triangle AHK : For the same
reason, the triangle KGC is equal to the

&
o
Q
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triangle KFC. Then, because the triangle AEK is equal to the triangle
AHK, and the triangle KGC to the triangle KFC; the triangle AEK, to-
gether with'thé'triangle KGC,/is-equal to the triangle AHK, together with
the triangle KFC: But the whole triangle ABC is equal to the whole
ADC ; therefore the reinaining complement BK is equal to the remaining
complement KD. .

PROP. XLIV. PROB.

To a given straight line toapplya paf:allclog‘ram, whichshall be equalto a gwen
triangle, and have one 5}8 its angles equal to a given rectilineal angle.

Let AB be the given straight line, and C the given triangle, and D the
given rectilineal angle. It is required to apply to the straight line AB a
parallelogram equal to the triangle C, and having an angle equal to D.
Make (42. 1.) the parallelogram BEFG equal to the triangle C, having the

¥
o ~
& B —M
D
H A L

angle EBG equal to the angle D, and the side BE in the same strdight
line with AB : produce FG to H, and through A draw (31.1.) AH parallel
to BG or EF, and join HB. Then because the straight line HF falls upon
_ the parallels AH, EF, the angles AHF, HFE, are together equal (29. 1.)

w two right angles ; wherefore the angles BHF, HFE are less than two
right angles ; But straight lines which with another straight line make the
interior angles, upon the same side less than two right angles, do meet if pro-
duced (1 Cor.29.1.) : Therefore HB, FE will meet, if produced ; let them
meet in K, and through K draw KL parallel to EA or FH, and produce HA,
GB to the points L, M: Then HLKF is a parallelogram, of which the diam-
eter is HK,and AG, ME are the parallelograms about HK ; and LB, BF are
the complements ; therefore LB is equal (43. 1.) to BF : but BF is equal
to the triangle C; wherefore LB is equal to the triangle C ; and because
the angle GBE is equal (15. 1.) to the angle ABM, and likewise to the an-
gle D ; the angle ABM is equal to the angle D : Therefore the parallelo-
gram LB, whichis applied to the straight line AB, is equal to the triangle
C, and has the angle ABM equal to the angle D.

Cor. Hence, a triangle may be converted into an equivalent rectangle,
having a side of a given length : for, if the angle D be aright angle, and
AB the given side, the parallelogram ABML will be a rectangle equiva-
lent ta the triangle C.




OF GEOMETRY. BOOK I. 3

PROP. XLV. PROB.
To describe a parallelogram equal to a git;m rectilineal figure, and Raving
an angle equal to a given ractilineal cmgkﬁ

Let ABCD be the given rectilineal figure, and E the given rectilineal
angle. It is required to describe a parallelogram equal to ABCD, and hav-
ing an angle equal to E.

Join DB, and describe (42. 1.) the parallelogram FH equal to the tri-
angle ADB, and having the angle HKF equal to the angle E ; and to the
straight line GH (44. 1.) apply the parallelogram GM equal to the triangle
DBC, having the angle GHM equal to the angle E. And because the an-

gle E is equal to each of the angles FKH, GHM, the angle FKH is equal

to GHM ; add to each of these the angle KHG ; therefore the angles:

FKH, KHG are equal to the angles KHG, GHM; but FKH, KHG are

equal (29. 1.) to two right angles ; therefore also KHG, GHM are equal
to two right angles: and because at the-noint H in the straight lines GH,

the two straight lines KH, HM, upon the o l!)losite sides of GH, make the
adjacent ahgles equal to two right angles, l? is in the same straight line
(14. 1.) with HM. And because the straight line HG meets the parallels
KM, FG, the alternate angles MHG, HGF are equal (29. 1.); add to each
of these the angle HGL : therefore the angles MHG, HGL, are equalto
the angles HGF, HGL : But the angles MHG, HGL, are equal (29. 1.) to
two right angles ; wherefore also the angles HGF, HGL, are equal to two
right angles, and FG is therefore in the same straight line with GL. And
because KF is parallel to HG, and -HG to ML, KF is parallel (30. 1.) to
ML ; but KM, FL are parallels: wherefore KFLM is a parallelogram.
And because the triangle ABD is equal to the parallelogram HF, and the
triangle DBC to the parallelogram GM, the whole rectilineal figure ABCD
is equal to the whole parallelogram KFLM ; therefore the parsllelogram
KFLM has been described equal to the given rectilineal figure ABCD, hav-
ing the angle FKM equal to the given angle E.

Cor. From this it is manifest how to & given straight line to apply a
parallelogram, which shall have an angle equal to a given rectilineal angle,
and shall be equal to a given rectilineal figure, viz. by applying (44. 1.)
to the given straight line a parallelogram equal to the first triangle ABD,
and having an angle equal to the given angle.
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‘PROP. XLVI. PROB.
Tlo \describe a squafe upon a given straight line.

Let AB be the given straight line : it is required to describe a square
n AB. . .

np(l"‘rom the point A draw (11.1.) AC at right angles to AB ; and make
(3. 1,)AD equal to- AB, and through the point D draw DE parallel (31.1.)
to AB, and through B draw BE parallel to AD ; therefore ADEB is a par-
allelogram ; whence AB is equal }34. 1.) to DE, and AD to BE ; but BA
is equal to AD: therefore the four straight ¢ :
lines BA, AD, DE, EB are equal to one an-
other, and the parallelogram ADEB is equi-
lateral ; it is likewise rectangular; for the
straight line AD meeting the parallels, AB,DE, ID|— , B
makes the angles BAD, ADE equal (29. 1.) to -
two right angles ; but BAD is a right angle ;
therefore also ADE is a right angle now the
opposite angles of parallelograms are equal (34.
1.) ; therefore each of the oppositeangles ABE,
BED is a right angle; wherefore the figure
ADESB is rectangular, and it has been demon-
strated thatit is equilateral ; itis therefore a A B
square, and it is described upon the given straight line AB,

Cor. Hence every parallelogram that has one right angle has all its an-
gles right angles. . , K

PROP. XLVII. THEOR.

In any.‘right angled triangle, the square which is described upon the side
subtending the right angle, is equal to the squares described upon the sides
which contain the right angle.

Let ABC be a right angled triangle having the right angle BAC; the
square described upon the side BC is equal to the squares described upon
BA, AC. ‘

On BC describe (46. 1.) the square BDEC, and on BA, AC the squares
GB, HC; and through A draw (31. 1,) AL parallel to BD or CE, and join
AD, FC; then, because each of the angles BAC, BAG is a right angle
(25. def.), the two straight lines AC, AG upon the opposite sides of AB,
make with it at the point A the adjacent angles equal to two right an-
gles; therefore CA is in the same straight line (14. 1.) with AG; for
the same reason, AB and AH are in the same straight line. Now be-
cause the angle DBC is equal to the angle FBA, each of them being a
right angle, adding to each the angle ABC, the whole angle DBA will be
equal (2. Ax.) to the whole FBC ; and because the two sides AB, BD,
are equal to the two FB, BC each to each, and the angle DBA equal to
the angle FBC, therefore the base AD is eqnal (4. 1.) to the base FC,
and the triangle ABD to the triangle FBC. But the parallelogram BL
is double (41. 1.) of the triangle ABD, because they are upon the same
base, BD, and between the same parallels, BD, AL ; and the square GB
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is double of the triangle BFC be-

cause these also are upon the same ’ G

base FB, and bétween the) same par-

allels FB, GC. Now the doubles )3
of equals are equal (6. Ax.) to one an- '
other; therefore the parallelogram

BL is equal to the square GB: And

in the same manner, by joining AE, -

BK, it is demonstrated that the par-
allelogram,CL is equal to the square .

HC. ngaherefore,e(tlhe whole - square - BY /! (O
BDEC is equal t» the two squares
GB, HC; and the square BDEC is
described upon the straight line BC,"
and the squares GB, HC upon BA,
AC :Bwherefore the square upon the B ‘
side BC is equal to the squares upon .

the sides BA, AC. PO D ' L '

Cor. 1. Hence, the square of one of the sides of a right angled triangle
is equivalent to the square of the hypotenuse diminisheéd by the square of
the other side ; which is thus expressed :° AB3=BC*—AC?2.

Cor. 2. . If AB=AC; that is, if the triangle ABC be right angled and
isosceles ; BC?=2AB2=2AC?; therefore, BC=AB,/ 2.

Cor. 3. Hence, also, if two right angled triangles have two sides of
the one, equal to two corresponding sides of the other; their third sides
will also be equal, and the triangles will be identical.

PROP. XLVIII. THEOR.

If the square described upon one of the sides of a triangle, be equal to the
squares described upon the other two sides of it; the angle contained by
these two sides is a right angle. :

If the square described upon BC, one of the sides of the triangle ABC,
be equal to the squares upon the other sides BA, AC, the angle BAC is
a right angle. ‘

From the point A draw (11. 1.) AD at right angles to AC, and make
AD equal to BA, and join DC. Then because DA is equal to AB, the
square of DA is equal to the square of AB; To
each of these add the square of AC ; therefore the Dy
squares of DA, AC are equal to the squares of BA,

AC. But the square of DC is equal (47. 1.) to

the squares of DA, AC, because DAC is a right

angle; and the square of BC, by hypothesis, is

equal to the squares of BA, AC; therefore, the

square of DC is equal to the square of BC; and

therefore also the side DC is equal to the side BC. B C
And because the side DA is equal to AB, and AC :

common to the two triangles DAC, BAC, and the base DC likewise equal
to the base BC, the angle DAC is equal (8. 1.) to the angle BAC ; But
DAC is aright angle; tierefore als% BAC is a right angle.
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A.DISITIONAL PROPOSITIONS.

PROP. A. THEOR.

A icular is the shortest line that can be drawn from a point, situated
without a straight line, to that line : any two oblique lines drawn from the
same point on different sides of the perpendicular, cutting off equal distances
on the other line, will be equal ; and any two other oblique lines, cutting off
unequal distances, the one which lics farther from the perpendicular will
be the longer. ‘ - .

If AB, AC, AD, &e. be lines drawn from the given point A, to the in-
definite straight line DE, of which AB is perpendicular; then shall the
perpendicular AB be less than AC, and AC less than AD, and so on.

For, the angle ABC being a right one,
the angle ACB is acute, (17. 1.) or less A
than the angle ABC. But the less angle
of a triangle is subtended by the less side

19. 1.) therefore, the side AB is less than

e side AC. .

Agsin, if BC=BE; then the two ob-

ue lines AC, AE, are equal. For the
side AB is eommon to the two triangles .
ABC, ABE, and the contained angles ABC I C B B
and ABE equal; the. two triangles must :
be equal (4. 1.); hence AE, AC are equal.

Finally, the angle ACB being acute, as before, the adjacent angle ACD
will be obtuse ; since (13. 1.) these two angles are together equal to two
right angles; and the angle ADC is acute, because the angle ABD is
right; consequently, the angle ACD is greater than the angle ADC; and,
since the greater side is opposite to the greater angle (19. 1.); therefore
the side AD is greater than the side AC.

Cor. 1. The perpendicular measures the true distance of a point from
a line, because it is shorter than any other distance.

Cor. 2. Hence, also, every point in a perpendicular at tho middle point
of a given straight line, is equally distant from the extremitics of that line.

Cor. 3. From the same point, three equal straight lines cannot be
drawn to the same straight line; for if there could, we should have two
equal oblique lines on the same side of the perpendicular, which is impos-
sible.

PROP. B. THEOR.

When the hypotenuse and one side of a right angled triangle, are respective-
ly equal to the hypotenuse and one side of another; the two right angled
triangles are equal.

Suppose the hypotenuse AC=DF, and the sidle AB=DE ; the right
angled triangle ABC will be equal to the right angled triangle DEF.
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Their equality would be manifest, if the third sides BC and EF were
equal. If possible; suppose|that those sides are not equal, and that BC is the
greater. Take BH=KEF (3.1.); and join AH. The triangle ABH=DEF;
for the right angles B and E are
equal, the sidle AB=DE, and BH
=EF; hence, these triangles are A D

"equal (4. 1.), and consequently
AH=DF. Now bj/ hyp.), we
have DF=AC; an tlgrefore,
AH=AC. But by the last prop-
osition, the oblique line AC can-

" not be equal te the oblique line

AH, which lies nearer to the per-

pendicular AB; therefore it is -

impossible that BC can differ B H C j

from EF ; hence, then, the trian«

gles ABC and DEF are equal.

&4

PROP. C. THEOR.
Two angles are equal if their sides be parallel, each to each, and lying in the
same direction.

If the straight lines AB, AC be parallel
to DF, DE; the angle BAC is equal to
EDF.
For, draw GAD through the vertices,
And since AB is parallel to DF, the ex-
terior angle GAB is (29. 1.) equal to GDF;
and, for the same reason, GAC is equal to
GDE ; there consequently remains the an- D
gle BAC=EDF.

Cor. If BA, AC be produced to I and H, the angle BAC==HAI;
hence, the angle HAI is also equal to EDF, ’

SCHOLIUM.

L]

The restriction of this proposition to the case where the side AB lies
in the same direction with DF, and AC in the same direction with DE,
is necessary ; because the angle CAI would have its sides parallel to those
of the angle EDF, but would not be equal to it.. In that case, CAI and
EDF would be together equal to two right angles.
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PROP. D. PROB.
Two angles of a triangle being given, to find the third.

Draw any straight line CD ; at a < A
point therein, as B, make the angle -

CBA equal to one of the given an-

gles, and the angle ABE equal to

- the other: the remaining angle EBD

will be the third angle ‘required ; be- .
cause those three angles (Cor. 13. 1.)
are together equal to two right angles.

_ ¢ B D
PROP. E. PROB.
Two angles of a triangle and a side being g-ioén, $o0 construct the triangle. -

The two angles will either be both adjacent to the given side, or the
one adjacent and the other opposite : in the latter case, find the third angle
(Prop. D.); and the two adjacent angles will thus be known.

Draw the straight line BC equal to the A
given side ; at the point B, make an angle
CBA equal to one of the adjacent angles,
and at C, an angle BCA equal to the other;
the two lines BA, CA, will intersect each
other, and form with BC the triangle re-
quired ; for if they were parallel, the an-
gles B, C, would be together equal totwo 1B
right angles, apd therefore could not be-
long to a triangle : hence, BAC will be the triangle required.

PROP. F. PROB.
Two sides and an angle opposite to one of them being given, to construct the

triangle.
This Problem admits of two cases.
First. When the given angle A

is obtuse, make the angle BC'A

equal to the given angle ; and take

C’A equal to that side which is

adjacent to the given angle, the

arc described from A as & centre,

with a radius equal to AB, the

other given side, would cut BC on

opposite sides of C’; so that onl T~
one obtuse angled triangle could bz B C c
formed ; that is, the triangle BC'A will be the triangle required:
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And, if the given angle were right, although two triangles would be
-formed, yet, as'the hypotenuse-would meet BC at equal distances from the
common perpendicular, these triangles would be equal.

Secondly. If the given angle be acute, and the side oplfosite to it greater
than the adjacent side, the same mode of construction wi apply : for, mak-
ing BCA equal to the given angle, and AC equalto the adjacent side ;
then, from A as centre, with a radius equal to the other given side, describe
a:d arc, cutting CB in B; draw AB, and CAB will be the triangle requi-
red.

But if the given angle is acute, and the side o;:gos_ite to it less than the
other given side ; e the angle CBA equal to the given angle, and take
BA equal to the adjacent side ; then, the arc described from the centre A,
with the radius AC equal to the opposite side, will cut the straight line
BC in two points C’ and C, lying on the same side of B; hence, there will
be two triangles BAC’, BAC, either of which will satisfy the conditions
of the problem. ,

SCHOLIUM.

In the last case, if the opposite side was equal to the perpendicular from

the point A on the line BC, a right angled triangle would be formed. And
the problem would be impossible in all cases, if the opposite side was less
than the perpendicular let fall from the point A on the straight line BC.

—
PROP. G. PROB.

To find a triangle that shall be equivalent to any given rectilineal figure.

Let ABCDE be the given rectilineal figure.

Draw the diagonal C%, cutting off the triangle CDE ; draw DF paral-
lel to CE, meeting AE produced, and join CF: the polygon ABCDE
will be equivalent to the polygon
ABCF, which has one side less (0.8
than the original polygon.

For the triangles CDE, CFE,
have the base CE common, and
they are between the same paral-
lels ; since their vertices D, F,are B
situated in a line DF parallel to the
base : these triangles are therefore
equivalent (37. 1.) Draw, now,
the diagonal CA and BG parallel
to it, meeting EA produced : join
CG, and the polygon ABCF will be
reduced to an equivalent triangle; G A ¥
and thus the pentagon ABCDE
will be reduced to an equivalent triangle GCF.

D
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The same process may be applied to every other polygon; for, by suc-
cessively diminishing the aunber of its sides, one being retrenched at each
step of the process, the equivalent triangle will at length be found.

. Cor. Since a triangle may be converted into an equivalent rectangle,
it follows tkat any polygon may be reduced to an equivalent rectangle.

PROP. H. PROB.
To find the side of a square that shall be equivalent to the sum of two squares.

Draw the two indefinite lines AB, AC, per- C
pendicular to each other. Take AB equal to
the side of one of the given squares, and AC
equal to the other; join BC: this will be the
side of the square required. :

For the triangle BAC being right angled,
the square constructed upon BC (47.1.) is
equal to the sum of the squares described upon I A B
AB and AC.

SCHOLIUM.

A square may be thus formed that shall be equivalent to the sum of any
number of squares ; for a similar construction which reduces two of them
to one, will reduce three of them to two, and these two to one, and so of
others.

PROP. 1. PROB.

To find the side of a square equivalent to the difference of two given squares.

Draw, as in the last problem, (see the fig.) the lines AC, AD, at right angles
to each other, making AC equal to the side of the less square ; then, from
C as centre, with a radius equal to the side of the other square, describe
an arc cutting AD in D : the square described upon AD will be equivalent
to the difference of the squares constructed upon AC and CD.

For the triangle DAC is right angled ; therefore, the square described
upon DC is equivalent to the squares constructed upon AD and AC: hence
(Cor. 1. 47. 1.), AD*=CD?—AC2

PROP. K. PROB.

A rectangle being given, to construct an equivalent one, having a side of a
given length.

Let AEFHbe the given rectangle,and produce one of its sides, as AH, till




OF GEOMETRY. BOOK L 47

HB be the given length, and draw BFD A i A
meeting the prolongation of AE in D ; T
- then produce EF till FG isequalto HB:
draw BGC, HFK, parallel to AED, and
through the point D draw DKC parallel
to AB or EG; then, the rectangle

GFKC, having the side FG of a given H|— F K

length, is equal to the given rectangle :

AEFH (43.1) _
B G <

Cor. A polygon may be converted into an equivalent rectangle, having one
of its sides of a given length.
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or

GEOMETRY.

BOOK II.

DEFINITIONS.

1. Every right angled parallelogram, or rectangle, is said to be contained
by any two of the straight lines which are about one of the right an-

gles.
“ Thus the right angled parallelogram AC is called the rectangle contain-

“ed by AD and DC, or by AD and AB, &c. For the sake of brevity,

“ instead of the rectangle contained by AD and DC, we shall simply say

¢ the rectangle AD . DC, placing a point between the two sides of the

“ rectangle.” A

A. In Geometry, the product of two lines means the same thing as their

rectangle, and this expression has passed into Arithmetic and Algebra,

where it serves to designate the product of two unequal numbers or

quantities, the expression square being employed to designate the pro-

duct of a quantity multiplied by itself.

The arithmetical squares of
1,2,3,&c.are 1, 4,9, &c.
So likewise the square de-
scribed on the double of
a line is evidently four
times the square described
on a single one ; on atriple
line nine times that on a
single one, &c.

2. In every parallelogram, any of the A ]
parallelograms about a diameter, to- m
gether with the two complements, is
called a Gnomon. ¢ Thus the paral-
“lelogram HG, together with the
“ complements AF, FC, is the gno-

“ mon of the parallelogram AC. This : |
¢ gnomon may also, for the sake of
¢ brevity, be called the gnomon AGK
+or EHC.” ] G

b
i~}
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PROP. 1. THEOR.
If there be two straight lines, one of which is divided into any mumber

ts ; the rectangle contained by the two straight lines is egqual te
Ir’::tanle:mtaimdbythou 'idcdliu,a:yth several ports of the
divided line. :

Let A and BC be two straight lines ; and let BC be divided into any.-
parts in the points D, E ; the rectangle A.BC is equal to the several rect
angles A.BD, A.DE, A.EC.

l%“rom the polint B gxéw (dPr;;;k 1 LBIG)r

BF at right es to BC, an e . i
equal (rgrgrtpu;g 1.) to A; and through B DEC
G. draw (Prop.31. 1.) GH el to
BC; and through D, E, C, draw DK,
EL, CH parallel to BG; then BH, BK,
DL, and E‘?{i are reetangles, and BH=

BK4+DL+EH. . ‘ G

But BH = BG.BC= A.BC, because
BG=AX: Also BK = B6.BD==A.BD,
because BG=A ; and DL=DK.DE= J A
A.DE, because (34.1) DK=BG=A.

In like manner, EH=A.EC. ' Therefore A. BC=A.BD4-A.DE+4A.EC;
that is, the rectangle A.BC is equal to the several rectangles A.BD, A.DE,

A.EC.
SCHOLIUM. .
The properties of the sections of lines, demonstrated in this Book, are
easily dperived from Algebra. In this proposition, for instance, let the seg--
ments of BC be denoted by b, ¢, and d; then, A(b4c+4d)=Ab+Ac4Ad.

PROP. II. THEOR.

If astraight line be divided into any two parts, the rectangles contained bl;v‘:h ‘
whole and each of the parts, are together equal to the square of the whole line.

Let the straight line AB be divided into any A Cc
two parts in the point C; the rectangle AB.BC,
together with the rectangle AB.AC, is equal to
the square of AB ; or AB.AC4-AB.BC=AB2

On AB describe S:Prop. 46. 1.) the square
ADEB, and through C draw CF é'Prop. 31. 1)

el to AD or BE; then AF4CE=AE.

ut AF=AD.AC=AB.AC, because AD=AB; |

CE=BE.BC=AB.BC; and AE=AB?. There- [

fore ABAC+AB.BC=AB?. D
SCHOLIUM.

This property 18 evident from Algebra: let AB be denoted by a, and the
segments AC, CB, by b_and d, respectively; then, a==b+-d; therofore,
multiplying both members of this equality by 4, we shalthave a*=ab+-ad -

: 7

’
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PROP. III. THEOR.

If a straight line be divided into any two parts, the rectangle contained by the
whole and one of the parts, is equal to the rectangle contained by the two
parts, together with the square of the aforesaid part.

Let the straight line AB be divided into two parts, in the point C; the
rectangle AB.BC is equal to the rect- .
angle AC.BC, together with BC?. A B

Upon BC describe (Prop. 46. 1.) the
square CDEB, and produce, ED to F,
and through A draw (Prop. 31. 1.) AF
parallel to CD or BE ; then AE=AD
+CE. .

But AE = AB.BE == AB.BC, be-
cause BE=BC. So also AD=AC.
CD=AC.CB; and CE=BC?; there- 1 D E
fore ABBC=AC.CB+4BC3 :

SCHOLIUM.
In this proposition let AB be denoted by a, and the segments AC and
CB, by b and ¢; then a=>b+-¢: therefore, multiplying both members of
this equality by ¢, we shall have ac=bc+tc% (

-

PROP. IV. THEOR.

If a straight line be divided into any two parts, the square of the whole line is
equal to the squares of the two parts, together with twice the rectangle con-
tained by the parts.

Let the straight line AB be divided into any two parts in C; the square
of AB is equal to the squares of AC, CB, and to twice the rectangle con- -
tained by AC, CB, thatis, AB2=AC24-CB24-2AC.CB.

Upon AB describe (Prop. 46. 1.) the square ADEB, and join BD, and
through C draw (Prop. 31. 1.) CGF parallel to AD or BE, and through G
draw HK parallel to ABor DE. And because CF'is parallel to AD, and
BD falls upon them, the exterior angle BGC

is equal (29. 1.) to the interior and opposite C B
angle ADB ; but ADB is equal (5. 1.) to the
angle ABD, because BA is equal to AD, be- . X -

ing sides of a square ; wherefore the angle  H
CGB is equal to the angle GBC ; and there-
fore the side BC is equal (6. 1.) to the side
CG ; but CB is equal (34. 1.) also to GK and
CG to BK; wherefore the figure CGKB is
equilateral. It is likewise rectangular; for 3
the angle CBK being a right angle, the other D . F
angles of the parallelogram CGKB are also right angles (Cor. 46. 1.)
Wherefore CGKB is a square, and it is upon the sidle CB. For the same
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reason HF also is a square, and it is upon the side HG, which is equal to
AC: therefore HF, CK are the squares of AC, CB. And because the
complement 'AG 'is' equal '(43.1.) to the complement GE ; and because
AG=AC.CG=AC.CB, therefore alsec GE=AC.CB, and AG4GE=
2AC.CB. Now, HF-—AC2 and CK=CB?; thereforo, HF4CK+4AG
+GE=AC?4-CB24-2AC.CB.

But HF4-CK+4AG+GE=the ﬁgure AE, or AB3; therefore AB’=
AC?4CB24-2AC.CB.

Cor. From the demonstration, it is manifest that the puallelogmml
about the diameter of a square are likewise squares,

SCHOLIUM.

This f;ropeng is derived from the square of a binomial. For, let the two
parts into which this line is divided be denoted by a and §; then, (a+0)2
=a?+4-2ab4-b2.

PROP. V. THEOR.

If a straight line be divided into two equal , and also into two unequal parts ;
the rectangle contained by the unequa parts, together with the ¢ of the
line between the points of section, is equal to the square of Aalf the line.

Let the straight line AB be divided into two equal parts in the point C,
and into two unequal parts in the point D ; the rectangle AD. DB, together
with the square of CD, is equal to the square of CB, or AD. DB+CD’—
CB2.

*  Upon CB describe (Prop. 46. 1.) the square CEFB, join BE, and through
D draw (Prop. 31.1.) DHG parallel to CE or BF; and through H draw
KLM parallel to CB or EF ; and
also through A draw AK parallel to C D =B
CL or BM : And because CH=HF,
if DM be added to both, CM=DF. K
But AL=(36. 1.) CM, therefore AL . L -
=DF, and adding CH to both, AH ' o
=gnomon CMG. But AH = AD., v/,
DH=AD.DB, because DH = DB 2
(Cor. 4.2.); therefore gnomon CMG G F
=AD.DB. To each add LG=CD?, then, gnomon CMG+LG=AD.DB
+CD3. But CMG+4LG=BC?; therefore AD. DB4-CD?=BC2

“ Cor. From this proposition it is manifest, that.the difference of the
“gquares of two unequal lines, AC, CD, is equal to theYectangle contain-
“ ed by their sum and difference, or that AC*—CD?=(AC+-CD) (AC—

-« CD).”

SCHOLIUM.

In this proposition, let AC be denoted by @, and CD by & ; then, AD=
a+b, and DB=0a—>; therefore, by Algebra, (a+2)X (o—b)—a‘——b’
that is, the product of the sum and di ifference of two quantities, is equmalmt
to the difference of their squares
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PROP. VI THEOR.

' ‘ - .
astraight lins be bisected, and cedto any point ; the rectangle contained
by the whols line thus produced, and the part of it produced, together with the

- aquare of half the line bisected, is equal to the square of the straight line which
s made up of the half and the part produced. ‘ :

Let the straight line AB be bisected in C, and produced to the point D ;
the rectangle AD.DB together with the square of CB,is equal to the
‘square of CD, ' o

Upon CD describe (Prop. 46.1.) the square CEFD, join DE, und
through B draw (Prop. 31. 1.) BHG parallel to CE or DF, and through H
draw KLM parallel to AD or EF,and also through A draw AK parallel
to CL or DM. And because AC is ‘ ‘
equal to CB, the rectangle AL is A - B D
equal (36.1.) to CH; but CH is L :

i 4

equal (43.1.)to HF ; therefore also
.ALis equal to HF : To each afthese
add CM ; therefore the whole AM is
oqual to the gnomon CMG. Now
AM=AD.DM == AD.DB, beceuse
DM=DB. Therefore gnomon CMG
m=AD.DB, and CMG+4+LG=AD.
DB4CB® But CMG4+LG=CF
=CD?, therefore AD.DB+4CB?==CD?.
SCHOLIUM. ' ‘ :
This progeﬂy is evinced algebraically ; thus, let AB be denoted by 2a,
and BD by & ; then, AD=2a+b, and CD=4a+%. Now by multiplication,
b(2a+b)=2ad+4-b?; therefore, ‘
by adding 4 to each member of the equality, we shall have,
b(2a+4b)+a?=a>4-2ad+8%; o
» Y(2a+b)+ a*=(a+-8).

PROP. VII. THEOR.

If & straight line be divided into two parts, the squares of the wholeline, and
one of the parts, are equal to twice the rectangle contained by the whole and
part, together with the square of the other part.

Let the straight line AB be divided into any b
two parts in thghpoint C; the squares of AB, A ¢ B
BC, are equal to twice the rectangle AB.BC, :
together with the square of AC, or AB*4BC? G
=2AB.BC+AC. : H

Upon AB describe (Prop. 46. 1.) the square
ADEB, and construct the figure as in the pre-
ceding propositions : Because AG=GE, AG
+C.Kg= GE+4-CK, that is, AK =CE, and .
therefore AK+4-CE=2AK. But AK+CE 7 E
=gnomon AKF+4CK; and therefore AKF
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+CK=2AK =2AB.BK = 2AB.BC, because BK = (Cor. 4. 2.) BC.
Since then, AKF4CK=2AB.BC, AKF4CK4HF=2AB.BC4HF;
and because 'AKF4 HF=AE=AB% AB:4CK=2AB.BC+HF, that
is, (since CK=CB3, and HF =AC3,) AB34CB?=2AB.BC+AC3,

“Cor. Hence, the sum of the squares of any two lines is equal to
“twice the rectangle contained by the lines together with the square of
“the difference of the lines.”-

~ SCHOLIUM.
“ In this proposition, let AB be denoted by 4, and the segments AC and

CBbybdandc;
o then a?=0342bc4-c*;
adding ¢2 t0 each member of this equality, we shall have, ’
. B A=B4-2ec-263; .
& @34 E=b24-2¢(d+¢), )
or a*}-c3=2ac+H2. '

Cor. From this proposition it is evident, that tke square described on
" the difference of two lines is equivalent to the sum of the squares described on
the lines respectively, minus twice the rectangle contained by the lines. For
a—c="5; therefore, by invelution, g>—2ac+4-¢*=82. This may be also
derived from the above algebruical equality, by transposition.

.

, *  PROP. VIII. THEOR.

If a straight line be divided into any two parts, four times the rectangle con-
tained by the whole line, and one of the parts, together with the square of
the otber part, is equal to the square of the straight line which is made up
of the whole and tK® first-mentioned part. -

Let the straight line AB be divided into any two parts in the peint C;
four times the rectangle AB.BC, together with the square of AC, is equal
to the square of the straight line made up of AB-and BC together.

Produce AB to D, so that BD be equal to CB, and upon AD describe
the square AEFD; and construct two figures such as in the proced.in%
Because GK is equal (34. 1.) to CB, and CB to BD, and BD t0 KN, G
is equal to KN. For the same reason, PR’ A c -
is equal to RO ; and because CB is equal B D
to BD, and GK to KN, the rectangles CK
and BN are equal, as also the rectangles 1 G K N~

P

" GR and RN: But CK is equal (43.1.)

to RN, because they are the complements b. 4
of the parallelogram CO : therefors also

BN is equal to GR; and the four rect-
angles BN, CK, GR, RN are there-

fore equal to one another, and so CK+4 -
BN 4 GR +4 RN = 4CK. Again, be- >
causo CBis equal to BD, and BD oqual K

R O"'
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(Cor. 4. 2.) to BK, that is, to CG; and CB equal to GK, that is, to GP;
therefore CG, is equal to GP; and because CG is equal to GP, and PR to
RO, the rectangle AG is equal to MP, and PL to RF : but MP is equal
(43. 1.) to PL, because they are the complements of the parallelogram
ML ; wherefore AG is equal also to RF. Therefore the‘four rectangles
AG, MP, PL, RF,are equal to one another, and so AG+MP+-PL+RF
=4AG. And it was demonstrated, that CK4+BN+GR+RN=4CK ;
wherefore, adding equals to equals, the whole gnompn AOH=4AK.
Now AK=AB.BK=AB.BC, and 4AK=4AB.BC; therefore, gnomon
AOH=4AB.BC; and adding XH, or (Cor. 4. 2.) ALY, to_both, gnomon
AOH+4XH==4AB.BC+AC? But AOH+XH=AF = AD?; therefo8
AD?=4AB.BC+AC2 ‘ :

% Cor. 1. Hence, because AD is the sum, and AC the difference of
“the lines AB and BC, four times the rectangle contained by any two
“ lines, together with the square of their difference, is equal to the square
¢ of the sum of the lines.” .

% Cor. 2. Fromthe demonstration it is manifest, that since the square
“ of CD is quadruple of the square of CB, the square of any line is qua-
“ druple of the square of half that line.”

SCHCLIUM. .

In this proposition, let the line AB be denoted by a, and the parts AC
and CB by ¢ and b; then AD=c+2b. Now, since a=b--¢, multiplying
both members by 45, we shall hage .

4ab=4b%+4bc;
and adding ¢? to each merhber of this equality, we shall have,
4ab+cP=c+ dbe 4483,
or 4ab+4c*=(c+2b)3.

PROP. IX. THEOR. ¢

If a straight line be divided into two equal, and also into two unequal parts,
the squares of the two unequal parts are together double of the square of half
the line, and of the square of the line between the points of section.

Let the straight line AB be divided at the point C into two- equal, and
at D into two unequal parts ; The squares of AD, DB are together double
of the squares AC, CD. e
From the point C draw (Prop.11.1.) CE at right angles to AB, and
make it equal to AC or CB, and join EA, EB; through D draw (Prop. 31.
1.) DF parallel to CE, and through F draw FG paralle] to AB; and join
+*“AF. Then,because ACisequalto CE,

*. <the angle EAC is equal (5.1.) to the E
angle AEC; and because the angle ACE
is a right angle, the two others AEC, po F

EAC together make oneright angle (Cor.
4.32.1.); and they are equal to one &no-
ther; each of them therefore is half of a
right angle. For the samo reason each A_ C D B
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of the angles CEB, EBC is half a right angle ; and therefore the whole
AEB s a right angle ;, And because the angle GEF is half a right angle,
and EGF a right angle, for it is-equal (29. 1.) to the interior and opposite
angle ECB, the remaining angle EFG is half a right angle ; therefore the
angle GEF is equal to the angle EFG, and the side EG equal (6. 1.) to the
side GF'; Again, because the angle at B is half a right angle, and FDB a
right angle, for it is equal (29. 1.) to the interior and opposite angle ECB,
the remaining angle BFD is half a right angle ; therefore the angle at B is
equal to the angle BFD, and the side DF to (6. 1.) the side DB. Now, be-
cause AC=CE, AC*=CE?, and AC*4-CE?=2AC2. But(47.1.) AE’=
AC24-CE?; therefore AB¥=2AC2. Again,because EG=GF, EG?=GF?,
and EG24-GF2=2GF?. Bat EF2=EG24-GF?; therefore, EF2=2GF?
=2CD? because (34.1.) CD=GF. And it was shown that AE2==2A(?;
therefore AE24EF2=3AC?4-2CD3. But (47. 1.) AF2z=AE24EF3,
and AD*+DF?==AF?, or AD?--DB2==AF?; therefore, also, AD?4DB3=
2AC24-2CD2 : :

* SCHOLIUM.
This property is evident from the algcbraical expression,
(a+0)%+(a—d)2=2a%+-202;
where a denotes AC, and b denotes CD ; hence, a+-5 =AD, a—b=DB.

PROP. X. THEOR.

Ifa straight line bebisected, and produced to any pm'ni, the square of the whole
line thus produced, and the square of the part of it prodyced, are together
doudle. of the square of half the line bisected, and of ths square of the line
made up of the half and the part produced.

Let the straight line AB be bisected in C, and produced to the point D ;
the squares of AD, DB are double of the squares of AC, CD.

Frem the point C drawqProp. 11.1.) CE at right angles to-AB, and make
it equal to AC or CB; join AE, EB; through E draw (Prop. 31.'1.) EF
patallel to AB, and through'D draw DF E?arallel to CE. And because
the straight line EF meets the parallels EC, FD, the angles CEF, EFD
are equal (29. 1.) to two right'angles ; and therefore the angles BEF, EFD
are less than two right angles’;. But straight lines, which with another
straight line make the interior angles upon the same side less than two
right angles, do meet (29. 1.), if produced far enough ; therefore EB, FD
will meet, if produced, towards'B, D : let them meet in G, and join AG.
Then because AC is equal to CE, B
the angle CEA is equal (5.1.) to 1 F
the angle EAC; and the angle
ACE is a right angle; therefore
each of the angles CEA, EAC is
half a right angle (Cor.4.32.1.);

For the same reason, each of the A’ D

angles CEB, EBC is half a right

angle; therefore AEB is a right an- o -

gle; And because EBC is half a . &
L J




5 . ELEMENTS

right angle, DBG is also (15. 1.) half a right angle, for they are vertically
opposite : but BDG is a right angle, because it is equal (29. 1.) to the al-
ternate angle/ DCE ;) 'thereforé! the remaining angle DGB is half a-right
angle, and is therefore equal to the angle DBG ; wherefore also the side
Dg is equal (6. 1.) to the side DG. Again, because EGF is half a right
angle, and the angle at F aright angle, being equal }34. 1.) to the
opposite angle ECD, the remaining angle FEG is half a right angle,
-and equal to the angle EGF; wherefore also the side GF is equal
(6. 1.) to the side FE. And because EC=CA, EC? 4 CA2 = 2CA3.
Now AE?= (47.1.) AC?4 CE3; therefore, AE2=2AC3. Again, be-
cause EF =FG, EF:=FG3, and EF3+FG*=9EF2. ButEG?=(47.1.)
EF24-FG2; therefore EG3=2EF?; and since EF=CD, EG*=2CD3.
And it was demonstrated; that AE3=2AC?; therefore, AE?4-EG2=2AC?
+2CD3 Now, AG?=AE24-EG?, wherefore AG2=2AC24-2CD2. But
AG? (47. 1.)=AD3+-DG?=AD3+DB3, because DG=DB: Therefore,
AD?4-DB?=2AC?+2CD32.

SCHOLIUM.

. 4
Let AC be denoted by e, and BD, the part produced, by & ; then AD=
2@+ 5, and CD=a+b.
Now, (2a+5)3+82=4a%+4ab+25?; but 4a®+4ab+282=2474-2 (a+
b)2; hence, (2a+b)2+52=2a%+2(a+ )%, and the proposition is evident
from this algebraical equality. .

PROP. XI. PROB.

To divide a given straight line into two parts, so that the rectangle contained
by the whole, and one of the parts, may be equal to the square of the other
part. .

Let AB be the given straight line; it is required to divide it into two
parts, so that the rectangle contained by R G
the whole, and one of the parts, shall be -
equal to the square of the other .

Upon AB describe (46. 1.) the square
ABDC; bisect (10. 1.) AC in E, and join -
BE ; produce CA to F, and make (3. 1.)
EF equal to EB, and upon AF describe A B
(46. 1.) the square FGHA, AB is divided :

in H, so that the rectangle AB, BH is equal
to the square of AH.
Produce GH to K: Because the straight

line AC is bisected in E, and produced to B
the point F, the rectangle CF.FA, to-
gether with the square of AE, is equal S

(6.-2.) to the square of EF: But EF is
equal to EB; therefore the rectangle CF. :
FA, together with the square of AE,is © K D.

(A
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equal to the square of EB; And the squares of . BA, AE are equal .
(47. 1.) to the square of, EB, because the angle EAB is a right angle;
therefore the rectangle CF.FA, together with the square of AE, is equal
to the squares of BA, AE : take away the square of AE, which is com-
mon to both, therefore the remaining reectangle CF.FA is equal to the
square of AB. Now the figure FK is the rectangle CF.FA, for AF is
equal to FG ; and AD is the square of AB; therefore FK is equal to AD:
take away the common part AK, and the remainder FH is equal to the
remainder HD. But HD is the rectangle AB.BH for AB is equal to
BD; and FH is the square of AH ; therefore the rectangle AB.BH is
equal to the square of AH : Wherefore the straight line AB is divided in
H, so that the rectangle AB.BH is equal to the square of AH.

PROP. XII. THEOR.

In obtuse angled triangles, if a perpendicular be drawn from any of the-acute
angles to the opposite side produced, the square of the side subtending the
obtuse angle is greater than the squares %q"tahc sides containing the obtuse
angle, by twice the rectangle contained by the side upon which, when produced, .
the perpendicular falls, and the straight line intercepted between the perpen-
dicular and the obtuse angle. «

Let ABC be an obtuse angled triangle, having the obtuse angle ACB,
and from the point A let AD be drawn (12. 1.) perpendicular to BC pro-
duced : The square of AB is greater than the squares of AC, CB, by twice
the rectangle BC.CD. )

Because the straight line BD is divided A
into two parts in the point C, BD?=(4. 2.) '
BC24CD?+4-2BC.CD ; add AD? to both:
Then BD3+AD? = BC3*4 CD?4- AD*4
2BC.CD. But AB2=BD24-AD?(47. 1.),
- and AC?= CD?+ AD? (47. 1.); therefore,
AB?=BC34AC2+42BC.CD; that is, AB?
is greater than BC2+4AC? by 2BC.CD.

B cC D

. PROP. XIII. THEOR.

In every triangle the square of the side subtending any of the acute angles, is
less than the squares of the sides containing that angle, by twice the rectan-
gle contained by either of these sides, and the straight line intercepted be-
tween the perpendicular, let fall upon it from the opposite angle, and the acute
angle.

Let ABC be any triangle, and the angle at B one of its acute angles, and
upon BC, one of the sides containing it, let fall the perpendicular (12.1.)
AD from the opposite angle : The square of AC, opposite to the angle B,
is less than the squares of CB, BA gy twice the rectangle CB.BD.
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. First,let AD fall within the triangle ABC;
and because the straight line CB is divided
into two parts in the point D(7.'2:), BC2+4
BD?2=2BC.BD+CD2 Addtoeach AD?;
then BC?2+4- BD?2+4AD?=2BC.BD+CD?4-
AD?. But BD?4+ AD2=AB?, and CD24
DA2=AC?(47.1.) ; therefore BC2{ AB*=
2BC.BD+AC?; thatis, AC? is less than
BC24-AB? by 2BC.BD. *

B N C

Secondly, let AD fall without the triangle ABC:* Then because the
angle at D is a right angle, the angle ACB is greater (16. 1.) than a right
angle, and AB2= (12. 2.) AC24-BC2?+42BC.CD. -Add BC? to each;
then AB24BC?2=AC?+42BC2+4-2BC.CD. But because BD is divided
into two parts in C, BC24-BC.CD=(3. 2.) BC.BD, and 2BC?4-2BC.CD
=2BC.BD: therefore AB2+4 BC?=AC?4 2BC.BD; and AC? is less
than AB2+4BC?, by 2BD.BC. s ‘ s

Lastly, let the side AC be perpendicular A
to BC; then is BC the straight line between . '
the perpendicular and the acute angleat B; -+~
and it is manifest that (47. 1.) AB24-BC?= -
AC?42BC*=AC?+2BC.BC.

s

/
\

PROP. XIV. PROB.

- To describe a square that shall be equal to a given rectilineal figure.,

Let A be the given rectilineal figure ; it is required to describe a square
that shall be equal to A.

Describe (45. 1.) the rectangular parallelogram BCDE equal to the
rectilineal figure A. If then the sides of it, BE, ED are equal to gne an-
other, it is a square, and what was required is done; butif they are not
equal, produce one of them, BE to F, and make EF equal to ED, and bi-
sect B in G; and from the centre G, at the distance \GB, or GF, de-
scribe the semicircle BHF, and produce DE to H, and join GH. ‘There-
fore, because the straight line BF is divided into two equal parts in the .
point G, and into two unequal in the point E, the rectangle BE.EF, to-
gether with the square of EG, is equal (5. 2.) to the square of GF:
but GF is equal to GH; therefore the rectangle BE, EF, together
with the square of EG, is equal to the square of GH : But the squares of

# See figure of the last Proposition.
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HE and EG are equal (47.
1.) to the square of GH : '

Therefore also the rectangle <H
BE.EF, together with the ' ,

square of EG, is equal to

the squares of HE and EG.

Take away the square of

EG, which is common to B —1
both, and the remaining G B
rectangle BE.EF is equal ' ‘
to the square of EH : But . R D

BD is the rectangle con- o : )
tained by BE and EF, because EF is equalto ED; therefore BD is equal
to the square of EH ; and BD is also equal to the rectilineal figure A ;
therefore the rectilineal figure A is equal to the square of EH : Where-
fore a square has been made equal to the given rectilineal figure A, viz.
the square described upon EH. " o

PROP. A. THEOR. '

If one side of a triangle be bisected, the sum of the squares of the other two

_ sides is double of the square of half the side bisected, and of the square
of thelline drawn from the point of bisection to the opposite angle of the
triangle. ’

. Let ABC be a triangle, of which the side BC is bisected in D, and DA
drawn to the opposite augle ; the squares of BA-and AC are together
double of the squares of BD and DA. ¢

From A draw AE perpendicular to BC, and because BEA is a right an-
gle, AB2=(47.1.) BE24-AE?and AC?=
CE2?4-AE?; wherefore AB24-AC?2=BE? A
+CE24-2AE?. But because the line
BC is cut equally in D, and unequally
.in E, BE2 4 CE2=(9. 2.) 2BD? +
2DE?; therefore AB2? 4 AC2=2BD? 4
*2DE2.2AEz2.
Now DE?4AE2?=(47. 1.) AD?, and
2DE24-2AE2=2AD?; wherefore AB*+
AC*=2BD?*+4-2ADz2 B D T C

PROP. B. THEOR.

The sum of the squares of the diameters of any parallelogram is equal to
the sum of the squares of the sides of the parallelogram.

Let ABCD be a parallelogram, of which the diameters are AC and BD ;
the sum of the squares of AC and BD is equal to the sum of the squares
of AB, BC, CD, DA. )

Let AC and BD intersect one another in E: and because the vertical
angles AED, CEB are equal (15. 1.), and also the alternate angles EAD,
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ECB (29. 1.), the triangles ADE, CEB have two angles in the one equal
to two angles in the other, each to each ; but the sides AD and BC, which
are opposite to equal” angles in . ‘
these triangles, are also equal
(34. 1.)y therefore the other
sides which are opposite to the
equal angles are also equal (26.
1.), viz. AE to EC, and ED to
EB.

.

Since, therefore, BD is bi-
sected in E, AB’4+AD?=(A. B - C
2.) 2BE?4-2AE?; and for the
same reason, CD?+4 BC?=
2BE?4-2EC?=2BE?+42AE? because EC=AE. Therefore AB*+4-AD?
+DC?4-BC2=4BE?+4AE?. But 4BE2=BD?3, and 4AE3=AC? (2.
Cor. 8. 2.) because BD and AC are both bisected in E ; therefore AB3+4-
AD?+4CD24-BC2=BD?+4AC3,

Cor. From this demonstration, it is manifest that the diameters of every
parallelogram bisect one another.

SCHOLIUM.

In the case of the rhombus, the sides AB, BC, being equal, the triangles
BEC, DEC, have all the sides of the one equal to the corresponding sides
of the other, and are therefore equal : whence it follows that the angles
BEC, DEC, are equal ; and, therefore, that the two diagonals of a rhom-
bus cut each other at right angles.
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GEOMETRY.

. BOOK III.

DEFINITIONS.

A. The radius of a circle is the straight line drawn from the centre to the
circumference.

1. A straight line is said to touch
a cirele, when it meets the cir-
cle, and being produced does
not cut it.

And that line which has but
one point in common with
the circumference, is called a
tangent, and the point in com-
mon, the point of contact.

2. Circles are said to touch onme
another, which meet, but do not
cut one another.

3. Stnilght lines are said to be equally dis-
tant from the centre of a circle, when the
perpendiculars drawn to them from the centre
are equal.

'4. And the strai%ht line on which the greater
perpendicular falls, is said to be farther from
the centre.

B. Any portion of the circumference is called an are.
The chord or subtense of an arc is the straight line which joins its two ex-
tremities,
C. A straight line is said to be inseribed in a circle, when the extremities of
it are in the circumference of the circle. And any straight line which
meets the circle in two points, is called a secant.

5. A segment of a circle is the figure con-
tained by a straight line, and the arc which /_\

it cuts off.
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/6. An angle in 2 segment is the angle contained
by two straight lines) drawn from any point in
the circumference of the segment, to the extre-
mities of the straight line which is the base of
the segment.

An inscribed triangle, is one which has its three
angular points in the circumference.

And, generally, an inscribed figure is one, of
which all the angles arein the circumference.
The circleis said to circumseribe such afigure,

7. And an angle is said to insiat or stand wpon
the arc intercepted between the straight lines
which contain the angle.

Thisisusually called anangle at the centre. The
angles at the circumference.and centre, are
bogh said to be subtended by the chords or -
arcs which their sides include.

8. The sector of a circle is the figure contained
by two straight lines drawn from the centre,and
the arc of the circumference between them.

9. Similar segments of a circle, -

aye those in which the angles are
equal, or which contain equal an- .
gles. : ‘

PROP. I. PROB.

To find the centre of a given circle.

Let ABC be the given circle ; it is required to find its centre.

Draw within it any straight line AB, and bisect (10. 1.) it in D ;
from the point D draw (11. 1.) DC at right angles to AB, and produce it
to E, and bisect CE in F': the point F is the centre of the cirele ABC.

For, if it be not, let, if possible, G be the centre, and join GA, GD, GB:
Then, because DA is equal to DB, and DG common to the two triangles
ADG, BDG, the two sides AD, DG are equal to C
the two BD, DG, each to each ; and the base
GA is equal to the base GB, because they are
radii of the same circle : therefore the angle
ADG is equal (8.1.) to the angle GDB: Bu
when a straight line standing upon another :
straight line makes the adjacent angles equal to F| \G
one another, each of the angles is a right angle
(7.def. 1.) Therefore the angle GDB is a right
‘angle: But FDB is likewise a right angle: 5 B
wherefore the angle FDB is equal to the angle D
GDB, the greater to the less, which is impos-
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sible : Therefore G is not the centre of the circle ABC: In the same
manner, it can,be shown that-no other point but F is the centre: that is,
F is the centre of the circle ABC.

Cor. From this it is manifest that if in a circle a straight line biseot
another at right angles, the centre of the circle is in the line which bisects
the other.

PROP. II. THEOR..

If any two points be taken in the circumference of a circle, the straight line
which joins them shall fall wnthin the circle. -

Let ABC be a circle, and A, B any two points in the circumference ;
the straight line drawn from A to B shall fall C
within the circle. -

Take any Foint in AB as E; find D (1. 3.)
the centre of the circle ABC; join AD, DB
and DE, and let DE meet the circumference
in F. Then, because DA is equal to DB, the
angle DAB is equal (5. 1.) to the angle DBA ;
and becanse AE, a side of the triangle DAE, AN
is produced to B, the angle DEB is greater
(16. 1.) than the angle DAE ; but DAE is
equal to the angle DBE ; therefore the angle DEB is greater than the
- angle DBE: Now to the greater angle the greater side is opposite (19.
1.); DB is therefore greater than DE : but BD is equal to DF ; where-
fore DF is greater than DE, and the point E is therefore within the circle.
The same may be demonstrated of any other point between A and B,
therefore AB is within the circle.

Cor.  Every point, moreover, in the production of AB, is farther from the
centre than the csrcumference. ‘

PROP. III. THEOR.

If a straight line drawn through the centre of a circle bisect a straight line in
the circle, which does not pass threugh the centre, it will cut that line at right
angles; and if it cut it at right angles, it will bisect it.

Let ABC be a circle, and let CD, a straight line drawn through the
centre, bisect any straight line AB, which does not pass through the
centre, in the point F ; it cuts it also at right angles.

Take (1. 3.) E the centre of the circle, and join EA, EB. Then be-
cause AF is equal to FB, and FE common to the C
two triangles AFE, BFE, there are two sides in the
one equal to two sides in the other: but the base
EA is equal to the base EB ; therefore the angle
AFE is equal (8. 1.) to the angle BFE. And E
when a straight line standing upon another makes
the adjacent angles equal to one another, each of
them is a right (7. Def. 1.) angle: Therefore each
of the angles AFE, BFE is a right angle ; where- A
fore the straight line CD, drawn through the centre )

-
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bisecting AB, which does not pass through the centre, cuts AB at right

es. ,
ugAlga.in, let CD cut AB at right angles ; CD also bisects AB, that is, AF
is equal to FB.

The same construction being made, because the radii EA, EB ara equal
to one another, the angle EAF is equal (5. 1.) to the angle EBF; and
the right angle AFE is equal to the right angle BFE : Therelore, in the
two triangles EAF, EBF, there are two angles in one equal to two angles
in the other ; now the side EF, which is opposite to one of the equal an-
gles in each, is common to both ; therefore the other sides are equal to
(28. 1.): AF therefore is equal to FB.

Cor. 1. Hence, the perpendicular through the middle of a chord, passes
through the centre; for &m perpendicular is the same as the one let fall
from the centre on the same chord, since both of them passes through the
middle of the chord.

Cor. 2. It likewise follows, that the perpendicular drawn through the
middle of a chord, and terminated both ways by the circumference of the circle,
i‘;‘ a diameter, and the middle point of that diameter is therefore the centre of

circle.

PROP. IV. THEOR.

If in a circle two straight lines cut one another, which do not both pass through
the centre, they do not bisect each other.

Let ABCD be a circle, and AC, BD two straight lines in it, which cut
one another in the point E, and do not both pass through the centre: AC, -
BD do not bisect one another.

For if it is possible, let AE be equal to EC, and BE to ED; if one of the
lines pass through the centre, it is plain that it
cannot be bisected by the other, which does not
pass through the centre. But if neither of them
pass through the centre, take (1. 3.) F the centre A D
of the circle, and join EF : and because FE, a *
straight line through the centre, bisects another
AC, which does not pass through the centre, it
must cutit at right (3. 3.) angles; whersfore B C
FEA is a right angle. Again, because the
straight line FE bisects the straight line BD, which does not pass through
the centre, it must cut it at right (3. 3.) angles ; wherefore FEB is a right
angle: and FEA was shown to be a right angle : therefore FEA is equal
to the angle FEB, the less to the greater, which is impossible ; therefore
AC, BD, do not bisect one another. .

PROP. V. THEOR.
If two circles cut one another, they cannot have the same centre.

Let the two circles ABC, CDG cut one another in the points B, C;
they have not the same centre. -
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For, if it be possible, let E be their
centre : join EC, and draw sny straight line
EFG meeting the circles in F and G: and
because E is the centre of the circle ABC,
€E is equal to EF: Again, because E is
the centre of the circle CDG, CE is equal to
EG : but CE was shown to be equal to EF,
therefore EF is equal to EG, the less to the
greater, which is impossible : therefore E
1s not the cegtre of the circles, ABC, CDG.

!

PROP. VI. THEOR.

If two circles touch one another internally; they cansot Rave the same centre.

Let the two circles ABC, CDE, touch one another internally in the
point C; they have not the same centre.

For, if they have, let it be F'; join FC, and
draw any straight line FEB meeting the circles
in E and B ; and because F' is the centre of
the circle ABC, CF is equal to FB ; also, be-
cause F is the centre of the circle CDE, CF
is equal to FE : but CF was shown to be equal - 0
to FB ; therefore FE is equal to FB, the less .
_to the greater, which is impossible ; Where- A

fng;EF is not the centre of the circles ABC,

PROP. VII. THEOR.

If any point be taken in the diameter of a circle which is not the centre, of all
the straight lines whicl@ean be drawn from it to the circumference, the great-
est is that in which the centre is, and the other part of that diameter is the
least ; and, of any others, that which is nearer to the line passing through
the centre is always gaam than one more remote from it; And from the
same point there can be drawn only two straight lines that are equal to one
another, one upon each side of the shortest line.

Let ABCD be a circle, and AD its diameter, in which let any point F
be taken which is not the centre : let the centre be E ; of all the straight
lines FB, FC, FG, &c. that can be drawn from F to the circumference,
FA is tH® greatest ; and FD, the other part of the diameter AD, is the
least ; and of the others, FB is greater than FC, and FC than FG.

Join BE, CE, GE ; and because two sides of a triangle are greater
(20. 1.) than the third, BE, EF are greater than BF; but AE is equal to
EB; therefore AE and EF, that is, AF, is greater than BF : Again, be-
cause BE is equal to CE, and FE common to the triangles BEF, CEF,

9
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the two sides BE, EF are equal to the two
CE, EF; but the angle BEF is greater than
the angle /\CEF ; itheréfore(the (base BF is -
greater (24. 1.) than the base FC; for the same
reason, CF is greater than GF. Again, be-
cause GF, FE are greater (20. 1.) than EG,
and EG is equal to ED ; GF, FE are greater
than ED ; take away the commen part FE,
and the remainder GF is greater than the re-
mainder FD: therefore FA is the greatest, and
FD the least of all the straightlines from F to
the circumference ; and BF is greater than CF, and CF than GF. |

Also there can be drawn only two equal straight lines from the point F
to the circumference, one upon each side of the shortest line FD : at the
point E in the straight line EF, make (23. 1.) the angle FEH equal to the
angle GEF, and join FH : Then, because GE is equal to EH, and EF com-
mon to the two triangles GEF, HEF ; the two sides GE, EF are equal
to the two HE, EF; and the angle. GEF -is equal to the angle HEF ;
therefore the base FG is equal }4.{:1.) to the base FH : but besides FH,
no straight line can be drawn from F to the circumference equal to
FG: for, if there can, let it be FK'; and because FK is equal to FG, and
FG to FH, FK is equal to FH ; that is, a line nearer to that which passes
through the centre, is equal to-one more remote, which is impossible.

PROP. VIIL. THEOR.

If any point be taken without a circle, and straight lines be drawn from it to
the circumference, whereof one passes through the centre ; of those which
Jall uponthe concave circumference, the greatest is that which passes through
the centre; and of the rest that which is nearer to that through the centre
is always greater than the more remote ; But of those which fall upon the
convex circumference, the least is that between the point without the circle,
and the diameter ; and of the rest, that which is nearerto the least is al-
ways less than the more remote : And only two egual straight lines can be
drawn from the point unto the circumference, one upon each side of the least.

Let ABC be a circle, and D any point without it, from which let the

- straight lines DA, DE, DF,DC be drawn to. the circumference, whereof DA

passes through the centre. Of those which fall upon the concave part of the
circumference AEFC, the greatest is AD, which passes through the cen-
tre; and the line nearer to AD is always greater than the more remote,
viz. DE than DF,and DF than DC; but of those which fall upon the con-
vex circumference HLKG, the least is DG, between the point D and the
diameter AG ; and the nearer to it is always less than the mowe remote,
viz. DK than DL, and DL than DH.

Take (1. 3.) M the centre of the circle ABC, and join ME, MF, MC,
MK, ML, MH : And because AM is equal to ME, if MD be added to
each, AD is equal to EM and MD ; but EM and MD are greater (20. 1.)
than ED : therefore also AD is greater than ED. Again, because ME is
equal to MF, and MD common to the triangles EMD, FMD; EM, MD
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are equal to FM, MD; but the angle EMD is greater than the angle -
FMD ; thereforé/the |baseDEDDis greater
(24. 1.) than the base FD. Inlike manner
it may be shewn that FD is greater than
CD. Therefore DA is the greatest ; and
DE greater than DF, and DF than DC.

And because' MK, KD are greater. (20.
1.) than MD, and MK is equal to MG, the
remainder KD is greater (5. Ax.) than the
remainder GD), that is, GD is less than
KD : And because MK, DK are drawn to
the point K within the triangle MLD from
M, D, the extremities of its side MD ; MK,
KD are less (21.1.) than ML, LD, whereof
MK is equal to ML, ; therefore the remain-
der DK is less than the remainder DL :
In like manner, it may be shewn that DL
is less than DH : Therefore DG is the
least, and DK less than DL, and DL
than DH. . . : . :

Also there can be drawn only two equal straight lines from the -point D
to the circumference, one upon each side of the least ; at the point M, in
the straight line MD, make the angle DMB equal to the angle DMK, and
join DB ; and because in the triangles KMD, BMD, the side KM is equal
to the side BM, and MD common to beth, and also the angle KMD equal
to the angle BMD, the base DK is equal (4. 1.)to the base DB. But,
besides DB, no straight line can be drawn from D to the circumference, equal
to DK ; for, if there can, let it be DN ; then, because DN is equal to DK,
and DK equal to DB, DB is equal to DN ; that is, the line nearer to DG,
the least, equal to the more remote, which has been shewn to be impossible.

PROP. IX. THEOR.

If a point be taken within a circle, from which thete fall more then two equal
straight lines upon the circumference, that point 1% the centre of the circle.

Let the point D be taken within the circle ABC, from which there fall
on the circumference more than two equal straight lines, viz. DA, DB, DC,
the point D is the centre of the circle., .

For, if not, let E be the centre, join DE, and produce it to the circam-
ference in F, G; then FG is a diameter of ct
the circle ABC : And because in FG, the di-
ameter of the circle ABC, there is taken the
point D which is not the centre, DG is the
geatest line from it to the circumference, and

C greater (7. 3.) than DB, and DB than
DA ; but they are likewise equal, which is
impossible : Therefore E is not the centre of
the circle ABC: In like manner it may be
demonstrated, that no other point but D is the -
centre: D therefore is the centre,
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PROP. X. THEOR.
. One circle cannot cut another in more than two points.

If 1t be possible, let the circumference FAB cut the circumference DEF
in more than two points, viz. in B, G, F ; take the centre K of the circle _
ABC, and join KB, KG, KF; and because within the circle DEF there
" is taken the point K, from which more than two A
equal straight lines, viz. KB, KG, KF, fall on
the circumference DEF, the point K is (9. 3.)
the centre of the circle DEF ; but K is also the
centre of the circle ABC; therefore the same
point is the centre of two circles that cut one
another, which is impossible (5. 3.). There-
fore one circumference of a circle cannot cut
another in more than two points.

PROP. XI. THEOR.

If two circles touch each other internally, the straight line which joins thesr
centres being produced, will pass through the point of contact.

Let the two circles ABC, ADE, touch each other internally in the point
A, and let F be the centre of the circle ABC, and G the centre of the cir-
cle ADE ; the straight line which joins the cen-
tres F, G, being produced; passes through the
point A.

For, if not, let it fall otherwise, if possible, as
FGDH, and join AF, AG: And because AG,
GF are greater (20. 1.) than FA, that is, than
FH, for FA is equal to FH, being radii of the
same circle ; take away the common part FG,
and the remainder AG is greater than the re-
mainder GH. But AG is equal to GD, there-
fore GD is greater than GH ; and it is also less,
which is impossible. Therefore the straight line
which joins the points F and G cannot %all otherwise than on the point
A ; that is, it must pass through A.

Cor. 1. If two circles touch each other internally, the distance be-
tween their centre must be equal to the difference of their radii : for the
circumferences pass through the same point in the line joiring the centres.

Cor. 2. And, conversely, if the distance between the centres be equal
to the difference of the radii, the two circles will touch each other inter-
nally.
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PROP. XII. THEOR.

If two circles touck each other externally, the straight line which joins their
centres will pass through the point of contact. '

Let the two circles ABC, ADE, touch each other externally in the point
A ; and let F be the ¢entre of the circle ABC, and G the centre of ADE ;
the straight line which joins the points F, G shall pass through the point
of contact, : '

For, if not, let it pass otherwise, if possible, FCDG,-and join FA, AG :
and because F is the centre of the circle ABC, AF is equal to FC: Also
because G is the centre of the
_circle, ADE, AG is equal to
GD. Therefore FA, AG are
equal to FC, DG ; wherefore
the whole FG is greater than
FA, AG; but it is also less
(20. 1.), which is impossible :
Therefore the straight line
which joins the peints F, G
cannot pass otherwise than '
through the point of eontact A ; that is, it passes through A.

Cor. Hence, if two circies tonch each other externally, the distance
between. their centres will be equal to the sum of their radii.

And, conversely, if the distance betweeri the centres be equal to the sum
of the radii, the two circles will touch each other externally.

PROP. XIII. THEOR.
One circle cannot touch another in more points than one, whether it touches
. it on the inside or outside.

For, if it be possible, let the circle EBF touch the circle ABC in more
points than one, and first on the inside, in the points B, D ; join BD, and
draw (10. 11. 1.) GH, bisecting BD at right angles : Therefore because
*he points B, D are in the circumference of each of the circles, the straight

T A

C
line BD fills within each (2. 3.) of them: and therefore their centres are
(Cor. 1.3.) in the straight line GH which bisects BD at right angles :



70 ELEMENTS

therefore GH passes through the point of contact (11.3.); but it does
not pass through it, becuuse the points B, D are without the straight line
GH, which is absurd: therefore one circle cannot touch another in the
inside in’more points than one.

Nor can two circles touch one another on the outside in more than one
point: For, if it be possible, let the circle ACK
touch the circle ABC in the points A, C, and join -
AC: thereforz, because the two points A, C are
in the circumference of the circle ACK, the straight
line AC which joins them shall fall within the
circle ACK: And the circle ACK is without the
circle ABC : and therefore the straight line AC is
also without ABC; but, because the points A, C
are in the circumference of the circle ABC, the
straight line AC must be within (2. 3.) the same
circle, which is absurd : therefore a circle caanot
touch another on the outside in more than one
point: and it has been shewn, that a circle cannot
touch another on the inside in more than one point.

PROP. XIV. THEOR.

Equal straight lines in a circle are equally distant from the centre ; and those
which are equally distant from the centre, are equal to ons another.

Let the straight lines AB, CD, in the circle ABDC, be equal to one
another : they are equally distant from the centre.

Take E the centre of the circle ABDC, and from it draw EF, EG, per-
pendiculars to AB, CD; join AE and EC. Then, because the straight

line EF passing through the centre, cuts the

straight line AB, which does not pass through

the centre at right angles, it also bisects (3.

3.) it: Wherefore AF is equal to FB, and A C
AB double of AF. For the same reason,

CD is double of CG: But AB is equal to

CD ; therefore AF is equal to CG : And be- ¢
cause AE is equal toEC, the square of AE is

D

equal to the square of EC : Now the squares
of AF, FE are equal (47. 1.) to the square
of AE, because the angle AFE is a right angle ; and, for the like reason,
the squares of EG, GC are equal to the square of EC : therefore the
squares of AF, FE are equal to the squares of CG, GE, of which the
square of AF is equal to the square of CG, because AF is equal to CG ;
therefore the remaining square of FE is equal to the remaining square of
EG, and the straightline ET" is therefore equal to EG : But straight lines
in a circle are said to be equally distant from the centre when the perpen-
diculars drawn to them from the centre are equal (3. Def. 3.): therefore
AB, CD are equally distant from the centre.

Next, if the straight lines AB, CD be equally distant from the centre,
that is, if FE be equal to EG, AB is equal to CD. For, the same con-
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. struction being made, it may, as before, be demonstrated, that AB is double

of AF, and CD double of CG, and that the squares of EF, FA are equal
to. the squares 'of 'EG, GC ;-of ‘which the square of FE is equal to the
square of EG, because FE is equal to EG : therefore the remaining square
of AF is equal to the remaining square of CG ; and the straight line AF
is therefore equal to CG : But AB is double of AF, and CD double of
CG ; wherefore AB is equal to CD.

PROP. XV. THEOR.

The diameter is the greatest straight line in a circle; and of all others,
" that which is nearer to the centress always greater than one more remote ;
and the greater is nearer to the cenire than the less,

Let ABCD be a circle, of which the diame-
ter is AD,and the centre E ; and let BC be near-

any straight line BC which is not a diameter, and X}
BC greater than FG. ‘
From the centre draw EH, EK perpendiculars
to BC, FG, and join EB, EC, EF ; and because
AE is equal to EB,and ED to EC, AD is equal
to EB, EC: But EB, EC are greater (20. 1.)
than BC; wherefore, also, AD is greater than
BC. o
And, because BC is nearer to the centre than FG, E'H is less (4. Def.
3.) than EK ; But, as was demonstrated in the preceding, BC is double
of BH, and FG double of FK, and the squares of EH, HB are equal to
the squares of EK, KF, of which the square of EH is less than the square
of EK,because EH is less than EK ; therefore the square of BH is greater
than the square of FK, and the straight line BH greater than FK : and
therefore BC is greater than FG.

Next, let BC be greater than FG ; BC is nearer to the centre than FG :
that is, the same construction being made, EH is less than EK ; because
BC.is greater than F'G, BH likewise is greater than KF : but the squares
of BH, HE are equal to the squares of FK, KE, of which the square of
BH is greater than the square of FK, because BH is greater than FK ;
therefore the square of EH is less than the square of EK, and the straight
line EH less than EK. -

Cor. The shorter the chord is, the farther it is from the centre ; and,
conversely, the farther the chord is from the centre, the shorter it is.

PROP. XVI. THEOR.

The straight line d=awn at right angles to the diameter of a circle, from the
extremity of it, falls without the circle ; and no straight line can be drawn
between that straight line and the circumference, from the extremity of the
diameter, so as not to cut the circle.

Let ABC be a circle, the centre of which is D, and the diameter AB:

and let AE be drawn from A perpendicular to AB, AE shall fall without
the circle. , ‘
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In AE talse any point F, join DF and let DF meet the circle in C.
Because DAF is a right angle, it is greater
than the angle'AFD (32.1)) ;-but the greater
angle of any triangle is subtended by the
greater side (19. 1.), shierefore DF is greater
than DA : now DA is equal to DC, there-
fore DF is greater than DC, and the point
F is therefore without the circle. And F
is any point whatever in the line AE, there- B D A
fore AE falls without the circle.

Again, between the straight line AE and
the circumference, no straight line can be '
drawn from the point A, which does not cut

“the circle. Let AG be drawn in the angle DAE : from D draw DH at
right angles to AG; and because the angle :
D%-IA is a right angle, and the angle DAH | G B
{ess than a right angle, the side DH of the - N O
triangle DAH is less than the side DA (19.

1.). ‘The point H, therefore, is within the oir- d
cle, and therefore the straight line AG cuts :
the circle. :

Cor. 1. From this it is manifest, that the
straight line which is drawn at right angles to
the diameter of a circle from the extremity of
it, touches the cifcle; and that it touches it
only in one point; because, if it did meet the
circle in two, it would fall within it (2. 3.). o
Also it is evident that there can be but one straight line which touches the
circle in the same point. )

Cor. 2. Hence, a perpendicular at the extremity of a diameter is a tan-
gent to the circle ; and, conversely, a tangent to a circle is perpendicular
to the diameter drawn from the point of contact. ,

Cor. 3. It follows, likewise, that tangents at each extremity of the
diameter are parallel (Cor. 28. B. 1.); and, conversely, parallel tangents
are both perpendicular to the same diameter, and have their points of con-
tact at its extremities.

PROP. XVII. PROB.

To draw a straight line from a given paint either without or in the circum-
Jerence, whick shall touch a given circle.
First, let A be a given point without the iiven circle BCD; it is re-
" quired to draw a straight line from A which shall touch the circle.

Find (1. 3.) the centre E of the circle, and join AE ; and from the cen-
tre E, at the distance EA, describe the circle AFG; from the point D
draw (11. 1.) DF at right angles to EA, join EBF, and draw AB. AB
touches the circle BCD. : :

Because E is the centre of the circles BCD, AFG, EA is equil to
EF, and ED to EB; therefore the two sides AE EB are equal to the
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two FE, ED, and’ they contain the angle at E common to the two trian-
gles AEB, FED; therefore the base DF
1s equal to the'base AB, and ‘the' triangle
FED to the triangle AEB, and the other
“angles to the qther angles (4. 1.); there-
fore the angle EBA is equal to the angle
EDF; but EDF is a right angle, where-
fore EBA is & right angle; and EB is a
line drawn from the centre: but a straight
line drawn from the extremity of a diame-
ter, at right angles to it, touches the circle
(1 Cor.16.3.): therefore AB touches the
circle; and is drawn from the given point A.
But if the given point be in the circumference of the circle, as the-point
D, draw DE to the centre E, and DF at right angles to DE ; DF touches
the circle (1 Cor. 16.3.) .

SCHOLIUM,

‘When the point A lies without the circle, there will evidently be alwa
two equal tangents passing through the point A. For, by producing the
tangent FD till it meets the circumference AG, and joining E and the point
of intersection, and also A and the point where this last line will intersect
the circumference DC ; there will be formed a right angled triangle equal
to ABE (46. 1.). : :

PROP. XVIII. THEOR.

If a straight lins touch a circle, the straight line drawn from the centre to
- the point of contact, is perpendicular o the line ing the circle.

Let the ‘straight line DE touch the circle ABC in the point C; take
the centre F, and draw the straight line FC: F€ is perpendicular to DE.
For, if it be not, from the point F draw FBG perpendicular to DE ; and
because FGC is a right apgle, GCF must
be (17. 1.) an acute angle ; and to the great-
er angle the greater side (19. 1.) is oppo- A
site ; therefore FC is greater than FG;
but FC is equal to FB; therefore FB is
greater than F'G, the less than the greater,
which is impossible ; wherefore FG is not F
perpendicular to DE: in the same manner
1t may be shewn, that ne other line but FC
can be perpendicular to DE ; FC is there- B
fore perpendicular to DE.

10
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" PROP. XIX. THEOR.

If a straight lind touck-a circle,'and from the point of contact a straight line
be drawn at right angles to the touching line, the centre of the circle is in
that line. : ‘

- Let the straight line DE touch the circle ABC, in C, and from C let

CA be drawn at right angles to DE ; the centre of the circle is in CA.
For, if not, let F be the centre, if possible,

and join CF. Because DE touches the cir-

cle ABC, and FC is drawn from the centre A,
to the point of contact, FC is perpendicular .
(18. 3.) to DE; therefore FCE is a right
angle; but ACE is also a right angle;
therefore the angle FCE is equal to the an- 0
C Id

gle ACE, the less to the greater, whichis B
impossible ; Wherefore F is not the centre
of the circle ABC: in the same manner it
may be shewn, that no other point which is
notin CA, is the centre ; that is, the centre 1)

is in CA.

PROP. XX. THEOR.

The angle at the centre of a circle is double of the angle at the circumfer-
ence, upon the same base, that is, upon the same part of the circumfer-
ence.

Let ABC be a circle, and BDC an angle at the centre, and BAC an
angle at the circumference which have the same circumference BC for
the base ; the angle BDC is double of the angle BAC. .

First, let D, the centre of the circle, be within the angle BAC, and join
AD, and produce it to E : because DA is equal A

(V)

to DB, the angle DAB is equal (5. 1.) to the
angle DBA: therefore the angles DAB, DBA
together are double of the angle DAB; but the
angle BDE is equal (32. 1.) to the angles DAB,
DBA ; therefore also the angle BDE is double

of the angle DAB; for the same reason, the an-

gle EDC is double of the angle DAC: there-
fore the whole angle BDC is double of the whole
angle BAC. ‘

E

>

&

Again, let D, the centre of the circle, be
without the arigle BAC; and join AD and pro-
.duce it to E. It may be demonstrated, as in
the first case, that the angle EDC is double
of the angle DAC, and that EDB, a part of
the first, is double of DAB, a part of the
other ; therefore the remaining angle BDC is
double of the remaining angle BAC.
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PROP. XXI. THEOR.

The angles in the same segment of a circle are equal to one another.

Let ABCD be a circle, and BAD, BED

angles in the same segment BAED : the an-

gles BAD, BED are equal to one another.

Take F the centre of the circle ABCD:
And, first, let the segment BAED be greater
than a semicircle, and join BF, FD: and be-
cause the angle BFD is at the cenire, and the
angle BAD at the circumference, both having
the same part of the circumference, viz. BCD,
for their base; therefore the angle BFD is
double (20. 3.) of the angle BAD: for the
same reason, the angle BFD is double of the
angle BED : therefore the angle BAD is equal
to the angle BED. ‘

But, if the segment BAED be not greater
than a semicircle, le¢ BAD, BED be angles
in it; these glso are equal to one another.
Draw AF to the centre, and produce to C, and
join CE: therefore the segment BADC is
greater than a semicircle ; and the angles’in
it, BAC, BEC are equal, by the first' case :
for the same reason, because CBED is great-
er than a semicircle, the angles CAD, CED
are equal ; therefore the whole angle BAD is
equal to the whole angle BED.

PROP. XXII. THEOR.

The opposite angles of any quadrilateral figure described in a circle, are
together equal to two right angles. .

Let ABCD be a quadrilateral figure in the circle ABCD; any two of
its opposite angles are together equal to two right angles.

Join AC, BD. The angle CAB is equal

CDB, because they are in the same segment
BADC, and the angle ACB is equal to the an-
gle ADB, because they are in the same seg-
ment ADCB ; therefore the whole angle ADC
is equal to the angles CAB, ACB: to each of
these equals add the angle ABC; and the an-
gles ABC, ADC, are equal to the angles ABC,
CAB, BCA. But ABC, CAB, BCA are equal
to two right angles (32. 1.) ; therefore also the
angles ABC, ADC are equal to two right an-
%les; in the same manner, the angles BAD,

(21. 3.) to the angle

D
c N
A

CB may be shewn to be equal to two right angles.
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Cor. 1. If any side of a quadrilateral be produced, the exterior angle
will be equal to the interior opposite angle. '

Con. 2. Tt follows, likewise, that a quadrilateral, of which the op-
ppsilte angles are not equal to two right angles, cannot be inscribed in a
circle. '

PROP. XXIII. THEOR.

Upon the same straight line, and upon the same side of it, there cannot be
two similar segments of circles, not coinciding with one another.

If it be possible, let the two similar segments of circles, viz. ACB, ADB,
be upon the same side of the same straight line AB, not coinciding with
one another; then, because the circles ACB, ADB, cut one another in
the two points A, B, they cannot cut one another in any other point (10.
3.): one of the segments must therefore fall )
within the other: let ACB fall within ADB,
draw the straight line BCD, and join CA, DA :
and because the segment ACB is similar to the
segment ADB, and similar segments of circles
contain (9. def. 3.) equal angles, the angle
ACB is equal to the angle ADB, the exterior A
to the interior, which is impossible (16. 1.).

B

PROP. XXIV. THEOR.
Similar segments of circles upon equal straight lines are equal to one another,

Let AEB, CFD be similar segments of circles upon the equal straight
lines AB, CD; the segment AEB is equal to the segment CFD.
For, if the segment AEB be applied to the segment CFD, so as the

point A be on C, and the B F

straight line AB upon CD,

the point B shall coincide

with the point D, because )

ABisequal to CD: there-

fore the straight line AB A BC D

coinciding with CD, the segment AEB must (23. 3.) coincide with the
segment CFD, and therefore is equal to it.

PROP. XXV. PROB.:

A segment of a circle being given, to describe the circle of which it is the
segment.

Let ABC be the given segment of a circle; it is required to describe
the circle of which it is the segment.

Bisect (10.1.) AC in D, and from the point D draw (11.1.) DB at
right angles to AC, and join AB: First, let the angles ABD, BAD.be
equal to one another; then the straight line BD is equal (6. 1.) to DA,
and therefore to DC; and because the three straight lines DA, DB, DC,
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aze all equal ; D is the centre of the circle (9. 3.); from the centre D, at

the distance of any, of the three-DA, DB, DC, describe a eircle ; this shall

pass through the other points ; and the circle of which ABC is a segment
A

B
(E
A D C Aén

is described : and because the centre D is in AC, the segment ABC is a
semicircle. Next, let the angles ABD, BAD be unequal ; at the point A, in
the straight line AB, make (23. 1.) the angle BAE equal to the angle ABD,
and produce BD, if necessary, to E, and join EC: and because the angle
ABE is equal to the angle BAE, the straight line BE is equal (6. 1.) to
EA : and because AD is equal to DC, and DE common to the triangles
ADE, CDE, the two sides AD, DE are equal to the two CD, DE, each
to each ; 'and the angle ADE is equal to the angle CDE, for each of them
is a right angle ; therefore the base AE is equal (4. 1.) to the base EC :
but AE was shewn to be equal to EB, wherefore also BE is equal to EC :
and the three straight lines AE, EB, EC are therefore equal to one another;
wherefore (9. 3.) E is the centre of the circle. From the centre E, at
the distance of any of the three AE, EB, EC, describe a circle, this shall
pass through the other points ; and the circle of which ABC is a segment
is described : also, it is evident, that if the angle ABD be greater than the
angleBAD, the centre E falls without the segment ABC, which therefore
is less than a semicircle ; but ifthe angle ABD be less than BAD, the cen-
tre E falls within the segment ABC, which is therefore greater than a semi-
circle : Wherefore, a segment of a circle being given, the circle is de-
scribed of which it is a segment.

PROP. XXVI. THEOR.

B

In equal circles, equal angles stand upon equal arcs, whether they be at the
. ‘ centres or circumferences.

Let ABC, DEF be equal circles, and the equal angles BGC, EHF at
their centres, and BAC, EDF at their circumferences : the arc BKC is
equal to the are ELF.
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Join BC, EF ; and because the circles ABC, DEF are equal, the straight
lines drawp from their centres are equal : therefore the two sides BG,
GC, are equal to the two EH, HF'; and the angle at G is equal to the an-
gle at H; therefore the base BC is equal (4. 1.) to the base EF : and be-
cause the angle at A is equal to the angle at D, the segment BAC is similar
(9. def. 3.) to the segment EDF ; and they are upon equal straight lines
BC, EF ; but similar segments of circles upon equal straight lines are
equal (24. 3.) to one another, therefore the segment BAC is equal to the
segment EDF : but the whole circle ABC is equal to the whole DEF ;
therefore the remaining segment BKC is equal to the remaining segment
ELF, and the arc BKC to the arc EL¥F.

PROP, XXVII. THEOR.

In equal circles, the angles which stand upon equal ares are equal to ons
another, whether they be at the centres or circumferences. -

Let the angles BGC, EHF at the centres, and BAC, EDF at the cir-
- cumferences of the equal circles ABC, DEF stand upon thé equal arcs
BC, EF : theangle BGC is equal to the angle EHF, and the angle BAC
to the angle EDF.

If the angle BGC be equal to the angle EHF, it is manifest (20. 3.)
that the angle BAC is also equal to EDF. Baut, if not, one of them is the
greater : let BGC be the greater, and at the point G, in the straight line
BG, make the angle (23. 1.) BGK equal to the angle EHF. And because
equal angles stand upon equal arcs (26. 3.), when they are at the centre,

A )

B C E — JF
K \/

the arc BK is equal to the arc EF : but EF is equal to,BC; therefore
also BK is equal to BC, the less to the greater, which is impossible. There-
fore the angle BGC is not unequal to the angle EHF ; that is, it is equal
to it : and the angle at A is half the angle BGC, and the angle at D half
of the angle EHF ; therefore the angle at A is equal to the angle at D.

PROP. XXVIII. THEOR.

In equal circles, equal straight lines cut off equal arcs, the greater equal to
the greater, and the less to the less.

Let ABC, DEF be equal circles, and BC, EF equal straight lines in
them, which cut off the two greater arcs BAC, EDF, and the two less
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BGC, EHF : the greater BAU is equal to the greater EDF, and the less
BGC to the less EHF. ,

Take (1. 3.)Ky/lJ, \the C¢entres Tof_/the circles, and join BK, KC, EL,
LF ; and because the circles are equal, the straight lines from their centres

. A ' D.

are equal ; therefore BK, KC are equal to EL, LF; but the base BC is
also equal to the base EF ; therefore the angle BKC is equal (8. 1.) to the
angle ELF : and equal angles stand upon equal (26. 3.) arcs, when they
are at the centres ; therefore the arc BGC is equal to the arc EHF.
- But the whole circle ABC is equal to the whole EDF ; the remaining part,
%g;‘fore, of the circumference viz. BAC, is equal to the remaining part

PROP. XXIX. THEOR.

. In equal circles equal arcs are subtended-by equal straight lines.

Let ABC, DEF be equal circles, and let the arcs BGC, EHF also be
Equal; and join BC, EF: the straight line BC is equal to the straight line
F N

Take (1.3) K, L the centres of the circles, and join BK,KC, EL,LF:
and because the arc BGC is equal to the arc EHF, the angle BKC is

equal (27. 3.) to the angle ELF : also because the circles ABC, DEF are
equal, their radii are equal : therefore BK, KC are equal to EL, LF : and

D

B — /C .

e NV

: - H
they contain equal angles ; therefore the base BC is equal (4. 1.) to the
base EF. '
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PROP. XXX. THEOR.
To biséct/a given'arc, that is,' to divide it into two equal patﬁ.

Let ADB be the given arc ; it is required to bisect it.

Join AB, and bisect (10. 1.) it in C ; from the point C draw CD at ril%ht
angles to AB, and join AD, DB : the arc ADB is bisected in the point D.

Because AC is equal to CB, and CD common to the triangle ACD,
BCD, the wwo sides AC,CD are equal to the D
two BC, CD ; and the angle ACD is equal to
the angle BCD, because each of them is a
right angle : therefore the base AD is equal
(4. 1.) to the base BD. But equal straight .
lines cut off equal arcs, (28. 3.) the greater A C B
equal to the greater, and the less to the less; and AD, DB are each of
them less than a semicircle, because DC passes through the centre (Cor.
1. 3.); wherefore the arc AD is equal to the arc DB : and therefore the
given arc ADB is bisected in D.

SCHOLIUM.

By the same construction, each of the halves AD, DB may be divided
into two equal parts; and thus, by succesgive subdivisions, a given arc
may be divided into four, eight, sixteen, &c. equal parts.

PROP. XXXI. THEOR.

In a circle, the angle in @ semicircle is a right angle ; dut the angle in a seg-
mentgrc’atertkauascndcirdei: less then a right angle ; and the angle in
a segment less than a semicircle is greater than a right angle.

Let ABCD be a circle, of which the diameter is BC, and centre E ;
draw CA dividing the circle into the segments ABC, ADC, and join BA,
AD, DC; the angle in the semicircle BAC is a right angle ; and the an-
gle in the segment ABC, which is greater than a semicircle, is less than a
right angle ; and the angle in the segment ADC, which is less than a semi-
circle, is greater than a right angle. . :

Join AE, and produce BA to I ; and because BE is equal to EA, the

angle EAB is equal (5. 1.) to EBA : also F
because AE is equal to EC, the anigle EAC

is equil to ECA ; wherefore the whole an- A

gle BAC is equal to the two angles ABC, D

ACB. But FAC, the exterior angle of the -
triangle ABC, is also equal (32. 1.) to the
two angles ABC, ACB ; therefore the an- C
gle BAC is equal to the angle FAC,and DB E

each of them is therefore a right angle (7.

def. 1.); wherefore the angle BAC in a semi-

circle is a right angle.
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And because the two angles ABC, BAC of the triangle ABC are to-
gether less (17.1.) than two right angles, and BAC is a right angle, ABC
must be less 'than/a 'righit(angle’; 'and therefore the angle in a segment
ABC, greater than a semicircle, is less than a right angle.

Also because ABCD is a quadrilateral figure in a circle, any two of its
opposite angles are equal (22. 3.) to two right angles ; therefore the angles
ABC, ADC are equal to two right angles; and ABC is less than a right
angle ; wherefore the other ADC is greater than a right angle.

Cor.’ From this it is manifest, that if one angle of a triangle be equal to
the other two, it is a right angle, because the angle adjacent ta it is equal
to the same two ; and when the adjacent angles are equal, they are right
angles. '

- PROP. XXXH. THEOR.

If & straight line touck a circle, and from the point of contact a straight
line be drawn cutting the circle, the angles maj:a by 111:: line with the line
®which touches the circle, shall be equal to the angles in the alternate seg-
ments of the circle. .

Let the straight line EF touch the circle ABCD in B, and from the
point B let the straight line BD be drawn cutting the circle: the angles
which BD makes with the touching line EF shall be equal to the angles
in. the alternate segments of the circle : that is, the angle FBD is equal to
the angle which is in the segment DAB, and the angle DBE to the angle
in the segment BCD. A

From the point B draw 511. 1.) BA at right angles to EF, and take any

int C in the arc BD, and join AD, DC, CB; and because the straight

ine EF touches the circle ABCD in the point B, and BA is drawn at right
angles to the touching line, from the point of contact B, the centre of the
circle is (19.3.) in BA ; therefore the an- ‘ A

gle ADB in a semicircle, is a right an-
gle (31. 3.),and consquently the other two
angles, BAD, ABD, are equal (32, 1.) to
aright angle; but ABF is likewise a right
angle ; therefore the angle ABF is equal °
to the angles BAD, ABD: take from
these equals the common angle ABD,
and there will remain the angle DBF
equal to the angle BAD, which is in the
alternate segment of the circle. Andbe- F
cause ABCD is a quadrilateral figure in

a circle, the opposite angles. BAD, BCD are equal (22. 3.) to two right
angles ; therefore the angles DBF, DBE, being likewise equal (13.1.) to
two right angles, are equal to the angles BAD, gCD ; and DBF has been
proved equal to BAD : therefore the remaiuing angle DBE is equal to the
angle BCD in the alternate segment of the circle. ,

‘ 11
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PROP. XXXIII. PROB.

Upon a given smr'igbt line ta describe a segment of a circle, containing an
angle equal to @ given rectilineal angle.

Let AB be the. given straight line, and the angle~at C the given rect-
lineal angle ; it is required to describe upon the given straight line AB a
segment of a circle, containing an angle equal to the angle C.

irst, let the angle at C be a right angle ; bisect (10.1.) AB in F, and

from the centre F, at the distance FB,
describe the semicircle AHB ; the an- C ‘
gle AHB being in a semicircle is (31. | -
" 3.) equal to the right angle at C. .
‘But if the angle € be not a right an- A

g
gle at the point A, in the straight line F . B
AB, make (23.1.) the angle BAD equal
- to the angle C, and from the point A draw (11. 1.) AE at right angles to
_ AD; bisect (10. 1.) AB in F, and - _

from F draw (11. 1.) FG at right ' H
angles to AB, and join GB: then
because AF is equal to FB, and ] . '
FG common to the triangles AFG,
BFG, the two sides AF, FG are ’ .
equal to the two BF, FG; but the .
angle AFG is also equal to the C A Ak B
angle BFG; therefore the base AG , v ’
is equal (4. 1.) to the base GB; and -

D

the circle described from the centre

G, at the distance GA, shall pass

through the point B; let this be the circle AHB: and because from the
point A the extremity of the diameter’ AE, AD is drawn at right angles to
AE, therefore AD (Cor. 1. 16. 3.) touches

the circle ; and because AB, drawn from /C H
the point of contact A, cuts the circle, /—\B
the angle DAB is equal to the angle in F

the alternate segment AHB (32. 3.);

but the angle DAB is equal to the angle

C, therefore also the angle C is equal to

the angle in the segment AHB : Where-

fore, upon the given straight line AB

the segment AHB of a circle is describ- D

ed which contains an angle equal to the given angle at C.
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PROP. XXXIV. PROB.

To cut off a segment from-o' given ' circle which shall contain an angle equal
7 4 to ai‘ivm rectilineal angle.

‘Let ABC be the given circle, and D the given rectilineal angle; it is
required to cut off a segment from the circle ABC that shall contain an
angie equal to the angle D. E '

Draw (17. 3.) the straight line EF touching the circle ABC in the point
B, and at the point B, in the straight P
line BF make (23. 1.) the angle FBC -

equal to the angle D ; therefore, be- . A,
cause the straight line EF touches
the circle ABC, and BC is drawn , ‘ ;
froin the point of contact B, the an-

le FBC is equal (32. 3.) to the an-
ge in the alternate segment BAC ;
but the angle FBC is equal to the an- ’

D v B

gle D: therefore the angle in the
segment BAC is equal to the angle
D : wherefore the segment BAC is cut off from the given circle ABC
containing an angle equal to the given angle D.

PROP. XXXY. THEOR,

If two straight lines within a cirtle cut one another, the rectangle contasned -
by the segments of one of them is equal to the rectangle contained by the
segments of the other.

Let the two straight lines AC, BD, within the circle ABCD, cut one
another in the point E ; the rectangle contained by AE, EC is equal to
the rectangle contained by BE, ED.

If AC, BD pass each of them through the cen- A
tre, so that E is the centre, it is evident that AE, ‘

EC, BE, ED, being all equal, the rectangle AE.
EC is likewise equal to the rectangle BE.ED.

ATR"
But let one of them BD pass through the cen- B '
tre, and cut the other AC, which does not pass
through the centre, at right angles in the point E; \ ¢

then, if BD be bisected in F, F is the centre of

the circle ABCD ; join AF : and because BD, which passes through the
centre, cuts the straight line AC, which does not :
pass through the centre at right angles, in E, AE,

EC are equal (3. 3) to one another; and because

the straight line BD i cut into two equal parts

in the point F, and into two unequal in the point

E, BE.ED (5. 2.) 4+ EF? = FB? = AF2. But

AF? = AE? 4 (47. 1.) EF?, therefore BE.ED + ‘

EF? = AE? 4+ EF?, and taking EF? from each, A

BE.ED=AE?=AE.EC. ‘W C
Next, let BD, which passes through the centre, .
cut the other AC, which does not pass through B
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the centre, in E, but not at right angles ; then, as before, if BD be bisect-
ed in F, F is the centre of the circle. Join AF,
and from F draw (12.1.) FG perpendicular to
AC ; therefore AG is equal (3. 3.) to GC; where-
fore AE.EC + (5.2.) EG? = AG?, and adding
GF? to both, AE.EC+ EG?*+ GF2=AG?+4GF?
Now EG3+4GF?=EF?, and AG34GF2=AF?;
therefore AE.EC+EF?=AF?=FB2. ButFB? A
=BE.ED+(5. 2.) EF3, therefore AE.EC+ EF?
=BE.ED+EF?, and taking EF3 from both, AE.
EC=BE.ED. .

Lastly, let neither of the straight lines AC,
BD pass through the centre: take the centre F,
and through E, the intersection of the straight
lines AC, DB, draw the diameter GEFH : and
because, as has been shown, AE.EC=GE.EH,
;:nd BE.ED=GE.EH ; therefore AE.EC=BE.

D.

PROP. XXXVI. THEOR.

If from any point without a circle two straight lines be drawn, one of whick
cuts the circle, and the other touches it ; the rectangle contained by the whole
line which cuts the circle, and the part of it without the circle, is equal to the
square of the line which touches t.

Let D be any point without the circle ABC, and DCA, DB two straight
lines drawn from it, of which DCA cuts the circle, and DB touches it :
the rectangle AD.DC is equal to the square of DB. o

Either DCA passes through the centre, or it
does not ; first, let it pass through the centre E, D
and join EB; therefore the angle EBD is a
right angle (18. 3.): and because the straight
line AC is bisected in E, and produced to the
point D, AD.DC+EC3=ED? (6. 2.). But (o]
EC = EB, therefore AD.DC + EB? = EDz2.
Now ED?=(47. 1.) EB2+4 BD?, because EBD B
is a right angle; therefore AD.DC 4 EB? =
EB? + BD?, and taking EB? from each, AD.DC ,
=BDz. ' E

But, if DCA does pot pass through the cen- -
tre of the circle ABC, take (1. 3.) the centre E,
and draw EF perpendicular (12. 1.) to AC, and
{';)Iiln EB, EC, ED; and because the straight

ine EF, which passes through the centre, cuts
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the straight line AC, which does not pass
through the centre, at; righs angles, it likewise
bisects it (3.-3.) ; therefore AF is equal to FC;
and because the straight line AC is bisected in
F, and produced to D (6. 2.), AD.DC+FC?= °
FD3; add FE2 to both, then AD.DC+FC34-
FE:=FD?4FE2 But (47.1.) EG*:=FC?+
FE?, and ED?=FD?+FE?; because DFE is
- aright angle; therefore AD.DC+EC?=ED?
Now, because EBD is a right angle, ED?=
EB*4-BD?=EC3+BD?, and therefore, AD.
DC+ EC?=EC?*4-BD?, and AD.DC=BD?2.

Cor. 1. If from any point without a circle,
there be drawn two straight lines cutting it, as
AB, AC, the sectangles contained by the whole
lines and the parts of them without the circle,
are equal to one another, viz. BA.AE=CA.
AF; for each of these rectangles is equal to
the square of the straight line AD, which touch-
es the circle. '

. Cor. 2. Itfollows, moreover, that two tan-
gents drawn from the same point are equal.

Cor. 3. And since. a radius drawn to the
point of contact is perpendicular to the tangent,
it follows that the angle included by two tangents,
drawn from the same point, is bisected by a line
drawn from the centre of the circle to shat point ;
for this line forms the hypotenusé common to
two equal right angled triangles.

PROP. XXXVII. THEOR.

If from a point without a circle there be drawn two straight lines, one of
which cuts the circle, and the other meets it ; if the rectangle contained by
the whole line, which cuts the circle, and the part of it without the circle,

be equal to the square of the line which meets it, the line which meets shall
touch the circle.

Let any point D be taken without the circle ABC, and from it let two
straight lines DCA and DB be drawn, of which DCA cuts the circle, and
DB meets it ; if the rectangle AD.DC, be equal to the square of DB, DB
touches the circle.

Draw (17. 3.) the straight line DE touching the circle ABC ; find the,-
centre F, and join FE, FB,FD; then FED is a right angle (18. 3.): and
because DE touches the circle ABC, and DCA cuts it, the rectangle AD.
DC is equal (36. 3.) to the square of DE ; but the rectangle AD.DC is.
by hypothesis, equal to the square of DB : therefore the square of DE is
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. equal to the square of DB ; and the straight line
DE equal to the straight line DB: but FE is
equal to FB, wherefore DE.EF aré equal to DB,
BF ; and the base FD is common to the twé trian- .
gles DEF, DBF; therefore the angle DEF is
equal (8. 1.) to the angle DBF; and DEF isa
right angle, therefore also DBF is a right angle :
but FB, if produced, is a diameter, and the straight
line which is drawn at right angles to a diame-
ter, from the extremity of it, touches (16. 3.) the
circle: therefore DB touches the circle ABC.

ADDITIONAL PROPOSITIONS.

PROP. A. THEOR.

A diameter divides acircle and its circumference into two equal parts ; and, con-
versely, the line whick divides the eircle into two equal parts is a diameter

Let AB be & diameter of the circle:
AEBD, then AEB, ADB are equal in
surface and boundary.

Now, if the figure AEB be applied to
the figure ADB, their common base AB
retaining its position, the curve line AEB
must fall on the curve line ADB ; other- A
.wise there would, in the one or the other, -
be points unequally distant from the cen-
tre, which is contrary to the definition of
a circle.

. D

Conversely. The line dividing the circle into two egual parts is a diameter

For, let AB divide the circle into two eqaal parts; then, if the centre is
not in AB, let AF be drawn through it,*which is therefore a diameter, and
consequently divides the circle into two equal parts; hence the portion
AEF is equal to the portion AEFB, which is absurd.

Cor. The arc of a circle whose chord is a diameter, is a semicircum-
ference, and the included segment is a semicircle.

PROP. B. THEOR.

Through three given points whick are not in the same straight line, one cir-
cumference of a circle may be made to pass, and but one. ’

Let A, B, C, be three points not in the same straight line: they shall
all lie in the same circumference of a circle.

.
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For, let the distances AB, BC be bisected by the perpendiculars DF,
. EF, which must meet in some point F ; for if they were parallel, the lines
DB, CB, perpendicular. to_ them'would also be parallel (Cor. 2. 29.1.), or
else form but one straight line: but they meet in B, and ABC is not a
straight line by hypothesis.

Let then, FA, FB,and FC be drawn ; then,
because FA, FB meet AB at equal distances
from the perpendicular, they are equal. For
similar reasons FB, FC, are equal ; hence
the points A, B, C, are all equally distant
from the pdint F, and consequently lie in the
circumference of the circle, whose centre is
'F, and radius FA. : .

It is obvious, that besides this, no other
circumference can pass through the same
points ;- for the centre, lying in the perpen-
dicular DF bisecting the chord AB, and at the same time in the perpen-

-dicular EF bisecting the chord BC (Cor. 1. 3. 3.), must be at the intersec-
tion of these perpoadiculars; so that, as there is but one centre, there can
be but one circumference. , .

PROP. C. THEOR.

If two circles cut each other, the line which passss through their centres will be
perpendicular to the chord which joins the points ‘:;eintcrscction, and will
divide it into two equal parts.

Let CD be the line which passes through the centres of two circles cut-
ting each other, it will be perpendicular to the chord AB, and will divide it
into two equal parts.

For the line AB, which joins the points of intersection, is a chord com-

mon to the two circles. ‘And if a perpendicular be erected from the middle
of this chord, it will pass (Cor. 1. 3. 3.) through each 6f the two centres C
and D. But no more than one straight line can be drawn through two
points ; hence, the straight line which passes through the centres will bi-
sect the chord at right angles.

Cor. Hence, the line joining the intersections of the circumferences of
two circles, will be perpendicular to the line which joins their centres.

SCHOLIUM.

1. If two circles cut each other, the distance between their centres will
be less than the sum of their radii, and the greater radius will be also less
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than the sum of the smaller and the distance between the centres. For,
CD is less (20. 1.) than CA<4-AD, and for the same reason, ADAAC-Q-

2 And, conversely, if the distance between the centres of two circles
be less than the sum of their radii, the greater radius being at the same time
less than the sum of the smaller and the distance between the centres,
the two circles will cut each other.

For, to make an intersection possible, the triangle CAD must be possi-
ble. Hence, not only must we have CD<AC+AD but also the greater
radius AD<AC+C% And whenever the triangle CAD can .be con-
structed, it is plain that the circles described from the ceutres C and D,
will cut each otherin A and B.

Cor. 1. Hence, if the distance between the centres of two circles be
greater than the sum of their radii, the two circles will not intersect each
other.

Cor. 2. Hence, also, if the distance between the centres be less than
the difference of the radii, the two circles will not cut each other.

For, AC4CD>AD; therefore, CD>AD—AC ; that is, any side of
a triangle exceeds the difference between the other two. Hence, the tri-
angle is impossible when the distance between the centres is less than the
difference of the radii ; and consequently the two circles cannot cut each
other.

PROP. D. THEOR.

In the same circle, equal angles at the centre are subtended by equal ares ;
and, conversely, equal arcs subtend equal angles at the centre.

Let C be the centre of a circle, and let the angle ACD be equal to the
angle BCD; then the arcs AFD, DGB, subtending these angles, are
equal. .

quin AD, DB; then the triangles ACD, H
BCD, having two sides and the included an-
gle in the one, equal to two sides and the
included angle in the other, are equal : so
that, if ACD be applied to BCD, there shall
be an entire coincidence, the point A coin-
ciding with B, and D common to both arcs;
the two extremities, therefore, of the arc
AFD, thus coinciding with those of the arc
BGD, all the intermediate parts must coin- A
cide, inasmuch as they are all equally dis- F
tant from the centre. :

Conversely. Let the arc AFD be equal to the arc BGD; then the an-
gle ACD is equal to the angle BCD.

For, if the arc AFD be applied to the arc BGD, they would coincide ;
S0 tha.t the extremities AD of the chord AD, would coincide with those of
the chord BD ; these chords ave therefore equal : hence, the angle ACD
is equal to the angle BCD (8. 1.).

Cor. 1. It follows, moreover, that equal angles at the centre are sub-
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tended by equal chatds : and, conversely, equal chords subtend equal an-
gles at the centre. ‘

Cor. 2. It/in'also 'evident, that equal chords subtend equal arcs: and,
conversely, equal arcs-are subtended by equal chords.

Cor. 3. If the angle at the centre of a circle be bisected, both the are
and the chord which it subtends shall also be bisected.

Con. 4. It follows, likewise, that a perpendicular through the middle
of the chord, bisects the angle at the centre, and passes through the middle
of the azc subtended by that chord. :

SCHOLIUM.

The centre C, the middle point E of the chord AB, and the middle point
D of the arc subtended by this chord, axe three points situated in the same
line perpendicular to the chord. But two points are sufficient to determine -
the position of a straight line ; hence every straight line which passes
through two of the points just meationed, will necessarily pass through the
third, and be perpendicular to the chord.

PROP. E. THEOR.

The arcs of a cirele intercepted by two parallels are equal ; and, conversely, if
two :tra{ght lines intefc:fpt oqbt?al arc’::f a circle, and do not cut each other
within the circle, the lines will be parallel.

There may be three cases :

First. If the parallels are tangents
to the circle, as AB, CD ; then, each.
of the arcs intercepted is a semi-cir:
cumference, as their points of contact
(Cor. 3. 16. 3.) coincide with the.ex-
tremities of the diameter.

£\

K

Second. When, of the two parallels
AB, GH, one is a tangent, the other .
a chord, which being perpendicular to

FE, the arc GEH is bisected by FE

(Cor. 4. Prop. D. Book 3.); so that in

this case also, the intercepted aics o}

GE, EH are equal. D

Third. If the two parallels are chords, as GH, JK; let the diameter
‘FE be perpendicular to the chord GH, it will also be perpendicular to JK,
since they are parallel ; therefore, this diameter must bisect each of the
* arcs which they subtend : that is, GE=EH, and JE=EK ; therefore,

J Eﬁ—lé}E =EK~—EH; or, which amounts to the same thing, JG is equal
to .

Conversely. If the two lines be AB, CD, which touch the circumfer-
ence, and if, at the same time, the intercepted arcs EJF, EKF are equal,
EF must be a diameter (Prop. A. Book 3.); and therefore AB, CD (Cor.

3. 16. 3.), are parallel.

But if only one of the lines, as AB, touch, while the other, GH, cuts the

circumference, making the arcs EG, EH equal ; then the diameter FE, .
12 .
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which bisects the arc GEH, is perpendicular (Schol. D. 3.) to its chord
GH : it is also perpendicular to the tangent AB; therefore AB, GH are
parallel. v ’

If both lines cut the circle, as GH, JK, and intercept -equal ares GJ,
HK ; let the diameter FE bisect one of the chords, as GH : it will also
bisect the grc GEH, so that-EG is equal to EH ; and since GJ is (by Ayp.)
equal to HK, the whole arc EJ is equal to the whole arc EK ; therefore
the chord JK is bisected by the diameter FE : hence, as both chords are
bisected by the diameter FE, they are perpendicular to it ; that is, they are
parallel (Cor. 28 1.).

SCHOLIUM.

The restriction in the enunciation of the converse proposition, namely,
that the lines do not cut each other within the circle, is necessary ; for
lines drawn through the points G, K, and J, H, will intercept equal arcs
GJ, HK, and yet not be parallel, since they will intersect each other within
the circle. '

PROP. F. PROB.
To draw a tangent to any point in @ circular arc, without finding the centre.

From B the given point, take two equal G
distances BC, CD on the arc; join BD, ’
and draw the chords BC, CD: mgke (23.
1.) the angle CBG=CBD, and the straight
line BG will be the tangent required.

For the angle CBD=CDB ; and there- |- C.
fore the angle GBC (32. 3.) is also equal
to CDB, an angle in :he alternate segment ;
hence, BG is a tangent at B.
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" BOOK IV.
DEFINITIONS.

1 A RECTILINEAL fi is said to be inscribed in another rectilineal

figure, when all the angles of the inscribed
figure are upon the sides of the figure in which
is is inscribed, each upon each.

2 In like manner, a figure is said to be described
about another figure, when all the sides of the

- circumscribed figure pass through the angular
points of the figure about which it is described,
each through each.

3 A rectilineal figure is said to be inscribed in
a circle, when all the angles of the inscribed
figure are upon the circumference of the cir-
cle. ‘

4. A rectilineal ﬁgn-o is said to be described
about a circle, when each side of the circum-
ss:ril;:d figure touches the circumference of the
circle. ‘

5. In like manner, & circlesis said to be inscrib-
ed in a rectilineal figure, when the ecircum-
gerence of the circle touches each side of the

gure,

6. A circle is said to be described about a recti-
lineal figure, when the circumference of the
circle passes through all the angular points of
the figure about which it is described.

7. A straight line is said to be placed in a circle,
wher' the extremities of it are in the circum-
ference of the circle.

N

\__/
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8. Polygons of five sides are called pentagons; those of six sides, Aexa-
gons; those of seven sidos, heptagons ; those of eight sides, octagons ;
and so on!

9. A polygon, which is at once equilateral and equiangular, is called &
regular polygon. . . .
Regular polygons may have any number of sides; the equilateral tri

angle is ope of three sides ; and the square js one of four sides.

LEMMA.

Any regular polygon may be inscribed in a circle, and circumscribed about one.

Let ABCDE, &c. be a regular polygon: describe a circle through the
three points A, B, C, the centre being O, and OP the perpendicular let fall
from it, to the middle point of BC: join AO and OD. :

* If the quadrilateral OPCD be placed upon
the quadrilatoral OPBA, they will coincids;
for the side OP is commen: the angle OPCss
OPB, being right ; henco the side PC will ap-
ply to its equal PB, and the point C will fall
on B ; besides, from the nature of the polygon,
the angle PCD=PBA ; hence CD will take
the direction BA, and since CD==BA, the point
D will fall on A, and the two guadrilaterals
will eatirely coincide.

The distance OD is therefore equal to AO;
and consequently the circle which passcs through the three points A, B, C,
will also pass through the point D. By the same mode of reasoning, it
might be shown that the circle which passes through the points B, C, D,
will also pass through the point E ; and so of all the rest: hence the cir-
cle which passes through the points A, B, C, passes through the vertices
of all the angles in the polygon, which is therefore inscribed in this circle.

Agasin, in reference to this circle, all the sides AB, BC, CD, &c. are
equal chords ; they are therefore equally distant from the centre (Th. 14.
3.): hence, if from the point O with the distance OP, a circle be describ-
ed, it will touch the side BC, and all the other sides of the polygon, each
in its middle point, and the circle will be insgibed in the polygon, or the
polygon circumscribed about the circle.

Cor. 1. Hence it is evident that a circle may be inscribed in, or cir-
cumscribed about, any regular polygon, and the circles so described have a
coOmmon sentre. :

Cor. 2. Hence itlikewise follows, that if from a common centra, circles
can be inscribed in, and circumscribed about a polygon, that polygon is regu-
lar. For, supposing those circles to be described, the inner one will touch
all the sides of the polygon ; these sidos are therefore equally distant from
its centre ;- and, consequently, being chords of the circumscribed circle,
they are equal, and therefore include equal angles. Hence the polygon is
at once equilateral and equiangular; that is (Def. 9, B. IV.), it is regular.
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SCHOLIUMS.

1. The point/Q; the cormmoncontre of the inscribed end circumscribed
circles, may also be regarded as the centre of the polygon ; and upon this
principle the angle AOB is called the angle at the centre, being formed by
two radii drawn to the extremities of the same side AB.

Sinoe all the chords are equal, all the angles at the centre must evident-
ly be equal likewise ; and therefore the value of each will be found by di-
vidingrfonr right angles by the pumber of the polygon’s sides.

2. To inscribe a regular polygon of a certain number of sides in a given
circle, we have only %0 divide ti? ciroumference inte as many equal parts
asthe po?gouhs sides : for the arcsbeing equal {see fig. Prop. XV. B.4.),
the chords AB, BC, CD, &c. will also be equal ; hence, likewise, the tr«
angles ABG, BGC, CGD, &c. must be equal, because they are equian-

; hence all the angles ABC, BCD, CDE, &c. will be equal, and cone
sequently the figure ABCD, d&cc. will be a regular polygon. :

PROP. I. PROB.

- In a given circle to placs a straight line equal to a given straight line, not
: greater m diemetor of the carels.

Let ABC be the given circle, and D the given straight line, not greater
than the diameter of the circle.

Draw BC the diameter of the circle A
ABC; then, if BCis equal tp D, the
thing required is done ; forin the circle
ABS a straight line BC is gaced equal
to D; But, if it is not, BC is greater
than D; make CE eqnlg’xop. 3.1)
to D, and from the centre C, at the dis.
tance CE, describe the circle AEF, and
join CA{: "lll‘hemf?roklﬁeFumc C is the )
centre of the circle , CA is equal D— .
to CF ; but D is equal to CE ; there- . :
fore D is equal to CA ; Wherefore, in the circle ABC, a straight line is
placed, equal to the given straight line D, which is not greater than tive
diameter of the circle.

PROP. II. PROB.

In a given circle to inscribe a triangle equiangular to a given triangle.

Let ABC be the given circle, and DEF the given triangle ; it is re-
gg;d to inscribe in the circle ABC a triangle equiangular to the triangle
Dr;.w(Prop. 17.3.) the straight line GAH touching the circle in the_poim'
A, and at the point A, in the straight line AH, make (Prop. 23.1.)the an-
gle HAC equal to the angle DEFg; and at the point A, in the straight line
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AG, make the angle GAB equal

to the angle DFE, and join

BC. Theréfore| becanss HAG

touches the circle ABC,and AC

is drawn from the point of con-

tact, the angle HAC ‘is equal

(32. 3.) to the angle ABC in the

alternate segment of the circle :

But HAC is equal to the angle

DEF ; therefore also the angle

ABC is equal to DEF'; forthe B ¥
same reacon, the angle ACB is

equal to the angle DFE ; therefore the remaining angle BAC is equal
(4. Cor. 32. 1.) to the remaining angle EDF: Wherefore the trianglp ABC
18 equiangular to the triangle DEF', and it is inscribed in the circle ABC.

PROP. III.- PROB.
About a given circle to describe a triangle equiangular to a given triangle.

Let ABC be the given circle and DEF the given triangle ; it is requir-
ed to describe a triangle about the circle ABC equiangular to the triangle
DEF.

Produce EF both ways to the points G, H, and find the centre K of the
circle ABC, and from it draw any straightline KB; at the point K in the
straight line KB, make (Prop.23 1.) the angle BKA equal tothe angle
DEG, and the angle BKC equal to the angle DFH ; and through the
points A, B, C, draw the straight lines LAM, MBN, NCL touching (Prop.
17.3.) thecircle ABC: Therefore, because LM, MN, NL touch the circle
ABC in the points A, B, C, to which from the centre are drawn KA, KB,
KC, the angles at the points A, B, C, are right (18. 3.) angles.” And be-
cause the four angles of the quadrilateral figure AMBK are equal to four
right angles, for it can be divided into two triangles ; and because two of

M B N
them, KAM, KBM, are right angles, the other two AKB, AMB are equal
to two right angles : But the angles DEG, DEF are likewise equal (13.1.)
to two right angles ; therefore the angles AKB, AMB are equal to the an-
gles DEG, DEF, of which AKB is equal to DEG ; wherefore the remain-



OF GEOMETRY. BOOK IV. 95

ing angle AMB is equal to the remaining angle DEF. In like manner,
the angle LMN/may be'démonstrated-to be equal to DFE ; and therefore
the remaining angle MLN is equal (32. 1.) to the remaining angle EDF :

Wherefore the triangle LMN is equiangular to the triengle DEF : and it

is described about the circle ABC.
’ PROP. IV. PROB.
To inscribe a circle tn a given triangle.

Let the given triangle be ABC; itis required to inscribe a circle in

ABC.

Bisect (9. 1.) the angles ABC, BCA by the straight lines BD, CD meet-

ing one another in the goim D, from which draw (12.1.) DE, DF, DG

rpendiculars to AB, BC,CA. - Then'be-
g:use the angle EBD is equal to the angle A
FBD, the angle ABC being bisected by
BD; and because the rightangle BED, is
equal to the right angle %FD, the two tri-
angles EBD, FBD have two angles of the
one equal to two angles of the other ; and
the side ‘BD, which is opposite to one of
the equal angles in each, is common to
both ; therefore their other sides are equal
(26. 1.); wherefore DE is equal to DF.
For the same reason, DG is equal to

DF, therefore the three straight lines DE, DF, DG, are equal to one

another, and the circle described from the centre D, at the distance of an{‘

of them, will pass through the extremities of the other two, and will touc

the straight lines AB, BC, CA, because the angles at the points E, F, G,
are right angles, and the straight line which is drawn from the extremity
of a diameter atright angles to it, touches (1 Cor.16. 3.) thecirele. There-

fore the straight lines'AB, BC, CA, do each of them touch the circle, and

the circle EFG is inscribed in the triangle ABC.
PROP. V. PROB.
To describe a circle about a given triangle.

BLet the given triangle be ABC; it is required to describe a circle about
C. '

Bisect (10. 1.) AB, AC in the points D, E, and from these points draw
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DF, EF at right angles (11. 1.) to AB, AC; DF, EF produced will meet
one another ; for, if they do not meet, they are parallel, wherefore, AB,
A€, which 'are'at right dngles 'to-them, are parallel, which is absurd : let
them meet in F, and join FA ; also, if the point F be not in BC, join BF,
CF: then, because AD is equal to BD, DF common, and at right an-
gles to AB, the base AF is equal (4. 1.) to the base FB. In like manner,
it may be shewn that CF is equal to.FA; and therefore BF is equal to
FC ; and FA, FB, FC are equal to one another ; wherefore the circle de-
scribed from the centre F, at the distance of ome of them, will pass
tl;r h the extremities of the other two, and he described about the trian-
gle ABC. ' .

Cor. When the-eentre of the circle falls within the triangle, each of
its angles is less than a right angle, each ef:them being in 8 segment great-
er than a semicircle ; but when the centre is in ane of the sides of the
triangle, the angle opposite to this side, being in a semicircle, is a right an-
gle: and if the centre falls without.the triangle, the angle opposite to the.
side beyond which it is, being in a segment less than & semicircle, is greater
than a right angle. 'Wherefore, if the given triangle be acute angled, the
centre of the circle falls within it ; if it be a right angle triangle, the cen-
tre is in the side opposite to the right angle ; and if it be an obtuse angled
triangle, the centre falls without the triangle, beyond the aide opposite to the
obtuse angle.

SCHOLIUM,

1. From the demonstration: it is evident that thie three perpendiculars
bisecting the sides of a triangle, meet in the same point ; that is, the centre
of the circumscribed circle. ‘

2. A circular segment arch of a given span and rise, may be drawn by
a modification of the preceding problem.

Let AB-be the span and SR the rise.

Join AR, BR, and at their respective points of bisection, M, N, erect
the perpendicular MO, NO to AR, BR ; they
will intersect at O, the centre of the circle.
That OA=O0R=O0B, is proved as before.

The joints between the arch-stones, or
voussoirs, are only continuations of radii
drawn: from the centre O of the circle:

PROP. VI. PROB.

To tnscribe a square in a.given circle.

1;(‘));) ABCD be the given circle ; it is required to inscribe a square in
A .

Draw the diameters, AC, BD at right angles to one another, and join
AB, BC, CD, DA ; because BE is equal to ED, E being the centre, and-
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because EA is at right angles to. BD, and

common to the/triangles ABE, ADE; the _ A
base BA is equal (4. 1.)to the base AD ; and, '

for the same reason, BC, CD are each of
them equal to BA or AD ; therefore the quad-
rilateral figure ABCD is equilateral. It is
also rectangular; for the straight line BD be-
ing a diameter of the circle ABCD, BAD is
a semicircle ; wherefore the angle BAD isa
right angle (31. 3.); for the same reason each
.of the angles ABC, BCD, CDA is a right an-
gle; therefore the quadrilateral figure ABCD
is rectangular, and it has been shewn to be
equil:it)era.l; therefore it is a square; and it is insctibed in the circle
ABCD.

SCHOLIUM.

Since the triangle AED is right angled and isosceles, we have (Cor. 2.
47.1)AD : AE :: 4/2: 1; hence the side of the inscribed square is to
the radius, as the square root of 2, is te unity. .

PROP. VIL. PROB. .
o describe a s'quarcvabout a given circle.

Let ABCD be the given circle; it is required to describe a square about it.

. Draw two diameters AC,BD of the circle ABCD, at right angles to
one another, and through the points A, B, C, D draw (17. 3.) FG, GH, HK,
KF touching the circle; and because FG touches the circle ABCD, and
EA is drawn from the centre E to the peint of contact ‘A, the angles at A .
are right angles (18. 3.); for the same reason, the angles at the points B,
C, D, are right angles; and because the angle AEB is a right angle, as
likewise is EBG, GH is parallel (28.1.) to AC; for the same reason, AC
is parallel to FK, and in like manner, GF, «
HK may each of them be demonstrated to be ‘
parallel to BED ; therefore the figures GK, {j A F
GC, AK, FB, BK are parallelograms; and
GF is therefore equal (34. 1.) to HK,and GH
to FK; and because AC is equal to BD, )
and also to each of the two GH, FK; and B
BD to each of the two GF, HK: GH, FK D
are each of them equal to GF or HK ; there-
fore the quadrilateral figure FGHK is equi-
lateral. It is also rectangular; for GBEA
being a parallelogram, and AEB a right an- 1 C K
gle, AGB (34. 1.) is likewise a right angle: )
in the same manner, it may be shewn that the angles at H, K, F areright
angles ; therefore the quadrilateral figure FGHK is rectangular ; and it
was demonstrated to be equilateral ; therefore it is a square ; and it is de-
scribed about the circle ABCD.

13
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PROP. VIII. PROB.
Toinscribe a \circle in a given square.

Let ABCD be the given square; it is required to inscribe a circle ‘in
ABCD. ’

Bisect (10. 1.) each of the sides AB, AD, in the points F, E, and
through E draw (31. 1.) EH parallel to. AB or DC, and through F draw
FK parallel to AD or BC; therefore each of the figures, AK, KB, AH,
HD, AG, GC, BG, GD is a parallelogram, and their gpposite sides are
equal (34. 1.); and because that AD is equal to AB, and that AE is the
half of AD, and AF the half of AB, AE is equal to AF; wherefore the
sides opposite to these are equal, viz. FG to GE ; in the same nranner it
may be demonstrated, that GH, GK, are each
of them equal to FG or GE ; therefore the
four straight lines, GE, GF, GH, GK, are
equal to one another ; and the circle described
from the centre G, at the distance of one of
them, will pags through the extremitias of the G
other three ; and will also touch the straight
lines AB, BC, CD, DA, because the angles
at the points E, F, H, K, are right angles
(29. 1.), and because the straight (llilne which
is drawn from the extremity of a diameter at
right angles to it, touches ttl)lte circle (16. 3.); B H C
therefore each of the straight lines AB, BC,

C]IB)bBA touches the circle, which is therefore inscribed in the squares
A . . .

PROP. IX. PROB.

To describe a circle about a given sqﬁara.

Let ABCD be the given square ; it is required to describe a circle
about it. :

Join AC, BD, cutting one auother in E ; and because DA is equal to
AB, and AC common to the triangles DAC, BAC, the two sides DA, AC
are equal to the two BA, AC, and the base DC is equal to the base BC ;
wherefore the angle DAC is equal (8. 1.) to the -

‘angle BAC, and the angle DAB is bisected b

the straight line AC. In gthe same manner it ma;’ /‘\
be demonstrated, that the angles ABC, BCD, /
CDA are severally bisected by the straight lines
BD, AC; therefore, because the angle DAB is
equal to the angle ABC, and the angle EAB is
the half of DAB, and EBA the half of ABC ; the
angle EAB is equal to the angle EBA :. and the
side EA (6. 1.) to the side EB. In the same
manner, it may be demonstrated, that the straight
lines EC, ED are each of them equal to EA, or EB ; therefore the four
straight lines EA, EB, EC, ED, are equal to one another ; and the circle
described from the centre E, at the distance of one of them, must pass
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through the extremities of the other three, and be described sbout the
square ABCD, C

PROP. X. PROB.

To describe an isosceles triangle, having each of the angles at the base double
of the third angle.

Take any -straight line AB, and divide (11.2.) it in the point C, so
that the rectangle AB.BC may be equal to the square of AC; and from
the centre A, at the distance AB, describe ‘the circle BDE, in which
place (1.4.) the straight line BD equal to AC, which is not greater
than the diameter of the eircle BDE ; join DA, DC, and about the tri-
angle ADC describe (5.4.) the circle ACD ; the triangle ABD is such
as is required, that'is, each of the angles ABD, ADB is double of the an-

le BAD. .
§ Because the rectangle AB.BC is equal to the square of AC, and A
equal to BD, the rectangle AB.BC is :
equal to the square of BD ; and because
from the point B without the circle ACD
two straight lines BCA, BD are drawn
to the circumference, one of which cuts,
and the other meets the circle, and the
rectangle AB.BC contained by the whole
of the cutting line, and the part of it
without the circle, is equal to the square
of BD, which meets it ; the straight line
BD touches (37. 3.) the circle ACD.
And because BD touches the circle, and
DC is drawn from the point of contact
. D, the angle BDC is equal (32. 3.) to D
the angle DAC in the alternate segment B
of the circle, to each of these add the angle CDA ; therefore the whole
angle BDA is equal to the two angles CDA, DAC; but the exterior angle
BCD is equal (32. 1.) to the angles CDA, DAC ; therefore also BDA is
equal to BCD; but BDA is equal (5. 1.) to CBD, because the side AD
is equal to the side AB; therefors CBD, or DBA is equal to BCD ; and
consequently the three andgles BDA, DBA, BCD, are equal to one another.
And because the angle DBC is equal to the angle BCD, the side BD is
equal (6. 1.) to the side DC; but BD was made equal to CA ; therefore
also CA is equal to CD, and theangle CDA equal (5. 1.) to the angle
DAC; therefore the angles CDA, DAC together, are double of the angle
DAC; but BCD is equal to the angles CDA, DAC (32. 1.) ; therefore
also BCID is double of DAC. But BCD is equal to each of the angles
BDA, DBA, and therefore each of the angles BDA, DBA, is double of
the angle DAB; wherefore an isosceles triangle ABD is described, hav-
ing each of the angles at the base double of the third angle.

“Cor. 1. The angle BAD is the fifth part of two right angles.
“ For since each of the angles ABD dnd ADB is equal to twice the an-
¢ gle BAD, they are together equal to four times BAD, and therefore all
“the three angles ABD, ADB, BAD, taken together, are equal to five
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“ tinies the angle BAD. But the three angles ABD, ADB, BAD are
“ equal to two right angles, therefore five times the angle BAD is equal to
“ two right angles ; or BAD is the fifth part of two right angles.”

« Cor. 2. Because BAD is the fifth part of two, or the tenth part of
“ four right angles, all the angles about the centre A are together equal to
“ten times the angle BAD, and may therefore be divided into ten parts
“each equal to BAD. And as these ten equal angles at the centre, must
“gtand on ten equal arcs, therefore the arc BD is one-tenth of the cir-
“ cumference ; and the straight line BD, that is;'AC, is therefore equal to
“the side of an equilateral decagon inscribed in the circle BDE.”

| PROP. XI. PROB.
To inscribe an equilatoral and equiangular pentagon in @ given aircle.
Let ABCDE be the given circle, it is required to inscribe an equilateral

and equiengular pentagon in the circle ABCDE. ‘

Describe (10. 4.) an isosceles triangle FGH, having each of the angles
at G, H, double of the angle at F ; and in the circle ABCDE inscribe (2.
4.) the triangle ACD equiangular to the triangle FGH, so that the angle
CAD be equal to the angleat F, and each of the angles ACD, CDA equal
to the angle at G or H : where- ,
fore each of the angles ACD,. .
CDA is double of the ‘angle
CAD. Bisect (9. 1.) the angles
ACD, CDA by the straight lines
CE, DB ; and join AB, BC,ED,
EA. ABCDE is the pentagon
required,

Because the- es ACD,
CDA are each of them double
of CAD, and axe bisected by the .
straight lines CE, DB, the five angles DAC, ACE, ECD, CDB, BDA are
equal to one another; but equal angles stand upon equal arcs (26. 3.);
therefore the five arcs AB, BC, CD, DE, EA are equal to one another ; and
equal arcs are subtended by equal (29. 3.) straight lines ; therefore the
five straight lines AB, BC, CD, DE, EA are equel to one another. Where-
fore the pentagon ABCDE is equilateral. It is also equiangular; be-
cause the arc AB is equal to the arc DE ; if to each be added BCD, the
whole ABCD is equal to the whole EDCB ; and the angle AED stands
on the arc ABCD, and the angle BAE on the arc EDCB : therefore the
angle BAE is equal (27. 3.) to the angle AED : for the same reasen, each
of the angles ABC, BCD, CDE is equal to the angle BAE or AED : there-
fore the pentagon ABCDE is equiangular; and it has been shewn that i
is equilateral. Wherefore, in the given circle, an equilateral and equian-
gular pentagon has been inscribed. :

Otherwise.

“ Divide the radius of the given circle, 8o that the rectangle contained
“by the whole and one of the parts may be equal to the square of the other
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«(11. 2.). Apply in the circle, on each side ofa %iven point, a -line
* equal to the/gredter of these parts’; then (2. Cor. 10. 4.), each of the
« ares cut off will be one-tenth of the circumferénce, and therefore the
“ arc made up’ of both will be one-fifth of the circumference ; and if the
‘“straight line subtending this arc be drawn, it will be the side of an
* equilateral pentagon inscribed in the circle.” - L

: PROP. XII. PROB.
To describe an equilateral and equiangular pentagon about @ gwen circle.

Let ABCDE be the given circle, it is required to describe an equilateral
and equiangular pentagon about the circle ABCDE.

Let the angles of a pentagon, inscribed in the circle, by the last pro-

sition, be in the points A, B, C, D, E, so that the arcs AB, BC, CD,

E, EA are equal (11. 4.) ; and through the poiats A, B, C, D, E, draw
GH, HK,.KL, LM, MG, touching (17. 3.) the circle; take the centre F,
and join FB, FK, FC,FL, FD. Andbecause the straight line KL touch-
es the circle ABCDE in the point C, to which FC is drawn from the cen-
tre F, FC is perpendicular (18. 3.) to KL ; therefore each of the angles
at C is a right angle ; for the same reason, the angles at the points B, D are
right angles ; and because FCK is a right angle, the square of FK is equal
{47. 1.) to the squaresof FC, CK. For the same reason, the square of
FK is equal to the squares of FB, BK : therefore the squares of F'C, CK
are equal to the squares of FB, BK, of which the square of FC is equal to
the aquare of FB ; the remaining square of CK is therefore equal to the
_remaining square of BK, and the straight lme CK equal to BK : and be-
cause FB is equal to FC, and FK common to the triangles BFK, CFK,
the two BF, FK are equal to thetwo CF, FK ; and the base BK is equal
to the base KC; therefore the angle BFK is equal (8.1.) tothe angle
KFC, and the angle BKF to FKC ; wherefore the angle BFC is double
of the angle KFC, and BKC double of FKC: for the same reason, the an-
gle CFD is double of the angle CFL, and CLD double of CLF : and be-
cause the arc BC is equal to the arc CD, the angle BFC is equal (27. 3.)
to the angle GFD : and BFC is double of the angle KFC, and CFD
double of CFL ; therefore the angle.
KFC is equal to the angle CFL:
now the right angle FCK is equal to
the right angle FCL ; and therefore,
inthe two triangles FKC, FLC, there
are two angles of one equal to two an-
gles of the other, each to each, and the
side FC, which is adjacent to the
equal angles in each, is common to
both ; therefore the other sides are
equal (26.1.)tothe other sides,and the
third angle to the third angle ; there-
fore the straight line KC is equal to
CL, and the angle FKC 1o the angle '
FLC : and because KC is equal to CL, KL is double of KC; in the same
manner, it may be shewn that HK is double of BK ; and because BK is
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equal to KC, as was demonstrated, and KL is double of KC, and HK double
of BK, HK is equal to;KLj; inlike-manner, it may be shewn that GH, GM,
ML are each of them equal to HK or KL: therefore the pentagon GHKLM
is equilateral. It is also equiangular ; for, since the angle FKC is equal to
the angle FL.C, and the angle HKL double of the angle FKC, and KLM
double of FLC, as was before demonstrated, the angle HKL is equal to
KLM ; and inlike manner it may be shewn, that each of the angles KHG,
HGM, GML is equal to the angle HKL or KLM ; therefore the five an-
gles GHK, HKL, KLM, LMG, MGH being equal to one another, the pen-
tagon GHKLM is equiangular ; and it is equilateral as was demonstra-
ted : and it is described about the circle ABCDE.

PROP. XIII. PROB.

To inscribe a circle in a given equilateral and equiangu.ar pentagon.

Let ABCDE be the given equilateral and equiangular pentagon ; it is
required to inscribe a circle in the pentagon ABCDE.

Bisect (9.1.) the angles BCD, CDE by the straight lines CF, DF, and
from the point F, in which they neet, draw the straight lines FB, FA,
FE; therefore, since BC is equal to CD, and CF common to the trian-
gles BCF, DCF, the two sides BC, CF are equal to the two DC, CF;
and the angle BCF is equal to the angle DCF : therefore the base BF is
equal (4. 1.) to the base FD, and the other angles to the other angles, to
which the equal sides are opposite ; therefore the angle CBF is equal to
the angle CDF : and because the angle CDE is double of CDF, and CDE
equal to CBA, and CDF to CBF ; CBA is also double of the angle CBF ;
therefore the angle ABF is equal to the A
angle CBF ; wherefore the angle ABC
is bisected by the straight line BF : in
the same manner, it may be demonstra-
ted that the angles BAE, AED, are bi-
sected by the straight lines AF, EF: B
from the point F draw (12. 1.) FG,
FH, FK, FL, FM perpendiculars to
the straight lines AB, BC, CD, DE,
EA; and because the angle HCF is
equal to KCF, and the right angle
FHC equal to the right angle FKC; in
the triangles FHC, FKC there are two -
angles of one equal to two angles of the other, and the side FC, which is
opposite to one of the equal angles in each, is common to both ; therefore,
the other sides shall be equal (26. 1.), each to each; wherefore the per-'
pendicular FH is equal to the perpendicular FK : in the same manner it
may be demonstrated, that FL, FM, FG are each of them equal to FH, or

" FK; therefore the five straight lines FG, FH, FK, FL, FM are equal to
-one ahother; wherefore the circle described from the centre F, at the dis-
tance of one of these five, will pass through the extremities of the other
four, and touch the straight lines AB, BC, CD, DE, EA, because that the
angles at the points G, H, K, L, M are right angles, and that a straight line

- drawn from the extremity of the diameter of a circle at right angles to it,
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touches (1. Cor. 16.3,) the circle; therefore each of the stralght lines AB,
BC, CD, DE, BA touchés)the vircle wherefore the circle is-inscribed in
the pentagon ABCDE. ‘ - '

PROP. XIV. PROB. _
To describe a circle about a given equilateral and equiangular pentagon.

Let ABCDE be the given equilateral and equiangular pentagon ; it is
required to describe a circle about it. . . .

Bisect (9. 1.) the angles BCD, CDE by the straight lines CF, FD, and
frem the poiut F, in which they meet, draw :
the straight lines FB, FA, FE to the points :
B, A, E. It may be demonstrated, in the
same manner as in the preceding propesitien,
that the angles CBA, BAE, AED are bisect-
ed by the straight lines FB, FA,FE : and
because that the angle BCD is equal to the
angle CDE, and that FCD is the half of the
angle BCD, and CDF the half of CDE ; the
angle FCD is equal to FDC; wherefore the -
side CF is equal (6. 1.) to the side FD: in ‘
like manner it may be demonstrated, that FB, .
FA, FE are each of them equal to FC, or FD : therefore the five straight
lines FA, FB, FC, FD, FE are equal to one another; and the circle de-
scribed from the centre F, at the distance of one of them, will pass through
the extremities of the other four, and be described about the equilateral
and equiangular pentagon ABCDE.

PROP. XV. PROB.
To inscribe an equilateral and equiangular hexagon in a given circle.

Let ABCDEF be the given circle; it is required to inscribe an equi-
lateral and equiangular hexagon in it.

Find the centre G of the circle ABCDEF, and draw the diameter AGD:
and from D, as a centre, at the distance DG, describe the circle EGCH,
join EG, CG, and produce them to the points B, F ; and join AB, BC,
CD, DE, EF, FA : the hexagon ABCDEF is equilateral and equiangular.

Because G is the centre of the circle ABCDEF, GE is equal to GD :
and because D is the centre of the circle EGCH, DE is equal to DG;
wherefore GE is equal to ED, and the triangle EGD is equilateral ; and
therefore its three angles EGD, GDE, DEG are equal to one another
(Cor. 5. 1.); and the three angles of a triangle are equal (32. 1.) to two
right angles ; therefore the angle EGD is the third part of two right an-
gles: in the same manner it may be demonstrated that the angle DGC is
also the third part of two right angles; and because the straight line GC
makes with EB the adjacent angles EGC, CGB equal (13. 1.) to two
right anqles; the remaining angle CGB is the third part of two right
angles ; therefore the angles EGD, DGC, CGB, are equal to one an-
other; and also the angles vertical to them, BGA, AGF, FGE (15.

.30 \ .
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1.); therefore'the six angles EGD, DGC,
CGB, BGA, AGF,EGE are equal t0 one an~
other. But equal-angles-at the ‘centre stand
upon equal arcs (26. 3.): therefore the six
arcs AB, BC, CD, DE, EF, FA are equal"
to one another: and equal arcs are subtend- -
ed by equal (29. -3.) straight lines ; there-
fore the six straight lines are equal to one
another,. and the hexagon ABCDEF is
equilateral. It is also equiangular; for,
since the arc AF is equal to ED, to each of
these add the arc ABCD ; therefore the
whole arc FABCD shall be equal to the
whole EDCBA : and the angle FED stands
upon the arc FABCD, and the angle AFE
upon EDCBA ; therefore the angle AFE '

is equal to FED: in the same manner it may be demonstrated, that the
other angles of the hexagon ABCDEF are each of them equal to the
angle AFE or FED ; therefore the hexagon is equiangular; it is also
equilateral, as was shown ; and it is inscribed in the given circle ABCDEF.

Cor. From this it is manifest, that the side of the hexagon is equal to
the straight line from the centre, that is, to the radius of the circle.

And if through the points A, B, C, D, E, F, there be drawn straight
lines touching the circle, an equilateral and equiangular hexagon shall be
described about it, which may be demonstrated from what has been said
of the pentagon ; and likewise a circle may be inscribed in a given equi-
lateral and equiangular hexagon, and circumscribed about it, by a method
like to that used for the pentagon. :

PROP. XVI. PROB.
To inscribe an equilateral and equiangular quindecagon in a given

Let ABTD be the given cirele ; it is required to inscribe an equilateral
and equiangular quindecagon in the circle ABCD. .

Let AC be the side of an equilateral triangle inscribed (2. 4.) ig .the
circle, and AB the side of an equilateral '
and equiangular pentagon inscribed (11. 4.)
in the same ; therefore, of such equal parts
as the whole circumference ABCDF con-
tains fifteen, the arc ABC, being the third
part of the whole, contains five; and the
arc AB, which is the fifth part of the whole,
contains three ; therefore BC their differ-
ence contains two of the same parts: bi-
sect (30. 3.) BC in E; therefore BE, EC
are, each of them, the fifteenth part of the
whole circumference ABCD : therefore, if
the straight lines BE, EC be drawn, and
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straight lines equal to them be placed (1. 4.) around in the whole circle,
an equilateral and equiangular quindecagon will be inscribed in it.

And in the same manner a3 was done in the pentagon, if through the
points of division made by inscribing the quindecagon, straight lines be
drawn touching the circle, an equilateral and equiangular quindecagon may
be described, about it : and likewise, as in the pentagon, a circle may be
inscribed in a given equilateral and equiangular quindecagon, and cir
cumscried about it. .

SCHOLIUM. B

Any regular polygon being inscribed, if the arcs subtended by its sides
be severally bisected, the chords of those semi-arcs will form a new regu-
lar polygon of double the number of sides : thus, from having an inscribed
square, we may inscribe in succession polygons of 8, 16, 32, 64, &c. sides ;
from the hexagon may be formed polygons of 12, 24, 48, 96, &c. sides ;
from the decagon polygons of 20, 40, 80, &c. sides ; and from the pente-
decagon we may inscribe polygons of 30, 60, &c. sides; and it is plain
that each polygon will exceed the preceding in surface or area.

It is obvious that any regular polygon whatever might be inscribed in a
circle, provided that its circumference could be divided into any propased
number of equal parts ; but such division of the circumference like the tri-
section of an angle, which indeed depends on it, is & problem which has
not yet been effected. = There are no means of inscribing in a circle a regu-
lar heptagon, or which is the same thing, the circumference of a circle can-
not be divided into seven equal parts, by any method hitherto discovered.

It was long supposed, that besides the polygons above mentioned, no
other counld be inscribed by the operations of elementary Geometry, or,
what amounts to the same thing, by the resolution of equations of the first
and second degree. But M. Gauss, of Gottingen, at length proved, in a
work entitled Disguisitiones Arithmetice, Lipsie, 1801, that the circumfer-
ence of a circle could be divided into any number of equal parts, capable
of being expressed by the formula 2"4-1, provided it be a prime number,
that is, a number that cannot.be resolved into factors.

The number 3 is the simplest of this kind, it being the value of the
above formula when n=1; the next prime number is 5, and this is also
contained in the formula ; that is, when n=2. But polygons of 3 and 5
sides have already been inscribed. The next prime number expressed by
the formula is 17 ; so that it is possible to inscribe a regular polygon of
17 sides in a circle. ‘

For the investigation of Gauss’s theorem, which depends upon the the-
ory of algebraical equations, the student may consult Barlow’s Theory of
Numbers. :

‘ 14

'
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GEOMETRY. «

.BOOK V.

In the demonstrations of this book there are certgm « ngn: or clmmaers”
which it has been found convenient to employ

¢1. The letters A, B, C, &c. are used to denote magmtudes of any kind.
“The letters m, n, are used to denote numbers only.
- It is to be observed, t({lat in speaking of the magnitudes A, B, C, &c.,
we mean, in reahty, those which these letters are emponed to repre-
sent; they may be either lines, surfaces, or sohds

“ 2, When a number, or a letter denoting a number, is written close to
“another letter denoting a magnitude of any kind, it signifies that the
“ maguitude is multiplied by the number. Thus, 3A signifies three
“times A; mB, m times B, or a multipte of B by m. When the num-
“ber is intended to mulnply two or more magnitudes that follow, it is
¢ written thus, m(A+B), which signifies the sum of A and B taken m
“times ; m(A—B) is m times the excess of A above B.

« Also, when two letters that denote numbers are written close to one an-
“other, they denote the product of those numbers, when multiplied into
“one another. 'Thus, mn is the product of m into n; and mnA is A mul-
“tiplied by the product of m into 5.

DEFINITIONS.

1. A less magnitude is said to be a part of a greater magnitude, when the
less measures the greater, that'is, when theless is contained a certain
number of times, exactly, in the greater.

2. A greater magnitude is said to be a multiple of a less, when the greater
is measured by the less, thatis, when the greater contains the less a cer-
tain number of times exactly.

3. Ratio is a mutual relation of two magmtudes, of the same kind, to one
another, in respect of quantity.
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4. Magnitudes are said to be of the same kind, when the less can be mul-
tiplied s0 as to exceed the greater ; and it is only such magnitudes that
are said to have/d ratiotd oneanother. .

5. If there be four magnitudes, and if any equimultiples whatsoever be
taken of the first and third, and any equimultiples whatsoever of the se-
cond and fourth, and if, according as the multiple of the first is greater
than the multiple of the second, equal to it, or less, the multiple of the
third is elso greater than the multiple of the fourth, equal to it, or less’;

. then the first of the magnitudes is said to have to the second the same
ratio that the third has to the fourth. ‘

6. Magnitudes are said te be propertionals, when the first has the same
ratio to the second that the tﬁird has to the fourth ; and the third to the
fourth the same ratio which the fifth has to the sixth, and so on whatever
be their number. ' ‘ .

“When four magnitudes, A, B,C, D are proportionals, it is usual to say
sthat A isto B as C to D, and to write them thus,A : B::C : D, or
“thus, A : B=C : D.”

7. When of the equimultiples of four magnitudes, taken as in the fifth
definition, the multiple of the first is greater than that of the second,
but the multiple of the third is not greater than tlie multiple of the fourth :
‘then the first is said to have to the second a greater ratio than the third
magnitude has to the fourth: and, on the contrary, the third is said to
have to the fourth a less ratio than the first has to the second.

8. When there is any number of magnitudes greater than two, of which
the first has to the second the same ratio that the second has to the
third, and the second to the third the same ratio which the third has to
the fourth, and 8o on, the magnitudes are said to be continual propor-
tionals.

9. When three magnitudes are continual proportionals, the second is said
to be a mean proportional between the other two. e

. \

10. When there is any number of magnitudes of the same kind, the first
is said to haye to the last the ratio compounded of the ratio which the
first has to the second, and of the ratio which the second has to the
third, and of the ratio which the third has to the fourth, and so on unto
the last magnitude. .

For example, if A, B, C, D, be four magnitudes of the same kind, the

. first A is said to Lave to the last D, the ratio compounded of the ratio
of -A to B, and of the ratio of B to C, and of the ratio of Cto D; or,
the ratio of A to D is said to be compounded of the ratios of A to B,
BtoC,and C to D. .

Andif A:B::E:F; and B: C::G: H,andC : D::K : L, then, since
by this definition A has to D the ratio compounded of the ratios of A to
B,BtoC,CtoD; A may alsobe said to have to D the ratio compounded
of dthe ratlilos which are the same with the ratios of E to F, G to H,
and K to L.
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In like manner, the same things being supposed, if M has to N the same
ratio which, A has to D, then, for shortness’ sake, M is said to have to
N a ratio compounded of the same ratios which compound the ratio of
AtoD; il‘mt is, aratio compounded of the ratios of Eto F,G to H,
and K to L. . :

11. If three magnitudes are continual proportionals, the ratio of the first
to the third is said to be duplicate of the ratio of the first to the second.

“ Thus, if A be to B as B to C, the ratio of A to C is said to be duplicate
“ of the ratio of A to B. Hence, since by the last definition, the ratio
“of A to Cis compounded of the ratios of A to B, and Bto C, aratio,
“ which is compounded of two equal ratios, is duplicate of either of
“these ratios.”

12. If four magnitudes are continual proportionals, the ratio of the first
to the fourth is said to be triplicate of the ratio of the first to the second,
or of the ratio of the second to the third, &c. -

“ So alsoe, if there are five continual proportionals ; the ratio of the first
“to the fifth is called quadruplicate of the ratio of the first to the se-
“cond ; and so on, according to the number of ratios. Hence, a ratio
« compounded of three equal ratios, is triplicate of any one of those ra-

-%tios ; a ratio compounded of four equal ratios quadruplicate,” &c.

13. In proportionals, the antecedent terms are called homologous to one
another, as also the consequents to one another.

Geometers make use of the following technical words to signify certain
ways of changing either the order or magnitude of proportionals, o as
that they continue still to be proportionals.

14. Permutando, or alternando, by permutation, or alternately ; this word

is used when there are four proportionals, and it is inferred, that the first

. has the same ratio to the third which the second has to the fourth; or

that the firstis to the third as the second to the fourth: See Prop. 16.
of this Book.

15. Invertendo, by inversion: When there are four proportionals, and it is
inferred, that the second is to the first, as the fourth to the third. Prop
A. Book 5.

16. Componendo, by composition: When there are four proportionals, and
it is inferred, that the first, together with the second, is to the second as
the third, together with the fourth, is to the fourth. 18th Prop. Book 5.

17. Dividendo, by division; when there are four proportionals, and it is
inferred that the excess of the first above the second, is to the second,
as the excess of the third above the fourth, is to the fourth. 17th Prop.
Book 5.

" 18. Convertendo, by conversion ; when there are four proportionals, and
it is inferred, that the first is to its excess above the second, as the third
to its excess above the fourth. Prop. D. Book 5.
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19. Ex wquali (sc. distantia), or ex ®quo, from equality of distance;
when there is any number of magnitudes more than two, and as man
others, so that they 'are proportionals when taken two and two of eac
rank, and it is inferred, &at the first is to the last of the first rank of
magnitudes, as the first is to the last of the others ; Of this there are the
two fullowing kinds, which arise from the different order in which the
magnitudes are taken two and two. ‘

20. Ex wmquali, from- equality ; this term is used simply by itself, when
the first magnitude is to the second of the firet rank, as the first 1o the
second of the other rank ; and as the second is 1o the third of the first
rank, 80 is the second to the third of the other ; and so on in order, and
the inference is as mentioned in the preceding definition ; whence this
is called ordinate proportion. ,

It is demonstrated in the 22d Prop. Book 5. .

21. Ex wquali, in proportione perturbata, seu inordinata : from equlity, in
perturbate, or disorderly proportion ; this term is used when the first
magnitude is to the second of the first rank, as the last but one is to the
last of the second rank ; and as the second is to the third of the first
rank, so is the last but two to the last but one of the second rank ; and
asthe third is to the fourth of the first rank, so is the third from the last,
to the last but two, of the second rank ; and so on in a cross, or inverse,
order ; and the inference is a8 in the 19th definition. It is demonstrated
in the 23d Prop. of Book 5.

AXIOMS.

1. EquinuLTirLzes of the same, or of equal magnitudes, are equal to one
another.

2. Those magnitudes of which the same, or equal magnitudes, are equi-
multiples, are equal to one another.

3. A multiple of a greater maguitade is greater than the same multiple of
a less.

4. That magnitude of which a multiple is greater than the same muilti-
ple of another, is greater than that other maguitude.

PROP. I. THEOR.

If any number of magnitudes de equimultiples of as many others, each
eack, what multiple soever any one of the first is of its part, the same
tiple is the sum of all the first of the sum of all the rest.

Let any nimber of magnitudes A, B, and C be equimultiples of as many
others, D, E, and F, each to each, A4B+-C is the same multiple of D+
E+4F, that A is of D.

Let A contain D, B contain E, and C contain F, each the same number
of times, as, for instance, three times



110 - . ELEMENTS .

Then, because A cantains D three times, a A=D4D+D.
For the same reason, B=E+E4E;
Aud/alsby ¢ C=F+4F+F.

- Therefore, adding equals to equals (Ax. 2. 1.), A4-B+4-C is equal to
D4+4-E+F, taken three times. In the same manuer, if A, B, and C were
. each any ather equimultiple of D, E, and F, it would be shown that A4
B+4C was the same multiple of D4-E+F.

Cor. Hence, if m be any number, mD+4mE+mF=m(D+E+F).
For mD, mE, and mF are multiples of D, E, and F by m, therefore their
sum is also a multiple of D+E4F by m. - g

PROP. 1I. THEOR.

If to a multsple of @ magnitude bg any number, a multiple of the same mag-
nitude by any number be added, the sum will be the same multiple of that
magnstude that the sum of the two numbers is of unity.

Let A=mC, and B=nC; A+B=(m+-)C.

For, since A=mC, A=C4-C+4C+-&c. C being repeated m times. For
the same reason, B=C+4-C+4-&c. C being repeated n times. Therefore,
adding equals to equals, A4 B is equal to C taken m--n times; that is,
A+4B=(m~+n\C. Therefore A+B contains C as oft as there are units
in m4-n. :

Cor. 1. In the same way, if there he any number of multiples what-
soe\;%r, as A=mE, B=aE, C=pE, it is shown, that A4+B 4 C=(m+»
+p)E. :

.Cor. 2. Hencealso, since A4 B+C=(m+n+p)E, andsince A=mE,
B=xE, and C=pE, mE+nE+pE=(m+n+p)E. .

4 PROP. III. THEOR.

If the first of three magnitudes contain the second as often as there are units
in a certain number, and if the second contain the third also, as often as
there are units in a certain number, the first will contain the third as often
as there are units in the product of these two numbers.

Let A=mB, and B=nC ; then A=mnC.

Since B=2C, mB=nC+nC+&c. repeated m times. But nC+4nC,
&c. repeated m times is equal to C (2. Cor. 2. 5.), multiplied by n+4-2+4-&ec.
n being added to itself m times ; but n added to itself m times, is n multi-
plied by m, or mn. Therefore nC+nC+4-&c. repeated m times=mnC ;
whence also mB=mnC, and by hypothesis A=mB, therefore A=mnC




OF GEOMETRY. BOOK V. 111

PROP. IV.  THEOR.

If the first of four magnitudes has the same ratio to the second which the third
has to the fourth, and if any equimultiples whatever be taken of the first and
third, and any whatever of the second and fourth ; the multiple of the first
shall have the same ratio to the multiple of the second, that the multiple of
the third has to the multiple of the fourth. -

‘Let A:B:: C:D,sandlet mand n be any two numbers; mA : nB ::
mC : aD. '

Take of mA and mC equimultiples by any number p, and of #B and aD
equimultiples by any number g. Then the equimultiples of mA, and mC
by p, are equimultiples also of A and C, for they contain A and C as oft as
there are units in p;m (3. 5.), and are equal to pmA and pmC. For the same
reason the multipﬁ: of nB and nD by ¢, are ¢gnB, gnD. Since, therefore,
A:B::C: D,andof A and C there are taken any equimultiples, viz. pmA
and pmC, and of B and D, any equimultiples ¢nB, ¢gnD, if pmA be greater
than ¢gnB, pmC must be greater than gnD (def. 5. 5.) ; if equal, equal; and
if less, less. But pmA, pmC are also equimultiples of mA and mC, and
g»B, gnD are equimultipf:ul of nB and D, therefore (def. 5. 5.), mA : aB
:: mC: aD. '

Cor. Inthe same manner it may be demonstrated, thatif A : B:: C:
D, and of A and C equimultiples be taken by any number m, viz. mA and
mC,mA:B::mC:D. Tll)lis may also be considered as included in the
proposition, and as being the case when n=1. ’

_PROP. V. THEOR.

" If one magnitude be the same multiple of another, which a magnitude taken -

Sfrom the iirst is of a magnitude taken from the other ; the remainder ist
same multiple of the remainder, that the whole is of the whole. :

Let mA and mB be any equimultiples of the two magnitudes A and B,
of which A is greater than B; mA—mB is the same multiple of A—B
that mA is of A, that is, mA—mB=m(A—B).

Let D be the excessof A above B, then A—B=D, and adding B teo
both, A=D+B. Therefore (1. 5.) mA=mD+4mB ; take mB from both,
- and mA—mB=mD ; but D=A —B, therefore mA —mB=m(A —B).

PROP. VI. THEOR.

If from a multiple of a magnitude by any number @ multiple of the same mag-
nitude by a £33 number be taken away, the remainder will {;ﬂw same mul-
tiple of that magnitude that the difference of the numbers is of unity.

Let mA and nA be multiplés of the magnitude A, by the numbers m and
n, and let m be greater than n; mA—nA contains A as oft a8 m—n con-
tains unity, or mA—nA=(m—n)A.
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Let m—n=q; then m=n+g¢g. Therefore (2. 5.) mA=nA+4¢A ; take °
A from both, and mA—nA=gA. Therefore mA— jA contains A as oft
a8 there areé/units. in g, that'is) in sm'—n, or mA—nA=¥(m—n)A. ~

"Cor. When the difference of the two numbers is equal to unity orm—
t_.I then mA —nA=A. , :

PROP A. THEOR.
‘ .[ffwrmagmtudabapropoﬂmk lu{ampropwtmltakowhm taken

tnverse

“IfA:B¢:C: D, thenalsoB: A:: D:C.

Let mA aad mC be any equimultiples of A and C; B and nD anyequi-
multiples of B and D. Then, because A : B ;: C : D, if mA be less than
nB, mC will be less than nD (def. 5. 5.), that ls,lf »B be greater than mA,
D will be greater than mC. For the same reason, if 2B=mA, nD ....mC
and if nB /mA, nD /mC, But nB, nD are any equimultiplés of B andD
i)nd mA, mC any equimultiples of A and C, therefore (def. 5., 5. »B:A"

PROP. B. THEOR.

If the first be the same multiple of the second, or the sams pavt of it, that the
flnﬂf' qftlwfourtb the first is to the seoond as the third to the fourth.

mg‘irst, if mA, mB be equlmulnples of the magnitudes A and BlmA A
:B

Take of mA and mB eqmmnlt:ﬁles by any number n; and of Aand B
equimultiples by any number p ; these will be nmA (3. 5. ), pA,»mB (3.5.),
pB. Now, if amA be greater than pA, am is also greater than p; and if
nm s greater than p, nmB is greater than pB, therefore, when nmA is great-
er than pA, amB 1s greater than pB. " In the same manner, if amA=pA,
nmB=pB, and if nmA /pA, nmﬁ[ B. Now, nmA, nmB are any equi-
mubltiples of mA and mB; and pA, pB are anyeqmmtﬂuplss of A and B,
therefore mA : A :: mB : B (def. 5. 5.).

Next, Let C be the same part of A that D is of B; then A is the same
muluple of C that B is of D, and therefoxe, as has been demonsuated A:
C: Da.ndmversely(A 5)C:A: D B.

PROP C. THEOR.

If the {irst be to the second as the third to the Jourth ; and if the ﬁfst be a
iple or a part of the second, the third is the same multiple or the sems
part of the fourth,

Let A: B:: C: D,and first, let A be a multiple of B, C i is the same
multiple of D, that i is, if A...mB C=mD.

Take of A and C eqmmuluples by any number as 2, viz. 2A and 2C;
and of B and D, take eqmmuluples by the number 2m, viz. 2mB, 2mD (3.
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5 .) ; then,because A=mB,2A=2mB ; andsinceA:B :: C : D, and since
2A_.2mB therefore 20=2mD (def. 5:5. ) and C=mD, that i is, C contains
D, m times, or as often as A contains B.
Next Let A be a part et B, C is the same part of D. ‘For,since A : B
:C: D mversely& .5.),B: A::D:C. ButA beingapartof B, Bis
a multlple of A ; and therefore, as is shewn above, D is the same multiple
of C,and therefore C is the same part of D that A isof B.

PROP. VII. THEOR

Equalmagmtudeahawtlncmramtothmmcmagmada ; and the same
: lcasthe:ameramtooqudmagmtudu

Let A and B be equal magnitudes, and C any other; A : C:: B: C.
of%et mA, mB, be any equimultiples of A and B; and nC any multiple

Because A=B,mA=mB (Ax. 1.5.); wherefore, if mA be greater than
nC, mB is greater ‘than nC; and if mA=nC, mB=nC ; or,ifmA /nC,mB
Z C. But mA and mB are any equmuluples of A and B, and C is any
multiple of C, therefore Xief 5. 5) A:C::B:C.

Again, if A=B, C 1 : B ; for, as has beenproved A:C::B:
C, and inversely (A 5),C: A :C:B.,

PROP. VIIL THEOR.

Of unequal magnitudes, the greater has a greater ratio to the same than the less
has ; and the same magnitude has a greater ratio to the less than it has to
the greater.

LetA 4 B bes magpitude geuer than A, and Ca third magnitude,
A+4-B has to C a greater ratio than A has to C and C has a greater ratio
to A thanit has to A4B.

Let m be such a number that mA and mB are each of them greater than
C; andlet nC be the least multiple of C that exceeds mA+mB’; then nC
—C that is (n—1)C (1. 5.) will be less than mA<+mB, or mA-l-mB that
is, m(A+B) 13 greater than (n—1)C. But because nC is greater than
mA+4mB, and C less than mB, nC—C is greater than mA, or mA is less
than nC—C, that is, than (n—l)C Therefore the multlple of A4+B by
m exceeds the multiple of C by n—1, but the multiple of A by m does not
exceed the multiple of C by n—1; therefore A+B has a greater ratio to
C than A has to C (def. 7. 5.).

Again, because the multiple of Cby n—1, exceeds the multiple of A by
m, but does not exceed the multiple of A+B by m,Chas a greater ratio to
A than it has to A+4B (def. 7. 5.).

15
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PROP. IX. THEOR.

w:wbchhwethcmmwmmcuagnu&anqudbm
another ; and those to which the same magnitude Aas the same ratio are oqual
0 ome another.

IfA:C::B:C,A=B.

Forif not, let A be greater than B; then because A js greater than B,
two numbers, m and n, may be found, as in the last proposition, such that
uA shall exceed nC, while mB does not exceed sC. But because A : C

:B:C; nndlfmAexceeduC mB must also exceed nC (def. 5. 5.): and
itis also shewn thatmB does not éxceod #C, which is impossible. There-
fore A is not greater than B; and in the same way it is demommaled that
Bisnot greaterthanA therefore A is equal to B.

Next,letC: A:: C: B, A=B. For by inversion (A.5)A:C::B:
C; and therefore, by the ﬁxst case, A=B.

PROP. X, THEOR.

That magnitude, which has a greater vatio tham another has to the sxme magns-
tude, 13 the greatest of the two : And that magnitude, towhich the same has
a greater ratio than it has to another magnitude, is the least of the two.

If the ratio of A to C be greater than that of B to C, A is greater than B.
Because A : C7B : C, two numbers mandamaybe found, such that
T;?»C ;md mB /aC (def. 7. 5.). Therefore also -A7-B and A7 B
4. 5.
¢ letC:B7C:A; B/ZA. For two numbers, m and » may be
found, such that mC 7B, and mC ZnA (def. 7. 5.). Therefore, since nB
is leu,lnd»Agroater thn.n the same mgmtude mC,aB /nA, and there-
fore B/ A.

PROP. XI. THEOR.

Ratios tnat are equal to the saine ratio are equel to one another.

IfA:B::C:D; andalsoC:D::E:F;thenA:B::E: F.

Take mA, mC, mE, any equimultiples of A, C, and E ; and »B, aD, nF,
any equimultiples of B,D,and F. Because A : B:: C: D, if mA 7aB,
mC 72D (def. 5.5.) ; butif mC ZaD, mE 7 aF (def. 5. 5.), because C : D
:: E: F; therefore if mA 72B, mE 7aF. In the same manner, if mA=
#B,mE=xF; and if mA /nB, mE /nF. Now, mA,mE are any equi-
multiples whatever of A and E ; and B, aF any whatever of Band F;
therefore A : B : : E : F (def. 5. 5.).
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PROP. XII.. THEOR.

" If any number of magnitudes be proportionals, as one of the antecedents 1s to
tts consequent, so are all the antecedents, taken together, to all the conse-
quents.

IfA:B::C:D,sdC:D::E:F;thenalso,A: B:: A{+C+E:
‘B4-D+F.

Take mA, mC, mE any equimultiples of A, €, and E ; and nB, aD, nF,
anyeqmmult: losofBgandF n,becnuseA B::C: lemA
7nB mC 7 aD (def. 5. 5), and when mC 7aD, mE 7 aF, ‘because C : D

: F. Therefore,if mA 7 2B, mA+4+mC+mE 7n +nD+nF In the
same manner, if mA=2B, mA4+mC+mE=nB42D4nF ; and if mA A
2B, mA4+mC+4+mE AnB+aD+nF Now, mA4+mC+mE=m(A+4C+
E) (Cor 1. 5.), so that mA and mA+4-mC+mE are any equimultiples of
A,and of A4-C+E. And for the same reason nB, and sB+aD+4nF m
any equimultiples of B, and of B4D+F; therefore (def. 5.5.) A: B:
A+C+E: B+D+F

PROP. X!Il THEOR.

Uﬂwﬁrnkmtotkmdtbmmwbdthwhuuth
but the third to the izourth a greater ratio than the fifth has to the sixth;
" the first Rasalsotot umdagmunaaothmthﬁﬂhlca:tothm

IfA:B::C:D; butC:D7E: F; thenalso, A: B7E : F.

Because C : D7E Ftheremtwonumbersman&a,uchthun(!?
»D, but mE / nF (def. 7. 5.). Now,if mC 7nD,mA 7aB, because A : B
:le? D) Therefore mA 7B, and mE /nF, wherefore, A: B7E : F
(def. 7. 5.).

PROP. XIV. THEOR.

.rt have to the second the same watio which the third has o the
jf the first be greater than the third, the second shall be greater than

the fourth; if equal, equal ; andgflcxs,ku

IfA:B::C:D; thenif A7C,B7D; if A=C,B=D; and if A/
C,B/D.

First,let A7C; then A: B7C: B (8.5.),but A : B:: C-: D, there-
fere C: D7C: B(13 3.), and therefore B 7 D (10. 5.).

In the same manner, it is proved, that if A=0, B=D; and if A/C,
B/D.

PROP. XV. THEOR.
Mognitudes have the same ratio to ons another which their equimultiples have,

If A and B be two magnitudes, andmany number, A : B.: mA : mB.
BecalueA B::A:B(7.5.);A:B:: A4A: B+B(l2 5.),0rA:
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B::2A:§B. And in the same manner, since A: B::2A:2B,A: B
:: A42A: B42B (12.5.),0r A: B:: 3A : 3B; and so0 on, for all the
equimultiples of A abnd B;

PROP. XVI. THEOR.

If four magnitudes of the same kind be proportionals, they will also be pro-
‘ ff ﬁortwnale when t alternately. - ,

If A:B::C: D,then alternately, A: C.: B: D. ,

Take mA, mB any equimultiples of A and B, and nC, nD any equimul
tiples of C and D.. Then (15.5.)A: B:: mA:mB; nowA:B::C:
D, therefore (11.5) C: D:: mA : mB. ButC:D::aC:aD (15.5.);
therefore mA : mB : : o€ : D (11. 5.): wherefore if mA 72C, mB 72D
(14. 5.); if mA=nC, mB=nD, ot ‘if mA /nC, mB/nD ; therefore (def.
5.5)A:C::B:D. ,

-PROP. XVII. THEOR.

If magnitudes, taken jointly, be tionals, they will also be proportionals
fwln_cn taken separately ; ghattg:?o:ha Jirst, t];?;tlnr with the second, have
to the second the same ratio which the third, together with the fourth, has to
the fousth, the first will have to the second the same ratio which the third
has to the fourth.

IfA+B:B:: C4D:D,thenbydivisionA:B:: C:D.
.- Take mA and nB any multiples of A and B, by the numbers m and s ;
and first, let mA 72B : to each of them add mB, then mA 4mB 7 mB+4-aB.
But mA+mB=m(A4B) (Cor. 1. 5.), and mB+4sB=(m+n)B (2. Cor. 2.
5.), therefore m(A+-B) 7 (m+-n)B.

And because A+4-B: B :: C+D : D, if m(A4B)7(m+n)B, m(C+D)
7 (m~+n)D, or mC+mD 7 mD+-aD, that is, taking mD from both, mC 7
nD. Therefore, when mA is greater than B, mC is greater than sD. In
like manner it is demonstrated, that if mA=nB, mC=nD, and if mA /aB,
that mD /2D ; therefore A : B :: C : D (def. 5. 5.). '

PROP. XVIII. THEOR.

If magnitudes, taken separately, be proportionals, they will also be proportion-
als sohen taken jointly, that is, if the first be to the second as the third to the
Jourth, the first and second together will be to the second as the third and
Jourth together to the fourth. .

If A:B:: C: D,then, by composition, A+B : B:: C4+D : D.

Take m(A-B), and #B any multiples whatever of A+4B and B; and
first, let m be greater than n. Then, because A4-B is also greater than
B, m(A+B)7nB. For the same reason, m(G+4D)7sD. In this case,
therefore, that is, when m 7 n, m(A 4-B) is greater than aB, and m(C+-D)
is greater than nD. Andin the same manner it may be proved, that when
m=n, m(A-B) is greater than nB, and m(C+-D) greater than nD.

)

\
d .
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Next, let m / n, or n 7 m, then m{ A+ B) miay be greater than nB, or may
be equal to it, or msy be less ; first, let m(A~-B) be greater than nB then
also,mA+mB 7nB; take mB which 'is less than B, from both, and mA
/7 nB—mB, or mA7 n—m)B (6 5.). Butif mA7(n—m)B mC7(u—m)
D,because A : B:: C: D. Now, (n—m)D=sD—mD (6. 5.), therefore
mC7nD-mD and ad mD to , mC+mD 72D, that is (1. 5.),
m(C+D)7aD. If, therefore, m(A+B)7nB m(C-I-D) 71D.

Inthe same manner it will be proved, that if m(A+4B)=nB, m(C+-D)
;:nD and if m(A+B)/nB, u(C-i-D) ZnD ; therefore (def. 5.5.), A4

:B::C4D:D

PROP. XIX. THEORA

If a whole magnitude be to a whols, uamguuudctakmﬁamtlwﬁntuua
taken from the other ; the remainder will be to the remainder as
the whole to the whole.

IfA:B::C: D,andibeeleuthan A,A-C:B-D::A:B. -

Because A: B:: C: D, altematoly(lG 5.),A: C:: B: D; and there-
fore by division §3I7 5.) A—C:C::B—D:D. Wherefore, again alter-
natély,BA—DC _Il)) :C:D; butA B:: C: D, therefore (11.5.) A
- ~D::A:D.

Cor. ‘'A—=C:B~=D::C:D.

PROP. D. THEOR.

If four magnitudes be proportionals, they are also proportionals by conversion,
that is, the firstis to its excess above the second, as the tlm'd to its excess
above the fourth.

IfA: B::C:D,byéonvereion,A:A—B ::C: C-D.

For,since A: B::C: D, by dlvmon(17 5),A—=B:B::C=D:D,
and inversely (A. 5;) B ‘A—B::D: C—D ; therefore, by composition
(18.5.),A: A—=B:: C: C—-D.

Cor. Inthe same way, it may be provedthat A : A4B:: C: C+D.

PROP. XX. THEOR.

If there be three magnitudes, and other three, which taken two and two, Rave
the same ratio ; if the first be groater than the third, the fourth is greater
than the sixth ; if equal, equal ; and if less, less.

If there be three magnitudes, A, B, and C, apd other three D, E, and F';
andifA:B::D:E; andalsoB:C: E F, then A B C
if A7C, D7F 1fA—-C D=F; a.nd if A/C,D D’ E’ F’
Z ’ » .

Fnst,letA?C thenA:B7C:B(8.5.). ButA: B::D:E,there-
fore-also D : E7C E(13.5). -NowB:C:: E: Fandmversely(A
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5.),C:B:: F:E; and it has been shewn that D : E 7C : B, therefore
D:EJF: E(13 5),andconsequenByD7F(l& 5.).

"Next, let A==C1 'thea' A +B'::'C 7.5.)butA:B::D: E; there
fore,G:B::D:E,but-C:B::F , therefore, D : E :F: E(ll
5.),and D=F (9. 5.). . Lastly, let A AC ThenC 7 A, and because, as
was already shewn, C: B:: F : E,and B: A :: E : D; therefore, by the
ﬁrstcase,lfC7A. F7D, that m,lfA‘C D[F i

PROP. XXI. '!‘REOR.

If there be three magmtudes, and other three, which have the sameratio taken two
and two, but in a cross §rder ; if the first magnitude be greater than the third,
the fourth is greater than the sizth ; 3 if equal, equal ; and if less, less.

If there be three magnitudes, A, B, C, and other three, D, E,and F,
suchthatA : B:: E: F,andB:C:: D : E; fo7CD7F,1¢‘A_c
D=F; andlfA[C DéF

First wlet A7C. Then A : B7C B (8. 5.), but A, B, C,
A:B:: E:F,therefore E:F 7C: B(13 5.). Now, D, E, _F,'
B:C::D: Eandmversel C:B.:: E:D;there~ .
fore,E: F7E:D(13. 5),wherefore,D7F(1&5).

Next, let A=C. Then (7.5.) A:B::C:B; butA:B::E:F,
thexefore,C B::E:F(11.5.); but B: C::D: Eandmverse}y,C'
B::E : D, therefore (11.5),E:F::E: D, and,consequendy,DnF
(9. 5.

La.ztly, let AZC. Then C7 A, and, as was already proved, C: B::
E:D; and B: A :: F: E, therefore, by this first case, since C 7 A, F7
D, thaus,DlF .

PROP. XXII. THEOR.

If there be any number of magn itudes, end as MM:. which, taken two ana
two- in order, Rave the same ratio ; the havatothelastafdu rst
magnitudes, the same ratio. whsch the first qfth other has to the last.

First, let there be three magpitudes, A, B, C, and other three, D, E, F,
which, taken two and two, in order, have the same ratio, viz. A : B : D :
E,andB:C:: E: F; thenA:C::D: F.

"Take of A and D any equlmuluples whatever, mA, mD ; and of B and
D any whatever, 7B, aF : and of C and F any whatever, qC gF. Because
A:B::D:E,mA:nB: uE(4 5.); and

for the same reason, zB : qC : gF. Therefore %’ g g
'(20. 5.) accordingas mA is greater than ¢C, equal to | A' ¥ C
it, or less, mD is greater than gF, equal to it,or ”‘D 5B, ¢
less ; but mA, mD are any equimultiples of A and D; n ﬂE qF.

md gC l‘gF are any equimultiples of C and F'; therefore (def. 5.5.), A : C
Agam let there be four magnitudes, and other four which, taken two

# N. B.. This proposition is usaally eited by the words “ ex squali,” ar “ ex sque.™
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andtwomorder,have the samentw,nz A:B::E:F;B: C F
G;C:D::G:H,thenA: D::E: H..

For, since \A}/B,/C! are thrée magmtudes, and A, B, C. D
E, F, G other three, which, taken two and two, | E, F, G, H, -
have the same ratio, by the foregoing case, A:
C : E:G. Andbecausealso C: D :: G: H, by that same case, A : D

:E:H. Inthe same manner is the demonstratum extended to any num-
ber of magmtudes

PROP XXIII. THEOR.

of there.be any number of magnitudes, ud as many others, which, taken two
and two,.in @ cross s Rave the same ratio; the first will have to the last
of the ﬁrst magnitudes the same atio whick the Jirst of the others has to
the last.*

First, Let there be three magnitudes, A, B, C, and other three, D, E, and
F which, taken two and two in a cross order, have the same ratio, viz. A
:B: EFandBC :D:E,thenA: C::D:F. Take of A, B,
and D any eqmmultlples mA mB, mD and of C E,F any eqmmuluples

nC, nE nF.

Because A: B:: E: F, and because also A : B :: mA : mB (15. 5.),
and E: F::aE: nF therefore,mA mB :: aB : iF (ll 5.). Again,
because B: C:: D : EmB aC ::mD : nE(4 : "B, C
6.); and it has been just shewn that mA : mB : D E F
nE : nF; therefore, if mA 72C,mD 7 nF (21. 5%‘ mA. ‘mB. #C
if mA_.nC mD=nF; and if mA /nC, mD /! mD' 2B nF,
- Now, mA and mD are any equimultiples of A and u 2 .
D, and nC, »F any equimultiples of C and F; therefore, A: C:: D: F
def 5. 5.
( Next, L)et there be four magnitudes, A, B, C, and D, and other four, E,
F, G, and H, which, taken two and two in a cross order. have the same
rauo,vszB GH B:C::F:G,and
C:D::E:F, then,A D: (E:H. For,smce -A, B, C, D,
A, B, C, are throe magnitudes, ‘and F, G, H, other E, F, G, H.
three, which, taken two and two, in a cross order, _
have the same ratio, by the first case, A: C:: F: H. ButC:D::E:
F, therefore, again, by the first case,A : D :: E : H. TIn the same manner
may the demonstration be extended to any number of magnitudes.

PROP. XXIV. THEOR.

If the r:t has to the second the same ratio whick the third ha.t to the fourth ;
Sifth to the second, the same ratio which the sixth has to the fourth ;
the ﬁrst ”dﬁﬂh together, shall have to the second, the same ratio which
the third and sixth together, have to the fourth.

LetA:B::C:D,andalsoE:B::F:D,then A+E:B: C+F D.

# N.B. This ition is usually cited by the words “ ex eequali in proportione pertar
bata " or, “ ex ®quo inversely.” v by * P po °
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"Because E: B:: F: D, by inversion, B: E:: D: F. But byhypo-
thesis, A:B:: C: D therefore, ex aquah (22. 5) A:E::C:F; and
by composmon (18:/5¢ ), A+E71nEn: C4+F:F. And again by hypo'the-
sis, E : B : : F: D, therefore, ex equali (22.5.), A4+E:B :: C4+F:D.

PROP. E. THEOR.

* If four magnitudes be proportionals, the sum of the first two is to tlmr diffe-
rence as the sum of the other two to their dtﬁrmcc

LetA B::C:D; thenif A7B,

A+B: A—B: :C4+D:C—-D;j or 1fA£B
A4+B:B=~A::C4D:D~—C.

For,if A 7B, then beeause A : B :: C : D, by drnsion (17.5.),
A-B:B.:C~D:D, anabymvenxon (A. 5.),
B:A—B::D:C—D. But, by composition (18. 5.),
A4+B:B: C+D D, therefore, ex zquali (22. 5.),
A4B: A—B: :C4+D:C-D.

In the same manner, ifB 7 A, 1t is proved, that
A4B:B-—A: C+D D—C.

PROP F THEOR. - : T
Ratios which are compoundad of equal ratios, are equal to one another.

Let the ratios of A to B, and of B to C, which compound the ratio of A
to C, be equal, each to each, to the ratios of D to E, and E to F, which com-
dt.herahoothoF A:C::D:F.
For,ﬁrstlfthemnoofAtoBbe equal to that of (A B, C,
DwE, andtherauoothoCequaltothatowa D, E, F.
Fexequah(22 5),A:C::D:F. '
And next, if the ratio of A to B be equal to that of E to F, and the ratio
of B to C equal to that of D to E, ex quali inversely (23. 5. ), A:C::D
: F. In the same manner may the proposmon be demonstrated, whatever
be the number of ratios.

PROP. G. THEOR.

Ifa magmtude measure each of two others, it will 'also measure their sum and
difference.

Let C measure A, or be contamed in it a certain number of times ; 9 times
for instance : let C be also contained in B, suppese 5 times. Then’ A=9C,
and B=5C; consequently A and B together must be equal to 14 times C,
so that C measures the sum of A and B ; likewise, since the difference of
A and B is equal to 4 times C, C also measures this difference. And had
any other numbers been chosen, itis plain that the results would have been
zlmﬂar) For, let A=mC, and B=nC A4 B=(m+n)C, and A—B=

m—n)C.

Cor. If C measure B, and also A—B, or A4B, 1t must measure A, for
the sum of B and A-—B is A, and the (hﬁ'erence of Band A+Bis also A.
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BOOK VI. !
DEFINITIONS

1. SimiLar rectilinealAﬁgures are
those which have their several

angles equal, each to each, and .
the sides about the equal angles
proportionals. : .

In two similar figures, the sides which lie adjacent to equal angles, are
called homologous sides. These angles themselves are called homo-
logous angles. In different circles, similar arcs, sectors, and segments,
are those of which the arcs subtend equal angles st the centre. Two
equal figuves are always similar ; but two similar figures may be very
unequal. ) ’

2. Twosides of one figure .are said to be reciprocally proportional to two
sides of another, when one of the, sides of the first is to one of the
sides of the second, as the remaining side of the second is to the re-
maining side of the first. :

3. A straight line is said to be cut in extreme and mean ratio, when the
whole is to the greater segment, as the greater segment is to the less.

4. The altitude of a triangle is the straight line
drawn from its vertex perpendicular to the base.
The altitude of a parallelogram is the perpendicu-

lar which measures the distance of two oppo-
site sides, taken as bases. And the altitude of
a trapezoid is the perpendicular drawn between
its two parallel sides.

PROP. I. THEOR.

Triangles and parallelograms, of thbe same altitude, are one to another as their
ases.

* Let the triangles ABC, ACD, and the parallelograms EC, CF have the
same altitude, viz. the perpendicular drawn from the point A to BD; Then,
16
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as the base BC, is to the base CD, so is the triangle ABC to the triangle
ACD, and the parallelogram EC to the paralielogram CF.
Produce \BD \both Wways to) theCpoints - H, L, and take any number of

-straight lines BG, GH, each equal to the base BC; and DK, KL, any
number of them, each equal to the base CD ; and join AG, AH, AK, AL.
Then, because CB, BG, GH are all equal, the triangles AHG, AGB, ABC
are all equal (38.1.); Therefore, whatever multiple the base HC is of the
base BC, the same multiple is the triangle AHC of the triangle ABC. For
the same reason, whatever the base I.C isof the base CD, the same mul-
tiple is the triangle ALC of
the triangle ADC. But if
the base HC be equal to the
base CL, the triangle AHC
is also equal to the triangle
ALC (38. 1.): and if the
base HC be greater than the
base CL, likewise the trian-
gle AHC is greater than the
triangle ALC; and if less,
less. Therefore, since there - v

are four magnitudes, viz. the two bases BC, CD, and the two triangles
ABC, ACD; and of the base BC and the triangle ABC, the £irst and third,
any equimultiples whatever have been taken, viz. the base HC, and the
triangle AHC ; .and of the base CD and triangle ACD, the second and
fourth, have been taken any equimultiples whatever, viz. the base CL and
triangle ALC; and since it has been shewn, that if the base,HC be greater
than the base CL, the triangle AHC is greater than the triangle ALC ;
and if equal, equal ; and if less, less ; Therefore (def. 5. 5.), as the base
BC is to the base CD, 8o is the triangle ABC to the triangle ACD.

And-because the parallelogram CE is double of the triangle ABC (41.

1.), and the parallelogram CF double of the triangle ACD, and because
magnitudes have the same ratio which their equimultiples have (15. 5.) ;
as the triangle ABC is to the triangle ACD, so is the parallelogram EC to
the parallelogram CF. And because it has been shewn, that, ds the base
BC is to the base CD, so is the triangle ABC to the triangle ACD ; and
as the triangle ABC to the triangle ACD, 8o is the parallelogram EC to
the parallelogram CF ; therefore, as the base BC is to the base CD, sois
(11. 5.) the parallelogram EC to the parallelogram CF.

Cor. From this it is plain, that triangles and parallelograms that have
equel altitudes, are to one another as their bases.

Let the figures be placed so as'to have’ their bases in the same straight
line ; and having drawn perpendiculars from the vertices of the triangles to
the bases, the straight line which joins the vertices is parallel to that in
which their bases are (33. 1.), because the perpendiculars are both equal
and parallel to one another. Then, if the same construction be made as in
the proposition, the demonstration will be the same.
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PROP. II. THEOR.

It a straight line be drawn parallel to one of the sides of @ triangle, it will-cut
the other sides, or the other sides produced, proportionally : And if the
sides, or the sides praduced, be cut proportionally, the straight line which
joc'n;v the points of section will be parallel to the remaining side of the tri-
angle. :

Let DE be drawn parallel to BC, one of the sides of the triangle ABC :
BDis to DA as CE to EA. : -

Join BE, CD ; then the triangle BDE is equal to the triangle CDE (37. .
1.), because they are on the same base DE and betweeri the same paral-
lels DE, BC: but ADE is another triangle, and equal magnitudes have,
to the same, the same ratio (7. 5.) ; therefore, as the triangle BDE to the
triangle ADE, so is the triangle CDE to the triangle ADE ; but as the
triangle BDE to the triangle ADE, so is (1. 6.) BD to DA, because, hav-
ing the same altitude, viz. the perpendicular drawn from the point E to AB,
they are to one another as their bases ; and for the same reason, s the
triangle CDE to the triangle ADE, so is CE t6 EA. Therefore, as BD
to DA, so0 is CE ta EA (11. 5.). ‘

Next, let the sides AB, AC of the triangle ABC, or these sides produced,

A A S

D . B \$

B D E B

be cut proportionally in the points D, E, that is, so that BD beto DA, as
CE to EA, and join DE; DE is parallel to BC.

The same construction being made, because as BD to DA, so is CE to
EA; and as BD to DA, so is the triangle BDE to the triangle ADE (1. 6.):
and as CE to EA, so is the triangle CDE to the triangle ADE ; therefore
the triangle BDE, is to the triangle ADE, as the triangle CDE to the tri-
angle ADE ; that is, the triangles BDE, CDE have the same ratio to the
triangle ADE ; and therefore (9. 5.) the triangle BDE is equal to the tri-
angle CDE: Andthey are on the same base DE ; but equal triangles on
the same base are between the same parallels (39. 1.); therefore DE is

parallel to BC.
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PROP, IILI. -THEOR.
If the angle of a triangle be bisected by a straight line whichalso cuts the buse ;

the segments of the base shall have the same ratio which the other sides of

the triangle havé to one another ; And if the segments of the base have the
same ratio which the other sides of the triangle haveto one another, the straight
line drawn from the vertex to the point of section, bisects the vertical angle.

Let the angle BAC, of any triangle ABC, be divided into two equal an-
gles, by the straightline AD ; BD is to DC as BA to AC. <

Through the gpint C draw CE parallel (Prop. 31, 1.) to DA, and let BA

roduced meet in E. Because the straight line AC meets the paral-

Kals AD, EC, the angle ACE is equal to the alternate angle CAD (29. 1.):
But CAD, by the hypothesis, is equal to the angle BAD ; wherefore BAD
is equal to the angle ACE. Again, '
because the straight line BAE meets
the parallels AD, EC, the exterior an-
gle BAD is equal to the interior and
opposite angle AEC ; But the angle
ACE has been proved equal to the an-
gle BAD; therefore also ACE is
equal to the angle AEC, and conse-
quently the side AE is equal to the
side (6. 1.) AC. And because AD is
drawn parallel to one of the sides of D ¢
the triangle BCE, viz. to EC, BD is
to DC, as BA to AE (2. 6.); but AE is equal to AC; therefore,as BD to
DC, sois BAto AC (7. 5.).

Next, let BD be to DC, as BA to AC, and join AD; the angle BAC is
divided into two equal angles, by the straight line AD.

The same construction being made * because, as BD to DC, so0 is BA
to AC; and as BD to DC, so is BA
to AE (2. 6.), because AD is paral- - E
lel to EC: therefore AB isto AC, as. °
AB to AE (1L. 5.): Consequently .
AC is equal to AE (9. 5.), and the A
angle AEC is therefore equal to the
angle ACE s5. 1.). But the angle
AEC is equal to the exterior and ap-
posite angle BAD ; and the angle
ACE is equal to the alternate angle
CAD (29. 1.): Wherefore also the b1 D C
angle BAD is equal to the angle ‘ X
I?AD : Therefore the angle BAC is cut into two equal angles by the straight
ine AD. :
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PROP; A THEOR.

If the esterior angle of & triangle be bisected by a straight line whick also cuts
the base produced; the segments between the bisecting line and the extremities
of the base have the same ratio whick the other sides of the triangles have to
one another ; And if the segments of the base produced have the same ratio
which the other sides of the triangles have, the straight line, drawn from the
vertex to the point of section, bisects the exterior angle of the triangle.

Let the exterior angle CAE, of any triangle ABC, be bisected by the

anz.ightA ](i:ne AD which meets the base produced in D; BD isto DC, as
to .

Through C draw CF parallel to AD (Prop. 31. 1.): and because the
straight line AC meets the parallels AD, FC, the angle ACF is equal to
the alternate angle CAD (29. 1.): But CAD is equal to the angle DAR
glyp.) : therefore also DAE is equal to the angle ACF. Again, becanse

e straight line FAE meets the parallels AD, FC, the exterior angle DAE
is equal to the interior and opposite angle CFA; But the angle ACF
been proved to be equal to the an- ,
gle DAE ; therefore also the angle E
ACF is equal to the angle CFA,
and consequently the side AF is
equal to the side AC (6. 1.); and,
because AD is parallel to FC,a
side of the triangle BCF, BD is to
DC, as BA to AF (2. 6.); but AF \
" isequal to AC; therefore as BD B C
isto DC, s0 is BA to AC. D

Now let BD beto DC, as BA to AC, and join AD ; the angle CAD is
equal to the angle DAE. -~ ‘

The same construction being made, because BD isto DC as BA to AC;
and also BD to DC, BA to AF (2. 6.); therefore BA is to AC, as BA to
AF (11. 5.), wherefore AC is equal to AF (9.5.),and the angle AFC
equal (5. 1.) to the angle ACF : but the angle AFC is equal to the exte-
rior angle EAD, aud the angle ACF to the alternate angle CAD ; there-
fore also EAD is equal to the angle CAD

PROP. IV. THEOR.

The sides about the equal angles of equiangular triangles are proportionals; and
those which are opposite to the equal angles are homologous sides, that is, are
the antecedents or consequents of the ratios

Let ABC, DCE, be equiangular triangles, having the angle ABC equal
to the angle DCE, and the angle ACB to the angle DEC, and conse-
quently (4. Cor. 32. 1.) the angle BAC equal to the angle CDE. The
sides about the equal angles of the triangles ABC, DCE are proportionals ,
and those are the homologous sides which are opposite to the equal an-
gles.
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Let the triangle DCE be placed, so that its side CE may be contiguous
to BC, and in the same straight line with it: And because the angles ABC,
ACB are together less than' two' right angles (17. 1.), ABC and DEC,
which is equal to ACB, are also less than FN
two right angles : wherefore BA, ED pro-
ducedshallmeet(1 Cr.29.1.);letthembepro- -
duced and meet in the point F' ; and because A
the angle ABC is equal to the angle DCE, -
BF is parallel (28. 1.) to CD. Again, be-
cause the angle ACB is equal to the angle
DEC, AC is parallel to FE (28.1.) : There-
fore FACD is a parallelogram ; and conse-
quently AF is equal to CD, and AC to FD
(34. 1.): And because AC is parallel to FE, B C
one of the sides of ‘the triangle FBE, BA : AF :: BC : CE (2. 6.): but
AF is equal to CD; therefore (7. 5.) BA: CD :: BC : CE; &and alter-
nately, BA : BC :: DC : CE (16. 5.): Again, because CD is parallel to
BF,BC: CE:: FD: DE (2. 6.}; but FD is equal to AC ; therefore BC
:CE :: AC: DE; and alternately, BC : CA :: CE : ED. Therefore,
because it has been proved that AB: BC:: DC: CE; and BC: CA ::
CE : ED, ex ®quali, BA : AC:: CD : DE. :

’

PROP. V. THEOR.

If the sides of two triangles, about each of their angles, be tionals, the
triangles shall be equiangular, and have their equai angles opposite to the
homologous sides.

Let the triangles ABC, DEF have their sides proportionals, so that AB
isto BC,as DE to EF; and BC to CA, as EF to FD ; and consequently
ex quali, BA to AC, as ED to DF; the triangle ABC is equiangular to
the triangle DEF, and their equal angles are opposite to the homologous
sides, viz. the angle ABC being equal to the angle DEF, and BCA to
EFD, and alsorBAC to EDF. - ‘

At the points E, F, in the straight
line EF, make (Prop.23.1.)the an-
gle FEG equal to the angle ABC,
and the angle EFG equal to BCA,

D
A
wherefore the remaining angle BAC
is equal to the remaining angle O g 0\
EGF (4. Cor. 32. 1.), and the trian-
gle ABC is therefore equiangular to
the triangle GEF ; and consequently
B C G -

they have their sides opposite to the
equal angles proportionals (4. 6.).
‘Wherefore,
AB : BC :: GE : EF; but by supposition,
AB : BC :: DE : EF, therefore,
DE:EF :: GE : EF. Therefore (11. 5.) DE and GE have
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the same ratio to EF, and consequently are equal (9. 5.). For the same
reason, DF is equal to, F,G: And because, in the triangles DEF, GEF,
DE is equal to EG, and EF common, and also the base DF equal to the
base GF'; therefore the angle DEF is equal (8. 1.)to the angle GEF, and
the other angles to the tl):ier angles, which are subtendod by the equal
sides (4. 1.).  Wherefore the angle DFE is equal to the angle GFE, and
EDF to EGF: and because the angle DEF is equal to the angle GEF,
and GEF to the angle ABC ; therefore the angle ABC is equal to the an-
ge DEF: For the same reason, the angle ACB is equal to the angle
FE, and the angle at A to the angle at D. Therefore the tsiangle A
is equiangular to the triangle DEF. - ' :

PROP. VI. 'THEOR.

’

If two triangles have one angle of the one equal to one angle of the other, and
" the sides about the equal angles proportionals, the triangles shall be equian-
gular, and shall have those angles equal which are opposite to the homolo-

Let the triangles ABC, DEF have the angle BAC in the one equal to
the angle EDF in the other, and the sides about those angles proportion-
alg; thatis, BA to AC, as ED to DF; the triangles ABC, DEF are equi-
angular, and have the angle ABC equal to the angle DEF, and ACB to
DFE. ' :

At the points D, F, in the
straight line DF, make (Prop.

23. 1.)the angle FDG equal to A ‘
either of the angles BAC, EDF; ’ D
and the angle DFG equal to the C - o ol
angle ACB; wherefore the re-
maining angle at B is equal to
the remaining one at G (4. Cor. ’
32.1.), and consequently the
B ¢ E F

triangle ABC is equiangular to
the triangle DGF'; and therefore

BA: AC:; GD (4. 6.) : DF. But by hypothssis,

BA : AC:: ED: DF; and therefore

: "ED : DF :: GD : (11. 5.) DF ; wherefore ED is equal (9. 5.) to

DG ; and DF is common to the two triangles EDF, GDF ; therefore the
two sides ED, DF are equal to the two sides GD, DF; but the angle
EDF is also equal to the angle GDF; wherefore the base EF is equal to
the base FG (4. 1.), and the triangle EDF to the triangle GDF, and the
remaining angles to the remaining angles, each to each, which are sub-
tanded by the-equal sides: Therefore the angle DFG is equal to the angle
DFE, and the angle at G to the angle at E: But the angle DFG is equal
to the angle ACB; therefore the angle ACB is equal the angle DFE, and
the angle BAC is equal to the angle EDF (Hyp.); wherefore also the re-
maining angle at B is equal to the remaining angle at E. Therefore the
triangle ABC is equiangular to the triangle DEF. ,
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PROP. VII. THEOR.

If two-triangles have one angle of the one equal to one angle of the other, and

the sides about two other angles proportionals, then, Z’ each of the remaining
- angles be cither less, or not less, than a right angle, the triangles shall be
equiangular, and have those angles equal about which the sides are propor-

tionals. '

. Let the twotriangles ABC, DEF have one angle in the one equal to one

angle in the other, viz. the angle BAC to the angle EDF, and the sides
about two other angles ABC, DEF proportionals, so that AB is to BC, as
DE to EF; and, in the first case, let each of the remaining angles at C, F,
be less than a right angle. The triangle ABC is equiangular to the tri-
angle DEF, that is, the angle ABC is equal to the angle DEF, and the
remaining angle at C to the remaining angle at F.

For, if the angles ABC, DEF be not equal, one of them is greater than
the other : Let ABC be the greater, and at the point B, in the straight
line AB, make the angle ABG equal
to the angle (Prop.23.1.)DEF : and A
because the angle at A is equal to the D

angle at D, and the angle ABG to
the angle DEF; the remaining an-
gle AéB is equal 54. Cor. 32. 1.) to
the remaining angle DFE; There-

fore the triangle ABG is equiangular
to the t.t'itmgleg DEF; gl B C B K
wherefore (4. 6.), AB : BG :: DE : EF; but,
by hypothesis, DE : EF :: AB : BC,
therefore, AB:BC:: AB: BG (11. 5.),
and because AB has the same ratio to each of the lines BC, BG; BC is
equal (9. 5.) to BG, and therefore the angle BGC is equal to the angle
BCG (5. 1.) ; But the angle BCG is, by hypothesis, less than a right an-
gle; therefore also the angle BGC is less than a right angle, and the adja-
cent angle AGB must be greater than a right angle (13.1.).. But it was
proved that the angle AGB is equal to the angle at F ; therefore the angle
at F is greater than a right angle : But by the hypothesis, it is less than a
right angle ; which is absurd. Therefore the angles ABC, DEF are not
unequal, that is, they are equal : And the angle at A is equal i0 the angle
at D; wherefore the remaining angle at C is equal to the remaining angle
at F'; Therefore the triangle ABC is equiangular to the triangle DEF.
Next, let each of the angles at C, F be not less than a right angle ; the
triangle ABC is also, in this case, equiangular to the triangle DEF. ‘
The same construction being
made, it may be proved, in like A
manner, that BC is equal to BG,
and the angle at C equal to the
angle BGC: But the angle at C
is not less than a right angle; G
therefordthe angle BGC is not
less than a right angle : Where- B C E F
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R
fore, two angles of the triangle BGC are together not less than two right
angles, which is impossible (17. 1.) ; and therefore the triangle ABC may
be proved to be equiangular o the triangle DEF, asin the first case.

PROP. VIII. THEOR.

In a right angled triangle if a perpendicular be drawn from the right angle to
the base ; the triangles on eash side of it are similar to the whole triangle,
and to one another.

Let ABC be a right angled triangle, having the right angle BAC ; and
from the point A let AD be drawn perpendicular to the base BC : the trian-
gles ABD, ADC are similar to the whole triangle ABC, and to one another.

Because the angle BAC is equal to the angle ADB, each of them being
a right angle, and the angle at B com- ‘
mon to the two triangles ABC, ABD; ‘ A
the remaining angle ACB is equal to
the remaining angle BAD (4. Cor. 32.
1.): therefore the triangle ABC is
equiangular to the triangle ABD, and
the sides about their equ}z:,l angles are 8

roportionals (4. 6.) ;3 wherefore the ,
g‘iaﬁ;les are (simihn‘ (def. 1.6.). In » b ©
like manner, it may be demonstrated, that the triangle ADC is equiangular and
similar to the triangle ABC : and the triangles ABD, ADC, being each equi-
angular and similar te ABC, and equiangular and similar to one another.

Cor. From this it is manifest, that the perpendicular, drawn from the
right angle of aright angled triangle, to the base, is a mean proportional
between the segments of the base ; and also that each of the sides is amean
proportional between the base, and its segment adjacent to that side. For
in &2 triangles BDA, ADC,

BD: DA :: DA : DC (4. 6.); and in the
triangles ABC, BDA, BC : BA : : BA : BD (4. 6.) ; and in the
triangles ABC, ACD, BC : CA : : CA : CD (4. 6.).

' PROP. IX. PROB.

From a given straight line to cut off any part required, that is, & part which
shall fe contained s it o gtg:nr number o-’f times.

Let AB be the given straight line ; it is required
to cut off from AB, a part which shall be contained
in it a given number of times.

From the point A draw a straight line AC mak-
ing any angle with AB ; and in AC take any point H
D, and take AC such that it shall contain AD, as
oft as AB is to contain the part, which is to be cut
off from it ; join BC, and draw DE parallel to it:
then AE is the part required to be cut off.

Because ED is parallel to one <11f"7 the sides of the
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tnangle ABC, viz. to BC, CD : DA :: BE : EA (2.6.) ; and by composi-

tion (18. 5), CA : AD :: BA : AE: But CAis a multiple of AD; there-

fore (C. 5.)/BA/is!the same miiltiple of AE, or contains AE the same num-
ber of times that AC contains AD ; and therefore, whatever part AD is of

AC, AE is the same of AB ; wherefore, from the straight line AB the par*

required is cut off. .

PROP. X. PROB.

To divide a given straight line similarly to a given divided straight line, that is,
" into parts that shall have the same ratios to one another which the parts of
the divided given straight line have. .

Let AB be the straight line given to be divided, and AC the divided line,
it is required to divide AB similarly to AC. )

Let AC be divided in the points' D, E ; and let AB, AC be placed so as
to contain any angle, and join BC, and through the points D, E, draw
(Prop. 31. 1.) DF, EG, parallel to BC; and A
through D draw DHK, parallel to AB ; there-
fore each of the figures FH, HB, is a parallelo-
gram : wherefore DH is equal (34.1.) to FG,
and HK t0 GB: and because HE is parallel gy D
to KC, one of the sides of the triangle DKC,
CE:ED::(2.°6.)KH: HD; But KH=BG, H 1)
and HD = GF; therefore CE:ED::BG: & |
GF; Aguin, becayse FD is parallel to EG, [
oue of the sides of the triangle AGE, ED : DA
:: GF : FA; But it has been proved that CE B K c
: ED :: BG : GF; therefore the given straight line AB is divided similarly

to AC.

PROP. XI. PROB.

To find a third proportional to two given straight lines.

Let AB, AC be the two given straight lines, and let them be placed so
asto contain any angle ; it is required to
find a third proportional to AB, AC.

Produce AB, AC to the points D, E ; and
make BD equal to AC ; and having joined
BC, through Ddraw DE parallel to it (Prop. .
31.1) ’

Because BC is parallel to DE, a side of
the triangle ADE, AB : (2. 6.)BD *: AC:
CE ; but BD=AC: therefore AB: AC ::
AC: GE. Wherefore to the two given
straight lines AB, AC a third proportional,
CE is found.
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PROP, XI1I. PROB.
To find a fourth proportional to three given straight lines.

Let A, B, C be the three given straight lines ; it is required to find a
fourth proportional to A, B, C. .

‘Take two straight lines DE, DF, containing any angle EDF ; and upon
these make DG equel to A, GE equal to B, and DH equal to C; and hav-
ing joined GH, draw EF parallel (Prop, 31. 1.) to it through the point E.

D
u ,
B—_—

G o

B %

And because GH is parallel to EF, one of the sides of the triangle DEF,
DG:GE:: DH: HF (2. 6.); but DG=A, GE=B, and DH=C; and
therefore A : B :: C : HF. Wherefore to the three given straight lines,
A, B, C, a fourth proportional HF is found.

PROP. XIII. PROB.

To find a mean proportional between two given straight lines.

Let AB, BC be the two given straightlines ; -it is required to find a mean
proportional between them. ‘

Place AB, BC in a straight line, and upon AC describe the semicircle
ADC, and from the point% (Prop.11. D
1.) draw BD at right angles to AC, and
join AD, DC. )

Because the angle ADC in a semi-
circle is a right angle (31. 3.) and be-
cause in the right angled triangle ADC,
DB is drawn from the right angle, per-
pendicular to the base, DB i8 a mean A B O
proportional between AB, BC, the seg-
ments of the base (Cor. 8. 6.) ; therefore hetween the two given straight
lines AB, BC, a mean proportional DB is found.




152 ' ~ ELEMENTS

PROP, X1V. PROB.

Egual parallelograms which have one angls of the one equal to one angle o
qtul::lother, have their sides about the equal a?zfgles reciprocally proportional :
And parallelograms which have one angle of the one e tomangkorf
the other, and their sides about the equal angles reciprocally proportional,
are equal to one another.

Let AB, BC be equal parallel- A - : ,
ograms, which have the angles at B A K
oqual, and let the sides DB, BE be \ \ \
placed in the same straight line; { 0]

wherefore also FB, BG are in one D B

straight line (14. 1.) ; the sides of the

parallelograms AB, BC, about the

equal angles, are reciprocally propor-

tional ; that is, DB is to BE, as GB C
to BF. G

Complete the parallelogram FE ; and because the parallelograms AB,

BC are equal, and FE is another parallelogram,

AB:FE:: BC: FE (7. 5.): :
but because the parallelograms AB, FE have the same altitude,

AB: FE :: DB : BE (1. 6.), also,

BC: FE :: GB : BF (1. 6.); therefore

DB : BE :: GB : BF (11. 5.). Wherefore, the sides
of the pxirallelograms AB, BC about their equal angles are reciprocally pro-
portional.

But, let the sides about the equal angles be reciprocally proportional, viz.
as DB ;SOCBE' 8o GBto BF; the parallelogram AB is equal to the parallel-
ogram BC. :

Because DB: BE :: GB : BF,and DB: BE :: AB: FE, and GB :
BF :: BC : EF, therefore, AB : FE :: BC : FE (11. 5.): wherefore the
parallelogram AB is equal (9. 5.) to the parallelogram BC.

PROP. XV. THEOR.

Equal triangles which have one angle of the one equal to one angle of the
other have their sides about the equal angles reciprocally proportional ; And
triangles which have one angle in the one equal to one angle in the other,
and their sides about the equal angles reciprocally proportional, are equal
to one another.

L]

Let ABC, ADE be equal triangles, which have the angle BAC equal to
the angle DAE : the sides about the equal angles of the triangles are re-
ciprocally proportional ; that is, CA is to AD, as EA to AB.

Let the triangles be placed so that their sides CA, AD be in one straight
line ; wherefore also EA and AB are in one straight line (14. 1.); join BD.
Because the triangle ABC is equal to the triangle ADE, and ABD is an-
other triangle ; therefore, triangle CAB : triangle BAD : : triangle EAD
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: triangle BAD ; but CAB :° B

BAD ::CA ; AD,and EAD ; .

BAD:: EA : AB; therefore - -

CA:AD:: EA: AB(11.5),

wherefore the sides of the trian- D

‘gles ABC, ADE sboutthe equal c S
angles are reciprocally proper-
tional.

But let the sides of the trian-
gles ABC, ADE, about the
equal angles be reciprocally
proportional, viz. CA to AD, as B
EA to AB; the triangle ABC is :
equal to the triangle ADE. C

Having joined BD as before ; because CA : AD :: EA : AB; and since
CA : AD :: triangle ABC : triangle BAD (1. 6.); and also EA : AB::
triangle EAD : triangle BAD (11. 5.) ; therefore, triangle ABC : triangle
BAD :: triangle EAD : triangle BAD ; that is, the triangles ABC, EAD
have the same ratio to the triangle BAD ; wherefore the triangle ABC is
equal (9. 5.) to the triangle EAI%.

~ PROP. XVI. THEOR.

If four straight linesbe proportionals, the rectangle contained by the extremesis
equalto the rectangle contained by the means ; And if the rectangle contained
by the extremes be equal to the rectangle conlained. by the means, the four
straight lines are proportionals.

Let the four straight lines, AB, CD, E, F, be proportionals, viz. as AB
to CD, so E to F'; the rectangle contained by ABI: F is equal to the rect-
angle contained by CD, E. .

From the points A, C draw (6. 1.) AG, CH at right angles to AB, CD ;
and make AG equal to F, and CH equal to E, and complete the parallel-
ograms BG, DH. Because AB: CD:: E : F; and since E=CH, and
F=AG, AB : CD (7. 5.): : CH : AG ; therefore the sides of the parallel-
ograms BG, DH about the equal angles are reciprocally proportional ; but
parallelograms which have their sides about equal angles reciprocally pro-
Eortional, are equal to one another (14. 6.); therefore the parallelogram

G is equal to the parallelogram DH: v
and the parallelogram DG is contain- H
ed by the straight lines AB, F'; be- Feoo—
cause AG is equal 1o F; and the pa-
rallelogram DH is contained by CD (o]
and E, because CH is equal to E:
therefore the rectangle contained by
l.hleil stlrlaight lines AB, F is equal to that
which is contained by CD and E.

And if the rectang};e contained by A B C D
the straight lines AB, F be equal to that which is contained by CD, E ;
these four lines are proportionals, viz. AB is to CD,as E to F. :
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The same construction being made, because the rectangle contained by
the straight lines AB, F is equal to that which is contained by CD, E, and
the rectangle’'BG-is'contained by AB, F, because AG is ‘equal to F ; and
the rectangle DH, by CD, E, because CH is equal to E ; therefore the pa-
rallelogram BG is equal to the parallelogram DH, and they. are equiangu-
lar ¢ but the sides about the equal angles of equal parallelograms are reci-
procally proportional (14. 6.) : wherefore AB : CD :: CH: AG; but CH_
=E, and AG=F; therefore AB: CD:: E: F. L

PROP. XVII. THEOR.

If three straight lines be proportionals, the rectangle contained by the extremes s2
equal toatxfa square of the mean : And if the rectangle contained by the ex-
tremes be equal to the square of the mean, the three straight lines are propor-
tionals.

Let the threé straight lines, A, B, C be praportionals, viz. as A to B, so
Bto C; the rectangle contained by A, C is equal to the square of B.

. Take D equal to B: and because as A to B,so B to C,and that B is
equal to D; Ais(7.5.) to B,asDto C: butif four straight lines be pro-
portionals, the rectangle contained by the extremes is equal to that which
is contained by the means sl 6.6.) ; therefore the A
rectangle A.C = the rectangle B.D ; but the rect- - B
angle B.D is equal to the square of B, because B=
D ; therefore the rectangle A.C is equal to the D
square of B. - : Co—-

And if the rectangle contained by A, C be equal to the square of B; A :
B::B:C. '

The same construction being made, because the rectangle contained by
A, C is equal to the square of B, and the squere of B is equal to the rect-
angle contained by B, D, becauge B is equal to D ; therefore the rectangle
contained by A, C is equal to that contained by B, D ; but if the rectangle
contained by the extremes be equal to that contained by the means, the
four straight lines are proportionals (16. 6.) : therefore A : B:: D : C,but
B=D; wherefore A: B:: B: C.

PROP. XVIII. PROB.

Upon a given straightline to describe a rectilineal figure similar, and similarly
situated to a given rectilineal figure.

Let AB be the given straight line, and CDEF the given rectilineal figure
of four sides ; it is required upon the given straight line AB to describe a
rectilineal figure similar, and similarly situated to CDEF.

Join DF, and at the points A, B in the straight line AB, make (Prop. 23.
1.) the angle BAG equal to the angle at C, and the angle ABG equal to
the angle CDF ; therefore the remaining angle CFD is equal to the re-
maining angle AGB (4. Cor. 32.1.) : wherefore the triangle FCD is equi-
angular to the triangle GAB: Again, at the points G, B in the straight
line GB make (Prop. 23, 1.) the angle BGH equal to the angle DFE; and
the angle GBH equal to FDE ; therefore the remaining angle FED is
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‘ equal to the remaining angle GHB, and the triangle FDE equiangular to
the triangle GBH,;, then; because the angle AGB is equal to the angle
CFD, BGH to DFE the whole angle AGH is equal to the whole CFE :

P H

G E

-
L K

A B C

for the same reason, the angle ABH is equal to the angle CDE ; also the
angle at A is equal to the ‘angle at C, and tue angle GHB to FED ;. There-
fore the rectilineal figure ABHC. is equiangular to CDEF : but likewise
these figures have their sides about the equal angles proportionals : for the
triangles GAB, FCD being equiangular,

BA: AG:: DC: CF (4. 6.); for the same reason,

AG:GB:: CF : FD; .and because of the equian-
gular triangles BGH, DFE, GB : GH :: FD : FE; therefore,

ex ®quali (22.5.) AG : GH :: CF : FE. '

In the same manner, it may be proved, that :

AB:BH:: CD.: DE. Also (4. 86.)

GH : HB :: FE : ED. Wherefore, because the rectili-
neal figures ABHG, CDEF are equiangular, and have their sides about
the equal angles proportionals, they are similar to one another (def. 1. 6.).

Next, Let it be required to describe upon a given straight line AB; a
rectilineal figure similar, and similarly situated to the rectilineal figure
CDKEF.

Join DE, and upon the given straight line AB describe the rectilineal
figure ABHG similar, and similarly sitnated to the quadrilateral figure
CDEF, by the former case; and at the points B, H in the straight line
BH, make the angle HBL equal to the angle EDK, and the angle BHL
equal to the angle DEK ; therefore the remaining angle at K is equal to
the remaining angle at L; and because the figures ABHG, CDEF are
similar, the angle GHB is equal to the angle FED, and BHL is equal to
DEK ; wherefore the whole angle GHL is equal to the whole angle FEK ;
for the same reason the angle ABL is equal to the angle CDK: therefore
the five-sided figures AGHLB, CFEKD are equiangular; and because
the figures AGHB, CFED are similar, GH is to HBas FE to ED ; and
as HB to HL, so is ED to EK (4. 6.); therefore, ex ®quali (22. 5.), GH
isto HL, as FE to EK: for the same reason, AB is to BL,a8 CD 1o DK :
and BL is to LH, as (4. 6.) DK to KE, because the triangles BLH, DKE
are equiangular : therefore, because the five-sided figures AGHLB.
CFEKD are equiangular, and have their sides about the equal angles pro-
portionals, they are similar to one another ; and in the same manner a rec-
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tilineal figure of six, or more, sides may be described upon a given straight
line similar to one, given, and so on.

PROP. XIX. THEOR.

Sumilar triangles are to one another in the duplicélc ratio of the homologous

Let ABC, DEF be simi- ' A
lar triangles, having the an- :
gle B equal to the angle E,
and let AB be to BC, as -
DE to EF, so that the side
BC is homologous to EF.
(def. 13. 5.): the triangle
ABC has to the triangle 4
DEF, -the duplicate ratio
of that which BC has 0 B © C
EF. '
Take BG a third proportional to BC and EF' (11. 6.), or such that

BC : EF :: EF : BG, and join GA. 'Then, because

AB: BC:: DE : EF, alternately (16. 5.), :

AB:DE :: BC: EF; but

BC: EF :: EF : BG; therefore (11. 5.)

AB : DE :: EF : BG; wherefore the sides of the triangles
ABG, DEF, which are about the equal angles, are reciprocally propor-
tional ; but triangles, which have the sides about two equal angles recipro-
cally proportional, are equal to .
one'another (15.6.) : therefore A
the triangle ABG is equal to: \
. thetriangle DEF ; and because
that BC is to EF, as'EF to
BG ; and that if three straight
lines be proportionals, the first
has to the third the duplicate
ratio of that which it has to the )
second; BC therefore hasto B G CH ¥
BG the duplicate ratio of that which BC has to EF. But as BC to BG,
80 is (1. 6.) the trianglé ABC to the triangle ABG : therefore the triangle
ABC has to the triangle ABG the duplicate ratio of that which BC hasto
EF: and the triangle ABG is equal to the triangle DEF ; wherefore also
tll;(e3 t;iangleE}i?BC has to the triangle DEF the duplicate ratio of that which

as to .

Cor. From this, it is manifest, that if three straight lines be preper-
* tionals, as the first is to the third, so is any triangle upon the first to a
similar, and similarly described triangle upon the second.
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PROP, XX.. THEOR.

Similar 1 gmmqhwdedhtothtmnmb&ammka;m
iagtﬁ?mm&otommthatthepolygm e ; and the polygons
have to ons another the duplicate ratio of that which their homologous sides
Rave. : ’ :

Let ABCDE, FGHKL, be similar EI}ygvns, and let AB be the homo-
logous side to FG : the polygons ABCDE, FGHKL, may be divided into
the same number of similar triangles, whereof each hasto each the same
ratio which the polygons have ; and the polygon ABCDE has to the poly-
%oéx FGHKL a ratio duplicate of that which the side AB has to the side,

Join BE, EC, GL, LH: and because the polygon ABCDE is similar
to the polygon FGHKL, the angle BAE is equal to the angle GFL (def.
1.6.), andy BA : AE :: GF : FL (def. 1. 6.) : wherefore, because the tri-’
angles ABE, FGL have an angle in one equal to an angle in the other,
and their sides about these equal ’angalle:ufmportionals, the triangle ABE is
equiangular (6. 6.), and therefore similar, to the triangle FGL (4.. 6.):
wherefore the angle ABE is equal to the angle FGL: and, because the
* polygons are similar, tha whole angle ABE is equal (def. 1. 6.) to the whole
angle FGH ; therefore the remaining angle EBC is equal to the remain-
ing angle LGH : now because the triangles ABE, FGL are similar,

EB: BA :: LG : GF; and also because the
polygons are similar, AB : BC :: FG : GH (def. 1. 6.); therefore, ex
®quali (22. 5.) EB : BC :: LG : GH, that _is, the sides about the equal
angles EBC, LGH are proportionals ; therefore (6. 6.) the triangle EBC

. A M
£ x
B G

H

is equiangular to the triangle LGH, and similar to it (4. 6.). For the
same reason, the triangle ECD is likewise similar to the triangle LHK ;
therefore the similar polygons ABCDE, FGHKL are divided into the same
number of similar triangles.

Also these triangles have, each to each, the same ratio which the poly-
gons have to one another, the antecedents being ABE, EBC, ECD, and
the consequents FGL, LGH, LHK : and the polygon ABCDE has to the

ygon FGHKL the duplicate ratio of that which the side AE has to the

omologous side FG.

Because the triangle ABE is similar to the triangle FGL, ABE has to
FGL the duplicate ratio (19. 6.) of ltlsmt which the side BE has to the side
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GL: for the same reason, the trigngle BEC has to GLH the duplicate
ratio of that which BE has to GL: therefore, as the triangle ABE to the
triangle FGL86/(1105.)is. the/rianigle BEC to the triangle GLH. Again,
because the triangle EBC is similar to the triangle LGH, EBC has to
LGH the duplicate- ratio of that which the side EC has to the side LH :
for the same reason, the triangle ECD has to the triangle LHK, the du-
plicate ratio of that which EC hasto LH : therefore, as the triangle EBC
to the triangle LGH, sois (11. 5.) the triangle ECD to the triangle LHK :
but it has been proved, that the triangle EBC is likewise to the triengle
LGH, as the triangle ABE to the triangle FGL. .Therefore, as the trian- -
gle ABE is to the triangle FGL, so is the triangle EBC to the triangle
LGH, and the triangle ECD to the triangle I.HK : and therefore, as one
.of the antecedents to one of the consequents, so are all the antecedents to
all the consequents (12. 5.). Wherefore, as the triangle ABE to the tri-

A M ' -

E
B L

D 0 K H

angle FGL, so is the polygon ABCDE to the polygon FGHKL: but the
triangle ABE has to the triangle FGL, the duplicate ratio of that which
the side AB has to the homologous side FG. Thurefore also the polygon
ABCDE has to the polygon FGHKL the duplicate ratio of that which
AB has to the homologous side FG.

Cor. 1. In like manner it may be proved, that similar figures of four
sides, or of any number of sides, are one to another in the duplicate ratio of
their homologous sides, and the same has already been proved of triangles :
therefore, uniVersally, similar rectilineal figures are to one another in the
duplicate ratio of their homologous sides.

Cor. 2. And if to AB, FG, two of the homologous sides, a third pro-
portional M be taken, AB has (def. 11. 5.) to M the duplicate ratio of that
which AB has to FG: but the four-sided figure, or polygon, upon AB has
to th> four-sided figure, or polygon, upon FG . likewise the duplicate ratio
of that which AB has to FG: therefore, as -AB is to M, so is the figure
- upon AB to the figure upon FG, which was also proved in triangles (Cor.
19. 6.). Therefore, universally, it is manifest, that if three straight lines
be proportionals, as the first to the third, so is any rectilineal figure upon
the grst, to a similar, and similarly described rectilineal figure upon the se-
cond.

Cor. 3. Because all squares are similar figures, the ratio-of any two
squares to one another is the same with the duplicate ratio of their sides;
and hence, also, any two similar rectilineal figures are to one another as the
squares of their homologous sides.
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SCHOLIUM.

If two polygons are composed of the same number of triangles similar,
and similarly situated, those two polygons will be similar.

For the similarity of the two triangles will give the angles EAB=LFG,
ABE=FGL,EBC=LGH : hence, ABC=FGH, likewise BCD=GHK,
&c. Moreover, we shall have, EA : LF : : AB: FG:: EB :LG_: : BC
: GH, &c. ; hence the two polygons have their angles equal and their sides
proportional ; consequently they are similar.

PROP. XXI THEOR.

' Rectilineal ﬁéum which are similar to the same rectilinesl figure, are also
similar to.one another. C

Let each of the rectilineal figures A, B be similar to the rectilineal figure

C: The figure A is similar to the figure B. ' ' )

* Because A is similar to C, they sre equiangular, and also have their
sides about the equal angles proportionals (def. 1. 6.). Again, because B
is similar to C, they are equiangular, and have their sides about the equal
angles proportionals (def. 1.6.): therefore the figures A, B, are each of

them equiangular to C, and have the sides about the equal angles of each
of them, and of C, proportionals. Wherefore the rectilineal figures A and
Bare equiangular (1. Ax. 1.), and have their sides about the equal angles
proportionals (11. 5.). Therefore A is similar (def. 1. 6.) to B.

PROP. XXII THEOR.

If four straight lines be}ﬁfz tionals, the similar rectilineal figures symilarly
described upon them shall also be proportionals ; and if the similar rectilineal
JSigures similarly described upon four strasght lines be proportionals, those
straight lines shall be proportionals. ‘

Let the four straight lines, AB, CD, EF, GH be proportionals, viz. AB
to CD, as EF to GH, and upon AB, CD let the similar rectilineal figures
KAB, LCD be similarly described ; and upon EF, GH the similar rectie
lineal figures MF, NH, in like manner: the rectilineal figure KAB is to
LCD, as MF to NH. o

- To AB, CD take a third proportional (11.6.) X ; and to EF, GH,a
third proportional O ; and because :
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AB:CD:: EF: GH, and )
CD:X::GH: (11.5.) O, ex =quali (22. 5.)
AB: X:: EF: Q. Bw
AB : X (2.Cor. 20. 6.) : : KAB : LCD ; ‘and
EF:0:: (2 Cor. 20. 6) MF : NH; therefore
KAB : LCD (2. Cor. 20. 6.) : : MF : NH.
And if the figure KAB be te the figure LCD, as the figure MF-to the
figure NH, AB is to CD, as EF to GH.
Make (12. 6.) as AB to CD, so EF to PR, and upon PR describe (18.
6.) the rectjlineal figure SR similar, and similarly situated to either of the

L

) ¥ G H O ; :
figures MF, NH : then, because that as AB to CD, so is EF to PR, and
upon AB, CD are described the similar and similarly situated rectilineals
KAB, LCD, and upon EF, PR, in like manner, the ‘similar rectilineals
MF, SR; KABis to LCD, as MF to SR ; bat by the hypothesis, KAB
is to LCD, as MF to NH; and therefore the rectilineal MF having the
same ratio to each of the two NH, SR,these two are equal (9. 5.) to one
another ; they are also similar, and similarly situated ; therefore GH is
equal to PR: and because as AB to CD, so is EF to PR, and because PR
isequal to GH, AB is to CD, as EF to GH. :

PROP. XXIII. THEOR.

Equiangular parallelograms have to one another the vatio which is compounded
of the ratios of théir sides.

Let AC, CF be equiangular parallelograms having the angle BCD
equal to the angle ECG ; the ratio of the parallelogram AC to the paral-
lelogram CF, is the same with the ratio which is compounded of the ratios
of their sides. ]

Let BC, CG be placed in a straight line ; therefare DC and CE are also
in a straight line (14.1.); complete the parallelogram DG ; and, taking
any straight line K, make (12. 6.) as BC to CG, 80 K to L ; and as DC
to CE, s0 make (12.6.) L to M : therefore the ratios of K to L, and L to
M, are the same with the ratios of the sides, viz. of BC to CG, and of DC-
to CE. But the ratio of K to M, is that which is said to be compounded
(def. 10. 5.) of the ratios of K to L, and L to M ; wherefore also K has to
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M 1t ratio compounded of the ratios of
the sides of the parallelograms. Now, A
becanee as BC 10 CG, w0 v ths:

ogram AC to the parallelogram CH (1.
6.); and as BC to CG,s0 is Kto L;

therefore K is (11. 5.) to L, as the paral-
lelogram AC to the parallelogram CH :
Peralllogram CH to the pardeiogean
rallelogram to the TRIR
CF: and as DC to CE, so is L::M;
therefore L is (11. 5.) to M, as the paral-
Jelogram CH to the paralelogram CF : .
therefore, since it has been that
as K w L, 0 is the ograma AC
40 the parallelogram CH ; and as L t0 M, so the parallelogram CH to the
parallelogram CF ; ex mquali (22.5.), K is to M, us the parallelogam
AC to the parallelogram CF; but K has to M the matio which is come
mdsdof the ratios of tho sides;; therefore also the paralielo AC
o t.l:: t!:;;waﬂo]ngmn CF the ratio which is compounded of the rativs
sides. -

Cor. Hence, any two rectangles are to each ether as the products of
 heir bases multipliod by their altitudes. o
SCHOLIUM. :

Hence the product of the base by the altitude may be assumed as the
measure of a rectangle, provided we understand b; 'ius product the pro-
duot of two numbers, one of which is the number of Tinear units contained
in the base, the other the nurber of linear units contained in the altitude.

Still this measure is not absolute but relative : it supposes that the area
of any other rectangle is computed in a similar manner, by measuring its
sides with the same linear unit; a second product is thus obtained, and
the ratio of the two products is the same as that of the two rectangles,
agreeably to the proposition just demonstrated. N

For example, if the base of the rectangle A contained three units, and its
altitude ten, that rectangle will be represented by the number 3x 10, or
30, a number which signifies nothing while thus isolated ; but if there is a
second rectangle B, the base of which contains twelve units, and the alti-
tude seven, this rectangle would be represented by the number 12 X 7=84;
and we shall hence be entitted to conclude that the two rectangles are to
each other as 30 is to 84 ; and therefore, if the rectangle A were to be as-
sumed as the unit of measurement in surfaces, the rectangle B weuld thea
have £4 for its absolute measure ; or, which amounts to the same thing, it
would be equal to §4 of a superficial unit. N

It is more common and more simple to assume the squares as the unit of
surface ; and to select that square whose side is the wnit of length. In
this case, the measurement which we have regarded merely as relative,
becemes absolute : the number 30, for instance, by which the rectungle A
was measured, now represents 30 superficial units, or 30 of those squares,
which have each of their sides equal to unity.

-
B
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Cor. 1, Hen&thmquywdklogrm is equal to the product of

Cor. 2."' Tt likewise follows, that the area of any triangle i3 .equul to the
product of its base by half its altitude. :

PROP. XXIV. THEOR.

The parallelograms about the diameter of any parallelogram, are similar to the
whals, and to one another.

Let ABCD be a parallelogram, 6f which the diameter is AC; and EG,
HK the parallelograms about the dizmeter: the parallelograms EG, HK
are similar, both to the whole parallelogram ABCD, and to one another.

Because DC, GF are parallels, the angle ADC is-equal (29. 1.) to the
angle AGF: for the same reason, because BC, EF are parallels, the an-
gle ABC is equal to the angle AEF : and each of the angles BED, EFG
18 equal to the opposite angle DAB (34. 1.), and therefore are equal o one
another, wherefore the parallelograms ABCD, AEFG are equiangular
And because the angle ABC is equal to the angle AEF, and the angle
BAC common to the two triangles BAC, .

EAF, they are equiangular to one another; A E B
therefore (4. 6.) as AB to BC, so is AE to i
EF; and because the opposite sides of paral- § ) e

lelograms are equal to one another (34. 1.),
ABis (7. 5.)to AD, as AE to AG; and DC

to CB, as GF to FE; and also CD to DA, )
as FG to GA : therefore the sides of the pa-
rallelograms ABCD, AEFG abouttheequal ) K - C
angles are proportionals; and they are

therefore similar to one another (def. 1. 6.) ; for the same reason, the pa-
rallelogram ABCD is similar to the parallelogram FHCK. Wherefore
each of the parallelograms, GE, KH is similar to DB: -but rectilineal
figures which are similar to the same rectilineal figure, are also similar to
one another (21. 6.) ; therefore the parallelogram GE is similar to KH.

PROP. XXV. PROB.

To describe a rectilineal figure which shall be similar to one, and equal to
another given rectilineal figure.

Let ABC be the given rectilineal figure, to which the figure to be de-
scribed is required to be similar, and D that to which it must be equal. It
is required to describe a rectilineal figure similar to ABC, and equal to D.

Upon the straight line BC describe (Cor. Prop. 45. 1.) the parallelogram
BE equal to the figure ABC; also upon CE describe (Cor. Prop. 45. 1.)
the parallelogram CM equal to D, and having the angle FCE equal to the
angle CBL: therefore BC and CF are in a straight line (29.1.0r14.1.), as
also LE and EM ; between BC and CF find (13. 6.) 2 mean proportional
GH, and upon GH describe (18. 6.) the rectilineal figure KGH similar,
and similarly situated, to the figure ABC. And because BC is to GH as
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GH to CF, and if three straight lines be proportionals, as the first is to the
third, so is (2. Cor. 20. 6.) the figure upon the firstto the similar and simi-
larly described figure upon’ the second ; therefore as BC to CF, so is the

A
> X
B _F
2 B M

figure ABC to the figure KGH : but as BC to CF, so is (1. 6.) the paral-
lelo%ram BE to the parallelogram EF : therefore as the figure ABC is to
the figure KGH, so is the parallelogram BE to the parallelogram EF (11.
5.): buttherectilineal figure ABC is equal to the parallelogram BE ; there-
fore the rectilineal figure KGH is equal (14. 5.) to the parallelogram EF :
but EF is equal to the figure D ; wherefore also KGH is equal to D ; and
it is similar to ABC. 'Therefore the rectilineal figure KGH has been de-
scribed similar to the figure ABC, and equal to D.

o PROP. XXVI. THEOR: -

they are about the same diameter.

Let the parallelograms ABCD, AEFG be similar and similarly situated,
and have the angle DAB commonr; ABCD and AEFG are about the
same diameter. . -

For, if not, let, if possible, the paralielogram
BD have its diameter AHC in a different
straightline from AF, the diameter of the pa-
rallelogram EG, and let GF meet AHCin H ;
and through H draw HK parallel to AD or
BC; therefore the parallelograms -ABCD,
AKHG being about the same diameter, - are

* gimilar to one another (24. 6.): wherefore, as
DA to AB, 50 is (def. 1. 6.) GA to AK; but B C
because ABCD and AEFG are similar paral-
lelograms, as DA is to AB, so is GA to AE ; therefore (11. 5.) as GA to
AE so GA to AK ; wherefore GA has the sameratio to each of the straight
lines AE, AK ; and consequently AK is equal (9. 5.) to AE, the less to
the greater, which is impossible ; therefore ABCD and AKHG are not
about the same diameter ; wherefore ABCD and AEFG must be about
the same diameter. . B - . :

If two similar parallelograms have a common angls, and be similarly situated,
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"PROP. XXVII® THEOR.

Of all the rqcta'ﬁgks contained by the segments of a given straight line, the
4 greatest is the square which is described on half the line. ~

Let AB be a given straight line, which is bisected in C ; and let D be
any point in it, the square on AC is greater . :
thlnpd‘:e rectangle ADy DB. A C D B

For, since the straight line AB is divided into two equal parts in C, and
into two unequal parts in D, the rectanglé contained by-AD and DB, to-
gether with the square of CD, is equal to the square of AC (5. 2.). The
square of AC iatherefore greater than the rectangle AD.DB.

PROP. XXVIII. PROB.

To divide a gkveu straight line, so that the rectangle contained by its se
may-be equal to-a given space ;. but that space must. not be greater than. the
square of half the given line. : .

Let AB be the given straight line, and let the square upon the given
straight line C be the space to which the rectangle contained by the seg-
ments. of AB must be equal, and this square, by the determination, is not
greater than that upon half the straight line AB. , '

Bisect AB in D, and if the square upon AD be equal to the square upon
C, the thing required is done : But i{»it be not equﬂtoit, must be
greater than C, according to the deter-
nunwonB 'd:ﬁmeel(;‘.u:irig%zmglesh ,
AB, and make it toC: uce s
ED to F,so that EF be equalprtszD ——

ar DB, and from the centre E, at the . !
distance EF, describe a circle meeti

ABin G. Join EG; and because A A B
is divided equally in D, and un y .

in G, AG.GB+ DG*—=(5.2.) DB%*= ¥

EG2. But (47.1.) ED*+DG3*=EG?; therefore, AG.GB4DG*=ED?
+DG?, and taking away DG?, AG.GB=ED?. Now ED=C, therefore
the rectangle AG.GB is equal to the square of C: and the given line AB
is divided in G, so that the rectangle contained by the segments AG, GB
is equal to the square upon the given straight line C. '

PROP. XXIX. PROB.

To produce a given straight line, so that therectangle contained by the segments
between the extremities of the given line, and the points to which it is pro-.
duced, may be equal to a given space. ' '

Let AB be the given straight line, and let the square upon: the giver
straight line C be the space to which the rectangle under the segmexﬂs of
AB produced, must be equal.
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Bisect AB in D, and draw BE at right angles to.it, so that BE be equal
to C; and having joined DE, from the centre D pt the distance DE de-
scribe a circle'meeting AB prodiced in G.
And because AB is bisected in' D, and’
produced to G, (6. 2.) AG.GB+4+DB*=
DG?=DEz?. .

But ((;47. 1.) DE?=DB?4-BE?, there-
foré AG.GB 4 DB? = DB? 4 BE?, and
AG.GB=BE2. Now, BE = C; where-
fore the straight line AB is produced to
G, so that the rectangle contained by the
segments AG, GB of the line produeed,
is ‘equal to the square of C.

PROP. XXX. 'PEOB.

To cut a given straight line in extreme and mean ratio.

Let AB be the given straight line ; it is required to cut it in extreme and
mean rauo. '

Upon AB degeribe (Prop. 46. 1.)the aquare BC, and produce CA to D,
so that the rectangle( C“BLDA ma) be equal to the square CB (29. 6.).
Take AE equal to AD, and com the rectangle DF under DC apd
AE, or under DC apd DA. Then, because the
rectangle CD.DA is equal to the square CB, the D
rectangle DF is }:al to CB. Take away the
common part CE from each, and the remainder
FB is oqual to the remainder DE. But FBis
the rectangle contained by FE and EB, that is, A B
by AB and BE; and DE is the square upon AE; i
therefore AE is a mean proportional between
AB and BE (17. 6.),or ABisto AE as AE to EB.
But AB is greater than AE; wherefore AE is
greater then EB (14. 5.): Therefore the straight
line S&B is cutin extreme and mean ratio in E (def. r's]
3. 6.).

Otherwise.

Let AB be the given straight line; it is required to cut it in extreme
and mean ratio. . ‘
* Divide AB in the point C, so that the rectangle contained by AB, BC
be equal to the square of AC (11.2.): Then be-
cause the rectangle AB.BC is equal to the square — G B
of AC,as BA to AC,s0 is AC te €B (17.6.);
Therefore AB is cut in extreme and mean ratio in C (def. 3. 6.).

‘ 19
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PROP. XXXI. THEOR.

In right angled triangles, the rectilineal figure described upon the side oppi
oits 1o the right angle, is equal to 42 similar, and similarly descrped
© figures upon the sides containing the right angle.

Let ABC be a right angled triangle, having the right angle BAC: The
rectilineal figure described upon BC is equal to the similar, and similarly
described figures upon BA, AC. ’ -

Draw the perpendicular AD ; therefore, because in the right angled tri-
angle ABC, AD is drawn from the right angle at A perpendicular to the
base BC, the triangles ABD, ADC are similar to the whole triangle ABC,
and to one another (8. 6.), and because the triangle ABC is similar to
ADB, as CB to BA, s0 is BA-to BD (4. 6.); and because these three
straight lines are proportionals, as the first to the third, so is the figure upon
the Erst to the similar, and similarly described figure upon the second (2.
‘Cor. 20. 6.) : Therefore, as CB to BD, ‘
80 is thé figure upon CB to the aimilar
and similarly described figure upon
BA : and inversely (B. 4.),.as DB to
BE€, s0 is the figure upon BA to that
upon BC; for the same reasoan as DC.
to CB, so is the figure upon CA to that B
upon CB. Wherefore, as BD and DC

D
together to BC, so are the figuresupon | . . a
BA and on AC, together, ta the figure
upon BC (24. 5.) ; therefore the figures on BA, and on AC, are together
equal to that on BC; and they are similar figures. . . .. :

7z

PROP. XXXII. THEOR.

If two triangles, which Aave two sides of the ene proportional to two sides of
the other, be joinsd at one angle, so as to have heir homologous sides pa-
rallel to one another ;- their remaining sides shall be in a straight line.

.Let ABC, DCE be two triangles which have two sides BA, AC propor-
tional to the two CD, DE, viz. BA to AC,as CD to DE; and let AB be
parallel to DC, and AC to DE ; BC and CE are in a straight line. -

Because AB is parallel to DC, and the straight line AC meets them, the
alternate angles BAC, ACD are equal (29 1.); for the same reason, the
angle CDE is equal to the angle
ACD; wherefore also BAC is equal
to CDE: And because the triangles
ABC, DCE have one anpgle at A
equal to one at D, and the sides about
these angles proportionals, viz. BA to
AC, as CD to DE, the triangle ABC
' is equiangular (6. 6.) to DCE:
Therefore the angle ABC is equal to
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the angle DCE : And the angle BAC was proved to be equal to ACD:
Therefore the whole angle ACE is equal to'the two.angles ABC, BAC ;
add the common'angle ACB, theén 'the 'angles ACE, ACB are equal to the
angles ABC, BAC, ACB : But ABC, BAC, ACB are equal to two right
angles (32.1.); therefore also the angles ACE, ACB are equal:to two
right angles : And since at the point.C,in the straight line AC, the two
straight lines BC, CE, which are on the ogpqshe sides of it, make the ad-
jacent angles ACE, ACB equal to two right-angles ; therefore (14.1.) BC
and CE are in a straight line. . 4 : S

PROP. XXXIII. THEOR.

In equal circles, angles, whether at the centres or circumfmm.f, have the same
ratio which.the arcs, on which they stand, have to one another : So also have
« ‘the sectors. ‘ '

- Let ABC, DEF be equal circles ; and at their centres the angles BGC,
EHF, and the angles BAC, EDF at their circumferences ; as the arc BC
to the arc EF, so is the angle BGC to the angle EHF, and the angle BAC
to the angle EDF : and also the sector BGC to the sector EHF.
Take any number of arcs CK, KL, each equal to BC, and any number
- whatever F'M, MN each equal te EF'; and join GK, GL, HM, HN. Be-
cause the arcs BG, CK, K1 are all equal, the angles BGC, CGK, KGL
are also all equal (27. 3.) . Therefore, what multiple soever the arc BL is
of the arc BC, the same multiple is the angle BGL of theangle BGC : For
the same reason, whatever multiple the arc EN is of the arc EF the same
multiple is the angle EHN of the angle EHF. But if the arc BL, be equal
" .to the arc EN, the angle BGL is also equal (27.3.) to the angle EHN ;
or if the arc BL be greater than EN, likewise the angle BGL is greater
than EHN : and if less,less : There being then four magnitudes, the two
arcs, BC, EF, and the two angles BGC, EHF, and -of the arc BC, and of
the angle BGC, have been taken any equimultiples whatever, viz. the arc
" BL, and the angle BGL ; and of the arc EF, and of the angle EHF, any
equimultiples whatever, viz. the are EN, and the angle EHN: And it
has been proved, that if the arc BL be greater than EN, the le BGL
is greater than EHN ; and if equal, equal ; and if less, less ; As therefore,
the arc BC te the arc EF, so (def. 5.5.) is the angle BGC to the angle

D
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EHF : But as the sngle BGC is to the angle EHF, so is (15. 5.) the an-
gle BAC to the angle EDF, for each is double of each (20. 3.) : Therefore,
a8 the citcumference BC)is 10/EF; 0 is the angle BGC to the angle EHF,
snod the angle BAC to the angle ED¥Y.

Also, as the ar¢ BC to EF, so is the sestor BGC to the sector EHF.
Join BC, CK, aud in the arcs BC, CK take any points X, O, and join BX,
XC, CO, OK : Thew, because in the triangles GBC, GCK, the two sides
BG, GC areé eqund to the two CG, GK, and aiso contain equal angles ; the
base BC is equal (4. 1.) to the base CK, and the triangle GBC to the tri-
angle GCK : ‘And because the arc BC is equal to the arc CK, the remain-
ing part of the whole circumference of the circle ABC is equal to the re-
maining part of the whole circumference of the same circle : Wherefore
the angle BXC is equal to the angle COK (27.3.); and the segment
BXC is therefore similar to the segment COK (def. 9. 3.) ; and they are
upon equal straight lines BC, CK : But similar segments of circles upon -
equal straight lines are equal (24. 3.) to one another : Therefore the seg-
ment BXC is equel to the segment COK : And the triangle BGC is equal
to the trimgle CGK ; therefore the whole, the sector BGC is eqnal to the
whole, the sector CGK : For the same reason, the sector KGL is equal to
each of the sectors BGC, CGK ; and in the same manner, the sectors
EHF, FHM, MHN, may be proved equal to one another : Therefore, what
multiple soever the arc BL is of the arc BC, the same multiple is the sec<
tor BGL of the sector BGC. For the same reason, whatever multiple the
arc EN is of EF, the saine multiple is the sector EHN of the sector EHF ;
Now if the are BL be equal to EN, the sector BGL is equal to the sector

EHN ; and if the arc BL be greater than EN, the sector BGL is greater
than the sector EHN ; and if less, less : Since, then, there are four mag-
nitudes, the two arcs BC, EF, and the two sectors BGC, EHF, and of the
arc BC, and sector BGC, the arc BL and the sector BGL are any equi-
multiples whatever ; and of the arc EF, and sector EHF, the are EN and
sector EHN, are any equimultiples whatever ; and it has been proved, that
if the arc BL be greater than EN, the sector BGL is greaterthan the sec-
tor EHN ; if equal, equal; and if less, less; therefore (def. 5. 5.) as the
arc BC, is to the arc EF, s0 is the sector BGC to the sector EHF.
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PROP. B.- THEOR. -

If an angle of a triangle be bisected by a straight line, which likewnse cuts the

base; the rectangle contained by the sides of the %ﬁs equal to the

- rectangle contained by the segments of the base, together with the square of
the straight line bisecting the angle. ‘

Let ABC be a triangle, and let the angle BAC be bisected by the
ight line AD ; the rectangle BA.AC is equal to the rectangle BD.DC,
together with the square of AD. o S
. Describethe circle (Prop. 5. 4.) ACBabous
the triangle, and produce AD to the circum-
ference in E, an(f join EC. Then, because
the angle BAD is equal to the angle CAE,
and the angle ABD to the angle (21.3.)
AEC, for they are in the same segment ; the
triangles ABD, AEC arp equiangular t6 one
another: Therefore BA : AD::EA: (4.6.)
AC, dnd consequently, BA.AC= (16. 6.)
AD.AE=ED.DA (3. 2.) 4+ DA% But ED.
DA=BD.DC, therefore BA.AC = BD.DC
+DA3, :

PROP. C. THEOR.

If from any angle of a triangle a straight line be drawn perpendicular to the

fbasé 3 the rectangle contained by the sides of the triangle is equal to tha
rectangle contained by the perpendicular, and the diameter of the circle de-
seribed about the triangle. '

Let ABC be a triangle, and AD the perpendicular from the angle A to
the base BC ; the rectangle BA.AC is equal to the rectangle contained by
AD and the diameter of the circle described about the triangle.

Describe (Prop. 5. 4.) the circle ACB - ‘ ’
sbout the triangle, and draw its diameter
AE, and join EC; Because the right
angle BDA is equal to the angle ECA in
a semicircle, and the angle ABD to the -
angle AEC, in the same segment (21.
3.); the triangles ABD, AEC are equi-
angular : Therefore, as (4. 6.) BA to
AD, so0 is EA to AC: and censequently
the rectangle BA.AC is equal (16. 6.) to
the rectangle EA.AD.
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PROP. D. THEOR. .

The rectangle/ contained by ‘the diagonals of a quadrilateral inscribed 1n a
circle, is equal to both the rectangles, contained by its opposite sides.

Let ABCD be any quadrilateral inscribed in & circle, and let AC, BD be
drawn ; the rectangle AC.BD is equal to the two rectangles AB.CD, and
AD.BC.

Make the angle ABE equal to the angle DBC; add to each of these
the common arigle EBD, then the angle ABD is equal to the angle EBC :
And the angle BDA is equal to (21. 3.) the angle BCE, because they are
in the same segment ; therefore the trh.n%e
ABD is equiangular to the triangle BCE.
Wherefore (4. 6.), BC : CE :: BD : DA,
and consequently (16. 6.) BC.DA=BD.CE.
Again, because the angle ABE is equal to
the angle DBC, and the angle(21. 3.) BAE
to the angle BDC, the triangle ABE is equi-
angular to the triangle BCD ; therefore BA -
: AE :: BD : DC, and BA.DC=BD.AE:
But it was shewn that BC.DA=BD.CE;
wherefore BC.DA 4 BA.DC = BD.CE+4- .
BD.AE=BD.AC (1. 2.). That is, the rect- '
angle contained by BD and AC, is equal to the rectangles contained by
AB, CD,and AD, BC.

PROP. E. THEOR.

If an are of a circle be bisected, and from the extremities of the are, and from
the point of bisection, straight lines be drawn ta any point in the circum-
Jerence, the sum of the two lines drawn from the extremities of the arc will
have to the line drawn from the point of bisection, the same ratio which the
straight line subtending the arc has to the straight line subtending half the
are. : - :

Let ABD be a circle, of which AB is an arc bisected in C, and from A,
C, and B w D, any point whatever in the circumference, let AD, CD, BD
be drawn ; the sum of the two lines AD . D : ’
and DB has to DC the same ratio that
BA hasto AC. :

For since ACBD is a quadrilateral in
scribed ina circle, of which the diagonals
are AB and CD, AD.CB4-DB.A€ (D
6.) = AB.CD : but AD.CB4-DB.AC =
AD.AC 4- DB.AC, because CB = AC.
Therefore AD.AC+DB.AC, that is (1.
2.),(AD4-DB) AC=AB.CD. And be-
cause the sides of equal rectangles are re-
ciBroqally %roport.ional (14. 6.), AD4-DB
.DC:: AB: AC.

A
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PROP.CP. THEOR.

If two points be taken in the diameter of acircle, such that the rectangle contained
by the segmentsintercepted between them and the centre of the eircle be equal to
the square of the radius: andif from these points two straight lines be drawn
to any point whatsosver in the circumference of the circle, the ratio of these
lines will be the same with the ratio of the segments intercepted between the
two first mentioned points and the circumference of the circle.

Let ABC be a circle, of which the centre is D, and in DA produced, Tet
the points E and F be such that the rectangle ED, DF is equal to the
square of AD ; from E and F to any point B in the circumfereace, let EB,
FBbedrawn; FB: BE :: FA : AE. '

Join BD, and because the rectangle FD, DE is equal to the square of
AD, thatis,of DB, FD : DB :: DB : DE (17.6.).

The two triangles, FDB, BDE" have therefore the sides proportional
that are about the common angle D; therefore they are equiangular (6.
6.), the angle DEB being equal to the angle DBF, and DBE to DFB.

Now, since the sides about these equal angles are also proportional (4. 6.),
FB: BD :: BE : ED, and alternately (16.5.), FB : BE : : BD : ED, or
FB: BE :: AD : DE. . But because FD : DA : : DA : DE, by division
(17.5.),FA: DA :: AE : ED, and alternately (11. 5.), FA : AE :: DA
: ED. Nowit has been shewn that FB : BE.: : AD : DE, therefore FB
:BE:: FA: AE.

Cor. If AB be drawn, because FB : BE : : FA : AE, the angle FBE
is bisected (3. 6.) by AB. Also, since FD: DC ; : DC : DE, by compo-
sition (18. 5.), FC : DC : : CE : ED, and since it has been shewn that
FA : AD(DC):: AE : ED, therefore, ex =quo, FA: AE :: FC : CE.
ButFB : BE :: FA : AE, therefore, FB : BE :: FC : CE (11.5.),s0 that
if FB be produced to G,and if BC be drawn, the angle EBG is bisected
by the line BC (A. 6.). :
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L
PROP. G. THEOR.

If from the extremity of the diameter of a circle a straight line be drawn in the
circle, and if either within the circle or produced without it, it meet a line per-
pendicular to the same diameter, the rectangle contained by the straight lins
drawn in the circle, and the segment of i, intercepted between the extremity
of the diameter and the perpendicular, is equal to the rectangle contained by
the diameter and the segment of it cut off by the perpendicular,

Let ABC be a circle, of which AC is a diameter, let DE be perpendic\i-

lar to the diameter AC, and let AB meet DE in F ; the rectangle BAAF
is equal to the rectangle CA.AD. Join BC, and because ABC is an en-

By E

B

gle in a semicirole, it is a right angle (31. 3.): Now, the angle ADFis
also a right angle (Hyp.) ; and the angle BAC is either the same with
DATF, or vertical to it ; therefore the triangles ABC, ADF are equiangular,
and BA: AC:: AD : AF (4. 6.); therefore also the rectangle BA.AF,
contained by the extremes, is equal to the rectangle AC.AD contained by
the means (16. 6.). :

PROP. H. THEOR.

The perpendiculars drawn from the three angles of any triangle to the opposite
sides intersect one another in the sams poins.

Let ABC be a triangle, BD and CE two perpendiculars intersecting one
anotherin F'; Let AF be joined, and produced if necessary, let it meet BC
in G, AG is perpendicular to BC.

Join DE, and about the triangleAEF let a circle be described, AEF :
then, because AEF isa right angle, the circle described about the triangle
AEF will have AF for its diameter (31.3.). Inthe same manner, the
circle described ahout the triangle ADF has AF for its diameter; there-
fore the points A, E, F and D, are in the circumference of the same circle.
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But because the angle EFB is equal , :

to the angle DFC(15.1.), and also A
the angle BEF to the angle CDF,
being both right angles, the triangles
BE‘% and CDF are equiangular, and
therefore BF : EF :: CF : FD (4. 6.),
or alternately (16.5.) BF : FC :: EF
: FD. Since, then, the sides about
the equal angles BFC, EFD are pro-
portionals, the triangles BFC, EFD
are also equiangular (6. 6.); where-
fore the angle FCB is equal to the an-
gle EDF. But EDF is equal to EAF, 4 ‘
because they are angles in the same | G C
segment (21, 3.); therefore the angle .

EAF is equal to the angle FCG : Now, the angles AFE, CFG are also
equal, because they are vertical angles; therefore the ramaining angles
AEF, FGC are also equal (4. Cor. 32.1.): But AEF is a right angle,
therefore FGC is a right angle, and AG is perpendicular to BC. . .

Cor. The triange ADE is similar to the triangle ABC. Forthe two
triangles BAD, CAE having the angles at D and E right angles, and the
angle at A common, are equiangular, and therefore BA : AD :: CA : AE,
and alternately BA : CA :: AD : AE; therefore the two triangles BAC,
DAE, have the angle at A common, and the sides about that angle pro-
portionals, therefore they are equiangular (6. 6.) and similar. .

Hence the rectangles BA.AE, CA.AD are equal.

PROP. K. THEOR.

If from any angle of a triangle a perpendicular be drawn to the site side

f{r base y the rcct{ngla contained by the sum and difference ;f the other two
sides, is equal to the rectangle contained by the sum and difference of the
segments, into which the base is divided by the perpendicular.

Let ABC be a triangle, AD a perpendicular.drawn from the angle A on
the base BC, so that BD, DC are the segments of the base ; (AC+AB)
(AC—AB)=(CD+-DB) (CD—-DB.)




164 © ELEMENTS

From A as a centre with the radius AC, the greater of the two sides,
describe the circle CFG : produce AB to meet the circumferencs in E and
F, and CB, to meetit,in G, Then because AF=AC, BF=AB4-AC,
the sum of the sides; and since AE=AC, BEx=xAC—AB=s the diffe.
rence of the sides. Also, because AD drawn from the centre cuts GC at
right angles, it bisectsit; therefore, when the perpendicular falls within
the triangle, BG=DG—DB=DC—DB== the difference of the segments
of the base, and BC=BD+DC= the sum of the segments. But when
AD falls without the triangle, BG=DG+DB=CD+DB= the sum ef
the segments of the base, and BC=CD—DB= the difference of the seg-
ments of the base. Now, in both cases, because B is the intersection of
the two lines FE, GC, drawn in the circle, FB.BE=CB.BG; that is, as
has been shewn, (AC + AB) (AC—AB)=(CD+DB) (CD—DB).

>

PROBLEMS
RELATING TO THE SIXTH BOOK.

"PROP.L. PROBLEM. ‘
To construct-a square that shall be equivalent to a given rectilineal figure.

Let A be the given rectilineal figure ; it is required to describe a square
_ that shall be equivalent to A. .

. Describe (Prop. 45.1.)the o
rectungular  parallelogram H
BCDE equivalent to the rec- -
tilineal figure. A ; produce
one of the sides BE, of this
rectangle; and make EF =
ED; bisect BF in G, and B
from the centre G, at the
distance GB, or GF, de-
scribe the semicircle BHF, . C D
and produce DE to H. :

HE®=BE X EF, (13.6.); therefore the square described upon HE will
be equivalent to the rectilineal figure A. . pon N

, SCHOLIUM.

. -Thi?mblem may be cousidered as relating to the second Book : Thus,
Jjoin GH, the rest of the construction being the same, as above ; because
the straight line BF is.divided into two equal parts in the point G, and into
two ynequal in the point E, the rectangle BE.EF, together with the square
of EG, is equal (5. 2.) to the square of GF: but GF is equal to GH ;
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therefore the rectangle BE, EF, together with the aquare of EG, is equal
to the squave of GH |: |But the squares of HE and EG, are equal (47. 1.)
to the square of GH : Therefore also the rectangle BE.EF, to with
the square of EG, is equal to the squares of HE and EG. Take away
the square of EG, which is common to both, and the remaining rectangle
BE.EF is equal to the square of EH : But BD is the rectangle contained
by BE aand EF,because EF is equal to ED ; therefore BD is equal to the
square of EH ; and BD is also equal to the rectilineal figure A ; therefore
the rectilineal figure A is equal to the square of EH : Wherefore a square
has been made equal to the given rectilineal figure A, viz. the square de-
scribed upon EH.

Note. This operation is called squaring the rectilineal figure, or finding
the guadrature of it.

PROP. M. PROB.

To construct a rectangle that skall be equivalent to a given square, and the
© difference of whose adjacent sides shall be equal to a given line.

Suppose C equal to the given square,and = P
AB the di co of the sides. :
Upon the given line AB as a diaméter, de-
scribe a cirele ; at the extremity of the diam~-
eter draw the tangent AD equal to the side
. of the square C ; thraugh the point D, and the
centre O, draw the secant DF ; then will DE
and DF be the adjacent sides of the rectangle. 2

required.
First, the difference of their sides is equal
to the diameter EF or AB ; secondly, the rect- .
angle DE.DF is equal to AD?(36.3.); hence Coo
that rectangle is equivalent to the given square C.

PROP. N. PROB.

To construct a rectangle oquivalent to a given square, and having the sum
" of its adjacent sides equal to a given line.

Let C be the given square, and AB equal to the sum of the sides of the
required triangle. :
Upon AB as a diameter, :
describe a semicircle ; draw ) /\
the line DE parallel to the - K
diameter, at a distance AD , _
ft;'lom it, equal to tlmf side ﬁ(:f o . c
e given square C ; from the -
point E, where the parallel A FB

cuts the circumference, draw EF pe endicular to the diameter; AF
and F'B will be the sides of the remnﬁ? required.
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For their sum s equal to AB ; and their rectangle AF.FBis equal to the
square EF, or to the square AD ; hence that rectangle-is equivalent to the
given square C.' '\ B )

‘ .SCHOLIUM. :

To render the problem possible, the distance AD must not exceed the
radius ; that is, the side of the square C must not exceed thé half of the
line AB. , o s

PROP. O. PROB.

To construct a square that thall be tora given square as a given linetoa given
Upon the indefinite straight line GH take GK=E, and KH=F ; de:
~scribe on GH a semicircle, and draw the perpendicular KL. Through

the points G, H, draw the . - b P
straight lines LM, LN, mak- S

ing the former equal AB, the F

side of the given square, and C

through the point M, draw
MN parallel to GH, then will
LN be the side of the square
- sought. ' L
For, since MN is parallel A B N
to GH,-LM : LN:: LG . M o
LH ; consequently, LM3: LN? :: LG3 : LH?(22, 6,); but, since the trian-
le LGH is right angled, we have LG : LH2 : : GK : KH; hence LM? :
iN‘ :: GK : KH ; but, by construction GK=E, and KH=F, also LM
=AB ; therefore, the square described on AB is to that described on LN,
as the line E is to the line F. - : : :

PROP. P. PROB.

Todivideaaiangkintotwop-m‘-t:. a line from the vertex of one of its angles,
s0 tkﬁulwpansmybelo cacholgora:a:wdghlithoamthﬂumigM

Divide BC into parts BD, DC propor- AL
tional to M, N; draw the line AD, and -

the triangle ABC will be divided as re-
quired.

For, since the triangles of the same
altitude are to each other as their bases,
we have ABD: ADC::BD:DC:: B D - C
M:N..

SCHOLIUM.

A triangle may evidently be divided into any number of parts propor-
tional to given lines, by dividing the base in theyaame proportion. P
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PROP,1Q' PROB.

To divide atriangle into two parts by a line droum parallel to one of its sides, .
30 that these parts may be to each other as two straight lines M, N. ’

As M+4N : N, so make AB?to AD?
(Prob. 4.) ; Draw DE parallel to BC,
and the triangle is divided as required.

For the triangles ABC, ADE being
similar, ABC : ADE :: AB%: AD?; but
M+Dl‘£:: N: :ICI&B’N:' AD;‘; therefore ABC
t A :: M4+N: N; eco uentl
BDEC: ADE:: M:'N. e y- B

PROP. R. PROB.

T'o divide a triangle into two parts, by a line drawn bmagiompamiu
ﬁc;{'iu:idu,:othaﬂbmagybﬂomb as two given lines

Let ABC be the given triangle, and P the given point ; draw PC, and
divide AB in D, so that AD is to DB as M is to N ; draw DE parallel to
PC, join PE,and the triangle will be divid- : '
ed by the line PE into the proposed parts.

For join DC; then because PC, DE are
paxallel, the triangles PDE, CDE are equal ;
to each add the triangle DEB, then PEB=
DCB; and consequently, by taking each from
the triangle ABC, there results the quadri-
lateral ACEP equivalent to the triangle
ACD. . B

Now,ACD : DCB:: AD : DB :: M : N; consequently,

ACEP:PEB::M:N o

SCHOLIUM.
The above operation suggests the method of dividing a triangle into any

number of equal parts by lines drawn from a given g;int in one of its sides ;
for if AB be divided into equal parts, and lines be drawn from the points of
equal division, parallel to PC, they will intersect BC, and AC ; and from
these several points of intersection if lines be drawn to P, they will divide-

the triangle into equal parts.
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PROP. S. PROB.

To divide a triangle into three equivalent parts by lines drawn from. the ver-
tices b’ the angles to the seme point nthin the triangle.

Make BD equal to a third part of BC, and draw DE parallel to BA, the
side to which BD is adjacent. From F, the middle of DE, draw the
straight lines FA, FB, FC, and they will - A
divide the triangle as required. .

For, draw DA ; then since BD is one
third of BC, the triangle ABD is ono
third of the triangle Agc ; but ABD=
ABF (87. 1.); therefore ABF is one '
third of ABC; also, since DF=FE,
BDF = AFE; likewise CFD = CFE,
consequently the whole triangle FBC
is equal to the whole triangle F'CA ; and .
FBA has been shown to be equal to a third part of the whole triangle
ABC; consequently the triangles FBA, FBC, FCA, ate each equal to. a
third part of ABC. : :

PROP. T. PROB. -

To divide a triangle into three squivalent parts, by lines drawn Jrom a given
. point within 8. - :
Divide BC into three equal parts in the points D, E, and draw PD, PE;
draw also AT parallel to PD,p::isAG p:g'oallel to PE; then if the lines
PF, PG, PA be drawn, the trian- . A
gle ABC will be divided by them
into three oquivalent parts. .
For, join AD, AE ; then because
AF, PD are parallel, the triangle
AFP is equivalent to the triangle
AFD; consequently, if to each of
these there be added the triangle
ABF, there will result the qua(ﬁ’i-
lateral ABFP equivalent to the
triangle ABD ; but since BD is a
third part of BC, the triangle ABD 1
is a third part of the triangle ABC ;
consequently the quadrilateral ABFP is a third part of the triangle ABC.
Again, because AG, PE are parallel, the triangle AGP is equivalent to
the triangle AGE and if to each of these there be added the triangle ACG
the quadrilateral ACGP will be equivalent to the triangle ACE ; but this
triangle is one third of ABC ; hence the quadrilateral ACGP is one third
of the triangle ABC : consequently, the spaces ABFP, ACPG, PFG are
each equal to a third part of the triangle ABC.
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PROP. U.., PROB.

To divide & quadrilateral into two parts by o straight line drawn from the vertex
ofm afz:: mngla,:otlmukapwnmaybetoeachotheruahthow
we N.

Draw CE perpendwular to AB, and construct & rectangle equivalent to
- the given quadrilateral, of which one side may be GE ; let the other side
be EF; and divide EF in G, so that D

M:N::GF:EG; take BP equal .

to twice EG, and JCIn PC, then the

: quudnlatonl will be divided as Te-

For,. by eonmeuon, the triangle
CPB is equivalent to the rectangle
. CE.EG; therefare the rectangle CE,
GF is to the triangle CPB as GF is .
o EG. New CE.GF is equivaleat '
to the quadrilateral DP, and GF utoEGuMiMoN ﬂ:erdbu.

' DP:CPB:: M: N;

shat in, the: quadilaseral is &ivided, as required.
PROP. W. PROB.

Todwadcaquadvilataralmtotwopm: a line parallel to one of its sides,
s0 that these parts may be to éach o, r as the line M &3 to the lins N.

ProducoAD BC till the moonnE dnwtheporpendwﬂkrEFand
bisectitin G. Upon the slyde GF consu-uct a rectangle equivalent to tha
triangle EDC, and let HB be-equal =~
to the other side of this rectangle.
Divide AH in K, so that AK : KH

:M:N,and as AB is to KB, so
make EA’toEa’ draw @b aml—
lel to AB, and 1twlll divide the quad-
rilateral into the required parts.

For since the triangles EAB, Eab
are similar, we have the proportion
EAB : Eab: : EA? : Ea’ but by ,
comstruction, EA* : Ea :: AB : &

KB; so that EAB: Eab:: AB: KB :: AB: GF : KB. GF and conse-
ently, since by. construction EAB=AB GF, it follows thet Eab=KB.
%F and therefore AK.GF==Ab, and since by construction AH.GF=AC,
it follows that KH.GF=4C. Now AK.GF : KH. GF : : AK : KH; bat
AK:KH::M:N; consequemly,
Ab:aC::M: N;

Mu,thoquadrﬂatetdudxﬁdnd, asrequired.
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PROP. X. PROB.

To dmdoaquadﬁlateralmtotwo aline drawn from a point in one
its sides, :othattlupartsmay toebaychotherasalmeMutoa lch.q

Draw PD, upon which construct a rectangle eqmva.lent to the given
adnlatenl and let DK be the other . K
nde oftlnsrectanle divide DK in . . .
L,s0 that DL:LK:: M: N; make p >
DF=2DL, and FG equal t0 the
ndlcular Ag; draw Gp parall to
P ; join the pomuP , and the
ral figure will divided,

For draw the ndicular pb 3
then by constmcm?erll,’eDDKaﬁt'J .
and PD DF =PD. Aa+ PD.p}, that .
is, PD.DF is equivalent to twice the -
sum of the triangles APD, pPD, - A
consequently, since DL is hﬂf
LRPa0s T ’r?f)dn?."%lﬁp' DL:LK::M:N; nsoquently,

; bﬂt P ) .o 0!
’ Cps APpD: PBCp:: M:N;
hence the quadrilateral is divided, as requued.

PROP. Y. PROB.

To divids a quadrilateral by  lins t0 ome of its sides, so that the
* two parts may be to each other as @ line M is to a lins N.

Let ABCD be the given quadnlatenl which iato be divided in the ratio
of M to N by a perpendicular to the mde AB. .

Construct on D ]l;)erpendxcular '
to AB, a rectangle DE.EF, equi- - D
valent to the quadrilateral AC, ’
and divide FE in G, so that FG:
GE:: M:N. Bisect AE in H,
and divide the quadrilateral EC
into two parts by a line PQ, paral-
lel to DE, so that those parts may
be to each other as FG is to GH,
then PQ will also divide thequadn-
lateral AC agrequired.

For, by ctonstruction DE. EF—AC and DE EH=DAE; hence DE
HF=EC, and consequently, since the quadrilateral EC is dmded inthe
same proporuon as the base FH of its equivalent rectangle, it follows that
QC=DE.FG, and EP=DE.GH, also AE=DE.GE ; consequently,

QC: AP: :FG:GE::M: N;
that is, the quadrilateral is dmded as reqmred
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OF THE QUADRATURE OF THE CIRCLE.

LEMMA -

curve line, or any polygonal line, which envelopes a convex kins from one
i end to tha other, is longer than the enveloped line.

Let AMB be the enveloped line; then will it be less than the line
APDB which envelopes it.
We have already said that by the
term ct;nd'vex line we understand a li::i
or curve, or partly curve
P‘,‘ygﬁpolygoml, cuehpthat a straight
ine cannot cut it in more than twe'
points. Ifinthe line AMB there were
any sinuosities or re-entrant portions, it
would cease to be convex, because a A, B
straiglst line might eut it in more than .
two points. - The arca of a circle are essentially convex; but the present
proposition extends to any line which fulfils the required conditions.
is being premised, if the line AMB is not shorter than any of those
which eavelope it, there will be found among the latter, a line shorter than

" all the rest, which is shorter than AMB, or, at most, equal to it. Let

ACDEB be this enveloping line: any where between those two lines,
draw the straight line PQ, not meeting, or at least only touching, the line
AMB. The s line PQ is shorter than PCDEQ ; hence, if instead
of the part PCDEQ, we substitute the straight line PQ, the enveloping line
APQB will be shorter than APDQB. But, by hypothesis, this latter was
shorter than any other; hence that hypothesis was false ; hence all of the
eaveloping lines are longer than AMB



164 - SUPPLEMENT TO THE ELEMENTS

Cor. 1. Hence the perimeter of any polygon inscribed in a circle is
less than the circumference-of the eircle. L
Cor. 2. If from a point two straight lines be drawn, touching a circle,
these two lines are together greater than the arc intercepted between
them ; and hence the perimeter of any polygon described about a circle is
greater than the circumference of the c;relye.

PROP. 1. THEOR.

If from the greater of two unequal magnitudes there be taken away sts Aalf,
&dfmmrmdndera:half; and so on; Thcrewillatlcngt&rmm{
a magnitude less than the least of the proposed magnitudes.

Let AB and C be two unequal magnitudes, of which AB is the greater.
If from AB there be taken away its half, and from the D
remainder its half, and so on; there shall at length A
remain a magnitude less than C. ) .

For C may be multiplied so as, at length, to be-
come greater than AB. Let DE, therefore, be a x 1
multiple of C, which is greater than AB, and let it
contain the parts DF, FG, GE, each equal to C.
From AB take BH equal to its half; and from the 0
remainder AH, take HK equal to its half, and so on, .
until there be as many divisions in AB as there are 1G
in DE; And let the divisions in AB be AK,KH, ) :
HB. And because DE is greater than AB, and EG
taken from DE is not greater than its half, but BH
taken from AB is equal to its half; therefore the re- :
mainder GD is greater than the remainder HA. B C X
Again, because GD is greater than HA, and GF is o
not greater than the half of GD, but HK is equal to the half of HA ; the:
fore the remainder FD is greater than the remainder AK. And FDis
equal to C, therefore C is greater than AK ; thatis, AK islessthan C.

PROP. II. THEOQR.

Egquilateral polygons, of the same number of sides, inscribed in circles, are
: ml?r, and are to one another as the squares of the diameters of the
circles.

Let ABCDEF and GHIKLM be two equilateral polygons of the same
number of sides inscribed in the circles ABD and GHK ; ABCDEF and
GHIKLM are similar, and are to one another as the squares of the diame-
ters of the circles ABD, GHK.

Find N and O the centres of the circles, join AN and BN, as also GO
ang %O, and produce AN and GO till they meet the circumferences in D
and K. :

Because the straight lines AB, BC, CD, DE, EF, FA, are all equal,
the arcs AB, BC, CD, DE, EF, FA are also equal (28. 3.). For the
same rcason, the arcs GH, HI, IK, KL, LM, MG are all equal, and they
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are equal in number to the others; therefore, whatever the arc ABis
of the whole circuniference ABD, the same is the arc GH of the circum--
ference GHK. But the angle ANB is the same part of four right angles,
that the arc AB is of the circumference ABD(33.6.); and the angle
GOH is the same part of four right angles, that the arc GH is of the cir-
cumference GHK (33. 6.), therefore the angles ANB, GOH are each of
them the same part of four right angles, and therefore they are equal to
one another. The isosceles triangles ANB, GOH are therefore equisn-:
gular, and the angle ABN equal to the angle GHO ; in the same manner,
by joining NC, OI, it may be proved that the angles NBC, OHI are equal .
to one another, and to the angle ABN. Therefore the whele angte ABC

F

is equal to the whole GHI; and the same may be proved of the angles
BCD, HIK, and of the rest. Therefore, the polygons ABCDEF and
GHIKLM are equiangular to one another ; and since they are equilateral,
the sides about the equal angles are Igroportionals ; the polygon ABCDEF
is therefore similar to the polygon GHIKLM (def. 1.6.). And becausc simi-
lar polygons are as the squares of their homologous sides (20. 6.), the. po-
lygon ABCDETF is to the polygon GHIKLM as the square of AB to the
square of GH ; but because the triangles ANB, GOH are equiangular,
the square of AB is to the square of GH as the square of AN to the square
of GO (4. 6.), or as four times the square of AN to four times the squsre
(15. 5.) of GO, that is, as the square of AD to the square of GK, (2. Cor.
8.2.). Therefore also, the polygon ABCDEF is to the polygon GHIKLM
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. as the square of AD to the square of GK ; and they have also been shewn
to be similar.

.Cor. Every equilateral polygon inscribed in a circle is also equiangu
lar: For the isosceles triangles, which have their common vertex in the
centre, are all equal and similar; therefore, the angles at their bases are
all equal, and the angles of the polygon are therefore alee equal.

PROP. III. PROB.

The sude g equilateral polygon inscribed in & circle being given, to find the
side of{%gm of the same number of sides described about the af;‘ck

Let ABCDEF be an equilateral polygon inscribed in the cirele ABD ;
it is required to find the side of an equilateral polygon of the same number
of sides deseribed about the circle. )

Find G the centrs of the circle ; join GA, GB, bisectthe arc ABin H;
and through H draw KHL touching the circle in H, and meeting GA aad
GB produced in K and L ; KL is the gide of the polygon required.

Produce GF te N, so that GN may be equal to GL ; join KN, and from.
G draw GM at. right angles to KN, join also HG. .

Because the atc AB is bisected i H, the angle AGH is equal to the

BGH (27.3.); and because L ;

touches the cirele in H, the :
angles LHG, KHG are right an-
gles (18. 3.); therefore, there are
two angles of the triangle HGK, -
equal to two angles of the triangle
HGL, each to- each. DBut the side  _
GH is common to these triangles; &
-therefore-they are equal (26.1.),and
GL is equal to GK. Agusin, in
the triangles KGL, KGN, because
‘GN is equal to GL; and GK com-
mon, and also the angle LGK equal
to the angle KGN ; therefore the
base KL is equal to the base KN
(4. 1.). But because the triangle KGN is isosceles, the angle GKN is
equal to the angle GNK, and the angles GMK, GMN are both right an-
gles by construction; wherefare, the triangles GMK, GMN have two an-
gles of the one equal to two angles of the other, and they have also the
side GM common, therefore they are equal(26.1.),and the side KM is equal
to the side MN, so that KN is bisected in M. But KN is equal to KL,
and therefore their halves KM and KH are also equal. Wherefore, in the.
triangles GKH, GKM, the two sides GK and KH are equal to the two
GK and KM, each to each ; and the angles GKH, GKM, are also equal,
therefore GM is equal to GH (4. 1.); wherefore, the point M is in the cir~
cumference of the circle ; and because KMG is a right angle, KM touches
the circle. And in the same manner, by joining the centre and the other

angular points of the inscribed polygon, an equilateral polygon may be
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described about the circle, the sides of which will each be equal to KL, and
will be equal in numberjto the sides of the inscribed polygon. Therefore,
KL is the side of an equilateral polygon, described about the circle, of the
same number of sides with the inscribed polygon ABCDEF.

Cor. 1. Because GL, GK, GN, and the other straight lines drawn
from the centre G to the angular points of the paolygon described about the
circle ABD are all equal ; if & circle be deseribed from the centre G, with
the distance GK,the polygon will be inscribed in that circle; and there-
fore it is similar to the polygon ABCDEF. '

Cor. 2. Itis evident that AB, a side of the inscribed polygon, is to KL,
a side of the circurhscribed, as the perpendicular flom G upon AB, to the
perpendicular from G upon KL, that is, to the radius of the circle ; there-
fore also, because maguitudes have the same ratid with their equimultiples
(15. 5.), the perimeter of the inscribed polygon is to the perimeter of the
circumseribed, as the perpendicniar from the centre, on a side of the in-
scribed polygon, to the radius of the circle.

PROP. 1V. THEOR.

A circlabeing given, two similar ons may be found, the one described dbovit

Mscsmic’:gahd m'mamnﬁ?ga,:&: 1 difffer from one another by
" a space less than any given space. '

Lat ABC be the given circle, and the aquare of D any given space ; &
polygon may be inscribed in the circle ABC, and a similar polygon describ-
.ad :a,bou:f iiz) s0 that the difference between them shall be less than the

In the circle ABC apply the straight line AE equal to D, and let AB be
o fourth part of the circumfgrence of the circle. From the circumference
AB take away is half, and from the remainderits half, and so on till the
citcumference AF is found less than the circumference AE (1. 1. Sup.).
Find the centre G ; draw the diameter AC, as also the straight lines AF
and FG ; and having bisected the circumference AF in K, join KG, and
draw HL touching the circle in K, and meeting GA and :GF produced in
H and L ; join CF. . ' :

Because the isosceles triangles HGL and AGF' have the comman an-
gle AGF,they are equiangular (6. 6.) and the angles GHK, GAF aro
therefore equal to one ancther. But the angle GKH, CFA are dlso equal,
for they are right angles; therefore the triangles HGK, ACF, are liko-
wise equiangular (4. Cor. 32.1.). '

Aml becanse the arc AF was found by taking from the arc AB its half,

. snd from that remainder its half, and so on, AF will be contained a certain
number of times, exactly, in the axc AB, and therefore it will aleo be con-
tained a certain number of times, exactly, in the whole circumference
ABC ; and the straight line AF is therefore the side of an equilateral poly-
gon inscribed in the circlée ABC. Whevrefore also, HL is the side of an
equilateral g:lygon, of the same number of sides, described about ABC (8.
1. Sup.).. Let the polyrgon described about the circle bp called M, and
polygon inscribed be called N ; then, because these polygons are similar,
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AF is greater than the difference of the polygons (14. 5.). The difference
of the polygons is therefore less than t.g: square of AF ; but AF is less
than D; therefore the difference of the polygons is less than the square of
D; that is, than the given space.

Cor. 1. Because the polygons M and N differ from one another more
than either of them differs from the circle, the difference between each of
them and the circle is less than the given space, viz. the square of D. And
therefore, however small any given space may be, a polygon may be in-
scribed in the circle, and another described about it, each of which shall
differ from the circle by a space less than the given space.

Cor. 2. The space B, which is greater than any polygon that can be
inscribed in the circle A, and less than any polygon that can be described
about it, is equal to the circle A. If not, let them be unequal ; and first,
let B exceed A by the space C. Then, because the polygons described
about the circle A are all greater than D, by hypothesis; and because B
is greater than A by the space C, therefore no polygon can be described
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about the circle A, but what must exceed it by a space greater than C,
which is absurd. In the same manner, if B be less than A by the space
C, it is shewn that no polygon canbe inscribed in the circle A, but what
is less than A by a space greater than C, which is also absnzd. Therefore,
A and B are not unequal ; that is; they are equal to one another.

PROP. V. THEOR.

The area of any-circle is equal to the rectangle contained by the semi-diameter,
and a straight line equal-to half the circumference.

Let ABC be a circle of which the centre-is D,.and the diameter AC; if
in AC produced there he taken AH equal to half the.circumference, the
atea of the circle is equal to the rectangle contained’ by DA and AH.

Let AB be the side of any equilateral polygon inscribed in the circle
ABC ; bisect the circumference AB in G, and through G draw EGF
touchiing the circle, and meeting DA produced in E, aad DB produced in

F; EF willbe the side of an equilateral polygon desctibed about the cir-
cle ABC ff. 1. S8up.).. In AC produced take AK e&ual to half the peri-
meter of the polygon whose side is AB ; and AL egl to half the perime-
ter of the polygon whose side is EF. Then AK will be less, and AL
greater than the straight line AH (Lem. Sup.). Now, because in the
triangle EDF, DG is drawn perpeggtcular to the base, the triangle EDF*
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is equal to the rectangle contained by DG and the halfof EF (41. 1.) ; and
as the same is true of all the other equal.triangles having their vertices in
D, which make upthe polygon described about the circle ; therefore, the
whole polygon is equal to the rectangle contained by DG and AL, half the
perimeter of the polygon (1. 2.), or by DA and AL. But AL is
greater than AH, tﬁzrefore the rectangle DA.AL is greater than the rect-
angle DA.AH ; the rectangle DA.AH is therefore less than the rectangle
DA.AL, that is, than anﬁﬁolygon described about the circle ABC. -
Again, the triangle ADB is equal to the rectangle contained by DM the
perpendicular, and one half of the base AB, and it is therefore less than the
rectangle contaimed by DG, or DA, and the halfof AB  And as the same

is true of all the other triangles having their vertices in D, which make
up the inscribed polygon, therefore the whole of the inscribed polygon is
less than the rectangle contained by DA, and AKX half the perimeter of the
polygon. ' Now, the rectangle DA.AK is less than DA.AH ; much more,
therefore, is the polygon whose side is AB less than DA.AH; and the
rectangle DA.AH is therefore greater than any polygon inscribed in the
circle ABC. But the same rectanglo DA.AH has been roved to be less
than any polygon described about the circle ABC; therefore the rectangle -
DA.AH is equal to the circle ABC (2. Cor. 4. 1. Sup.). Now DA is the
semidiameter of the circle ABC, and AH the half of its circumference.

Cor. 1. Because DA : AH :: DA? : DA.AH (1. 6.), and because by
this proposition, DA.AH= the area of the circle, of which DA is the ra-
dius : therefore, as the radius of any circle to the semicircamference, or as
the diameter to the whole circumference, so is the square of the radius to
the area of the circle. . .

€or. 2. Hencea polygon may be described about a circle, the perime-
ter of which shall exceed the circumference of the circle by a line that is
less than any given line. Let NO be'the given line. Take in NO the
part NP less than its half, and also than AD, and let a polygen be déscrib-
ed about the circle ABC, so that its excess above ABC may be less than
the square of NP (1. Cor. 4. 1. Sup.). Let the side of this polygon be EF.
And since, as has been proved, the circle is equal to the rectangle DA.AH,
and the polygon to the rectangle DA.AL, the excess of the polygon above
the circle is equal to the rectangle DA.HL ; therefore the réctangle DA.
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HL is less than the square of NP ; and therefore, since DA is greater than
NP, HL is less than NP, and twice HL less than twice NP, wherefore,
much more is twice HL less than NO. But HL is the difference between
half the perimeter. of the polygon whose side is EF, and half the ciréum-
ference of the circle ; therefore, twice HL is the difference between the
whole perimeter of the polygon and the whole circumferenee of the circle
(5.5.). The difference, therefore, between the perimeter of the polygon
and the circumference of the circle is less than the given line NO.

Cor. 3. Hence, also, a polygon may be -inscribed ‘in a circle, such
that the excess of the circamference above the perimeter of the polygom
may be less than any given line. This is provego like the preceding.

PROP. VI. THEOR.

-The areas of circles are to one another in the duplicate ratio, or as the squares
of their diameters.

Let ABD and GHL be two circles, of which the diameters are AD and
GL; the circle ABD is to the circle GHL as the square of AD to the
square of GL. '

Let ABCDEF and GHKLMN be two equilateral polygons of the same
number of sides inscribed in the eircles ABD, GHL ; and let Q be sucha

space that the square of AD is to the square of GL as the circle ABD to
the space Q. DBecause the polygons ABCDEF and GHKLMN are equi-
lateral and of the same number of sides, they are similar (2. 1. Sup.), and
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_ sheir-areas are as the squares of the diameters of the eircles in'which they
are imsciibed. ‘Therefore AD? : GIA :: polygon ABCDEF : pdl
IGHKLMN; bat AD8:.GL2 04 eircle ABD : Q ; and thevefore, ABCDEF
.-GHKLM :: oircle ABD : Q. Now, circle ABD 7ABCDEF ; there-
fore Q7 GHKLMN 34. 5.), that is, Q is greater than any polygon in-
scribed in the cirdle GHL. e : :
In the same manner it is demonstrated, fhat Q .is less than any pélggaa
described about the cirdle GHL ; wherefore.fhe space Q is oqual 1o the
eirdle GHL (2. Cor. 4.1. Sup,). Now, by hypethesis, the circls ABD is
o the space Q as the squave of AD to the square of GL ; therefare the
circle ABD is 1o the cirdle GHL.as the square of AD o the squaxe-of GL.

Cor. 1. Hence the circumferences of circles are to one another as
their diameters. ) . :

Let the straight line X be equal to half the circumference of the circle
ABD, and the straight line Y to half the circumferexice of the circle GHL

X
Y

And because the rectangles AO.X and GP.Y are equal to the circles ABD
and GHL (5. 1. Sup.), therefare AO.X : GP.Y :: AD?: GL2:: AQ3;
GP?; and alternately, AO.X : AO?:: GP.Y : GP2; whence, because
rectangles that have equal altitudes are as their bases (1. 6.), X : AO ::
Y : GP, and aggin alternately, X : Y : : AO : GP: wherefore, taking the
doubles of each, the circumference ABD is to the circumference GHL as
the diameter AD to the diameter GL. -

Conr. 2. The circle that is described upon the side olf a ;ight angled
triangle opposite to the right angle, is equal to the two circles described on
the o%her two sides. F?fltlhe circle de‘:%ribed upon SR is to the circle de-
scribed upon RT as the square.of SR to the square of RT ; and the circla
described upon T'S is to the circle descxibed upon RT as the square of ST
to the square of RT. Wherefore,
the circles described on SR and on S
ST are to the circlé described on RT
as the squares of SR and of ST to
the square of RT (24. 5.). But the
squares of RS and of ST are equal .
to the square of RT (47. 1.); there-
fore the circles described on RS and R T
ST are equal to the circle described
on RT.

PROP. VII. THEOR.
Equiangular parallelograms are to one another as the products of the num
bers proportional to their sides.

Let AC and DF be two equiangular parallelograms, and let M, N, P
and Q be four numbers, such that AB: BC:: M: N; AB: DE :: M :
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P; and AB: EF::M:Q,indt'herefmexequali,lﬁg:l?;‘d:: N:Q
The parallelogram AC is to the parallelogram DF ‘as to PQ.

_ Let NP be the product of N into'P, and the ratio of MN to PQ will be
compounded of the retios (def. 10. 5.) of MN to NP, and NP to PQ.
But the ratio of MN to NP is the same with that of M to P (15. 5.), be-

(& i
e

A B D B
cause MN and NP are equimultiples of M and P ; and for the same reason,
the ratio of NP to PQ is the-same with thatof N to Q ; thereforé the ratio
of MN to PQ is compounded of the ratiosef M to P, and of Nt0 Q. Now,
the ratio of M to P is the same with that of the side AB to theside DE (by
H %; and the ratio of N tb Q the same with that of the side BC to the
lig F. Therefore, the ratio of MN to PQ is compounded of the ratios
"of AB to DE, and of BC to EF. And the ratioof the parallelogram AC
to the parallelogram DF is compounded of the same ratios (23. 6.) ; there-
fore, the parallelogram AC is to the parallelogram DF as MN, the product
of the numbers M and N, to PQ, the product of the numbers P and Q.

Cor. 1. Hence, if GH be to KL as the npumber M w the number'N ;
the square described -on GH will be to
the square déscribed on KL as MM, the @ H K L
square of the number M to NN, the : :
square of the number N.

Cor. 2. IfA, B, C, D, &c. are any lines, and m, n, 1, s, &c. numbers
proportional to them; viz. A:B::m:n, A:C::m:r,A:D:iim:s,
&ec. ; and if the re'ctange contained by any two of the lines be equal to the
square of a third line, the product of the members proportional to the first
two, will be equal to the square of the number proportional to the third,
that is, if A.C=B3, mX r=8 X2, er=n?

For by this Prop. A.C : B3:: mXr : n?; but A.C=BS3, therefore mxr
=n3. Nearly in the same way it may be demonstrated, that whatever is
the relation between the rectangles sontained by these lines, there is the
same between the preducts of the numbers proportional to them.

So also conversely if m and « be numbers praportional to the lines A and
C; if also A.C==B3, and if a number » be found such, that n3=mr, then .
A:B::m:n Farlet A: B::m: g,then since m, g, r are proportional
to A, B, and C, and A.C=D?; therefore, as has just been proved, g>=m
l)l(r .B but n?=¢ X r, by hypothesis, therefore n®=¢3, and n=g; wherefore

:B::m:n.

SCHOLIUM.
In order to have numbers proportionai to any set of magnitudes of the

’
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same kind, suppose one of them to be divided into any number m, of equal
patts, and let H be one of those parts. Let H be found » times in the mag-
nitude B, r/tithes' in /C/ s times in(Da &c., then it is evident that'the num-
bers m, n, r, s are proportional to the magnitudes A, B, C and D. .When
therefore it is said in any of the following propositions, that a line as A==
a number m, it is understood that A==m X H, or that A is equal to the given
magnitude H multiplied by m, and the same is understood of the other
magnitudes, B, C, lg, and their pr'ol?ortional numbers, H being the common
measure of all the magnitudes. This common measure is omitted for the
sake of brevity in the arithmetical expression ; but is always implied, when
a line, or other geometrical magnitude, is said to be equal to a number.
Also, when there are fractions in the number to which the magnitude is
called equal, it is meant that the common measure H is farther subdivided
into such parts as the numerical fraction indicates. Thus, if A=360.375,
it is meant that there is a certain magnitude H, such that A=360x H+-

'f:'o%XH. or that A ia equal to 360 times H, together with 375 of the
thousandth parts of H. And the same is true in all other cases, whete

Rumbers are used to express the relations of geometrical magnitudes.

PROP. VIII. THEOR.

icular drawn from the centre of a circle on the chord of any arc1sa

mean proportional between half the radius and the line madeup of the radius

and t{epetpcudicular drawn from the centre on the chord of double that arc :

And the chord of the arc is @ mean proportional between the diameter and aline

%ick isthe difference between the radius and the aforesaid perpendicular from
centre

Let ADB be a circle, of which the centre is C; DBE any arc, and DB
the half of it; let the chords DE, DB be drawn: as also CF and CG at
right angles to DE and DB ; if CF be produced it will meet the citcum
ference in B: let it meet it again in A, and let AC be bisected in H; CG

s

—
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is a mean proportional between AH and AT ; and BD a mean proportional
between AB and BF, the excess,of the radius above CF. -

- Join AD ; and because ADB is a right angle, being an angle in a semi-
circle ; and because CGB is also a right angle, the triangles ABD, CBG
are equiangular, and, AB : AD :: BC : CG (4. 6.), or alternately, AB :
BC :: AD : CG; and therefore, because AB is double of BC, AD is dou-
b}e é)é C@G, and the square of AD therefare equal to four times the squaro
of CG. Co

But, because ADB is a right angbled triangle, and DF a perpendicular
on AB, AD is & mean proportional between AB and AF (8. 6.), and AD?
=AB.AF (17.6.), or since AB is =4AH, AD?>=4AH.AF. Therefore
also, because 4CG?=AD?, 4CG?=4AH.AF, and CG2®==AH.AF; where
fore CG is a mean proportional between AH and AF, that is, between half
the radius and the line made up of the radius, and the perpendicular on the
chord of twice the arc BD. ‘

Again, il is evident that BD is a mean proportional between AB and BF
(8. 6.), that is, between the diameter and the excess of the radius above

the perpendicular, on the chord of twice the arc DB.

PROP. IX. THEOR®

The cm:umfcrcm of a circle excoeds three times the diameter, by a line less
than ten of the parts, mhich the diameter contains seventy, but greater

than ten of the parts whereof the diameter contains seventy-ons.
Let ABD be a circle, of which the centre is C, and the diameter AB;
10

the circumference is greater than three times AB, by a line less than 75 °oF

v

;. of AB, but greamthm%-g of AB.

# In thié proposition, the character ced after a number, signtiies that something is to
be uldfed to_gt; and the character —, o;'.thr;l%ther hand, ligniﬁe; thi:“ something is to g‘ukn
away from it '
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In the circle ABD apply the straight line BD equal to the radius BC:
Draw DF perpendicular to BC, and let it meet the circumference again in
E; draw also CG perpandicularto BD: produce BC to A, biseet AC in
H md join CDA . N

’It isfv?dont,thn the arcs BD, BE are. each of them one-sixth of the
circumference (Cer. 15. 4.), and that therefore the arc DBE is ane third of
the_circumference. Wherefore, the line (8. 1. Sng.%‘CG is a mean pro-
portional between AH, half the radius, and the line AF. Now because the
sides BD, DC, of the triangle BDC ave equal, the augles DCF, DBF are
also equal ; and the angles DFC, DFB being equal, and the side DF com-
mon to the triangles DBF, DCF, the base: BF' is equal ta the base CF, and
BC is bisected in F. -

Therefore, if AC or B€==1000, AH=500, CF =500, AF=1500, and
CG being a mean proportional between AH and AF, CG*=(17. 6.) AH.
AF=500%1500=750000 ; wherefore CG=866.0254--; because (866.
0254)? is less than 750000.. Hence also, AC+4CG=1866.02p4+-.

Now, as CG is the perpendicular drawn from the centre-C, on the chord
of one-sixth of the circumference, if P = tje perpendicular from.C on the
chord of one-twelfth of the circumference, P will be a mean proportional
between AH (8. 1. Sup.) and AC4CG, and P2=AH (AC4CG)=
500 X (1866.0254+) = 083042.7-4. Therefore, P = 965.9258+, be-
cause (965.9258)% is less than 933012.7. Hence also, AC+4P=1965.
92584~ :

Again, if Q = the perpendicular drawn from C om the chord of one
twenty-fourth of the circumference, Q willbe a mean proportional between .
AH and AC+4-P, and Q*=AH (AC+P)=500(1965.9258-f-)=982962.
94 ; and therefore Q==991.4449+4-, because (991.4449)? is less than
982862.9. Therefore also AC+4Q=1991.44494-.

In like manner, if S be the perpendicular from C on the chord of one
forty-eighth of the circumference, S?2=AH (AC+4Q)=>500 (1991.4449+4-)
=995722.454 ; and S=997.8589+4-, Because (997;3589)5. is less than
995722.45. Hence also, AC4S=1997.8589+-.

Lastly, if T be the perpendicular from C on the chord of one ninety-sixth
of the circumference, T?=AH (AC+4-S)=x500 (1997.8589+-)=998929.
454, and T==999.46458+-.. Thus T, the perpendicular on the chord of
one ninety-sixth of the circumferenve, is greater than 999.46458 of those
perts of which the radius contains 1000. ,

But by the last proposition, the chord of one ninety-sixth part of the cir-
cumference is a mean proportional between the diameter and the excess of
the radius above S; tle perpendiculas from the centre on the chord of one
forty-eighth of the circumférence. Therefers, the square of the chord of
one ninety-sixth of the circumference=AB (AC—S)=2000 % (2.1411 —,)
=4282.2—; and therefore the chord itself =65.4386—, because (65.
4386)2 is greater than 4282.2% Now, the chord of one ninety-sixth of the
circumference, or the sids of an equilateral polygon of ninety-six sides in-
scribed in the circle, being 65.4386—, the perimeter of that polygon will be
=(65.4386—) 96=6282.1056 —.

Let the perimeter of the circumscribed polygon of the same number of
sides, be M, then (2. Cor. 2. 1.Sup.) T : AC :: 6282.1056~— : M, that is,
(since T=999.16458+-, as already shewn),



OF GEOMETRY. BOOK I 177

999.46458-4 : 1000 : : 6282.1056— : M ; if then N be such,
that 990.46458 : 1000 : : 6282.1056—': N; ex tquo perturb. 999.46458
+ : 999.46458/YY'N ' _M ; and, since' the first is greater than the second,
the third is greater than the fourth, or N is greater than M. :

. Now, if afourth proportional be found to 999.46458, 1000 and 6282.
1056 viz. 6285.461 —, then, .

* . because, 999.46458 : 1000 : : 6282.1056 : 6285.461—, '
and as before, 999.46458 : 1000 : : 6282.1056— :'N ;
therefore, 6282.1056 : 6282.1056— : : 6285.461—N, and as the first of
these proportionals is greater than the second, the third, viz. 6285 461 —

1

. D

E

. is greater than N, the fourth. ' But N was proved to be greater than M ;
much more, therefore, is 6285.461 greater lEan M, the perimeter of a poly-
gon of ninety-six sides circumscribed about the circle ; that is, the perime-
ter of that polygon is less than 6285.461 ; now, the circumference of the
circle is less t{an the perimeter of the polygon ; much more, therefore, is it
less than 6285.461 ; wherefore the circumference of a circle is less than
6285.461 of those parts of which the radius contains 1000. The circum-
ference, therefore has to the diameter a less ratio (8. 5.) than 6285.461 has
to 2000, or than 3142.9305 has to 1000 : but the ratio of 22 1o 7 is greater
than the ratio of 3142.7305 to 1000, therefore the circumference has a less
ratio to the diameter than 22 has to 7, or the circumference is less than 22
of the parts of which the diamoter contains 7. o

It remains to demonstrate, that the part by which the circumference ex-

ceeds the diameter is greater than % of the diameter.

1t was before shewn, that CG2=750000; wherefore CG=866.02545—,
because (866.02545)% is greater than 750000 ; therefore AC4-CG==1868.
02545—. :

Now, P being, as before, the perpendicular from the centre on the chord
of one twelfth of the circumference, P3==AH (AC+CG) =500 x'(18686.
02545)— =933012.73—; and P = 965.92585—, because (965.92585)3
is greater thafl 633012.73. Hence also, AC+P=1965.92585—.

23

3
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Next, as Q= the perpendicular drawn from the centre on the chord of

one tweaty-fourth of -the circumference, Q*=AH (AC+P)=500x (1965.
 §2585—) 498296293 ; (anid Q= 991.44495—, beoause (991.44496)?
is greater than 982962.98. Hence also, AC+4Q=1991.44405—.
: lke manner, as S is the perpendicular from G on the chordof one
forty-eighth qf the circumference, S?==AH (AC+Q)=500(1991.44495~)
=995722.475—, and S=(997:85895—) because (997.85895)* is greater
than 995722.475. : '

But the square of the chord of the ninety-sixth part of the circumference
e=AB (AC—8)=2000 (2.141054)==4283.1+, and the chord itself =
65.4377+ because (65.4377)? is less than 4282.1 : Now the chord of one
ninety-sixth part of the cjrcumference being =65.43774-, the perimeter
of a polygon of ninety-six sides inscribed in the circle =(65.48774-)96=
6282.0194-. But the ofrcumference of the circle is greater than the pe-
rimeter of the inscribed pelygon; therefore the Eircumference is greater
than 6282.019, of those patts of which the radius oontains 1000; or than
3141.009 of the parts of which the radius contains 500, or the diameter

contains 1000. Now, 3141.009 has to 1000 a greater ratio than 34 -;i; :
t0 1 ; therefore the circumference of the circle has a greater ratio to the
diameter than 34 lr(l)has to 1; that is, the excess of the circumference

above three times the diameter is greater than ten of those pans.of which -
the diameter contains 71 ; and it has already been shewn to be less than
ten of thoze of which the diameter contains 70. ’

Coxr. 1. Hence the diameter of a circle being given, the circumference
may be found nearly, by making as 7 to 22,s0 the given diameter to a .
fourth proportional, which will be greater than the circumference. And

ifas1t03 4 -Eig,or a8 71 or223, so the given diametertoa fourth pro-

;hporﬁonal, this will be nearly equal to the circumference; but will be less
an it.

. 1 .10, 1
| Cos. ‘2. Because the dxﬁ'farence between 5 mq i-l- is oo
lines found by these proportionals differ by 4—;1’-7 of the diameter. Thero-
fore the difference of either of them from the circumference mwst be less
than the 497th part of the diameter.

Cor. 3. As 7 to 22, so the square of the radius to the area of the circle
nearly. - .

For it has béen shewn, that (1. Cor. 5. 1. Sup.) the diameter of & cir-
cle is to its circumference as the square of the radius to the area of the
circle ; but the diameter is to the circumference neatly as 7 to 22, there-
fore the square of the radius is to the area of the circle nearly in that same
ratio. o < '

therefore the
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- SCHOLIUM.

It is evident that the method employed in this. proposition, forﬂla
the limits of:emﬁo?f'the circamference ofmth:&ameur;x;s‘nybomcn;d
toa greator of exactness, by finding the perimeter of an inscri

and of & cncun;;';.ibed polygon ongrener number of sides than 96. The
manner in which the perimeters of such polygens approach nearer to.one
another, as the number of their sides increases, may be seen from the fol.
lowing Table, which is constructed on the principles explained in the fore-
going Proposition, and in which the radius is supposed =1. i

NO. of Sides | Perimeter of the | Perimeter of the
of the Poly- inscribed Poly- circumsoribed
gon, gon. Polygon.

6 6.000000 6.822033—

12 6.2116574 6.430781 —
24 6.265257+4- 6.319320—
48 6.2787004- 6.292173—
96 6.2820634 6.285430—
192 6.282904+4 6.283747—
384 6.2831154 | 6.283327—
768 | 6.283167+4 | 6.283221—
1536 6.283180+4- 6.283195—
3072 6.283184+4 6.283188—
6144 6.283185+ 6.283186—

The part that is wanting in the numbers of the second column, to make

. up the entire perimeter of any of the inscribed polygons, is less than unit
in the sixth decimal place; and in like manner, the part by which the
numbers in the last column exceed the perimeter of any of the circumscrib-
ed polygons is less than a unit in the sixth decimal place, that is, than

of the radius. Also, as the numbers in the second column are

1000000 .
less than the perimeters of the inscribed polygons, they are each of them
less than the circumference of the circle ; and for the same reason, each of
thoge in the third column is greater than the circumference. But when

the arc of % of the circumference is bisected ten times, the number of sides
in the polygon is 6144, and the numbers in the Table differ from one an-
other only by m part of the radius, and therefore the perimeters of

the polygons differ by less than that quantity ; and consequently the cir-
cumference of the circle, which is greater than the least, and less than the
greatest of these numbers, is determined within less than the millionth
part of the radius.

Hence also, if R be the radius of any circle, the circumference is greater
than R % 6.283185, or than 2R % 3.141592, but less than 2R % 3.141593 ;
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and these numbers differ from one another only by a millionth part of the
radius. So also R3+4-3.141592 is less, and R? x 3.141593 greater than the
area of the\eircle/;)and these numbers differ from one another only by a
miHlionth part of the square of the radius. - : :

* In this way, also, the circumference and the area of the circle may be
found still nearer <o the truth; but neither by this, nor by any other me-
thod yet known to ters, can they be exactly determined, though the
errors of both may be reduced to a less quaatity than any that can'be as-



ELEMENTS
(¢} J

GEOMETRY:

BUPPLEMENT.

BOOK 1L

OF THE INTERSECTION OF PLANES.

DEFINITIONS.

1. A stratonr line is perpendicular or at right angles to a plane, when
itmakes right angles with every straight line which it meets in that
e. -

2.A plane is perpendicular to a plane, when the straight lines drawn in
one of the planes perpendicular to the common section of the two planes,
* are perpendicular to the other plane. :

3. The inclination of a straight line to a plane is the acute angle contained
- by that straight line, and another drawn from the point in whieh the
first line meets the plane, to the point in which a perpendicular to the
plane, drawn from any point of the first line, meets the same plane.

4. The angle made by two planes which cut one another, is the angle con-
tained by two straight lines drawn from any, the same point in the line
of their common section, at right angles to that line, the one, in the one
plane, and the other, in the other. Of the two adjacent angles made by -
two lines drawn in this manner, that which is acute is also called the in-
clination of the planes to one another.

5. Two planes are said to have the same, or a like inclination to one an-
other, which two other planes have, when the angles of inclination above
defined are equal to one another. :

6. A straight line is said to be parallel to a plane, when it does not meet
the plane, though produced ever so far,
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7. Planes are said to be parallel to one another, which do not meet, though
pxoduced ever so far. ,

8. A solid angle is an angle made by the meeting of more than two plane
angles, which are not in the same plane in one point.

PRCP. I. THEOQR.
One pavt of a straight line cannot be in a plane and another part above it.
If it be possible let AB, part of the' straightlme ABC, be in the phne,
and the part BC sbove it: and since the

straight line AB is in the plane, it can be
produced in that plane (2. Post. 1.); let

it be produced to D: Then ABC and -
ABD are two straight lines, and they
-have the common segment AB, which is A D

impossible (Cor. def. 3. 1.). Therefore
ABC is not a straight line.

PROP. II. THEOR

Auy three straight lines whith meet one another, not in tln same point, are in
\ one Ph.

Let the three straight lines AB CD, CB meet one another in the points
B,Cand E; AB, CD, CB are in one plane

"Let any phne through the ht line
EB, and let the plane be tureed about EB, pro-
duced, if necessary, until it pass through the
point C : Then, becauso the points E, C are in
this plane, the straight line EC isin 1t(def 5.1):.
for the same reason, the straight line BC is iy
the same ; aad, by the hypothesis, EB ia in it ;
therefors the three straight lines EC, CB, BE
areinone plane: butthe whole of the lines DC
AB, and BC preduced, are in the same
with the of them EC, EB, BC (1. 9.
Sq;) AB,CD,CB,a.ma.llinono

0.

Cou Itis manifest, that any two stralght lines which cut one another
are in one plane : Also, that any three points whatever are in one plane

A
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PROP.TII.' 'THEOR.
If two pla:m; cut one another, their common section 15 a étréight line.

Let two planes AB, BC cut one another,
and let B-and D be two points in the line of I\‘B
their common section. From.B to D draw the
straight line BD; and because the points B
and D) are in the plane AB, the straight line
BD i$ in that plane (def. 5. 1.): for the same
reason it is in the plane CB ; the straight line
BD is therefore common to the planes AB
and BC, or it is the common section of these
planes. -

.

PROP. IV. THEOR.

- If a straight line stand at right angles to each of two strai ht lines in the
point of their intersection, st will also be at right angleam{o the plane in
which these lines are. ~ ) :

. Let the straight line AB stand at right angles te each of the straight
lines EF, CD in A, the point of their intersection: AB is also at right an-
gles to the plane passing through EF, CD. .

Through A draw any line AG in the
plane in which are EF and CD ; let G be
any point in that line; draw GH parallel
to AD; and make HF=HA, join FG; and
when produced let it meet CA in D; join
BD, BG, BF. Because GH is parallel to
AD, and FH=HA : therefore. FG=GD,
s0 that the line DF is bisected in G. And .
because BAD is a right angle, BD?=AB?
+AD? (47.1.); and for the same reason,
BF? = AB24-AF?, thereforo BD?4-BF2=
2AB2% 4 AD? 4 AF?; and because DI is
bisected in G (A. 2.), AD24AF2=2AG34-
2GF?, therefore BD24-BF2=2AB%4-24G2
42GF2. But BD? 4 BF?= (A. 2.) 2BG24-2GF?, therefore 2BG24-
2GF2=2AB34-2AG?4-2GF?; and taking 2GF? from both, 2BG3=2AB?
42AG2, or BG2=AB?4-AG?; whence BAG (48.1.)is a right angle.
Now AG is any straight line drawn in the plane of the lines AD, AF ; and
when a straight line is at right angles to any straight line which it meets
with in a plane, it is at right angles to the plane itself (def. 1. ®. Sup.). AB
is therefore at right angles to the plane of the lines AF, AD.
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PROP. V. THEOR.

If three straight lines miallinm int, and a straight line stand at right
faagk:tocaclquthcm in thatpowg? these three straight lines ars in one

Let the straight line AB stand at right angles to each of the straight
lines BC, BD, BE, in B, the point where they meet; BC, BD, BE are in
one and the same plane. -

If not, let BD and BE, if possible, be in one plane, and BC be above it ;
and let a plane through AB, BC, the common section of which with
the plane, in which BD and BE are, shall be a straight (3. 2. Sup.) line;
let this be BF : therefore the three straight lipes AB, BC, BF are all in
one e, viz. that which passes through PE), BC; and because AB
stands at right angles to each of the straight lines BD, BE, it is also at
right anges (4. 2. Sup.) to the plane passing Al
through them ; and therefore ‘magec right an-
gles with every straight line meeting-it in that
plane ; but BF which is in that plane meets it;
therefore the angle ABF is a right angle; but
the angle ABC, by the hypothesis is also a right
angle ; therefore the angle ABF is equal to the
angle ABC, and they are both in the same

lane, whichis impossible : therefore the straight
~. line BC is not above the plane in which are BD
and BE: Wherefore the three straight lines
BC, BD, BE are in one and the same plane.

PROP. VI. THEOR.

Two straigh lines which are at right angles to the same plane, are parallel to
. one another. .
Let the straight lines AB, CD be at right angles to the same plane BDE ;
AB is parallel to CD. '
Let them meet the plane in the points B, D.
Draw DE at right angles to DB, in the plane BDE, A
and let E be any point in it: Join AE, AD, EB.

Because ABE isa right angle, AB*4-BE2= (47.1.) '-

AE?, and because BDE is a right angle, BE2==BD?

+DE?; therefore AB24-BD?*+4-DE2=AE?; now,
AB2?4-BD3=AD?, because ABD is.a right angle,

therefore AD?+DE2=AE?, and ADE is therefore B

a (48. 1.) right angle. Therefore ED is perpendi-

cular to the three lines BD, DA, DC, whence these

lines are in one plane (5. 2. Sup.). But ABis in the

plane in which are BD, DA, because any three

straight lines, which meet one another, are in one )]
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gu (2.2. Sup.) : therefore AB, BD, DC are in ene plane ; and each of
)e angles ABD, BDC.is a right angle ; therefore AB is parallel (Cor. 28.
1.)to CD. ' . :

" PROP. VII. THEOR.

If two straight Fines be parallel, and one qfth'cnani:ghtangks to a plane ;
{ the other is also at right angles to the same plane. ’ ’

Let AB, CD be two parallel straight . ,
lines, and let one of them AB be at A Ca
right angles to a plane ; the other CD o
is at right angles to the same plane. A

‘For, if CD be not perpendicular to
the plane towhich AB is perpendicular,
let DG be perpendicular toit. Then
(6.2.Sup.) DG is parallel to AB: DG K '
and DC therefore are both parallel to V .
AB, and are drawn through the same JL D
po)im. D, which is impossible (11. Ax. ’

1.).
PROP. VIII. THEOR.

Two straight lines which are each of them parallel to the same straight line,
~ though not both tn the seme plane with it, are parallel to one another. .

Let AB, CD be each of them parallel to EF, and not in the same plane
with it ; AB shall be parallel to CD.

In EF take any point G, from which draw, in the plane passing through
EF, AB, the straight line GH at right angles to EF; and in 310 plane
passing through EF, CD, draw GK at right angles to the same EF.
And because EF is perpendicular bothto GH and GK, it is perpendicular
(4. 2. Sup.) to the plane HGK passing through them : and EF is parallel
to-AB ; therefore AB is at right
angles (7. 2. Sup.) to the plane .  A. 3
HGK. For the same reason, CD
is likewise at right angles to the
plane HGK. Therefore AB, CD r i .
are each of them at right angles ’ F
to thtil plane HGK. Blt:t if 't;vo :
straight lines are at right angles
to th% same plane, they are pa%al- C K D
lel (6. 2. Sup.) to one another. Therefore AB is parallel to CD,

PROP. IX. THEOR.

If two straight lines meeting one another be parallel to two others that meet one
another, though not in the same plane with the first two ; the first two and the
other two shall contain equal angles.

Let the two straight lines AB, BC which meet one another, be parallel
24
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to the two straight lines DE, EF that meet one another, and ate not in the

same plane with AB, BC. The angle ABC is equal t6 the angle DEF.
Take BA,’BC,'ED, EF'all 'equal to one an-

other ; and join AD, CF, BE, AC, DF: Because B

BA is equal and parallel to ED, therefore AD is

(33. 1.) both equal and parallel to BE. For the

same reason, CF is equal and parallel to BE. A

Therefore AD and CF are each oxP them equal and

parallel to BE. But straight lines that are paral-

lel to the same straight line, though not in the

same plane with it, are parallel $8. 2. Sup.) to one

another. Therefore AD is parallel to CF ; and it

is equal to it, and AC, DF join them towards the

same parts ; and therefore (33. 1.) AC is equal

and parallel to DF. And because AB, BC are

equal to DE, EF, and the base AC to the base’ I ‘ R

DF ; the angle ABC is equal (8. 1.) to the angle

DEF

PROP. X. 'PROB.

To draw a straight line perpendicular to a plane, from a given point above it.

Let A be the given point above the plane BH, it is required to draw from
the point A a straight line perpendicular to the plane BH. .

In the plane draw any straight line BC, and from the point A draw (Prop.
12. 1) AD perpendicular to BC. If then AD be also perpendicular to the
plane BH, the thing required is already dome ; but if it be not, from the
point D draw (Prop. 11.1.), in the
plane BH, the straight line DE at E A.
right angles to BC; and from the
l{;;)int A draw AF perpendicular to

E ; and through F draw (Prop. 31 G " H
1.) GH parallel to BC : and because K \ \

BC is at right angles to ED, and DA,
BC is at right angles (4. 2. Sup.) to
the plane passing through ED, DA. B D C
And ?lHlis parallel to BC; but iftwo

straight lines be parallel, one of which is at right angles to a plane. the
other shall be at right (7. 2. Sup.) angles to thge sameg plane ; \}a)vheréfore
GH is at right angles to the plane through ED, DA, and is perpendicular
(def. 1. 2. Sup.) to every straight line meeting it in that plane. But AF,
which is in the plane through ED, DA, meets it : Therefore GH is per-
pendicular to AF, and consequently AF is perpendicular to GH ; and AF
1s also perpendicular to DE : Therefore AF is perpendicular to each of the
straight lines GH, DE. Butif a straight line stands at right angles to
each of two straight lines in the point of their intersection, it is also at right
angles to the plane passing through them (4.2. Sup.). And the plane
passing through ED, GH is the plane BH ; therefore AF is perpendicular
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to the plane BH ; -s0that, from the given point A, above the plane BH,
the straight line AF is/drawn perpendicular to that plane. I

Cor. If it be required from a point C in a plane to erect a.perpen-
dicular to that plane, take a point A above the plane, and draw AF per-
pendicular to the plane ; then, if from C a line be drawn parallel to AF,
it will be the perpendicular required ; for being parallel to AF it-will be
perpendicular to the same plane to which AF is perpendicular (7. 2. Sup.).

PROP. XI. THEOR.

From the same point in & plane, there cennot bo two straight lines at right
angles to the plane, upon the same side of is; And there can be but one
perpendicular to a plane from a point above it. -

.. For if it be possible, let the two straight lines AC, AB be at right angles
to a given plane from the same point A in the plane, and upon.the same
side of it; and let a plane pass through BA, AC ; the common section of
this plane with the given plane is a straight (3. 2. Sup.) line passing through
A : Let DAE be their common section : Therefore the straight lines AB,
AC, DAE are in one plane: And because CA is at right angles to the
given plane, it makes right angles with every = = - . : '
streight line meeting it in that plane. But: B . O
DAE, which is in that plane, meets CA: there- e
fore CAE is aright angle. For the same xea- .
son BAE is aright angle. Wherefore the an-
ge CAE is equal to the angle BAE ; and

ey are in one plane, which is impossible.
Also, from a point above a plane, there can be
but one perpendicular to that plane ; for if there D A B
coulﬁ;e two, they would be parallel (6. 2. Sup.) to one another, which is

PROP. XII. THEOR.

Planes to which the same straight line is perpendicular, are parallel to one

anaother. h
Let the straight line AB be perpendicular: to
each of the planes CD, EF : these planes are pa-
rallel to one another. B
If not, they must meet one another when pro-
duced, and their common section must bea straight
line GH, in which take any point K, and join AK,
BK : Then, because AB is perpendicular to the

plane EF, it is perpendicular (def. 1. 2. Sup.) to '
the straight line BK which is in that plane, and
therefore ABK is a right angle. For the same
reason, BAK is a right angle ; wherefore the two
angles ABK, BAK of the triangle ABK are
equal to two right augles, which is impossible,
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(17. 1.): ‘Therefore the planes €D, EF, though produced, do not mest
one another ; that is, they are parallel (def. 7. 2. Sup.). - :

PROP. XIII. THEOR. B

If two straight lines meeting one’ another, be parallel to two straight lines
whick also meet one anether, but are not in the same plane with the first
two: the plane which passes through the first two is parallel to the plane
passing tfraugl& the oshers. - : . :

_-Let AB, BO, two atraight lines mesting one another, be perallel to DE,
EF that meet ane another, but are not in the same plane with AB, BC:
The plages through AB, BC, and DE, EF shall not mest, though pro-
duced.

"Frem the point B draw BG perpendiculaz (10. 2. Sup.) to-the plane
which passes through DE, EF, and let it mest thatguwin G; and
through G draw GH parallel to ED (Prop. 31. 1.), and GK parallel to EF :

Aund BG is perpendiculaz to the plane through DE, EF, it mus
thake tight angles with every ' _ e :
ine'meeting it in that . ) '

plane (1. def. 2. Sup.). Bmt
the straight lines. GH, GK in
that plane meet it: Therefore
each of the angles BGH, BGK
is a right anglé: And because
BA is parallel (8. 2. Sup.) to
GH (for each of them is paral-
lel to DE), the angles GBA,
BGH are together equal (29.
}.) to two right angles: And . '

BGH is aright angle ; therefore also GBA is a right angle, and GB per-
pendicular to BA: For the same reason, GB is perpendicular to BC:
Since, therefore, the straight line GB stands at right angles to the two
straight lines BA, BC, that cut one another in B; GB is perpendicular
(4. 2. Sup.) w the plane through BA, BC: And it is perpendiculat to the
plane through DE, EF; therefore BG' is perpendicular to each of the
planes tl;rough AB, BC, and DE, EF ; Bat pla to. which the same
straight line is perpendicular, are parallel (12. 2. Sup.) to one another:
gléerg%’e the plane through AB, BC, is parallel to the plane through

,» EF. . : .

- Cor. It follows from this demonstration, that if a straight'line meoet
two parallel planes, and be perpendicular to one of them, it moust be per-
pondicular to the other also.
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PROP. XIV. THEOR.. '

If two patrallel planes be cut by another plane, their common sectvons with o
are paraliels.

. Let the parellel planes AB,
CD, be cut by the plane EFHG,
and let their common sections with
l(:?!l-,le EF,GH; EF is parallel to
For the straight lines EF and
GH are in the same plane, viz
EFHG which cuts the planes
AB end CD; and they donot A’
meet though produced; for the X
planes in which they are do not '
meet; therefore EF and GH are parallel (def. 30: 1.).

)

PROP. XV. THEOR.
If two parallel planes be cut by a third ﬁu, they have the samo inclination
. . to thas plane. S

. Let AB and CD be two parallel planes, and EH a third plane cutting
them; The planes AB and CD are equally inclined to EH.

Let the straight lines EF and GH be the common section of the plane
EH with the two planes AB and CD ; and from K, any point in EF, draw
inthe plane EH the eiraight line KM at right angles to EF, and 1let it
meet GH in L; draw also KN at right angles to EF in the plane AB:
and through the straight lines KM, KN, let a plane be made to pass, cut-
ting the plane CD in the line LO. And because EF and GH -are the
common sections of the plane EH with the two parallel planes AB and
CD, EF is parallel to GH (14. 2. Sup.). But Eig is at right angles to
the plane that passes through KN and KM (4. 2. Sup.), because it is at
right angles to the lines KM and KN : therefore GH is also at right an-
gles to the same plane (7. 2. Sup.), and itis therefore at right angles to

A, NG

XL
‘,K g‘\o /

B ¥ D
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the lines LM, LO which it meets in that plare. Therefore, since LM and
LO are atright angles to LG, the commen section of the two planes CD
and EH, the angle OLM isCthe  ificlination of the plane CD to the plane
EH (4. def. 2. Sup.). For the same reason the angle MKN ig the inclina-
tion of the plane AB to the plane EH.. But because KN and LO are pa-
rallel, being the common sections of the parallel planes AB and CD with
a third plane, the interior angle NKM is equal to the exterior angle OLM
(29.1.) ; that is, the inclination of the plane ‘AB to the plane EH, is equal
t0_the inclination of the plane CD to the same plane EH. |

PROP. XVI. THEOR. |
If two straight lines be cut by parallel planes, they must be cut in the same rate.

Let the straight lines AB, CD be cut by the parallel planes GH, KL,
MN, in the pomnts A, E, B; C, F, D: :
As AE is to EB, sois CF to FD. : — Y
Join AC, BD, AD, and let AD meet ' C 2
A
G

“

the plane KL in the point X; and join
EX, XF: Because the two parallel —
planes KL, MN are cut by the plane
EBDX, the common sections EX, BD,

are parallel (14. 2. Sup.). For ‘the same — - '
reason, because the two parallel planes AR ,
GH, KL are cut by the plane AXFC, x .

the common sections AC, XF are paral- "
lel: And because EX is parallel to BD, ‘ \

aside of the triangle ABD, as AE to .
EB, s0is (2. 6.) AX to XD. Again, be- - —
cause XF 1s parallel to AC, aside of the ,
triangle ADC, AX to XD, so is CF to D

FD: and it was proved that AX is to XD, pr B .

as AE to EB: Therefore (11. 5.), as AE
to EB, so is CF to FD.

PROP. XVII. THEOR.

If a straight line be at right angles to a plane, every plane which passes through
that line is at right angles to the first mentioned plane.

Let the straight line AB be at right angles to the plane CK ; every plane
which passes through AB is at right angles to the plana CK.

Let any plane DE pass through AB, and let CE be the common section
of the planes DE, CK ; take any point F in CE, from which draw FG in
the plane DE at right angles to CE: And because AB is perpendicular
to the plane CK, therefore itis also perpendicular to every straight line
meeting it in that plane (1. def. 2. Sup.); and consequently it is perpen-
dicular to CE: Wherefore ABF is a right anglo ; But GFB is likewise a
right angle ; therefore AB is parallel (28.1.)to FG. And AB is at right
angles to the plane CK : therefore FG is also at right angles to the same
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lane (7. 2. Sup.). But one plane is
gt righ(t angles fo)another plane when ] ¢ V-V |
‘the straight lines drawn in one of the -
planes, at right angles to their com-
mon section, are also at right angles
to the other plane (def. 2. 2. Sup.); and : *
any straightline FG in the plane DE, '
which is at right angles to CE, the )
common sectionof the planes,hasbeen L 5
proved to be perpendicular to the other - ¥ B X
plane CK; therefore the plane DE ‘
is at right angles to the plane CK. In like manner, it may be proved
t(l:nKt' all the planes which pass through AB are 4t right angles to the plane

¢

PROP. XVIII. THEOR.

I two planes cutting one another be eack bf them perpendicular to a third plane.
their common section is perpendicular to the same plane, ,

- Let the two planes AB, BC be each of them perpendicular to a third.
plane, and BD be the common section of the first two ; BD is perpendicular
% the plane ADC. ' B

From D in the plane ADC, draw DE perpen-

dicular to AD, and DF to DC. Because DE is
perpendicular to AD, the common section of the
planes AB and ADC; and because the plane
AB is at right angles.to ADC, DE is at right
angles to the plane AB (def. 2. 2. Sup.),and there-
fore also to the straight line BD in that plane
(def. 1.2, Sup.). For the same reason, DF is at
right angles to DB. Since BD is therefore at
right angles to both the lines DE and DF, it is
at right angles to the plane in which DE and
DF are, that is, to the plane ADC (4. 2. Sup.).

PROP. XIX. PROB.

Two straight lines not in the same plane being given in posmlm, todraw &
straight line perpendicular to them both.

Let AB and CD be the given lines, which are not in the same plane ; it
is required to draw a straight line which shall be perpendicular both to AB'
and CD. . " '

In AB take any point E, and through E draw EF parallel to CD, and
let EG be drawn perpendicular to the plane which passes through EB,
BF (10.2.Sup.). Through AB and EG let a plane pass, viz. GK, und let
this plane meet CD in H; from H draw HK perpendicular to-AB; and
HK is the line required. Through H, draw Ef)é“parallel to AB.
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_ 'Then, since HK and GE, which are in the same plane, are both at right
angles to the straight line AB, they are parallel to one another. And be-
cause the lines HG, HD are parallel to the lines EB, EF, each to each,
the plane GHD is parallel to'the plane (18. 2. Sup.) BEF; and therefore
EG, which is perpendicular to the ilane BEF, is perpendicular also to the
plane (Cor. 13. 2. Sup.) GHD. Therefore HK, which is parallel o GE,
1s also perpendicular to the plane GHD (7. 2. Sup.), and it is therefore per-
pendicular to HD (def. 1. 2. Sup.Hhich is in that plane, and it is also
perpendicular to AB; therefore is drawn perpendicular to the two
given lines, AB and CD. , . :

PROP. XX. THEOR. ,
If a solid angle be contained by three angles, any two of these angles are
fasiidangle k] o b

Let the solid angle at A be contained by the three plane angles BAC,
CAD, DAB. Any two of them are greater than the third.

If the angles. BAC, CAD, DAB be all equal, it is evident that any two
of them are greater than the third. But if they are not,let BAC be that
angle which is not less than either of the other two, and is greater than
one of them, DAB ; and at the point A in the D
straight line AB, make in the plane which
passes through BA, AC, the angle BAE equal
(Prop.23.1.) to the angle DAB; and make
AE equal to AD, and through E draw BEC
cutting AB, AC in the points B, C, and join
DB, DC. And because DA is equal to AE, ,
and AB is common ta the two triangles ABD, x C
ABE, and alse the angle DAB.equal to the o
angle EAB ; therefore the base DB is equal (4. 1.)to the base BE. And
because BD, DC are greater (20. 1.) than CB, and one of them BD has
been proved equal-to BE, a part of CB, therefore the other DC is greater
than the remaining part EC. And because DA is equal to AE, and AC
common, but the base DC greater than the base EC ; therefore the angle
DAC is greater (25. 1.) than the angle EAC; and, by the construction,
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the angle DAB is equal to the angle BAE ; wherefore the angles DAB,
DAC are together greater than BAE, EAC, that is, than the angle BAC.
But BAC is/not\/less than either.of | the angles DAB, DAC ; therefore
BAC, with either of them, is greater than the other.

PROP. XXI. THEOR.

The plane angles which contain an)ﬁ solid angle are together less than four
Y right angles.

Let A be a solid ang e contained by any number of plane angles BAC,
CAD, DAE, EAF, FAB ; these together are less than four right angles.
. Let the planes which contain the solid angle at A be cut by another

lane, and let the section of them by that plane be the rectilineal figure

%CDEF. And because the solid angle at B is contained by three plane
angles CBA, ABF, FBC, of which any two
are greater (20. 2. Sup.) than the third, the A
angles CBA, ABF are greater than the an-
gle FBC: For the same reason, the two
plane angles at each of the points C, D, E,
F; viz. the angles which are at the bases of B
.the triangles having the common vertex A,
are greater than the third angle at the same
g)int, which is one of the angles of the figure
. BCDEF : therefore all the angles at the g 0
bases of the triangles are together greater '
than all the angles of the figure: and be- 50}
cause all the angles of the triangles are to- b
gether equal to twice as many right angles as there are triangles (32. 1.) 5
that is, as there are sides in the figure BCDEF ; and because all the an-
gles of the figure, together with four right angles, are likewise equal to
twice as many right angles as there are sidesinthe figure(1 cr. 32. 1.);there-
fore all the angles of the triangles are equal to all the angles of the rectili-
neal figure, together with four right angles. But all the angles at the bases
of the triangles are greater than all the angles of the rectilineal, as has
been proved. Wherefore, the remaining angles of the triangles, viz. those
at the vertex, which contain the solid angle at A, are less than four right
angles. ' .

Otherwise.

Let the sum of all the angles at the bases of the triangles =S ; the
sum of all the angles of the rectilineal figure BCDEF==<'; the sum of the
plane angles at A=X, and let R= a right angle. .

Then, because S+ X = twice (32. 1.) as many right angles as there are
triangles, or as there are sides of the rectilineal figure BCDEF, and as
Z4-4R is also equal to twice as many right angles as there are sides of the
same figure ; therefore S4X=244R. But because of the three plane

angles which contain a solid angzlgﬂ any two are greater than the third,
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87 = ; and therefore X /4R ; that is, the sum of the plane angles which
contain the solid angle at A is less than four right angles.

SCHOLIUM.

It is evident, that when any of the angles of the figure BCDEF is ex-

terior, like the angle at D, in the an-
nexed figure, the reasoning in the
above proposition does not hold, be-
cause the solid angles at the base
are not all contained by plane an-
gles, of which two belong to the tri-
angular planes, having their com-
mon vertex in A, and the third is an
interior angle of the rectilineal figure,
or base. Thereforo, it cannot be
concluded that Sis necessarily great-

A

B ¢

er than X, This proposition, therefore, is subject to a limitation, which is
farther explained in the notes on this Book.
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BOOK III.

OF THE COMPARISON OF SOLIDS.

DEFINITIONS. ‘
1. A Sorip is that which has length, breadth, and thickness.
2. Similar solid figures are such as are contained by the same number of
similar planes similarly situated, and having like inclinations to one an-
other.

3. A pyramid is a solid figure contained by planes that are constituted be-
twixt one plane and a point above it in which they meet.

4. A prismis a solid figure contained by plane figures, of which two that
are opposite are equal, similar, and parallel to one another; and the
others are parallelograms. .

5. A parallelopiped is a solid figure contained by six quadrilateral figures,
whereof every opposite two are parallel. ’

6. A cube is a solid figure contained by six equal squares.

7. A sphere is a solid figure described by the revolution of a semicircle
about a diameter, which remains unmoved.

8. The axis of a sphere is the fixed straight line about which the semi-
circle revolves.

9. The centre of a sphere is the same with that of the semicircle.

10. The diameter of a sphere is any straight line which pasees through
the centre, and is terminated both ways by the superficies of the sphere.
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il. A cone is a solid figure described by the revolution of a right angled
triangle about one of the sides containing the right angle, which side
remains fixed: ‘

12. The axis of a cone is the fixed straight line about which the triangle
revolves. '

13. The base of a cone is the circle described by that side, containing the
right angle, which revolves. :

14. A cylinder is a solid figure described by the revolution of a right an-
gled parallelogram about one of its sides, which remains fixed.

15. The axis of a cyiinder is the fixed straight line about which the paral-
lelogram revolves.

16. The bases of a cylinder are the circles described by the two revolving
opposite sides of the parallelogram.

-17. Similar cones and cylinders are those which have their axes, and the
diameters of their bases proportionals.

PROP. I. THEOR.

If two solids be contained by the same number of equal and similar planes
similarly situated, and if the inclination of any two contiguous planes in the
one solid be the same with the inclination of the two equal, and similarly
situated planes ip the other, the sulids themselves are equal and similar.

Let AG and KQ be two solids contained by the same number of equal
and similar planes, similarly situated so that the plane AC is similar and
equal to the plane KM, the plane AF to the plane KP; BG to LQ, GD
to QN, DE to NO, and FH to PR. Let also the inclination of the plane
AF to the plane AC be the same with that of the plane KP to the plane
KM, and so of the rest ; the solid KQ is equal and similar to the solid AG.

Let the solid KQ be applied to the solid AG, so that the bases KM and

i R Q

AC, which are equal and similar, may coincide (8. Ax. 1.), the point N
coinciding with the point D, K with A, L with B, and soon. And be-
cause the plane KM coincides with the plane AC, and, by hypothesis, the
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inclination of KR to KM is the same with the inclination of AH to AC,
the plane KR will be upon-the plane, AH, and will coincide with it, because
they are similar and equal (8. Ax. 1.), and because their equal sides KN
and AD coincide. And in the same manner it is shewn that the other
planes of the solid KQ coincide with the other.planes of the solid AG,
each with each: wherefore the solids KQ and AG do wholly coincide,
and are equal and similar to one another.

PROP. II. THEOR.

If a solid be contained by siz planes, two and two of which are parallel; the op-
posite planes are similar and.equal parallelograms. i

Let the solid CDGH be contained by the parallel planes AC, GF ; BG,
CE; FB, AE: its opposite planes are similar and equal parallelograms.

Becausethe two parallel planes BG, CE, are cut by the plane AC, their
common sections AB, CD are parallel (14. 2. Sup.). Again, because the
two parallel planes BF, AE are cut by the plane AC, their common sec-
tions AD, BC are parallel (14. 2. Sup.): and AB is parallel to CD ; there-
fore AC is a parallelogram. In like manner, it may be proved that each
of the figures CE, FG, GB, BE, AE is a pa- B "
rallelogram ; join AH, DF; and because AB
is parallel to DC, and BH to CF; the two A
straight lines AB, BH, which meet one an- o
other, are parallel to DC and CF, which meet
ene another ; wherefore, though the first two Mo IR
are not in the same plane with the other two, 9
they contain equal angles (9. 2. Sup.); the )
angle ABH is therefore equal to the angle E
DCF. And because AB, BH, are equal to DC, CF, and the angle ABH
equal to the angle DCF ; therefore the base AH is equal (4. 1.) to the base
DF, and the triangle ABH to the triangle DCF : For the same reason,
the triangle AGH is equal to the triangle DEF : and therefore the paral-
ielogram BG is equal and similar to the parallelogram CE. In the same
manner, it may be proved, that the parallelogram AC is equal and similar
to the parallelogram GF', and the parallelogram AE to BF. :

PROP. III. THEOR.

If a solid parallelopiped be cut by a plane parallel to two of its opposite planes,
st will be divided into two solids, which will be to one another as the bases.

Letthe solid parallelopiped ABCD be cut by the plane EV, which is
parallel to the opposite planes AR, HD, and divides the whole into the
solids ABFV, EGCD : as the base AEFY to the base EHCF, so is the
solid ABFYV to the solid EGCD.

Produce AH both ways, and take any number of straight lines HM,
MN, each equalto EH, and any number AK, KL each equal to EA, and
complete the parallelograms LO, KY, HQ, MS, and the solids LLP. KR,
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HU, MT; then, because the straight lines LK, KA, AE are all equal, and
also the straight lines KO, AY, EF which make equal angles with LK,
-KA, AE, the 'parali¢lograms 'L.O, KY, AF are equal and similar (36. 1.
& def. 1. 6.): and likewise the parallelograms KX, KB, AG; as also

- o

(2. 3. Sup.) the parallelograms LZ, KP, AR, because they are opposite
planes. For the same reason, the parallelograms EC, HQ, MS are equal
(36. 1. & def. 1. 6.); and the parallelograms HG, HI, IN, as also (2. 3.
Sup.) HD, MU, NT ; therefore three planes of the solid LP, are equal and
- similar to three planes of the solid KR, as also to three planes of the solid
AV : but the three planes opposite to these three are equal and similar to
them (2. 3. Sup.) in the several solids ; therefore the solids LP, KR, AV
are contained by equal and similar planes. And because the planes LZ,
KP, AR are parallel, and are cut by the plane XV, the inclination of LZ
to XPis equal to that of KP to PB; or of AR to BV (15. 2. Sup.) and
the same is true of the other contiguous planes, theréfore the solids LP,
KR, and AV, are equal toone another (1. 3. Sup.). For the same rea-
son, the three solids, ED, HU, MT are equal to one another; therefore
what multiple soever the base LF is of the base AF, the same multiple is
the solid LV of the solid AV; for the same reason, whatever multiple the
base N is of the base HF, the same multiple is the solid NV of the solid
ED: Andif the base LF be equal to the base NTF, the solid L'V is equal
(1. 3. Sup.) to the solid NV ; and if the base LF be greater than the base
NF, the solid LV is greater than thesolid NV : and if less,less. Sinece
then there are four magnitudes, viz. the two bases AF, FH, and the two
solids AV, ED, and of the base AF and solid AV, the base LF and solid
LYV are any equimultiples whatever; and of the base FH and solid ED,
the base FN and solid NV are any equimultiples whatever; and it has
been proved, that if the base LF is greater than the base FN, the solid LV
is greater than the solid NV ; and if equal,equal : and ifless, less: 'There-
fore (def. 5. 5.) as the base AF is to the base FH, so is the solid AV to
the solid ED.

Cor. Because the parallelogram AF is to the parallelogram FH as YF
to FC (1. 6.), therefore the solid AV is to the solid ED as YF to FC
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PROP. 1V., THEOR.

. If a solid parallelopiped be cut by a plane passing through the diagonals of
two of the opposite planes, it will be cut into two equal prisms.

Let AB be a solid parallelopiped, and DE, CF the diagonals of the op-
posite parallelograms AH, GB, viz. those which are drawn betwixt the
-equal angles in each; and because CD, FE are each of them parallel to
GA, though not in the same plane with it, CD, FE are parallel &? 2. Sup.);

wherefore the diagonals CF, DE are in the plane in which the paralle
are, and are themselves parallels (14. 2. Sup.); c B
the plane CDEF cuts the solid AB into two /’

equal parts. i

Because the triangle CGF is equal (34. 1.)
to the triangle CBF, and the triangle DAE to ¥
DHE ; and since the parallelogram CA is equal
(2. 3. Sup.) and similar to the opposite one BE ;
and the parallelogram GE to CH : therefore the D
planes which contain the prisms CAE, CBE, ,
are equal and similar, each to each; and they
" are also equally inclined to one another, because A o)
the planes AC, EB are parallel, as also AF and
BD, and they are cutby the plane CE (15. 2. Sup.). Therefore the prism
CAE is equal to the prism CBE (1. 3. Sup.), and the solid AB is cutinto
two equal prisms by the plane CDEF. i

N. B. The insisting straight lines of a parallelopiped, mentioned in
the following propositions, are the sides of the parallelograms betwixt the
base and the plane parallel to it.

PROP. V. THEQR,

Solid parallelopipeds upon the same base, and of the same altitude, the sn-
sisting straight lines of which are terminated in the same straight lines in
the plane opposite to the base are equal to one another.

Let the solid parallelopipeds AH, AK be upon the same base AB, and
of the samo altitude, and let their insisting straight lines AF, AG, LM, LN
be terminated in the same straight line FN, and let the insisting lines CD,
CE, BH, BK be terminated in the same straight line DK ; the solid AH
is equal to the solid AK.

Because CH, CK are parallelograms, CB is equal (34. 1.) to each of
the opposite sides DH, EK : wherefore DH is equal to EK : add, or take
away the common part HE ; then DE is equal 10 HK: Wherefore also
the triangle CDE is equal (38. 1.) to the triangle BHK : and the parallel-

-ogram DG is equal (36. 1.) to the parallelogram HN. For the same rea-
son, the triangle AFG is equal to the triangle LMN, and the parallelogram
CF is equal (2. 3. Sup.) to the parallelogram BM, and CG to BN ; for
they are opposite. Therefore the planes which contain the prism DAG
are similar and equal to those which contain the prism HLN, eachto each - .
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and the contiguous planes are dlso equally inclined to one another (15. 2.
Sup.), because that the parallel planes AD and LH, as also AE and LK
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are cut by the same piane DN : therefore the prisms DAG, HLN are
equal (1. 3. Sup.). Iftherefore the prism LNH be taken from the solid,
of which the base is the parallelogram AB, and FDKN the plane opposite
to the base ; and if from this same solid there be taken the prism AGD,
the remaining solid, viz. the parallelopiped AH is equal to the remaining
parallelopiped AK. :

PROP. VI. THEOR.

Solid parallelopipeds upon the same base, and of tne same altitude, the in-
sisting straight lines of which are not terminated in the same straight lines
in the plane opposite to the base, are equal to one another.

Let the parallelopipeds CM, CN, be upon the same base AB, and of the
same altitude, but their insisting straight lines AF, AG, LM, LN, CD,
CE, BH, BK, not terminated in the same straight lines ; the solids CM,
CN are equal to one another.

Produce FD, MH, and NG, KE, and let them meet one another in the
poin:s O, P, Q,R; and join AO, LP, BQ, CR. Because the planes (def.
5. 3. Sup.), LBHM and ACDF are parallel, and because the plane LBHM
is that in which are the parallels LB, MHPQ (def. 5. 3. Sup.), and in which

N _x
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also is the figure BLPQ ; and because the plane ACDF is that in which
are the parallels AC, FDOR, and in which also is the figure CAOR;
therefore the figures/ BLPQ,) CAOR, are in ]garallel planes. In like man-
ner, because the planes ANG and CBKE are parallel, and the plane
ALNG is that in which are the parallels AL, OPGN, and in which also
is the figure ALPO; aud the plane CBKE is that in which are the paral-
fels CB, RQEK, and in which also is the figure CBQR ; therefore the
figures ALPO, CBQR, are in parallel planes. But the planes ACBL,
ORQP are also parallel ; therefore the solid CP is a parallelopiped. Now
the solid parallelopiped CM is equal (5. 2. Sup.) to the solid parallelopiped
CP, because they are upon the same base, and their insisting straight lines
- AF,AQ,CD, CR; LM, LP, BH, BQ are terminated in the same straight
lines FR, MP; and the solid CP is equal’ (5. 2. Sup.) to the solid CN;
for they are upon the same base ACBL, and their insisting straight lines
A0, AG, LP,LN; CR, OE, BQ, BK are terminated in the same straight
lines ON, RK ; Therefore the solid CM is equal tg the solid CN.

" PROP. VII. THEOR.

Solid parallelopipeds, which are upon equal Bases, and of the same altitude,
: . are equal to one arother. : :

Let the solid parallelopipeds, AE, CF, be upon equal bases AB, CD,
and be of the same altitudeé ; the solid AE is equal to the solid CF.

Case 1. Let the insisting straight lines be at right angles to the bases
AB, CD, and let the bases be placed in the same plane, and s0 as that the
sides CL, LB, be in a straight line; therefore the straight line LM, which
is at right angles to the plane in which the bases are, in the point L, is
common (I1. 2. Sup.) to the two solids AE, CF ; let the other insisting
lines of the solids be AG, HK, BE ; DF, OP, CN : and first, let theangle
ALB be equal to the angle CLD ; then AL, LD are in a straightline(14.
1.). Produce OD, HB, and let them meet in Q and complete the solid
parallelopiped LR, the base of, which is the parallelogram LQ, and of
which LM is one of its insisting straight lines : therefore, because the pa-
rallelogram AB is equal to CD, as the base AB is to the base LQ, so is
(7. 5.) the base CD to the same LQ : and because the solid parallelopiped
AR is cut by the plane LMEB, which is parallel to the opposite planes
AK, DR ; as the base AB is to the base LQ, so is (3. 3. Sup.) the solid
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AE to the solid LR : for the same reason because the solid parallelopiped
CR is cut by the plane LMFD, which is parallel to the opposite ;{Janu
CP, BR ;/ds/the /base) CDtothie’base LQ ; so is the solid CF to the solid
LR ; but as the base AB to the base LQ, so the base CD to the base LQ,
as has been proved : therefore as the solid AE to the solid LR, so is the
solid CF to the solid LR ; and therefore the solid AE is equal (9. 5.) to
the solid CF. - ) ‘

But let the solid paralielopipeds, SE, CF be upon equal bases SB, CD,
and be of the same altitude, and let their insisting straight lines be at right
angles to the bases; and place the bases SB, CD in the same plane, so
that CL, LB be in a straight line ; and let the angles SLB, CLD, be un-
equal ; .the solid SE is also in this case equal to the solid CF. Produce
DL, TS until they meet in A, and from B draw BH parallel to DA ; and
let HB, OD produced meetin Q, and complete the solids AE, LR : there-
fore the solid AE, of which the base is the parallelogram LE, and AK the
plane opposite to it, is equal (5. 3. Sup.) to the solid SE, of which the base
is LE, and SX the plane opposite ; for they are upon the same base LE,
and of the same altitude, and their insisting straight lines, viz. LA, LS,
BH, BT ; MG, MU, EK, EX, are in the same straight lines AT, GX :
and because the parallelogram AB is equal (35. 1.) to SB, for they are
upon the same base LB, and between the same parallels LB, AT ; and
because the base SB is equal to the base CD ; therefore the base AB is
equal to the base CD: but the angle ALB is equal to the angle CLD:
therefore, by the first case, the solid AE is equal to the solid CF'; but the
solid AE is equal to the solid SE,as was demonstrated ; therefore the
solid SE is equal to the solid CF.

Case 2. If the insisting straight lines AG, HK, BE,LM; CN, RS,
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DF, OP, be not at right angles to the bases AB, CD ; in this case likewise
the solid AE is equal to the solid CF. Because solid parallelopipeds on
the same base, and of the same altitude, are equal (6. 3. Sup.), if two solid
parallelopipeds be constituted on the bases AB and CD of the same alti-
tude with the solids AE and CF, and with their insisting lines perpendicu-
lar to their bases, they will be equal to the solids AE and CF ; and, by the
first case of this proposition, they will be equal to one another; wherefore,
the solids AE and CF are also equal.
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PROP, VIII. THEOR.

Solid pardklopipads which Rave the same altitude, are to one another as thesr
. bases. .

Let AB, CD be solid parallelopipeds of the same altitude ; they are to
one another as their bases ; that is, as the base AE to the base CF,s0is
the solid AB to the solid CD. @ d FH (Cor. Pro

To the straight line FG apply the parallelogram equal . Prop.
45. 1.)to AE, 80 that the angle FGH be equal to the angle LCG; and

B

complete the solid parallelopiped GK upon the base FH, one of whose in-
sisting lines is FD, whereby the solids CD, GK must be of the same alti-
tade. Therefore the solid AB is equal (7. 3. Sup.) to the solid GK, be-
cause they are upon equal bases AE, FH, and are of the same altitude :
and because the solid para.llelo&iped CK is cut by the plane DG which is
parallel to its opposite planes, the base HF is (3. 3. Sup.) to the base FC,
as the solid HD to the solid DC.: But the base HF is equal to the base

-AE, and the solid GK to the solid AB: therefore, as the base AE to the
base CF, so is the solid AB to the solid CD.

Cor. 1. From this it is manifest; that prisms upon triangular bases, and
of the same altitude, are to one another as their bases. Let the prisms
BNM, DPG, the bases of which are the triangles AEM, CFG, have the
same altitude : completes the parallelograms AE, CF, and the solid paral
lelopipeds AB, CD, in the first of which let AN, and in the other let CP
be one of the insisting lines. And because the solid parallelopipeds AB,
CD have the same altitude, they are to one another as' the base AE is to
the base CF; wherefore the prisms, which are their halves (4. 3. Sup.)
are to one another, as the base AE to the base CF ; that is, as the trian-
gle AEM to the triangle CFG. :

‘Cor. 2. Also a prism and a parallelopiped, which have the same alti~
tude, are to one another as their bases ; that is, the prism BNM is to the
parallelopiped CD as the triangle AEM to the parallelogram LG. For

-by the last Cor. the prism BNM is to the prism DPG as the triangle AME
to the triangle CGF, and therefore the prism BNM is to twice the prism
DPG as the triangle AME to twice the triangle CGF (4. 5.); that is, the
frism BNM is to the parallelopiped CD as the triangle AME to the paral-
elogram LG. :
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- PROP. IX. THEOR.

Solid parallelopipeds ars to ons another in the ratio that is compounded of the
P m?:f:gf the areas of their bases, and of their altitudes. 4

Let AF and GO be two solid parallelopipeds, of which the bases are the
parallelograms AC and GK, and the altitudes, the perpendiculars let fall
on the planes of these bases from any point in the opposite planes EF and
MO; Sxe solid AF is te the solid GO in & ratio compounded of the ratios
of the base AC to the base GK, and of the perpendicular on AC, to the
perpendicular on GK. . .

Case 1. When the insisting lines are perpendicular to the bases AC
and GK, or when the solids are upright.

In GM, one of the insisting lines of the solid GO, take GQ equalto AE,
one of the insisting lines of the solid AF, and through Q let a plane pass
parallel to the plane GK, meeting the other insisting lines of the solid GO

PO
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in the points R, S and T. It is evident that GS is a solid parallelopiped
(def. 5. 3. Sup.) and that it has the same altitude with AF, viz. GQ or
AE. Now the solid AF is to the solid GO in a ratio compounded of the
ratios of the solid AF to the solid GS (def. 10. 5.), and of the solid GS to
the solid GO ; but the ratio of the solid AF to the solid GS, is the same
with that of the base AC to the base GK (8. 3. Sup.), because their alti-
tudes AE and GQ are equal; and the ratio of the solid GS to the solid
GO, is the same with that of GQ to GM (3. 2. Sup.); therefore, the ratio
which is compounded of the ratios of the solid AF to the solid GS, and of
the solid GSto the solid GO, is the same with the ratio which is compound-
ed of the ratios of -the base AC to the base GK, and of the altitude AE to
the altitude GM (F. 5.). But the ratio of the solid AF to the solid GO, is
that which is compounded of the ratios of AF to GS, and of GS to GO;
therefore, the ratio of the solid AF to the'solid GO is compounded of the
ratios of the base ‘AG to the base GK, and of the altitude AE to the alti-
tude GM. T
Case 2. When the insisting lines are not perpendicular to the bases.
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Let the parallelograms AC and GK be the bases- as before, and let AE
and GM be the altitudes, of two parallelopipeds Y and Z on these bases.
Then, if the upright’ parallelopipeds' AF and GO be constituted on the
bases AC and GK, with the altitudes AE and GM, they will be equal to
the parallelopipeds Y and Z (7. 3. Sup.). Now, the solids AF and GO,
by the first case, are in the ratio compounded of the ratios of the bases AC
and GK, and of the altitudes AE and GM ; therefore also the solids Y
and Z have to one another a ratio that is compounded of the same ratios.

Cor. 1. Hence, two straight lines may be found having the same ratin
with the two parallelopipeds AF and GO. To AB, one of the sides of the
parallelogram AC, apply the parallelogram BV equal to GK, having an
angle equal to the angle BAD (Prop. 44. 1.); and as AE to GM, so let
AV be to AX (12. 6.), then AD is to AX as the sqlid AF to the solid GO.
For the ratio of AD to AX is compounded of the ratios (def. 10. 5.) of AD
to AV, and of AV to AX ; but the ratio of AD to AV is the same with
that of the parallelogram AC to the parallelogram BV (1. 6.) or GK;
and the ratio of AV to AX is the same with that of AE to GM ; therefore
the ratio of AD to AX is compounded of the ratios of AC to GK, and of
AE to GM (E. 5.). But the ratio of the solid AF to the solid GO is com-
pounded of the same ratios ; therefore, as AD.to AX, so is the solid AF to
the solid GO.

Cor. 2. If AF and GO are two parallelopipeds, and if to AB, to the
perpendicular from A upon DC, and to the altitude of the parallelopiped
Al?,) the numbers L, M, N, be proportional : and if to AB, to GH, to the
perpendicular from G on LK, and to the altitude of the parallelopiped GO,
the numbers L, I, m, n, be proportional ; the solid AF is to the solid GO
a8 LXMXN to IxXmXxn.

For it may be proved, as in the 7th of the 1st of the Sup. that Lx M x
N is to I X m X n in the ratio compounded of the ratio of L. X M to X m, and
of the ratio of N to n. Now the ratio of L XM to !X m is that of the area
of the parallelogram AC to that of the parallelogram GK ; and the ratio
of N to n is the ratio of the altitudes of the parallelopipeds, by hypothesis,
therefore, the ratio of L X M X N to /X m X n is compounded of the ratio of
the areas of the bases, and of the ratio of the altitudes of the parallelopipeds’
AF and GO; and the ratio of the parallelopipeds themselves is shewn, in
this proposition, to be compounded of the same ratios ; therefore it is the
same with that of the product L X M X N to the product X m X n.

Cor. 3. Hence all prisms are to one another in the ratio compounded
of the ratios of their bases, and.of their altitudes. For every prism is
equal to a parallelopiped of the same altitude with it, and of an equal base
(2. Cor. 8. 3. Sup.).

PROP. X. THEOR.

Solid paralkiopipeds, which have their bases and altitudes reciprocally propor-
tional, are equal ; and parallelopipeds which are equal, have their bases and
altitudes reciprocally proportional.

Let AG and KQ be two solid parallelopipeds, of which the bases are
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AC and KM, and the akitudes AE and KO, and let AC be to KM as K.
to AE ; the solids AG and KQ are equal. y
As the basé/'AQ 'tothe bass KM, so let the straight line KO be to the
straight line S. Then, since AC is to KM as KO -to-S,.,and also by hypo-
thesis, AC to KM as KO o AE, KO has the same ratio to S tlfat it has
to AE (11. 8.); wherefore AF is equal to 8 (9. 5.). But the solid AG is
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to the solid KQ, in the ratio compounded of the ratios of AE to KO, and
of AC to KM (9. 3. Sup.), that is, in the ratio ecompounded of the ratios of
AEt0 KO, and of KO to S. And the ratio of AE to S is also compound-
ed of the same ratios (def. 10. 5.) ; therefore, the solid AG has to the solid
KQ the same ratio that AE has to S. But AE was proved to be equal to
S, therefore AG is equal to KQ. ,

Again, if the solids AG and KQ be equal, the base AC is to the base
KM as the altitude KO to the altitude AE. Take S, so that AC may be
to KM as KO to S, and it will be shewn,as was done above, that the solid
AG is to the solid KQ as AE to S; now, the solid AG is, by hypothesis,
equal to the solid KQ : therefore, AE is equal to S ; but, by construction,
AC isto KM, as KO is to S ; therefore, AC is to KM as KO to AE.

'Cor. In the same manner, it may be demonstrated, that equal priems
have their bases and altitudes reciprocally proportional, and conversely.

PROP. XI. THEOR.

Similar solid parallelopipeds are to one another in the triplicate ratio of their
homologous sides..

Let AG, KQ be two similar parallelopipeds, of which AB and KL are
two homologous sides ; the ratio of the solid AG to the solid KQ is tripli-
cate of the ratio of AB to KL. A

Because the solids are similar, the parallelograms AF, KP are similar
(def. 2. 3. Sup.), as also the parallelograms AH, KR ; therefore, the ratios
of AB to KL, of AE to KO,and of AD to KN are all equal #def. 1. 6.)
But the ratio of the solid AG to the solid KQ is compeunded of the ratios
of AC to KM, and of AE to KO. Now, the ratio of AC to KM, because

. they are equinngular parallelograms, is compounded (23. 6.) of the ratios
of AB to KL, and of AD to KN. Wherefore, the ratio of AG to KQ is
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compounded of the three ratios of AB to KL, AD to KN, and AE to KO :
and the three ratios have already been proved to be equal ; therefore, the
ratio that is compounded of them, viz. the ratio of the solid AG to the solid
KQ, is triplicate of any of them (def. 12. 5.) : it is therefore triplicate of
the ratio of AB to KL.

Cor. 1. Ifas ABto KL, so KL to m, and as KL to m, so0 is m to n, then
AB is to n as the solid AG to the solid KQ. For'the ratio of AB to n is
triplicate of the ratio of AB to KL (def. 12. 5.), and is therefore equal to
that of the solid AG to the solid KQ.

Cor. 2. As cubes are similar solids, therefore the cube on ‘AB is to the
cube on KL in the triplicate ratio of AB to KL, that is in the same ratio
with the solid AG, tothe solid KQ. Similar solid parallelopipeds are there-
fore to one another as the cubes on their homologous sides.

Cor. 3. Inthe same manner it is proved, that similar prisms are to one
another in the triplicate ratio, orin the ratio of the cubes of their homolo-
gous sides.

PROP. XII. THEOR.

Iftwotriangular pyramids,which have equal bases and altitudes, be cut by planes
fthat are parallel to the b'ascs, and at equal distances from them, thabgutiom
are equal to one another.

" Let ABCD and EFGH be two pyramids, having equal bases BDC and
FGH, and equal altitudes, viz. the perpendiculars AQ, and ES drawn from
A and E upon the planes BDC and FGH : and let them be cut by planes
parallel to BDC and FGH, and at equal altitudes QR and ST above those
planes, and let the sections be the triangles KLM, NOP ; KLM and NOP
are equal to one another.

Because the plane ABD cuts the parallel planes BDC, KLM, the com-
mon sections BD and KM are parallel (14.2. Sup.). For the same rea-
son, DC and ML are parallel. Since therefore KM and ML are parallel
to BD and DC, each to each, though not in the same plane with them, the
angle KLM is equal to the angle BDC (9. 2. Sup.). In like manner the
other angles of these triangles are proved to be equal ; therefore, the trian-
gles are equiangular, and consequently similar ; and the same is true of the
triangles NOP, FGH.

Now, since the straight lines ARQ, AKB meet the parallel planes BDC
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A B

B E G
tnd KML, they are cut by them proportionally (16. 2. Sup.),or QR : RA
: BK: KA; and AQ : AR:: AB: AK (18. 5.), for the same reason,
ES ET:: EF: EN; therefore. AB : AK :: EF : EN, because AQ is
equal to ES and AR to ET. Again, because the tnangles ABC, AKL
are similar,

AB: AK: BC KL 5 and for the same reason

EF : EN:: FG : NO; therefore,

BC:KL:: FG: NO. And, when four straight lines are propor-
tionals, the similar figures described- on them are proportionals (22.6.) ;
there{ore the triangle BCD is to the triangle KLM as the triangle FGH
to the triangle NOP ; but the triangle BDC, FGH are equal ; therefore,
the triangle KLM is also equal to the triangle NOP (1. 5.).

Cor. 1. Because it has been shewn that the triangle KL.M is similar
to the base BCD; therefore, any section of a tna.ngu]ar pyramld parallel
to the base, is a tnangle similar to the base. And in the same manner it is
shewn, that the sections parallel to the base of a polygonal pyramid are
similar to the base.

Cor. 2. Hence also, in polygonal pyramids of equal bases and altitudes,
the sections parallel to the bases, and at equal distances from them, are
equal to one another. .

PROP. XIII. THEOR.

A series of prisms of the same altitude may be circumscribed atout any pyramid,
such that the sum of the prisms shall exceed the pyramid by a solid less than

any given solid.
Let ABCD be a pyramid, and Z* a given solid ; a series of prisms hav-

ing all the same altitude, may be circumscribed about the pyramid ABCD,
8o that their sum shall exceed ABCD, by a solid less than Z.

hd 'l‘liesolidZisnotnpteunb’dintboﬁ;nnof this, or the following Proposition. -
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Let Z ba equal to a prism standing on the same base with the pyramid,
viz. the triangle BCD, and having for its altitude the perpendicular drawn
from a certain 'point' E ‘in'the line'AC
upon the plane BCD. It is evident, that . w ~r
CE multiplied by a~ eertain number m *
will be greater than AC ; divide CA into
as many equal parts as there are units in
m, and let these be CF, FG, GH, HA,’
each of which will be less than CE.

Through each of the points F, G, H, let

planes be made to. pass parallel to the

plane BCD, making with the sides of the

pyramid the sections FPQ, GRS, HTU,

which will be all similar to ene another, K

and to the base BCD (1. cor. 12. 3. Sap.).

From the point B draw in the plane of

the triangle ABC, the straight line BK

parallel to CF meeting FP produced in

K. Inlike manner, from D draw DL pa- ]

rallel to CF, meeting FQ in L : Join KL,

and it is plain, that the solid KBCDLF

isa prism (def. 4. 3. Sup.). By the same -

construction, let the prisms PM, RO, TV

be described.  Also, let the straight line IP, which is in the plane of the

triangle ABC, be produced till it meet BC in h; and let the line MQ be

produced till it meet DCin g: Join hg; then hC gQFP is a prism, and is

equal to the prism PM (1. Cor. 8. 3. Sup.). Inthe same manner is describ-

ed the prism mS equal to the prism RO, and ‘the prism qU equal to the

prism TV. The sum, therefore, of all the inscribed prisms hQ, m$, and

qU is equal to the sum of the prisms PM, RO and TV, that is, to the sum

of all the cireumscribed prisms except the prism BL; wherefore, BL is the

excess of the prism circumsacribed about the pyramid ABCD above the
- prisms inscribed within it. But the prism BL is less than the prism which

Eas‘the triangle BCD for its base, and for its altitude the perpendicular

from E upon the plane BCD ; and the prism which has BClg for its base,

and the perpendicular from E for its altitude, is by hypothesis equal to the

given solid Z ; therefore the excess of the circumscribed, above the inscrib-

ed pri;;ns, is less than the given solid Z. But the excess of the circum-

scribed prisms abowe the inscribed is greater than their excess above the

pyramid ABCD, because ABCD is greater than the sum of the inscribed

prisms.. 'Much more, therefore, is the excess of the circumscribed prisms

abave the pyramid, less than the solid Z. A series of prisms of the same

altitude has therefore been circumscribed about the pyramid ABCD, ex-

ceeding it by a solid less than the given solid Z. ' :

PROP. XIV. THEOR

Pyramids that have equal bases and altztudés'arc‘oq_ual to one another,
Let ABCD, EFGH, be two pyrazn-;ids that have equal bases BCD, FGH
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and also equal altitudes, viz. the perpendiculars drawn from the vertices A
and E upon the planes BCD, FGH: the pyramid ABCD is equal te the
pyramid EFGH, i : R .

Ifthey are not equal, let the pyramid EFGH exceed the pyramid ABCD
by the solid Z. Then, a series of prisms of thesame altitude may be de
scribed about the pyramid ABCD. that shall exceed it, by a solid less than
Z (13. 3. Sup.); let these be the prisms that have for their bases the trian-
gles BCD, NQL, ORI,PSM. Divide EH into the same number of equal
parts into which -AD ‘is divided, viz. HT, TU, UV, VE, and through the

N

points T, U and V,let the sections TZW, UZX, V&Y be made parallel
to the bagse FGH. The section NQL is equal to the section WZT (12.
3. Sup.); asalso ORI to X5U, and PSM to Y®V.; and therefore also the
prisms that stand upon the equal sections are equal (1. Cor. 8. 3."Sup.),
that is, the prism which stands en the base BCD, and which is between
the planes BCD and NQL,, is equal to the prism which stands on the base’
FGH, and which is between the planes FGH and WZT; and so of the
rest, begause they have the same altitude: wherefore, the sum of all the
prisms described about the pyramid ABCD is equal to the sum of all those
described about the pyramid EFGH. Butthe exceés of .the ‘prisms de-
scribed about the pyramid ABCD above the pyramid ABCD is less than
Z (13. 3. Sup.); and therefore, the excess oF the prism described about
the pyramid EFGH above the pyramid ABCD is also less than Z. But
the excess of the pyramid EFGH above the pyramid ABCD is equal to
Z,by hypothesis, therefore, the pyramid EFGH exceeds the pyramid
ABCD, more than the prisms described about EFGH exceeds the same
pyramid ABCD. The gyramid EFGH is therefore greater than the sum
of the. prisms described about it, which is impossible. The pyramids
ABSB, EFGH, therefore, are not unequal, that is, they are equal to one
snother. Ca L . o
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| I PROP.CXVCTHEOR.

Ecery prism having a triangular base may be divided into taree pyramids that
it have triangular bms,mgrlzu moqualtomtkr}.,yr Co
Let there be a prist of which the base is the triangle ABC, and let

DEF be the triangle opposite the. base : The prism ABCDEF may be

divided into three equal pyramids having ttiangular bases. -

Join AE, EC, CD; and because ABED is a parallelogram, of which

AE is the diameter, the triangle ADE is equal -

(34. 1.) to the triangle ABE : therefore the py- )
ramid of which the base is the triangle ADE, . o

and vertex the point C, is equal.(14. 3. Sup.)to

the pyramid, of which the base is the triangle .

ABE %nd vertex the point C. But the pyza- D

mid of which the base is the triangle ABE, and
vertex the point C, that iss the pyramid ABCE
is equal to the pyramid DEFC (14. 3. Sup.),
for they have equal bases, viz. the triangles
ABC, DEF, and the same altitude, viz. the al-
titude of the prism ABCDEF. Therefore the
three pyramids ADEC, ABEC, DFEC are
equal to one another. But the pyramids ADEC,
ABEC, DFEC make up the whole prism ‘
ABCDEF ; therefore, the prism ABCDEF is .AC B
divided into three equal pyramids.

Cor. 1. From this it is manifest, that every pyramid is the third part
of a prism which has the same base, and the same altitude with it ; for if
the base of the prism be any other figure than a triangle, it may be divided
into prisms having triangular bases.

Cor. 2. Pyramids of equal altitudes are to one another as their bases ;
because the prisms upon the same bases, and of the same altitade, are (1.
Cor. 8.3. Sup.) to.one another as their bases. ’

“ PROP. XVL. THEOR.

If from any point in the circumference of the base of a eylinder, a straight
f'l/c'.ne be drszw?n perpendicular to{he planef;f the base',fit wc%l be wholly :::fha
cylindric superficies. ' : ;

Let ABCD be a cylinder of which the base is the. circle AEB, DFC
the circle opposite to the base, and GH the axis ; from E, any point in the
circumference AEB, let EF be drawn perpendicular to the plane of the
circle AEB : the straight line EF is in the superficies of the cylinder.

Let F be the point in which EF meets the plane DFC opposite to the
base; join EG and FH; and let AGHD be the rectangle (14. def. 3.
Sup.) by the revolution of which the cylinder ABCD is described. )
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Now, because: GH is at right angles to GA,
the straight line, which by its revolution des-
cribes the circle/AEB; it 1s-at xight angles to T,
all the straight lines in the plane of that circle .
which meet it in G,.and it is therefere at right
angles to the plane.of the circle: AEB. But
EF is at right angles to the same plane; there-
fore, EF and GH are parallel (6. 2. Sup.) and
in the same plane. Amf since the plane through
GH and EF cuts the parallel planes AEB,
DFC, in the straight lines EG and FH, EGis -
%arallel to FH (14. 2. Sup.). The figure e
GHF is therefore a parallelogram, and it has: : —g
the angle EGH a right angle, therefore it is a. ; g
rectangle, and is equal to the rectangle AH, :
because EG is equal.to AG. Therefore, when <
in the revolution of the rectangle AH, the straight line AG coincidés  with
EG, the two rectangles AH énd EH will coincide, and the straight line
AD will coincide with the straight line EF. But AD is always in the
superficies of the cylinder, for it describes that superficies ; therefore, EF
is also in the superficies of the cylinder. : .

. PROP. XVIL. THEOR.
A eylinder and a parallelopiped having equal bases-and altitudes, are equal to

Let ABCD be a cylinder, and EF a parﬂleloPiped having equal bases,
viz. the circle AGB and the elogram EH, and havin%also equal al-

titudes ; the cylinder ABCD is equal to the parallelopiped EF.
.. C — ¥

DE P /| -

C - - Y/
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el | B
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“If not, let then; be unequal ; and ﬁ.rst, let the cylinder be less than the
parallelopiped EF ; and from the parallelopiped EF" let there be cut off a
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part EQ by a plane PQ parallel to NF, equdl to the cylinder ABCD. In
the circle AGB, inscribe the polygon AGKBLM that shall differ from the
citcle by a space less than the parallelogram PH (Cor. 1. 4. 1. Sup.), and
cut off from the .parallelogram EH, a part OR equal to the polygon
AGKBLM. The point R will fall between P and N. - On the polygon
AGKBLM let an upright prism AGBCD be conaijtuted of the same alti-
tude with the cylinder, which will therefore be less than the cylinder, be-
cause it is within it (16. 3. Sup.); and if through the point R a plane RS

el to NF be made to pass, it will cut offthe parallelopiped ES equal
(2. Cer. 8. 3. Sup.) to the prism AGBC, because its base is equal to that
of the prism, and its altitude is the same. But the prism AGBC is less
than the cylinder ABCD, and the cylinder ABCD is equal to the parallel-
opiped EQ, by hypothesis; therefore, ES is less than EQ, and it is also
greater, which is impossible. The cylinder ABCD, therefore, is not less
than the parallelopiped EF; and in the same manner, it may be shewn
Bot to-be greater than EF. L ' :

PROP. XVIII. THEOR.

If acons and cylind& have the sams base and the same altitude, the cone is the
third part of the cylinder.

‘Let the cone ABCD, snd the cylinder BFKG have the same base, viz.
the circle BCD, and the same altitude, viz. the perpendicular from the
paint A upon the plane BCD, the cone’ABCD is the third part of the cylin-
der BFKG.- . . ’

If not, let the cone ABCD-be the third part of another cylinder LMNO,
having the same altitude with' the cylinder BFKG, but let the bases BCD
and LIM be unequal ; and first, let BCD be greater than LIM.

Then, because the circle BCD i greater than the circle LIM, a polygon
may be inscribed in BCD, that shall differ from it less than. LIM does (4.
1. Sup.), and which, therefore, will be greater than LIM. Let this be the
polygon BECFD ; and upon BECFD, let there be constituted the pyra-
mid ABECFD, and the prism BCFKHG.
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Becuise the polygon BECFD s groater than the circle LIM, the prism
BCFKHG is greater than the cylinder LMNO, for they have the same
altitude, hut'the’ prisni has the greater base.- But the pyramid ABECFD
is the third part of th:})tiﬂﬂl (15. 3. Sup.) BCFKHG, therefore it is great. -
er than the third part of the cylinder LMNO. Now, the cone ABECFD
is, by hypothesis, the third part of the eylinder LMNO, thereforé the pyra-
mid ABECFD is greater than she cone ABCD, and it is also less, because
it is inscribed in the cone, which is impossible. Therefore,the cone ABCD
is not less than the third part of the eylinder BFKG: And in the same
manner, by circumscribing s polygon about the circle BCD, it may be
shewn that the cone ABCD.is not greater than the third part of the cylin-
der BFKG ; therefore. it is equal to the third part of that cylinder.

PROP. XIX. THEOR.

If a hemisphere and a cone have equal bases and altitudes, a series of eylindérs
may be snscribed inthe hemisphere, and another series may be described about
the cone, having all the same altitudes with one another, and such that their
sum shall differ from the sum of the hemisphere, and the cone, by a solid
less than any given solid. o :
Let ADB be a semicircle of which the centre is C, and let CD be at right

angles to AB; let DB and DA be squares described on DC, draw CE,

and let the figure thus constructed revolve about DC: then, the secter.

BCD, which is the half of the semicircle ADB, will describe a hemisphere

having C for its centre (7 def. 3. Sup.), and the triangle CDE will describe

a cone, having its vertex to C, and having for its base the circle (11. def.

3. Sup.) described by DE, equal to that described by BC, which is the base

of the hemisphere. Let W be any given solid. A scries of cylinders may

be inscribed in the hemisphere AEB, and another described about the cone

ECI, so that their sum shall differ from the sum of the hemisphere and

the cone, by a solid less than the solid W.

Upon the base of the hemisphere let a cylinder be constituted equal to
W, and let its altitude be CX. Divide CD into such a number of equal
parts, that each of them shall be less than CX; let these be CH, HG, GF,
and FD. Through the points F, G, H, draw FN, GO, HP parallel to
CB, meeting the circle in the points K, L and M ; and the straight line
CE in the points Q, R and S. From the xoints K, L, M draw Kf, Lg,
Mh, perpendicular to GO, HP and CB; and from Q, R, and S, draw Qq,
Rr, Ss, perpendicular to the same lines. Itis evident, that the figure bein,
-thus constructed, if the whole revolve about CD, the rectangles Ff, Gg, Hﬁ
will describe cylinders (14. def. 3. Sup.) that will be circumscribed by the
hemispheres BDA ; and the tectangles DN, Fq, Gr, Hs, will also describe
cylinders that will circumscribe the cone ICE. Now, it may be demon-
strated, as was done of the prisms inscribed in a pyramid (13. 3. Sup.),
that the sum of all the cylinders described within the hemisphere, is.ex-
ceeded by the hemisphere by a solid less than the cylinder generated by
the rectangle HB, that i3, by a solid less than W, for the cylinder generated
by HB is less than W. In the same manner, it may be demonstrated,
that the sum of the cylinders circumseribing the cone ICE is greater than
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the cone by a 8olid less than the 'clylinder generated by the rectangle DN,
that is, by a solid less than W. Therefore, since the sum of the cylinders
inscribed in the hemisphere, together with a solid less than W, is equal to
_ the hemisphere ; and, since the sum of the cyliriders described about the
cone is equal to the cone together with a solid less than W ; adding equals
to equals, thé sum of all these cylinders, together with a solid less than W,
is equal to the sum of the hemisphere and the cone together with a solid
less than W. Therefore, the difference between the whele of the cylin-
“ders and the sum of the hemisphere and the cone, is equal to the difference
of two solids, which are each of them less than W; but this différence
must also be iess than W, therefore the differénce between the two series
of cylinders and the sumof the hemisphere and ¢one is less than the given
solid W. o

PROP. XX. THEOR.

The same things being supposed as in the last proposition, the sum of all the
cylinders inscribed in t hema'sgherp, and described about the cone, is equal
to a cylinder, having the same base and altitude with the hemisphere.

~ Let the figure BCD be constructed -as before, and suppesed to revolve
about CD ; the cylinders inscribed in the hemisphere, that is, the cylinders
described by the revelution of the rectangles Hh, Gg, Ff, together with .
those described about the cone, that is, the cylinders described by the revo-
lution of the rectangles Hs, Gr, Fq, and DN are equal to'the cylinder de-
scribed by the revolution of the rectangle BD.

Let L be the point. in which GO meets the circle ABD, then, because
CGIL is a right angle if CL be joined, the circles described with the dis-
tances CG and GL are equal to the circle described with the distance CL
(2. Cor. 6.1 Sup.) or GO; now, CG is equal to GR, because CD is equal
to DE, and therefore also, the circles described with the distance GR and
GL are together equal to the circle described with the distance GO, that
is, the circles described by the revolution of GR and GL about the point
G, are together equal to the circle described by the revolution of GO about
the same point G ; therefore also, the cylinders that stand upon the two
first of these circles, having the common altitudes GH, are equal to the
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cylinder which stands on the remaining circle, and which has the same
altitude GH.  The cylinders described by the revolution of the rectangles
Gg, and Gr are therefore equal to the cylinder described by the rectangle
GP. And as the same may be shewn of all the rest, therefore the cylin-
ders described by the rectangles Hh, Gg, Ff, and by the rectangles Hs, Gr,
Fq, DN, are together equal to the cylinder described by BD, that is, to the
cylinder having the same. base and altitude with the hemisphere.

PROP. XXI. THEOR.

Every sphere is two-thirds of the circumseribing cylinder.

Let the figure be constructed as in the two last propositions, and if the
hemisphere described by BDC be not equal to two-thirds of the cylinder
described by BD, let it b greater by the solid W. Then, as the cone de-
scribed by CDE is one-third of the cylinder (18. 3. Sup.) described by BD,
the cone and the hemisphers together will exceed the cylinder by W. But

n\'m,
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that cylinder is equal to the sum of all the cylinders described by the rect-
angles Hh, Gg, Ff, Hs, Gr, Fq, DN (20. 3. Sup.); therefore the hemisphere
and the cone added together exceed the sum of all these cylinders by the
given solid W, which is absurd ; for it has been shewn (19. 3. Su}i.), that
the hemisphere and the cone together differ from the sum of the cylinders
by a solid less than W. The hemisphere is therefore equal to two-thirds
* of the cylinder described by the rectangle BD ; and therefore the whole
sphere is equal to two-thirds of the eylinder described by twice the rectan-
gle BD, that is, to two-thirds of the circumscribing cylinder. '

- END OF THE SUPPLEMENT TO THE ELEMENTS.
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PLANE TRIGONOMETRY.

TrIGONOMETRY is the application of Arithmetic to Geometry - or, Thore
precisely, it is the application of number to express the relations of the sides
and angles of triangles to one another. It therefore necessarily supposes
the elementary operations of arithmetic to be understood, and it borrows
{rom that science several of the sxgns or characters which peculiarly be-
ong to it.

The elements of Plane Tngonometry, as laid down here,are divided into
three sections : the first explaing the prineiples ; the second delivers the
rules of calculation ; the third contains the construction of trigonometrical
tables, together with the investigation of some theorems, useful for extend-
ing trigonometry to the soluuon of the more dxﬁcult problema

SECTION L
LEMMA 1.

. Auangk at the cantnofaarclcw to four nghtangksas tlwarconwlmh
it stands is to the whole circumference.

. Let ABC be an angle at the centre of the circle ACF, standing on the
circumference AC: the angle ABC is to, four right anglea as the are Ab
to the whole circumference ACF. .

Produce AB till it meet the circle
in El}':l and draw DBF perpendiculer to
A

Then, because ABC, ABD are two
angles at the centre of the circle ACF, -
the angle ABC is to the angle ABD as . 5
the arc AC to the arc AD, (33. 6.);
and therefore also, the angle ABC is to
four times the angle ABD as the aze
_AC to four times the arc AD (4. 5.).

But ABD is a right angle, and there-
foro four times the-arc AD isequal to

a8
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the whole circumference ACF ; therefore the angle ABC. is to four right
angles as the arc AC to the whole circumference ACF.

Cor. Equal angles at the centres of different oircles stand on arcs which
have the same ratio to their circumferences. For, if the angle ABC, at
the centre of the circles ACE, GHK, stand on the arcs AC, GH, AC is
to the whole circumference of the circle ACE, as the angle ABC to four
_ right angles ; and the arc HG is to the whole circumference of the circle
GHK in the same ratio.

DEFINITIONS.

1. Ir two straight lines intersect one another in the centre of a circle, the
arc of the circumference intercepted between them is called the Measure
of the angle which they contain. Thus the arc AC is the measure of
the angle ABC.

2. If the circumference of a circle be divided into 360 equal parts, each of
these parts is called a Degree ; and if a degree be divided into 60 equal
parts, each of these is called a Minute ; and if a minute be divided into
60 equal parts, each of them is called a Second,and soon. And as many

" degrees, minutes, seconds, &c. as are iu any arc, so many degrees, mi-
nutes, seconds, &c. are said to be in the angle measured by that arc.

Cor. 1. Any arc is to the whole circumference of which it is a part, as
the number of degrees, and parts of a degree contained in it is to the
number 360. And any angle is to four right angles as the number of
degrees and parts of a degree in the arc, which is the measure of that
angle, is to 360.

Cor. 2. Hence also, the arcs which measure the same angle, whatever
be the radii with which they are described, contain the same number of
degrees, and parts of a degree. For the number of degrees and parts of
a degree contained in each of these arcs has the same ratio to the num-
ber 360, that the angle which they measure has to four right angles
(Cor. Lem. 1.). .

The degrees, minutes, seconds, &c. contained in any arc or angle, are
usually written as in this example, 49°. 36'. 24”. 42" ; that is, 49 de-
grees, 36 minutes, 24 seconds, and 42 thirds.

3. Two angles, which are together equal to two right angles, or two arcs
which are together equal to a semicircle, arc called the Supplements of
one another.

4. A straightline CD drawn through C, one of the extremities of the arc
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AC, perpendicular to the diameter
passing through the; other extremity
A, is called the Sine of the arc AC,
or of the angle ABC, of which AC
is the measure,

Cor. l. The sine of a quadrant, or of
a right angle, is equal to the radius.

Cor. 2. The sine of an arc is half the
chord of twice that arc: this is evi-
dent by producing the sine of any
arc till it cut th? circumference.

5. The segment DA of the diameter passing through A, one extremity of
the arc AC between the sine CD and the pomt A,is called the Versed
sine of the arc AC, or of the angle ABC. -

6. A straight line AE touching the circle at A, one extremity of the arc
AC, and meeting the diameter BC, which passes through C the other
extremity, is called the Tangent of ‘the arc AC, or of the angle ABC

Cor.- The tangent of half a right angle is equal to the radius.

7. The straight line BE, between the centre and the extremity of the tan-
gent AE is called the Secant of the arc AC, or of the angle ABC.

Cor. to Def. 4, 6,7, the sine, tangent and secant of any angle ABC, are
likewise the sine, tangent, and secant of its supplement CBF.

It is manifest, from Def. 4. that CD is the sine of the angle CBF. Let
CB be produoed till it meet the circle again in I; and it is also mani-
fest, that AE is the tangent, and BE the secant, of the angle ABI, or
CBF from Def. 6. 7.

Cor. to Def. 4, 5, 6, 7. 'The sine, versed sine, tangent, and secant of an
arc, which is the measure of any gi-
ven angle ABC, is to the sine, versed
sine tangent and secant, of any other
arc which is the measure of the same
angle, as the radius of the first arc is
t0 the radius of the second.

Let AC, MN be measures of the angle
ABC, according to Def. 1.; CD the
sine, DA the versed sine. AE the
tangent, and BE the secant of the arc AC, according to Def. 4, 5, 6, 7,
NO the sine, OM the versed sine, MP the tangent, and BP the secant
of the arc MN, according to the same definitions. Sinece CD, NO, AE,
MP are parallel, CD : NO :: rad. CB :-rad. NB,and AE : MP :: rad.
AB rad. BM, also BE : BP : : AB: BM; likewise because BC : BD
: BN : BO, that is, BA BD:: BM: BO by conversion and alterna-
non, AD:MO:: AB: MB. Hence the coro]la.ry is manifest. And



%20 - PLANE TRIGONOMETRY.

therefore, if tables be constructed, exhibiting in numbers the sines, tan-
" gents, secants, and yersed sines of certain angles to a given radius, they
" will exhibit the ratios'of the 'sines, tangents, &c. of the same angles to
any radius whatsoever. '
In such tables, which are called Trigonometrical Tables, the radius is
either supposed 1, or some in the series 10, 100, 1000, &c. The use
and construction of these tables are about to be explained.

8. The difference between any angle
and.a right angle, or between any
arc and a quadrant, is called the

.. Complenent of that angle, or of that
atc. Thus,if BH be perpendicular
to AB, the angle CBH is the com-
plement of the angle ABC, and the
arc HC the complement of AC;
also, the complement of the obtuse
angle FBC is the angle HBC, its
excess gbove a right angle; and
;l;e complement of the arc FC is

C. ‘ :

'9. The sine, tangent, or secant of the complement of any angle is called
the Cosine, Cotangent, or Cosecant of that angle. Thus, let CL or DB,
which is equal to CL, be the sine of the angle CBH ; HK the tangent,

- and BK the secant of the same angle: CL or BD is the cosine, HK the
cotangent, and BK the cosecant of the angle ABC.

Cor. . The radius is a mean proportional between the tangent and the
cotangent of any angle ABC ; that is, tan. ABC Xcot. ABC=R2. -
For, since HK, BA are parallel, the angles HKB, ABC are equal, and
KHB, BAE are. right angles; therefore the triangles BAE, KHB are

similar, and therefore AE is to AB, as BH or BA to HK.

Cor. 2. The radius is a mean proportional between the cosine and se-
cant. of any angle ABC; or . .
cos. ABCxsec. ABC=R?2, )

Since CD, AE are parallel, BD is to BC or BA, as BA o BE.

PROP. L.

In a right angled plane triangle, as the hypotenuse to either of the sides, so
the radius to the sine of the angle opposite to that side ; and as either of the
sides is to the other side, so is the radius to the tangent of the angle oppo-
sits to that side. ' , _

Let ABC be aright angled plane triangle, of which BC is the hypote-
nuse. From the centre C, with any radius CD, describe the arc DE ;
draw DF at right angles to CE, and from E draw EG touching the circle
in E, and meeting CB in G; DF is-the sine, and EG the tangent of the
arc DE, or of the angle C. )
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The two tnangles DFC, BAC, are equiangular, becsuse the angles

DFC, BAC are right angles, and the
e at C is/common. OTherefore, B

CB:BA :: CD:DF; but GD is :
the radius, and DF the sine of the -
angle C, (Def. 4.) ; therefore CB L
BA::R :sin. C.

Also, because EG touches the cir-

::;e n} E, CEG is a right engl;, a(!;d '
erefore equal to the angle BA - -
and since the angle at C xgs common C FR A
to- the tm,ngles CBA, CGE, these triangles are équiangular, wherefore
CA:AB::CE: EG but CE is the radius, and EG the tangent of the

angle C; therefore, CA AB::R: tan. C.

Cor. 1. As the radius to the secant of the angle C 8o is the ude gdj
cent to that angle to the hypotenuse. For CGis the secant of the mgle
G (def. 7.), and the triangles CGE, CBA being equiangular, CA : CB :
CE : CG, thatis, CA : CB:: R : sec.

Cor. 2. If the analogies in this pro smon, and in the abova corallary
be arithmetically expressed, makmg :g: radiua == 1, they give sin. G =

T okl tan. Q_AC’ e_e . C= E Also, since sin. C=cos.B becaueB
is the complement of C, cos. B= "ﬁﬁ’ ami for tho same ne.sen. cas. C.==
AC .

BC

Cor. 3. In every tna.ngle, if a perpendicular be drawn from any of the
angles on the opposite side, the segments. of
that side are to one another as the tangents of
the parts into which the opposite angle is di-
vtded by the perpendicular. For, if in the tri-'
‘angle ABC AD be drawn perpendicular to -
the base BC each of the triangles CAD, ABD
being right angled AD:DC1:R :tan. CAD
and AD : DB :; R : tan. DAB; therefore, ex
2que, DC : DB :: tan. CAD : tan. BAD,

SCHOLIUM. :
The proposition, just demonstrated, is most easily remembered by stwng

it thus: If in a right angled tnangle the hypotenuse be made the radius,’

the sides become the sines of the opposite angles ; and if one of the sides be
made the radius, the other side becomes the tangent of the opposlte angle,
and the hypotenuse the secant of it.
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PROP. II. THEOR.

Tlu.miaofaplam triangle uratomanothorasthcumqftkw
angles.

From A any angle in the triangle ABC, A
let AD be drawn perpendicular to BC.
And because the mangle ABD is right
angledat D, AB : AD:: R :sin, B; and
for the same reason, AC AD : R :
sin. C, and inversely, AD « AC .: : sin.
C R; therefore, ex quo inversely, AB

: AC :: sin. C : sin. B. In the same -

mnner it may be demonstrated, that AB
BC.:sm.C sin. A. B D . 0

PROP III THEOR

Thosumqfthesmesqfanytwoakcsqfacarck :stoﬂwds e Aaf
'ms,asthtangentqfhay'tkemmqfthemstothetmgmqf If their

difference.

Let AB, AC be two arcs of a circle ABCD; let E be the centre, and
AEG the dxa.meter which passes through A ; sin. AC4-sin. AB : sin. AC
—sgin. AB : (AC+AB):tan. } (AC—-AB) :

Draw BF pat el to AG, meeting the circle again in F. Draw BH
and CL perpendicular to AE and they will be the sines of the arcs AB
and AC ; produce CL till it meet the circle again in D ; join DF, FC, DE,
EB, EC, Bm

Now, since EL from the centre is perpendxcular to CD, it bisects the
line CDin L and the arc CADin A ¢’ ~ -

DL is therefore equal to LC, orto the QJ
sine of the arc AC; and BH er LK E B
being the sine of AB, DK is the sum \ ' \

of the sines.of the arcs AC and AB,
and CK is thedifference of theirsines;
DAB also is the sum of the arcs AC -
and AB, because AD is equal to AC,
and’ BC is their difference. Now, in
the triangle DFC, because FK is per-
pendicular to DC (3. cor. 1.), DK :
KC :: tan. DFK tan. CFK; but
tan, DFK—tan, 4 arc. BD, because D

the angle DFK (20. 3.) is the half of DEB, and therefore measured by
half the arc DR. For the same reason, tan. CFK=tan. } arc. BC; and
consequently, DK : KC :: tan.  arc. BD : tan. } arc. BC. But DK is
the sum of the sines of the arcs AB and AC; and KC is the difference of
the sines ; also BD is the sum of the arcs AB and AC, and BC the diffe-
rence of those arcs
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Cor. 1. Because EL is the cosine of AC, and EH of AB, FK is the
sum of these cosines, and: KB their difference ; for FK=3FB+{EL=EH
+EL, and KB=LH = EH—EL. Now, FK : KB :: tan. FDK : tan.
BDK; and tan. DFK=cotan. FDK, because DFK is the complement
of FDK; therefore, FK : KB :: cotan. DFK : tan. BDK, that is, FK :
KB : : cotan.  arc. DB: tan. {arc. BC. The sum of the cosines of two
ares is therefore to the difference of the same cosines as the cotangent of
half the sum of the arcs to the tangent of half their difference. )

Cor. 2. Inthe right angled triangle FKD, FK : KD : : R : tan. DFK;
Now FK=cos. AB4-cos. AC, KD= sin. AB+sin. AC, and tan. DFK=
tan. 3 (AB+ AC), therefore.cos. AB-4-cos. AC : sin. AB4-sin. AC:: R :
tan. § (AB4-AC). : :

In the same manner, by help of the triangle FKC, it may be shewn that
cos. AB+-cos. AC : sin. AC—sin. AB :: R : tan, $(AC—AB).

Cor. 3. Ifthe two arcs AB and AC be together equal to 90, the tan-
gent of half their sum, that is, of 459, is equal to the radius. And the arc
BC being the excess of DC above DB, or above 90°, the half of the arc
BC will be equal to the excess of the half of DC above the half of DB, that
is, to the excess of AC above 45° ; therefore, when the sum of two arcs is
90°, the sum of the sines of those arcs is to their difference as the radius to
the tangent of the difference between either of them and 45°.

PROP. IV. THEOR.

The sum of any two sides of a triangle is to their difference, as the ¢ ont of
Ralf the sum of the angles opposite to those sides, to the tangent ofah:?fthar
© dtfference. : .

Let ABC be any plane triangle;; - :
CA+AB: CA—AB :: tan. 4 (B4+C): tan. } (B—C).
For(2.) CA : AB :: sin. B : sin. C; o
and therefore (E. 5.) .

CA+AB : CA—AB:: : sin. B4sin. C : sin. B—sin: C.
But, by the last, sin. B4sin. C : sin. B—sin. C ::

tan. } (B+C): ta,n.B§ (B—C); therefore also, (11. 5.)
CA+AB: CA—AB:: tan. 4 (B4+C): tan. 4 (B—C).

A
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; ‘ - Otherwise, wnhOuuho 3d. 4
- Let ABC be a ttiangle ; the sum of AB a.nd ACaﬂy two sides, isto the
- difference of AB and AC as the tangent of half the sum of the angles ACB
. and ABG, to the tangent of half their difference. *." :

. About the centre A with the radius AB, the greater ;if iho. two sides, de-
seribe a circle meeting BC produced in D, and AC produced in E and F.
Join DA, EB,FB ; and draw FG parallel to CB, meeting EB in G.

/

NN

Because the exterior angle EAB is equal to the two interior ABC, ACB
. (32.1.): snd the angle EFB, at the circumference is equal to half the an-
gle EAB at the centre (20. 3.); therefore EFB is half the sum of the an-
gles oppasite to the sides AB and AC, : - _
Aggin, the exterior angle’ ACB is equal to the two interior CAD, ADC,
- and therefore CAD is the difference of the angles ACB, ADC, that is, of
ACB, ABC, for ABC is equal to ADC. Wherefore also DBF, which is
the half of CAD, or BFG, which is equal to DBF, is half the differenee of
- the angles opposite to the sides AB, AC. :
. Now because the angle. FBE, in a semicircle is a right angls, BE is the
tangent of the angle EFB, and BG the tangent of the angle BFG to the
radius FB; and BE is therefore to BG as the tangent of half the sum of

+; the angles ACB, ABC to the tangent of half their difference. Also CE is

the sum dof the sides of the triangle ABC, axid CF their difference ; and be-

- cause BCis parallel to FG, CE : CF : : BE : BG, (2. 6.) that is, the sum
- of the two sides of the triangle ABC isto their differengg as the tangent of
half the sum of the angles opposite to those sides to the tangent of half
their difference. ) .
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‘PROP.V.c/THEOR.

If a perpendiculat be drawn from any angle of & triangle to the opposite side,
or base; the sum o thcsegmmtaqfﬂfs base is to thc.sumqf{zoothu_m;
sides of the triangle as the difference of those sides to the differenca of the
segments of the base. ‘

For (K. 6.), the rectangle under the sum and difference of the segments
of the base is equal to the rectangle under the sum and difference of the
sides, and therefore (16. 6.) the sum of the segments of the base is to the
sum of the sides as the difference of the sides to the difference of the seg-
ments of the base. '

PROP. VI. THEOR.

In any triangle, twice the rectangle contained by any two sides is to the dif-’
Jerence between the sum of the squares of those :iJZs, and the square of t£
base, as the redius to the cosine of the angle included by the two sides.

Let: ABC be .any triangle, 2AB.BC is A
to the difference between AB24-BC? and
AC? as radius to cos. B.

From A draw AD perpendicular to BC,
and (12. and 13. 2.) the difference be-
tween the sum of the squares of AB and
.BC, and the square on AC is equal to
2BC.BD. )

But BCBA:BCBD :: BA : BD:: .
R : cos. B, thirefore also 2BC.BA : 2BC, B ¢
BD::R:cos. B. Now 2BC.BD is the difference between AB2-BC?
and ACR, therefore twice the rectangle :

AB.BC is to the difference between ) A
AB?4-BC3?, and AC? as radius to the ;
_cosine of B.

Cor. If" the radius =I, BD=BA
xcos. B, (1.), and 2BC.BAxces. B
=2BC.BD, and therefore ‘when B is
acute, 2BC.BA Xcos. B = BC?+-BA? ;
—AC? and adding AC2to both; AC? B C D
+2 cos. B X BC.BA = BC?+ BA?;
and taking 2 cos. B X BC.BA from both, AC2=BC?—2 cos. BXBC.BA
4BA2, Wherefore AC=/(BC>—2 cos. Bx BC.BA4BA?).

If B is an obtuse angle, it is shewn in the same way that AC=

(BCi42 cos. BX BC.BA+BAY).

29



"alternately, 4AC.AD : 4EF.ED :: AD?: ED2.
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PROP. VII. THEOR.
Four times the rectangle coptained by any two sides of e iriangle, is to the
" rectangle tontained by two straight lines, of which one is the base or third
side of the triangle increased by the difference of the two sides,and the
‘other the base diminished by the difference of the same sides, as the square
of the radius to the square of the sine of half the angle included between the
ti00 gides of the triangle. | ;

Let ABC be a triangle of which BC is the base, and AB ths greater of
the two sides ; 4AB.AC : (BC+(AB—AC)) X (BC—(AB—AC)):: R3.
:(sin.} BAC), - | T

Produce the side AC to D, so that AD==AB; join BD, and draw AE,

B .

CF at right angles to it ; from the centre C with the radius CD deseribe -
" the semicircle GDH, cutting BD in K, BC in G,and meeting BC_pro-

duced in H. . : ) ) Lo
It is plain that CD is the difference of the sides, and therefore that BH is .
the base increased, and BG- the base diminished by-the difference of the
sides ; it isalso evident, because the triangle BAD is isosceles, that DE is
the half of BD, and DF is the half of DK, wherefore DE ~DF =the half
of BD—DK (6. 5.), that is, EF =} BK. 'And because AE is drawn pa~-
rallel to CF, a side of the triangle CFD, AC: AD:: EF : ED, (2.6.);-
and rectangles of the same altitude being as their bases AC.AD : AD3:: -
EF.ED : ED? (1. 6.), and therefore 4AC.AD : AD? :: 4EF.ED ;: ED? or
But since 4EF=2BK, 4EF.ED=2BK.ED==2ED.BK=DB.BK==
HB.BG; therefore 4AC.AD: DB.BK :: AD?;: ED2. Now AD:ED::
R :sin. EAC=sin. £ BAC (1. Trig.) and AD?: ED?: : R2: (sin. { BAC)*:
therefore, (11. 5.) 4AC.AD : HB.BG :: R : (sin, # BAC)? ar since AB
=AD, 4AC.AB : HB.BG : : R2: (sin. § BAC)2. Now 4AC.AB is four
times the rectangle contained by the sideg of the triangle; HHB.BG is that
contained by BC4+(AB—AC) and BC—(AB—AC). - ' g

Co. Hence 2 ACAD : yHBBG :: R:sin } BAC.
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PROP. VIII. THEOR.

Four times the rectangle contained by any two sides of a triangle, 12 to the
rectangle’ contained by two straight lines, of which one és the sum of those
sides tncreased by the base of the triangle, and the other the:sum of the same
sides diminished by the base, as the square of the radius to the square of
the cosine of half the angle included between the two sides of the inangle.

Let ABC be a triangle, of which BC is the base, and AB the greater of
the other two sides, 4AB.AC : (AB4+AC+BC) (AB4+AC—BC):: R3:
{cos. 3 RAC). - :

From the centre C, with the radius CB, describe the circle BLM, meet-
ing AC, produced, in L and M. Produce ALto N, so that AN=AB; let
AD=AB ; draw-AE.perpendicular to BD; join BN, and let it meet the
circle again in P ; let CO be perpendicular to BN ; and let it meet AE in R.

It is evidemt that MN=AB+AC+BC; and that LN=AB+4+AG~
BC. Now, because BD is bisected in E, and DN in A, BN is parallel tp
AE, and is therefore perpendicular to BD, and the triangles DAE, DNB
are equiangular ; wherefore, since DN=2AD.BN==2AE, and BP==2B0
=2RE ; also PN=2AR. . :

But because the triangles ARC and AED are equiangular, AC : AD ::
AR : AE, and because rectanglos of the same altitude are as their bases

n '

(1. 6.), ACAAD : AD?:: AR.AE : AE? and alternately AC.AD : AR.AE
:: AD?: AE?, and 4AC.AD : 4ARAE :: AD?: AF2. But 4ARAE=
2ARX2AE=NP.NB=MN.NL; thereforeAAC.AD : MN.NL :: AD? ;
AE?. But AD: AE:: R : cos. DAE (1) =cos. } (BAC): Wherefore
4AC.AD : MN.NL :: R?: (cos. } BAC)? ’
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Now 4AC.AD is four times the rectangle under the sides AC and AB,
(for AD=AB), and MN\NL is the rectangle under the sum of the sides
" increased by the base, and the sum of the sides diminished by the base.

Coz. 1. Hence 2 /AC.AB: MN.NL :: R : cos. } BAC.

Cor. 2. Since by Prop. 7. 4AC.AB : (BC4-(AB—AC)) (BC—(AB
~BC)) :: R3: (sin.  BAC)?; and as has been now proved 4AC.AB :
(AB+AC+BC) (AB4AC—BC) :: R2: (cos. 4 BAC)?; therefore, ex
#quo, (AB + AC + BC) (AB4AC—BC) : (BC 4 (AB—AC)) (BC—
(AB—AC)) :: (cos.  BAC)*: (sin. § BAC)®. But the cosine of any arc
is to the sine, as the radius to the tangent of the same arc; therefore, (AB
+AC+BC) (AB4-AC—BC) : (BC+(AB—AC)) BC—(AB—AC)) :: _

R?: (tan. § BAC)?; and
+(AB4+AC+BC) (AB4-AC—BC : ‘

¥ (BCFAB—AC) (BC—(AB—AC)) :: R : tan. § BAC.

LEMMA II.

If there Be two unegual magnitudes, half their difference added to half thesr
sum is equal to the greater ; and half their difference taken from half their
sum is equal to theﬂs. ‘ : .

Let AB and BC be two unequal magnitudes, of which AB is the great-
er; suppose AC bisected in D, and AE
equal to BC. It is manifest that ACis Z E D B C
the sum, and EB the difference of the :
magnitades. And because AC is bisected in D, AD is equal to DC: but
AE is also equal to BC, therefore DE is equal to DB, and DE or DB is
half the difference of the magnitudes. But AB is equal to BD and DA,
that is, to half the difference added to half the sum; and BC is equal to
the excess of DC, half the sum above DB, half the difference.

Cor. Hence, if the sum and the difference of two magnitudes be given,
the magnitudes themselves may be found ; for to half the sum add half the
difference, and it will give the greater: from half-the sum subtract half
the difference, @nd it will give the less. - :

SCHOLIUM.

This property is evident from the algebraical sum and difference of the
two quantities ¢ and b, of which a is the greater; let their sum be denoted
by s, and their difference by d: then, ’ '

atb=s
. a—b==d }
.. by addition, 2g=s4-d;

-

s
and Cﬂ?-*-—z—.

By subtraction, 2b=xs—d;

s d
and .-. b=-—2——?.
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SECTION II.

OF THE RULES OF TRIGONOMETRICAL
CALCULATION.

THE GENERAL ProsrExM which Trigonemetry proposes {o resolve is:
In any plane triangle, of the three sides and the three angles, any three being
given, and ore of these three being a side, to find any of the other three.

The things here said to be given are understood to be expressed by their
numerical values : the angles, in degrees, minutes, &c.; and the sides in
feet, or any other known measure.

. The reason of the restriction in this problem to those cases in which at
least one side is given, is evident from this, that by the angles alone being
given, the magnitudes of the sides are not determined. Innumerable tri-
angles, equiangular to one another, may exist, without the sides of an
one of them being equal to those of any other; though the ratios of their
sides to one another will be the same in them all (4. 6.). If therefore, only
the three angles are given, nothing can be determined of the triangle but
the ratios of the sides, which may be found by trigonometry, as being the
same with the ratibs of the sines of the opposite angles.

For the conveniency of calculation, it is usual to divide the general pro-
blem into two ; according as the triangle has, or has not, one of the angles
2 right anglo. .

PROBLEM 1.

In a right angled triangle, of the three sides, and three angles, any two being
given, besides the right angle, and on#of those two being a side, it is reguired
to find the other three.

It is evident, that when one of the acute angles of aright angled triangle
is given, the otheris given, being the complement of the former to a right
angle; it is also evident that the sine of any of the acute angles is the
cosine of the other.

This problem admits of several cases, and the solutions, or rules for cal-
culation, which all depend on the first Proposition, may be conveniently
exhibited in the form of a table ; where the first column contains the things
given ; the secend, the things required ; and the third, the rules or prepo~
sitions by which they are found.
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GIVEN, SOUGNT, © SOLUTION.

CB and B, the AC. R:sinB::CB: AC} 1

hypotenuse andl g’ Ip o5 B ;:CB: AB] 2
angle. .

AC and C, 3 po lcesC:R:: AC: BC| 3

side and one off 4B IR’ tanC::AC : ABJ 4
the acute angles.

CB and BA, C |ICB:BA::R:sinC|] &

the hypotenusel * yv R cos C:: CB :'AC| 6
and a side. _

AC and ABf C. JAC: AB.:: R.:tanC{ 7
the two sides. CB. |[CosC:R:: AC: CB| 8

B

¢ A
Remarks on the Solutions in the table.

In the second case, when AC and C are given to find the hypotenuse
BC, a solution may also be obtained by help of the secant, for CA : CB : :
R : sec. C.; if, therefore, this proportionbe made R : sec. C : : AC: CB,
CB will be found. S / :

-In the third case, when the hypotenuse BC and the side AB are given
to find AC, this may be done either as directed in the Table, or by the
47th of the first; for since AC? == BC? ~ BA3, AC == /BC? — BA%L,
This value of AC will be easy to calculaté by logarithms, if the quantity '
BC?—BA? be separated into two multipliers, which may be done ; because
(Cor. 5. 2.), BC*~BA2=(BC 4- BA) . (BC—BA). Therefore AC =
v{BC+BA) (BC—BA). . L '

When AC and AB are given, BC may be found from the 47th, as in the
preceding instance, for BC=/BA?4-AC?. But BA?--AC? cannot be
_separated into two multipliers ; and therefore, when BA and AC are large
numbers, this rule is inconvenient for computation by logarithms. It is
best in such cases to seek first for the tangent of C, by the analogy in the
Table,AC : AB :: R : tan. C; but if C itself is notrequired, it is sufficient,
having found tan. C by this proportion, to take from thé Trigonometric
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Tables the cosine that corresponds to tan. C, and then to compute CB from
the proportion €os. C : R :: AC : CB.-

. PROBLEM 1L

Iu an oblique angled triangle, of the three sides and three angles, any three
being given, and one o these three being a side, it is requsred to nd the
other three.

This problem has four cues, in each of whlch the aolutxon depends on
some of the foregoing propositions.

v CASE L

Two angles A and B, and one side AB, ofnm.n le ABC bom given,
to find the other sides. g 8

SOLUTION. '
Because the angles A and B are given, C is also given, being the sup-
plement of A+4-B; and, (2. % ’
. Sin. C: sin. A : AB C; also,
" 8in. C:sin. B:: AB: AC.

CASE' II.

' Two sides AB and AC, and the angle B opposxte to one of them,
given, to find the other angles A and C, and also the other side BC.

SOLUTXON.

The angle C is found from this proportion, AC : AB : : sin. B : sin. C.
Also, A=180°—B—C ; and then,sin. B : sin. A :: AC : CB, by Case 1.

In this case, the angle C may have two values; for its sine bemg found
by the proportion above, the angle belonging to tha& sine may either be that
~ which is found in the tables, or it may be the-supplement of it (Cor. def, 4.).
This ambxgmty‘ however, does not arise from any defect in the solution,
but {rom a circumstance essential to the problem, viz. that whenever AC
is legs than AB, there are two triangles which have the sides AB, AC, and
the angle at B of the same magnitude in each, but which are neve;theleas
unequal, the angle opposite to AB in the one, bemg the supplement of that
which is opposite to it in the other. The truth of this appears by describ-
ing from the centre A with the radius AC, an arc intersecting BC in C
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A

B ¢—~——C

and C’; then, if AC and AC’ be drawn, it is evident that the tnangles
ABC, ABC' have the side AB and the angle at B common, and the sides
AC and AC' equal, but have not the remaining side of the one equal to the
remaining side of the other, that is, BC to BC', nor their other angles equal,
vis. BC'A o BCA, nor BAC' to BAC. But in these triangles the angles
ACB, AC'B are the supplements of one another. 'For the triangle CAC’
is 1sosceles, and the angle ACC'==AC'C, and therefore, AC'B, which is
the supplement of AC'C, is also the supplement of ACC’ or ACB and
these two angles, ACB AC'B are the angles found by the computatien
above.

From these two angles, the two angles BAC, BAC’ will be found : the
angle BAC is the supplement of the two angles ACB, ABC (32.1.), and
therefore its sine is the same with the sine of the sum of ABC and ACB.
But BAC' is the difference of the angles ACB, ABC: for it is the diffe-
rence of the angles AC’C and ABC, because AC’C, that is, ACC' is equal
to the sum of the angles ABC, BAC' (33.1.). Therefore,to find BC,

. having found C, make sin. C: sin. (C4B):: AB: BC; and again, sin.

C: sin. (C—B):: AB: BC.

Thus, when AB is greater than AC, and C consequently greater than
B, there are two triangles which sa.usfy the canditions of the question.
But when AC is greater'than AB, the intersections C and.C’ fall on oppo-
site sides of B, so that the two tnangles have ot the same angle at B com-
mon to them, and the solution ceases to he ambiguous, the angle required
being necessarily less than B, and therefore auacute angle.

CASE IIL

Two sides AB and AC, and the angle A, between them, bemg given to
find the other angles B and C, and also the mde BC.

" SOLUTION.

:First, make AB4AC: AB—AC ::'tan. § (C4B): tan. } (C‘;ﬂ‘
Then, since § (C+-B)and } (C—B) are ' both given, B and C may be fo :
For B=}( +B)+4 (C—B), and C=} (C+B)—§ (C—B). (Lem 2)

To find BC.

‘Having found B, make sin, B : sim, A :: 'AC : BC.
"But BC may also be found withost seekmg for the angle Band C; for
BC= /AB?>—32 cos. A X AB.ACTAC?, Prop. 6.
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This method of finding BC is extremely useful in many geometrical in-
vestigations, but it is not very well adapted for computation by logarithms,
because the quantity under-the radical-sign cannot be separated into sim-
ple multipliers. Therefore, when AB and AC are expressed by large
numbers, the other solution, by finding the angles, and then computing BC,
is preferable. -

CASE IV.
The three sides AB, BC, AC, being given, to find the angles A, B, C.

SOLUTION 1.

Take F such that BC : BA4+AC :: BA—AC : F, then F is either the
sum or the difference of BD, DC, the segments of the base (5.). If F be
greater than BC, F is the sum, and BC the difference of BD, DC; but, if
F be less than BC, BC is the sum, and F the difference of BD and DC.
In either case, the sum of BD and DC, and their difference being given,
BD and DC are found. (Lem. 2.) _ :

Then,(1.)CA:CD :: R:cos. C;and BA:BD:: R : cos. B; where-
fore C and B are given, and consequently A. :

‘B D C B ¢ D

SOLUTION 1I.

Let D be the difference of the sides AB, AC. Then (Cor. 7.) 2 /AB.AC
. J(BCFD)(BC—D):: R : sin. § BAC. :

SOLUTION III

Let S be the sum of the sides BA and AC. Then (1. Cor. 8.)2 /AB:AC
: /(S4BC) (S—BC):: R: cos. § BAC.

SOLUTION 1V.

§ and D retainingthe significations above, (2.Cor.8.) / {S+BC) (S—BC)
: /(BC+D) (BG—D) :: R : tan. 4 BAC.

It may be observed of these four solutions, that the first has the advan-
tage of being easily remembered, but that the others are rather more expe-
ditious in calculation. The second solution is preferable to the third, when
the angle sought is less than a right angle; on the other hand, the third
is preferable o she second, when the angla sought is greater than a right

30
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angle ; and in extreme cases, that is, when the angle sought is very acute
or very obtuse, this distinction is very material to be considered. The
reason is, that the sines of angles; which are nearly == 909, or the cosines
of angles, which are nearly = 0, vary very little for a considerable varia-
tion in the eorresponding angles, as may be seen from looking into the ta-
bles of sines and cosines. The consequence of this is, that when the sine
or cosine of such an angle is given (that is, a sine or cosine nearly equal to
the radius,) the angle itself cannot be very accurately found. If, for in-
stance, the natural sine .9998500 is given, it will be immediately per-
ceived from the tables, that the arc corresponding is between 89°, and 899

- LI - ~ . P P S ne * of RN L
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than a right anlgle by the square of the side opposite to it being greater ox
less than the squares of the other two sides.

SECTION III.

CONSTRUCTION OF TRIGONOMETRICAL TABLES. -

Ix all the calculations performed by the preceding rules, tables of sines
and tangents are necessarily employed, the construction of which remains
to be explained. . .

The tables usually contain the sines, &c. to every minute of the quad-
rant from 1’ to 909, and the first thing required to be done, is to compute.
the sine-of 1’, or of the least arc in the tables.

1. If ADBbe a circle, of which the centre is C, DB, any arc of that eir-
cle, and the arc DBE double of DB ; and if the chords DE, DB be drawn,
also the perpendiculars to them from C, viz. CF, CG, it has been demon-
strated (8. 1. Sup.), that CG is a mean proportional between AH, half
radius, and AF, the line made up of the radius and the perpendicular CF.
Now CF is the cosine of the arc BD, and CG the cosine of the halfof BD;
whence the cosine of the half of any arc BD, of a circle of which the ra-

dius = 1, is & mean proportional between 4 and 1-}-cos. BD. - Or, for the

greater generality, supposing A = any arc, cos. A is a miean proportional
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botween 3 and 14-cos. A, sud therefare (cos. 3 A=} (14-cos. A) or cos.
1 A=+ (1+o0s. A). - ‘

2. From this theorem, (which is the same that is demonstratéd (8. 1.
Sup.), only that it is here expressed trigonometrically,) itis evident, that if
the cosine of any arc be given, the cosine of half that arc may be found.
Let BD, therefore, be equal to 609, so that the chord BD =radius, then the
cosine or perpendicular CF was shewn (9. 1. Sup.) to be =4, and there-’

foro cos. § BD, of cos. 300 y ¥ FTjme v3=22. 1 tho same man-
ner, cos. 15°= 1/ (14-cos, 30°), and ¢0s. 72, 30'= X§(1 +-cos. 150 ), &e.

In this way the cosine of 3°, 45, of 1°, 52, 30", and so on, will be com-
puted, till after twelve bisections of the arc of 60°,the cesine of 52". 4“4,
93", 45". is found. But from the cosine of an arc its sine may be
found, for if from the square of the radius, that is, from 1, the square of
the.cosine be taken away, the remainder is the square of the sine, and its
square root is the sine itself.. Thus the sineef 52". 44", 03", 45%.is
found. T . -

3. But it is'manifest, that the sinesof very small arcs are to 6ne anothier .
nestly as the arcs themselves. For ithas been shewn that the umber of
the sides of an equjlateral polygon inscribed in a circle may be so great,
that the perimeter of the polygon and the circumference of the circle may
differ by a line less than any given line; or, which ix the same, may be
‘nearly to one another in the ratio of equality. Therefore their like paris
will also be neatly in the ratio of equality, so that tle side of the polygon

- will be to the arc which it subtends nearly in the ratio of equality ; and
therefore, half the side of the poly]glon to half the arc subtended by it, that
is to say, the sine of any very small arc will be to the arc itself, nearly in
the ratio of equality.” Therefore, if iwo arcs are both very small, the first
will be to the second as the sine of the first to the sine of the second.
Hence, from the sine of 52”. 54", 03"”. 45". being found, the sine of 1
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becomes known, for,as 52”. 44". 03", 457. to 1,80 is the sine of the
former arc to ‘the sine of the latter. Thus the sine of 1’ is found =
0.0002908882.

4. Thesine )’ being thus found, the sines of 2’, of 3', or of any number
of minutes, may be found by the following proposition.

THEOREM.

Let AB, AC, AD be three such arcs, that BC the difference of the first
and second is equal to CD the difference of the second and third ; the ra-
dius is to the cosine of the common difference BC as the sine of AC, the
middle arc, to half the sum of the sines of AB and AD, the extreme arcs.

Draw CE to the centre : let BF, CG, and DH perpendicular to AE, be
the sines of the arcs AB, AC, AD. Join BD, and let it meet CE in I;
draw IK perpendicular to AE, also BL and
IM perpendicular to DH. Then, because
the arc BD is bisected in C, EC is at right -
angles to BD, and bisects itin [ ; also BI is
the sine, and EI the cosine of BC or CD.

And, since BD ig bisected in I, and IM is

parallel to BL (2. 6.), LD is also bisected in I

M. Now BF is equal to HL, therefore BF

+DH=DH+HL = DL4-2LH = 2LM4-

2LH=2MH or 2KI; and therefore IK is

half the sum of BF and DH. But because

the triangles CGE, IKE are equiangular, A

CE : El :: CG : IK, and it has been shewn that EI=cos. BC, and IK=
3 (BF+DH); therefore R : cos. BC :: sin, AC : } (sin. AB4-sin. AD).

. Cor. Hence, if the point B coincide with A,
R : cos. BC :: sin. BC : § sin. BD, that is, the radius is to the cosine of
any arc as the sine of the arc is to half the sine of twice the arc ; or if any
arc=A, 1 sin. 2A=sin. A X cos. A, or sin. 2A==2 sin. A X cos. A.

Therefore also, sin. 2'=2’ sin. 1’ X cos. 1’: so that from the sine and
cosine of one minute the sine of 2’ is found.

Again, 1',2', 3, being three such arcs that the difference between the
first and second is the same as between the second and third, R : cos. 1’ ::
sin. 2 : § (sin. 1'4-sin. 3'), or sin. 1’4 sin. 3'=2 cos. 1'+-sin. 2, and taking
sin. 1’ from both, sin. 3'=2 cos. 1’ X sin. 2’ —sin. 1.

In like manner, sin. 4'=2’ cos. 1’ Xsin. 3’ —sin. 2,

sin. 5'=2’ cos. 1’ X sin. 4’—sin, 3,
sin. 6'==2' cos. 1’ X sin. 5'—sin. 4, &ec. .

Thus a table containing the sines for every minute of the quadrant may
be computed ; and as the multiplier, cos. 1’ remains always the same, the
calculation is easy.

For computing the sines of arcs that differ by more than 1’, the method
is the same. Let A, A4 B, A42B be three such arcs, then, by this the-
orem, R : cos.B :: sin. (A4 B) : } (sin. A+sin. (A42B)); and therefore
making the radius 1, ,
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sin. A+4-sin. (A4-2B)=2 cos. Bxsin. (A+B),
or sin. (A42B)=2 ces. B xsin. (A+B)—sin. A. -
By means of these thearems, 3 table’ of the sines, and consequently also
of the cesines, of arcs of any number of degrees and minutes, from 0 to 90,

may be constructed. . 'Then, because tan. A= :l:; ﬁ,' the table of tangents

is computed by dividing the sine of any arc by the cosine of the same arc.
‘When the tangents have been found in this manner. as far as 459, the tan-
gents for the other half of the quadrant may be foynd more easily by an-
other rule. For the tangent of an arc above 45° being the co-tangent of
an arc as much under 45° ; and the radius being a. mean proportional be-
tween the tangent and co-tangent of any arc (1. Cor. def. 9), it follows, if
the difference between any arc and 45° be called D, that tan. (45°—D) :

es 1 o ) -_—
1::1: tan. (45°+D), so that tan. (48°+ D)= s

Lastly, the secants are calculated from (Cor. 2. def. 9.) where 1t is
shewn that the radius is a mean proportional between the cosine and the

. : 1
secant of any arc, so that if A be any arc, sec. A=m
- The versed sines are found by subtracting the cosines from the radius.

5. The preceding Theorem is one of four, which, when arithmetically
expressed, are frequently used'in the application of trigonometry to the so-
lution of problems. .

1mo, If in the last Theorem, the arc AC=<A, the arc BC=B, and the
radius EC=I, then AD=A+B, and AB=A—B ; and by what has just
been demonstrated, . ]

1: cos. B :: sin. A : § sin. (A+B)4-3 sin. (A—B),
and therefore, .
"sin. A X cos. B=} sin. (A+B)+? gA—-B). ‘
2do, Because BF, IK, DH are parallel, the straight lines BD and FH
are cut proportionally, and therefore FH, the difference of the straight lines
FE and HE, is bisected in K; and therefore, as was shewn in the last
Theorem, KE is half the sum of FE and HE, that is, of the cosines of the
arcs AB and AD. But because of the similar triangles EGC, EKI, EC
: ElI:: GE : EK; now, GE is the cosine of AC, therefore,
R:cos. BC:: cos. AC : § cos. AD+44 cos. AB,
orl:cos. B:: cos. A:}cos. (A+B)+4cos. (A—B);
and therefore, - , .
cos. A X cos. B=} cos. (A+B)+% cos. (A—B); -

3tio, Again, the triangles IDM, CEG are equiangular, for the angles
KIM, EID are equal, being each of them right angles, and therefore, tak-
ing away the angle EIM, the angle DIM is equal to the angle EIK, that
is, to the angle ECG; and the angles DMI, CGE are also equal, being
both right angles, and therefore the triangles IDM, CGE have the sides
about their equal angles proportionals, and consequently, EC : CG :: DI
: IM ; now, IM is half the difference of the cosines FE and EH, therefore,

R : sin. AC :: sin. BC: § cos. AB—} cos. AD, .
“orl:sin. A ::sin B: }cos (A—B)—¥ cos. (A+B);
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and also,
sin, A X sin. B=} cos, (A—B)— - cos. (A<4B).
4o, Lastly, in the same triangles ' ECG, DIM, EC: EG :: ID DM;
now, DM is half the difference of the sines DH and BE,. thorefou,
R : cos. AC :: ain. BC : } sin. AD—4 sin. AB, '
orl:cos.A::sin.B: }sin 3 +B)—% sin. (A+B)
therefoze,
. cos. Axsm B=} sin. (A+B)—}sm (A~B).

whatsoever, the radms being

A~B).
A+B).
A4-B).
A B‘).
sther four.

.

et amiameds D5 wods (A—D).

Agun addmg the second and third,

cos, A X cos. B4-sin. A Xsin. B=cos.(A—B);
And, lastly, subtracting the third from the second,
cos. A X cos. B—sin. A Xsin. B=cos. (A4-B).

7. Again, since by the first of the above theorems,
sin. A X cos. B=}sin. (A+B)+} sin.(A—B),if A4 B=S, and A~B=D,

then {Lem. 2) A_i-’-'— dB_S——D-- wherefore sin. S+D X cos.

2 2
S—D =4 sin. S4+3D. ButasSand D may be any arcs whatever, to

pruse:rvo the former notation, they may be called A md B, which also ex-
press any arcs whatever: thus,

A-; A— =—.§- sin. A+} sin. B,'ol'f B

sin.

X cos.

; 2 sin. A:B X cos. A;B =sin. A+sin.l B.
|

In the same manner, from Theor. 2 is derived,

; &£ cos. A;B xcoé. A;B_.cos. B4-cos. A. From the 3d,
2 sin. A+B X sin. A;B_ 08. B—cos. A ; and from the 4th,
2 cos. A,';BXSm. A;B...nzin. A—sin. B.

In all these Theorems, the arc B is supposed less than A.

8. Theorems of the same kind with respect to the tangents of arcs may
be deduced from the preceding. -Because the tangent of any arc is equa.l
to the sine of the arc divided by its cosine,
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tan. (A4 B)= %—%——ﬁ%. But it Thas just been shewn, that

sin. (A4 B)=sin. A X cos. B+cos. A xsin. B, and that .
cos. (A4 B)=cos. A X cos. B—sin. A Xsin. B; thefefore, tan. (A+B) =

::: i):( :z:' ]B;+ ‘:i): :::‘:: g , and dividing both the numerator and deno-
—tan. A4-tan. B

. - - i} . ) ‘—
minator of this fraction by ces. A X cos. B, tan. (A-{-B, T oo Axen B

tan.Atan. B . :
14tan. AXtan. B’

In like manner, tin. (A—B)=

9. If the Theorem demonstrated'in Prop.-3, be expressed in the same
manner with those above, it gives

sin. A4sin. B tan. § (A4B) . -
sin. A—sin. B 7 tan. { (A—B)

-‘Also by Cor. 1, to the 34,
cos. Atcos. B cot.} (A+B) -
cos. A—cos. B~ tan. } (A—B) .

And by Cor. 2, to the same proposition, .

in. Asin. B’ B L
:l:.. 2i:;3 = if(t + V.),qor since R is here supposed == §,

gin. A+sin. B _
- oo Atoos B = 0 $ (A1 B).

-

~10. 1In all the preceding Theorems, R, the radius, is supposed =1, be-
cause in this way the propositions are most concisely expresaed, and are
also most readily applied to trigonometrical ¢irculation. But if it be re-
quired to enunciate any of them geometrically, the multiplier R, which
has disappeared, by being made == 1, must be restored, and it will always
be evident from inspection in what térms this multiplier is wanting. Thus,
Theor. 1,2 sin. A X cos. B=sin. (A-+B)+-sin. (A—B), is a true proposition,
taken arithmetically ; but taken geometrically, is absurd, unless we sup-
ply the radius as a multiplier of the terms ‘on the right hand of the sine of
equality. Itthenbecomes 2 sin. A X cos. B=R (sin. (A4-B)+-sin. (A —B));
or twice the rectangle under the sine of A, and the cosine of B equal to the
rectangle under tha radius, and the sum of the sines-of A+B and A—B. -
In general, the number of linear multipliers, that is, of lines whose nume-
rical values are multiplied together, inust be the same in every term, other-
wise we will compare unlike magnitudes with one another.
. 'The propositions in this section are useful in many of the higher branches
:} tshe Mathematics, and are the foundation of whatis called the Arithmetic
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PROP. 1.

If a sphere be cut by a plane throughthe centre, the section is a circle, kaving the
f:ame centre with the sphere, and equal to the circle by the revolution of which
the sphere was described.

Fonr all the straight lines drawn frotn the centre to the superficies of the
sphere are equal to the radius of the generating semicircle, (Def. 7. 3.
Sup.). - Therefore the common section of the spherical superficies, and of
a plane passing through its centre, is a line, lying in one plane, and hav-
ing all its points equally distant from the centre of the sphere ; therefore it
is the circumference of a circls (Def. 11. 1.), having for its centre the cen-
tre of the sphere, and for its radius the radius of the sphere, that is, of the
_ semicircle by which the sphere has been described. . It is equal, therefore,
to the circle of which that semicircle was a part. .

DEFINITIONS.

1. ANv circle, which is a section of a sphere by a plane through its centre,
is called a great circle of the sphere. .

Cor. All great circles of a sphere are equal ; and any two of them bisect
one another. .

They are all equal, having all the same radii, as has just been shewn ; and
any two of them bisect one another, for as they have the same centre,
their common section is a diameter of both, and therefore bisects both.

2. The pole of a great circle of a sphere is a point in the supérﬁcies of the
sphere, from which all strai vht lines drawn to the circumference of the
circle are equal. :

3. A spherical angle is an angle on the superficies of a sphere, contained
by the arcs of two great circles which intersect one another ; and is the
same with the inclination of the planes of these great circles.
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4. A spherical triangle is a figure, upon the superficies of a sphere, com-
prehended by, three arca.of three great circles, each.of which is less than
a semicircle. ' ' .

PROP. II.

The arc of a great circle, between the pole and the ewacmfcrcncc of another
. great circle,1s a quadrast. .

Let ABC be 2 great circle, and D its pole; if DC, an ‘arc of a great

circle, pass through D, and meet ABC in C, the arc DC is a quadrant.

" Let the circle, of which 'CD is an arc, meet ABC again in A, end let
AC be the common section of the planes .
of these great circles, which wil gass
through E, the centre of the sphere : Join
DA, DC. Because AD=DC, (Def. 2.),
and equal straight lines, in the same cir-
cle, cut off equal arcs (28. 3.), the arc AD Al
== the arc DC; but ADCis a semicircle,
therefore the arcs AD, DC are each of
them quadrants. .

Cor. 1. - If DE be drawn, the angle AED is a right angle ; and DE
being therefore at right angles to every line it meets with in the plene of
the circle ABC, is at right angles to that plane (4. 2. Sup.). Therefore
the straightline drawn from the pole of any great circle to the centre of the
sphere is at right angles to the plane of that circle; and, conversely, a
straight line drawn from the centre of the sphere perpendicular to the plane
‘'of any greater circle, meets the superficies of the sphere in the pole of that
circle. .

Cor. 2. The circle ABC has two poles, one on each side of its plane,
which are the extremities of a diameter of the sphere perpendicular to the
plane ABC ; and no other points but these two can be poles of the circle
ABC.

PROP. III. - ,
If the pole qf a great circle be the same with the interseetion tg' other two great .
circles : the gre of the first mentioned circle intercepted between the other
two, is the measure of the spherical angle which the same two circles maks
with one another.

Let the great circles BA, CA on the superficies
of a sphere, of which the centre is D, intersect one .
another in A, and let BC be an arc of another great
circle, of which the pole is A ; BC is the measure
of the spherical angle BAC. .
Join AD, DB, DC; since A is the pole of BC,
AB, AC are quadrants (2.), and the angles ADB,
ADC are right angles : therefore (4. def. 2. Sup.),
the angle CDB is the inclinatiog lof the planes of P C
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the circles AB,.AC, and is (def. 3.) eqnal fo the spherical angle BAC;
but the arc BC measures the angle BDC, therefore it also masures *ho
spherical angle/ BAC*

Cor. If two arcs of great circles, AB and AC, which intersect one an-
other in A, be each of them quadrants, A will be the pole of the great cir-
cle which passes through E and C the éxtremities of those arcs. ~ For
since the arcs AB and AC are quadrants, the angles ADB, ADC are right
gngles, and AP is therefore perpeadicular to the plane BDC, that is, to the
plane of the great eircle which passes through B and C.  The point A is
thcrefore (1. Cor. 2.) the pole. of the great: cu'cle which passes through B

and C

. PROP V.
If the pldnes of two great eircles qfas;phen beat nght angles ta ons mthr
ftlw erence of each of the circles passes thraugh the peles of the
othes ; and if the circumference of ome great circle pass through the pola
ofamtlm' the planes of these circles are at right angles. .

Let ACBD, AEBF be two great circles, the planes of which are nght
angles toone another, the poles of the eircle AEBF arein the circomference
ACBD, aud the poles of the eircle ACBD in the eircumference AEBF.

From'G the cextre of the sphere, draw GC in the plane ACBD perpen-
dicular to-AB. ' Then because GC in the plane ACBD, at nght airgles
to the plane AEBF, is at right angles
to the common section of the two
planes, it is (Def. 2. 2. Sup.) also at
right angles to the plane AEBF, and
therefore (1. Cor. 2.) € is the pole of .
the circle AEBF ; and if CG be pro-
duoed in D, D is the other pole of.the "
circle AEBF.

In the same manner, by drawing
GE in the plane AEBF, perpendicu-
lar to AB, and producing it to F, it has
shewn that E and F are the peles of .
the circle ACBD. Thetefore, the -
poles of each of these circles are in -
the circumference of the other.

Again, If C be one of the poles of the circle AEBF, the great circle
ACBD which passes through C, is‘at right angles-to the circle AEBF.
For, CG being drawn from the pole to the centre of the circle AEBF, is
at right angles (1. Cor. 2.) to the plane of that circle ; and therefore, every
plane “passing through CG (I7.2. Sup.) is at nght angles to the plane
AEBF ; now, the plane ACBD passes through CG

"Cor. 1. If of two great circles, the first passes through the poles of tho

ry

* ‘When in any m&mmmmumﬂedubook,oroftheﬂaangmmtu,
. Spherical Tnzonometq is meant.
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second, the second also passes.through the poles of the first, For, if the

first passes through the poles of the sacond, the plane of the first mustbe

at right angles tothe plane of the second, b ‘y by the second pirt of this prope-
sition ; and therefore, by the first part of it, the circumference of each
passes through the poles of the other.

Coxr. 2. All greater. circles that have a common diameter have their
poles in the circumference of a circle, the plane of whlch is perpendxcular
to that diameter.’ .

PROP 'V

Fn acoccelu splcencal triangles tlte dngks at the base are qua!)

Let ABC.be sphencal trimngle, hnving the side AB equal to- the side
AC; the spherical angles ABG and ACB are equa.l

Let C be the centre of the sphere ; join
DB, DC, DA, and from A on the’ smught
lines DB DC, draw the perpendiculars AE,
AF; and &om the points E and F draw in
the plane DBC the straight lines EG, FG
perpendicular to DB and DC, meeting one
another in G: Join AG.

Because DE is at right angles o each of .
the straight lines AE, EG, it is st right angles
to the plane AEG, ’which passes through
AE, EG (4.2 Sum and therefore, every
plane that passes through DE is at right angles to the plo,ne AEG (17. 2.
Sup.); wherefore, the plane DBC is at right angles to the plane AEG.
For the samie reason, the plane DBC is at rigl e
and therefore AG, the common section of th
right angles (18. 2. Sup.) to the plane DBC
are consequently right angles:

But since thearc AB is equal to the arc A
to the angle ADC. Thereforé the triangles A
EDA, FDA, equal, as alsd the angles AED,
gles; and they have thé side AD common, th
eqnal, viz. AE to AF(26. 1.), and DE to DF;
AGE, AGF are right angles, the squares.on A . ___ T
square of AE ; and the squares of AG and GF to the square of AF. But
the squares of AE and AF are equal, therefore the squares of AG and GE
are equal to the squares of AG ‘and GF, and taking away the common
square of AG, the remaining squares of GE and GF are equal, and GE is
therefore equll to GF. Wherefbre, in the trisngles AFG, AEG, the side
GF is equal to the side GE, and AF has been proved to be equal to AE,
and the base AG is cammon ; therefore, the angle AFG is equal to the
angle AEG (8.1.). But the angle AFG is the angle which the plane
ADC makes with the plane DBC (4. def. 2. Sup.), because FA and FG,
which are drawn in these planes, are at right angles to DF, the common
section of the planes. The angle AFG (3. def.) is therefore equal to the

~
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spherical angle ACB; and, for the same reason, the angle AEG is equal -
to the spherical angle ABC. But the angles AFG, AEG are equal.
Therefore'thie/sphericdl angles| ACB, ABC are also equal.

. ~ PROP. VL |
I the angles at the base of a spherical trianglé be equal, the trionglais isosceles.

Let ABC be a spherical triangle having the angles ABC, ACB équal
to one another ; the sides AC and AB are also equal.

Let D be the centre of the sphere ; join DB, DC, DA, and from A on
the straight linee DB, DC, draw thelgarpendlculm AE, AF ; and from
the points E and F, drawin the plane DBC A
the straight lines EG, FG perpendicular to
DB and DC, meeting one another in G ;
join AG. ,

Then, it may be proved, as was done in
the last proposition, that AG is at right an-
gles to the plane BCD, and that therefore -
the engles AGF, AGE are right angles, and
also that the angles AFG, AEG are equal {
to the angles which the planes DAC, DAB
make with the plane DBC. But because 1
the spherical angles ACB, ABC are equal, the angles which the planes
DAC, DAB make with the plane DBC are equal (3. def.), and therefore
the angles AFG, AEG are also equal. The triangles AGE, AGF have
therefore two angles of the one equal to two angles of the other, and. they
) T edda t T "1, wherefore they are equal,and the side AF

+ADF, ADE are right angled at F sad.E,
3 equal to the square of DA, that is, to the
the square of AT is equal to the square of
".is equal to the square of DE, and the side
‘e, in the triangles DAF, DAE, because DF
mon, and also AF equal to AE, the angle
DE; therefore also the arcs , AC and AB,
8 angles ADF, and ADE, are equal to one
J is isospeles. .

PROP. VIL o
- Any two sides of a splumcal triangle are greater thas the third,

Let ABC be a spherical triangle, any two sides AB, BC are greater than
the third side AC. . - oy ar0 greate
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- Let D be the centre of the sphere;
jein DA, DB, DC.,, |i: .
The solid angle at D is contained by
three plane angles ADB, ADC, BDC;
any two of which, ADB, BDC are
greater (20. 2. Sup.) than the third
ADC; and therefore any two of the
arcs AB, AC, BC, which measure
these angles, 2s AB and BC must also L g
be greater than the third AC. . : A.

PROP: VIIL

The thres sides of a spherical triangle are less than the circumference of &
o o " great cirgle. ‘
‘Let ABC be a spherioal triangle as before, the three sides AB, BC, AC
are less than the circumference of a great circle. .

Let D be the centre of the sphere :. The solid angle at D is contained
by three plane angles BDA, BDC, ADOC, which together are less than
four right angles (21.2. Sup.) therefore the sides AB, BC, AC, which are
the measures of these angles, are together less than four quadrants describ-
ed with the radius AD, that is, than thé circumferenee of a great circle.

) o PROP. IX.
: Indaphrkdﬁangkthgrommgkis@omwﬁ'gnm%; and

Let ABC be & spherical triangle, the greater angle A is opposed to the
greater side BC. , ‘
Let the angle BAD be made equal - A

to the angle B, and then BD, DA will ) )
be equal (6.), and therefore AD, DC'
are equal to BC; but AD, DC are
greater than AC (7.), therefore BC is -
greater than AC, that is, the greater
angle A is oppusite to the greater side
BC. The converse isdemonstrated as
Prop. 19. 1, Elem. ,

: \ C
PROP. X..

According as the sum of two of the sides of a spherical triangle, is greater than

a semicircle, equal o it, or less, eack of theinterior angles at the baseis greater

than the exterior and opposite angle at the base, equal to it, or less ; and also

the sum of the two interior angles at the base greater than two right angles,
egual to two right angles, or less than two right angles. :

Let ABC be a spherical triangle, of which the sides are AB and BC;
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produce any of the two sides as AB, and the base AC, till they meet again
m D; then,the arc ABD is a semicircle, and the sphericgangles at A
and D are/equal, because' eachof them is the inclination of the circle ABD
to the circle ACD. . . K . - o
. 1. If AB, BC be equal to a B
semicircle, thatis,to AD, BCwill - . -
be equal to BD, and therefere (5.)
the angle ), or the angle A, will .
be equalto the angle BCD, that
is, the interior anée at the base
equal to the exterior and oppo-

site. ’ ;. ' ! .

2. If AB, BC together be greater than a semicirele, that is, greater than
ABD, BC will be greater than BD ; and therefore (9.), the.angle D, that
is, the angle A, is greater than the angle BCD. - -~ .

3. ‘In the same manner it is shewn, if AB, BC together be less than a
semicircle, that the angle A is, less than the angle BCD. S

Now, since the angles BCD, BCA .are equal to two right angles, if the
angle A be greater than BCD, A and ACB together will be_greater than
two right angles. If A be equalte BCD, A and ACB together, will be
equal to two right angles ; and if A be less than BCD, A and ACB will

-be less than two right angles. - e ' .

PROP. XI.

If the angular points of a spherical triangle be made the poles of three great

fwdw%rczuu{um by their intersoctions will form a triongle, whick

.~ is sid to be supplemental to the former ;. and the two triangles are such,
that the sides Q;The oné are the supplements of the arcs which méasure the
angles of the other. o R .

Let ABC be a spherical triangle ; and from the points A, B, and C a8
poles, let the great circles FE, ED,-DF be described, intersecting one un~
otherin F, D and E ; the sides of the triangle FED are the supploment of
the measures of the angles A, B, C, vis. FE of the sngle BAG, DE of the
angle ABC, and DF of the angle ACB : -And again, AC is the supplement
of the angle DFE, AB of the angle FED, and BC of the angle EDF. -

Let AB produced meet DE,EFinG,M; = - - B -
let AC meet FD, FE in K, L; and let BC .
wéet FD, DE inN, H. - '

- Since A is the pole of FE, and the circle
AC passes through A, EF will pass throngh
the pole of AC (1. Cor. 4.) and since AC
passes through C, the pole of FD, FD will
pass through the pole of AC; therefore the
pole of AC is in the point F, in which the
arcs DF, EF intersect each other. In the
fame maunner, D is the pole of BC, and E ,
the pole of AB. 8

And since F, E are the poles of AL, AM, the arcs FL and EM (2.) are
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quadrants, and FL, EM together; that is, FE and ML together, are equal
to a semicircle. Bat since A is the pole of ML, ML is the measure of the
angle BAC (3.), consequently F'E is the supplement of the measure of the
angla BAC. Inthe same manner, ED, DF are the supplements of the
measures of the angles ABC, BCA. ' :

Since likewise CN, BH are quadrants, CN and BH together, that is,
NH and BC together, are equal to a senricircle ; and since D) is the pole of
NH, NH is the measure of the angle FDE, therefore the measure of the
angle FDE is the supplement of the side BC. In the same manne, it is
shewn that the measures of the angles DEF, EFD are the supplements.
of - the sides AB, AC in the triangle ABC. .

PROP. XII,

The three angles of a spherical triangle are greater than two, and less than s,
) : :;f‘ angles.

The measure of the angles A, B, C, in the triangle ABC, together with
the three sides of the supplemental triangle DEF, are (11.) equal to three
semicircles ; but the three sides of the triangle FDE, are (8.) less then two
sémicircles ; therefore the measures of the angles A, B, C,are greater than
a semicircle ; and hence the angles A, B, C are greater than two right
angles. o : , : :

And because the interior angles of any triangle, together with the exte~
rior, are equal to six right angﬁas, the interior alone are less than six right
angles. :

PROP. XIIL

If to the circumference of a great circle, from a point in the surface of the sphere,
fwhz'ch is no%e pole :'f{ thitf circle,arcs of great circles be drawn ; the greatest
of these arcs is that which passes through the pole of the first-mentioned cir-
cle, and the supplement of 1t is the least ; and of the otker arcs,that which is
nearer to the greatest is greater thom that which is more remote.

Let ADB be the circumference of a great circle, of which the poleis H,
and let C be any other point; through C and H let the semicircle ACB be
drawn meeting the circle ADB in A and B ; and let the arcs CD, CE, CF
also be described. From C draw CG perpendicular to AB, and then, be-
cause the circle AHCB which passes H
through H, the pole of the circle ADB, G
is at right angles to ADB, CG is per-
pendicular to the plane ADB. Join
GD, GE, GF, CA, CD, CE, CF, CB,

Because AB is the diameter of the
circle ADB, and G a point in it, which
is not the centre, (for the centre is in AN
the point where the perpendicular from \
H meets AB), therefore AG, the part D jOR
of the diameter in which the centre is, - K




248 SPHERICAL TRIGONOMETRY.

is the greatest (7. 3.), and GB the least of all the straight lines that can be
drawn from G to the circumference ; and GD, which is nearer to AB, is

r than' GE, which is more remote. But the triangles CGA, CGD
are right angled at G, and therefore AC?=AG?4GC3, and DC?==DG24-

. GC?; but AG24GC?7DG34-GC3; because AG 7DG; therefore AC?

7DC3 and AC7DC. And beesuse the chord AC is greater than the
chord DC, the arc AC is greater than the arc DC. In the same manner,

- since GD is greater than GE, and GE than GF, it is shewn that CD js

greater than CE, and CE than.CF. Wherefore also the arc CD is greater

" than the arc CE, and the arc GE greater than the arc CF, and CF than

CB, that is, of all the arcs of greater circles drawn from C to the circum-
ference of the circle ADB, AC which passes through the pole H, is the
greatest, and CB its supplement is the least ; and of the others, that which
is nearer to AC the greatest, is greater than that which is more remote.

PROP. XIV.

In a right angled spherical triangle, the sides containing the right angle are o)
the same affection with the angles opposite to them, that is, if the sides bs
Zreater or less than quadrants, the opposite angles will be greater or less than
right angles, and conversely. ) :

Let ABC be a spherical triangle, right angled at A, any side AB will
be of the same affeetion with the opposite angle ACB.

Produce the arcs AC, AB, till they meet again in D, and bisect AD in
E. Then ACD, ABD are semicircles, and AE an are of 90°, Also, be-
cause CAB is by hypothesis a right angle, the plane of the circle ABD is
perpendicular to the plane of the :
circle ACD, so that the pole of G
ACD is in ABD, (1. Cor. 4.),
and is therefore the point E. Let
EC be an arc of a great circle
passing through E and C.

Then because E is the pole of
the circle ACD, EC is a (2.)
quadrant, and the plane of the
circle EC (4.)is at right angles
to the plane of the circle ACD,
that is, the spherical angle ACE
is a right angle ; and therefore,
when AB is less than AE, the
angle ACB, being less than
ACE, is less than a right angle.
But when AB is greater than
AE, the angle ACB is greater
than ACE, or than a right an-
gle. In the same way may the
converse be demonstrated.
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PROP. XV.
If the taw sides of a right angled: spherical triangle about the right angle be g
ftlw same affection, tenuse will be less than a quadrant ; and if theyﬁf

of different affection, the hypotenuse will be greater than a quadrant.

Let ABC be a right angled spherical triangle ; according as the two
sides AB, AC are of the same or of different affection, the hypotenuse BC'
will be less, or greater than a quadrant. .

The construction of the last proposition remaining, bisect the semicircle
:iCD inB% then AG will be an arc of 90°, and G will be the pole of the

rcle ABD. : ]

1. Let AB, AC be each less than 90°. Then, because C is a point on
the surface of the sphere, which is not the pole of the circle ABD, the are.
CGD, which passes through G the Eﬂh of ABD is greater than CE (13.),
#nd CE greater than CB. But CE is a quadrant, as was before shewn,.
therefore CB is less than a quadrant. Thus also it is proved of the right
angled triangle CDB, (right angled at D), in which each of the sides CD,
DBd is greater than g quadrant, that the hypotenuse BC is less than a

uadrant.
1 2. Let AC be less, and AB greater than 90°. 'Then because CB falls
betweea CGD and CE, it is greater (12.) than CE, that is, than a quad-
rant. )

Cor. 1. Hence conversely, if the hypotenuse of a right angled triangle
be greater or less than a quadrant, the sides will be of different or the same
affection.

Cor. 2. Sinee.(14.) the oblique angles of a right angled spherical trian-
gle have the same affection with the opposite sides, therefore, according as
the hypotenuse is greater or less than a quadrant, the oblique angles will
be different, or of the same affection. :

Cor. 3. Because the sides are of the same affection with the opposite
angles, therefore when an angle and the side adjacent are of the same affec-
tion, the hypotenuse is less than a quadrant: and conversely.

'PROP. XVI.

In any spherical triangle, if the perpendicular upon the basg ‘rom the. opposite
angle fall within the triangle, the angles at the base are of the same aﬂtion ;
and if the perpendicular fall without the triangle, the angles at the base ars

different affection. .

Let ABC be a spherical triangle, and let the arc CD be drawn from C
perpendicular to the base AB. -

1. Let CD fall within the triangle ; then, since ADC, BDC are right
angled spherical triangles, the angles A, B must each be of the same affec-
tion with CD (14.). a2
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2. Let CD fall without the triangle ; then (14.) the angle B is of the
same affection with CD ; and the angle CAD is of the same affection with
CD; therefore the angle CAD and B are of the same affection, gnd the
angle CAB and B are therefore of different affections.

PROP. XVIL

If to the base of a spherical triangle a perpendicular be drawn from the opposite

fangle, whicitf eithI;r falls withing the triangle, or is the nearest of the two that
Sall without; the least of the segments of the base is adjacent to the least of
the sides of the triangle, or to the featest, according as the sum of the sides
is less or greater than a semicircle.

Let ABEF be a great circle of a sphere, H its pole, and GHD any cir-
cle passing through H, which therefore is perpendicular to the circle
ABEF. Let A and B be two points in the circle ABEF, on opposite
sides of the point D, and let D be nearer : '
to A than to B, and let C be any point
in the circle GHD between H and D.
Through the points A and C, B and C,
let the arcs AC and BC be drawn, and
let them be produced till they meet the
circle ABEF in the points E and F,
then the arcs ACE, BCF are semicir-
cles. . Also ACB, ACF, CFE, ECB,
are four spherical triangles continued
by arcs of the same circles, and having
the same perpendiculars CD and CG.

1. Now because CE is nearer to the arc CHG than CB is, CE is greater
than CA, and therefore CE and CA are greater than CB and CA, where-
fore CB and CA are less than a semicircle ; but because AD is by sup-
position less than DB, AC is also less than CB (13.), and therefore in this
case, viz. when the perpendicular falls within the triangle, and when the
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;um of éhe sides is less than a semicircle, the last segment is adjacent to the
east side. .

2. Again, in the triangle FCA 'the two sides FC and CA are less than
a semicircle ; for sinoe AC is less than CB, AC and CF are less than BC
and CF. Also, AC is less than CF, because it is more remote from CHG
than CF is; therefore in this case also, viz. when the perpendicular falls
without the triangle, and when the sum of the sides is less than a semicir-
cle, the least segment of the base AD is adjacent to the least side.

3. But in the triangle FCE the two sides FC and CE are greater than
a semicircle ; for, since'FC is greater than CA, FC and CE are greater
than AC and CE. And because AC is less than CB, EC is greater than
CF, and EC is therefore nesrer to the perpendicular CHG than CF is,
wherefore EG is the least segment of the base, and is adjacent to the
greater side.

4. In the triangle ECB the two sides EC, CB are greater than a semi-
circle; for, since by supposition CB is greater than CA, EC and CB are
greater than EC and CA. Also, EC is greater than CB, wherefore in
this case, also, the least segment of the base EG is adjacent to the greatest
side of the triangle. Therefore, when the sum of the sides is greater than
a semicircle, the least segment of the base is adjacent to the greatest side,
whether the perpendicular fall within or without the triangle: and it has
been shewn, that when the sum of the sides is less than a semicircle, the
least segment of the base is adjacent to the least of the sides, whether the
perpendicular fall within or without the triangle. £

[l

PROP. XVIIIL -

In right angled spherical tﬁarcgle:; the sine of cither of the sides about the right
angle,is to the radius of the sphere, as the tangent of the remaining side is
to the tangent of the angle opposite to that side. :

Let ABC be a triangle, having the right angle at A ; and let AB be
either of the sides, the sine of the side AB will be to the radius, as the tan-
gent of the other side AC to the tangent of the angle ABC, opposite to AC.
Let D be the centre of the sphere; join AD, BD, CD, and let AF be drawn
perpendicular to BD, which therefore will be the sine of the arc AB, and
from the point F, let there be drawn in the plane BDC the straight line
FE at right angles to BD, meeting DC in Y0}
E, and let AE be joined. Since therefore '
the straight line DE is at right angles to i
both FA and FE, it will also be at right Y
angles to the plane AEF (4. 2. Sup.);
wherefore the plane ABD, which passes
through DF, is perpendicular to the plane
AEF (17. 2. Sup.), and the plane AEF

rpendicular to ABD: But the plane
ACD or AED, is also perpendicular to )
the same ABD, because the spherical an-
gle BAC is aright angle : Therefore AE,
the common section of the planes AED, Fg
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AEF, is at right angles to the plane ABD (18. 2. Sup.),2nd EAF, EAD
areright angles. Therefore AE is the tangent of the arc AC; axnd in the
rectilineal trianglel AEF) having a right angle at A, AF is to the radius as

(1. PL Tz.); but AF is the sine of
the nrc AB, and AE the tangent of the arc AC ; and the angle AFE"is
the inclination of the planes CBD, ABD (4. def. 2. Bupa ,or is equal to the
fipherical angle ABC : Therefore the sine of the arc AB isto the radius as
the tangent of the arc AC to-the tangent of the oppesite angle ABC.

Cor. Since- by this proposition, sin. AB : R : : tan. AC : tan. ABC;
and becanse R : cot. ABC : : tan. ABC : R (1 Cer. def. 9. PL Tr.) by
equality, sin. AB : cot. ABC :: tan. AC : R, o

'PROP. XIX.

In right angled spherical triangles the sine of the hypotenuse 1s toths radius as
the sine of either side is to the sine of the ug??;poﬁtc to that side.

Let the triangle ABC be right angled at A, and let AC be either of the
sides ; the sine of the hypotenuse BC will be to the radius as the sine of
the arc AC is to the sine of the angle ABC.

Let D be the centre of the sphere, and let CE be drawn porpendicular
to DB, which will therefore be the sine of the hypeteruse BC ; and from
the point E let there be drawn. in the ' '
plane ABD the straight line EF per-
pendicular to DB, and let CF e joined ;
then CF will be at right angles to the
plane ABD, because as was shewn of

A in the preceding proposition, it is
the common section of two planes DGF,
ECF, each perpendicular to the plane
ADB. Wherefore CFD, CFE are right
angles, and CF is the sine of the arc
AC; and in the trdangle CFE having ‘ :
the right angle CFE, CE is to the radius, as CF to the sine of the angle
CEF (1. PL. Tr.). But, since CE, FE are at right angtes to DEB, which
is the common section of the planes CBD, ABl.g), e angle CEF is equal
to the inclination of these planes (4. def. 2. Sup.), that is, to the spherical
angle ABC.  Therefore the sine of the hypotenuse CB, is to the radius, as
the sine of the side AC to the sine of the opposite angle ABC. '

PROP. XX.

In right angled spherical triangles, the cosine of the hypotenuse is to the radius
as the cotangent of either of the angles is to the tangent of the remaining
angle. ’ .

Let ABC be a spherical triangle, having & right angle at A, the cosine
of the hypotenuse BC is to the radius as the cotangent of the angle ABC
to the tangent of the angle ACB.
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Describe the circle DE, of whioh B is the poie, and let it meet AC in
F. and the circle BC inE j and asjnce the circle BD pases through the

r

pole B, of the circle DF,'DF must pass through the pole of BD (4.). And
since AC is perpendicular to BD, the plane of the circle AC is perpendi-
cular to the plane of the circle BAD, and therefore AC must also (4.) pass
through the pole of BAD ; wherefore, the pole of the circle BAD isin the
point F, where the circles AC, DE, imersect. The arcs FA, FD are
therefore quadrants, and likewise the arcs BD, BE. Therefore, in the tri-
angle CEF, right angled at the point E, CE is the complement of BC, the
hypotenuse of the triangle AB(g(; EF is the complement of the arc ED,
the measure of the ang%e ABC, and FC, the hypotenuse of the triangle
CEF, is the complement of AC, and the arc AD, which is the measure of
the angle CFE, is the complement of AB.

But (18.) in the triangle CEF, sin. CE.: R : : tan. EF : tan. ECF, that
is, in the triangle ACB, cos. BC : R : : cot. ABC : tan. ACB.

Cor. Because cos. BC : R:: cot. ABC : tan. ACB, and (Cor. 1, def. 9.
PL Tr}ﬁ(g. ABC: R :: R: tan. ABC, ex quo, cot. ACB : cos.BC : : R
: cot. L . ,

PROP. XXI.

In right angled spherical triangles, the cosine of an angle is to the radius as'the
tangent of the side adjacent tothat angle is to the tangent of the Aypotensse.

The same construction remaining ; In the triangle CEF, sin. FE : R ::
tan. CE : tan. CFE (18.): butsin. EF=cos. ABC; tan. CE=cot. BC, and
tan. CFE=cot. AB, therefore tes. ABC : R : : cot. BC : cot. AB. Now,
because (Cor. 1. def.9. PL. Tr.) cot. BC : R:: R : tan. BC, and cot. AB:
R :: R : tan. AB, by equality inverscly, cot. BC: cot. AB ::tan. AB:
BC; therefore (11.5.) cos. ABC: R :: tan. AB : tan. BC.

Cor. 1. Prom the demonstration it is manifest, that the tangents of any
two arcs AB, BC are reciprocally proportional to their cotangents,
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Cor.2. Becausecos. ABC:R ::tan.AB:tan.BC,and R: cos.BC ::
tan. BC : R, by e&uality,cos.ABC :cot. BC : : tan. AB: R. That is,the
cosine of any of the oblique angles is to the cotangent of the hypotenuse,
as the tangent of the side adjacent to the angle is to the radjus.

PROP. XXII.

In right angled spherical triangles, the cosine of either of the sides is to the ra-
dius, as the cosine of the fypotenu:c is to the cosine of the other side.
‘The same construction remaining ; In the triangle CEF, sin.CF: R ::
sin. CE : sin. CFE (19.); but sin. CF=cos. CA, sin. CE=cos. BC, and
sin. CFE=cos. AB; therefore cos. CA : R : : cos. BC : cos. AB.

PROP. XXIIIL.

In right angled spherical triangles, the cosine of either of the sides is to the ra-
diusl,cas the cosine of the angle opposite to that side is to the sine of the other
angle.

The same construction remaining : In the triangle CEF, sip.CF : R ::

sin. EF : sin. ECF (19.); but sin. CF==cos. CA, sin. EF=cos. ABC, and
sin. ECF=sin. BCA: therefore, cos. CA : R : : cos. ABC : sin. BCA.

PROP. XXIV.

In spherical triangles, whather right angled or oblique angled, the sines of the
sides are proportional to the sines of the angles opposite to them.

First, let ABC be a right angled triangle, having a right angle at A;
therefore (19.), the sine of the hypotenuse BC is to the radius, (or the sine
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of the right angle at A), as the sine of T o
the side AC to the sine of the angle B, ¢ ‘

And, in like manner; the)isine of BC is
to the sine of the angle A, as the sine
of AB to the sine of the angle C;
wherefore (11. 5.) the sine of the side
AC is to the sine of the angle B, as the
gine of AB to the sine of the angle C.

Secondly, Let ABC be an oblique angled triangle, the sine of any of the
sides. BC will be to the sine of any of the other two AC, as the sine of the
angle A opposite. to BC, is to the sine of the angle B opposite to AC.
Through the point C, let there:-be drawn an atc of a great circle CD per-
pendicular to AB; and in the right angled triapgle BCD, sin. BC: R ::°

¢ a

A ' B D A
sin. CD : sin. B (19.); andin the triangle ADC, sin. AC: R :: sin.CD:
sin, A; wherefore, by equality inversely, sin. BC : sin. AC :: sin. A ; sin,
B. In the same manner, it may be proved that sin. BC : sin. AB :: sin.
A : sin. C, &c. .

»

PROP. XXV.

In oblt'qt)e angled .q;hcrical triangles, a perpendicular arc being drawn from
any of the angles upon the opposite side, the cosines of the angles at the base
are proportional to the sines of the segments of the vertical angle.

Let ABC be a triangle, and the arc CD perpendicular to the base BA ;
the cosine of the angle B will be to the ‘cosine of the angle A, as the sine
of the angle BCD to the sine of the angle ACD. :

For having drawn CD perpendicular to AB, in the right angled friangle
BCD (23.), cos. CD : R :: cos. B : sin. DCB; and in the right angled
triangle ACD, cos. CD : R :: ces. A : sin. ACD; therefore (11. 5.) cos.
B : gin. DCB :: cos. A : sin. ACD, and alternately, cos. B : cos. A :: sin.
BCD : sin. ACD. i

PROP. XXVI.

The same things remaining, the cosines of the sides BC, CA, are proportional
to the cosines of BD, DA, the segments of the base.

For in the triangle BCD (22.), cos. BC : cos. BD : : cos. DC; R, andin
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t:he triangle ACD, cos. AC : cos. AD :¢ cos. DC :.R; therefore (11. 5.)
cos. BC : cos. BD :: cos. AC : cog. AD, and alternately, cos. BC : ces.
AC :: cos,BDy:| cosoAD; . .

PROP. XXVIL_

The same construction remaining, the sines of BD, DA, the of the
base are recipracally proportional to the tangents of B and A, the angles
at the base. . _

In the triaagle BCD (18.),sin. BD : R :: %0, DC : tan. B; and‘in the
triangle-ACD), sin. AD: R :: tan. DC : tan. A; therefore, by equalityin-
vorsely, sin, BD :sin. AD :: tans A ;. tan. B: : _

o c

B

A B D
. PROP. XXVIIT.

Ths: samo construction: remaining, the cosines of the segmenty of the vertical.
angle are reciprocally proportional to the tangents of the sides.

Because (21.), cos. BCD : R :: tan. CD.: tan. BC, and also cos. ACD
“R::tan.CD: tan. AC, by equality inversely, cos. BCD : cos. ACD ::
tan. AC : tan. BC. ' . : : ‘

PROP. XXIX,

If from an angle of a spherical triangle there be drawn a perpendicular-to the

foppo.ﬂ'{e ‘side, oréasz the rectan, ikcorétcined by the tangents of half the
sum, and of half the difference of the segments of the base is. e to the
roctungles contained by the tangents of half the sum, and of half the diffes-
rence of the.two sides of the triangle. = :

Let ABC be a spherical triangle, and let the ar¢c CD be drawn from the
angle C at right angles to the base AB, tan. } (m+-n) X tan. 4 (m—n)=4%
tan. (a+5) X 4 tan. (a—b).

Let BC=a, AC=); BD=m, ADz=s." Because (26.) cos. a: cos. b ::
. cos.7m: cos.n(E.5.), cos.a-+b: cos.a—cos. b : : cos. m<-cos. n : CO8. m—

cos.on  Bub (1. Cor. 3. Pl. Trig.), cos. a---cos. & : cos. a—cos. b ; : cot.
(a-2) : tan. § (a—b), dnd alse, cos. m4-cos. A : cO8. M—coS. M : : cot.
(m+n): tan. § (m—n). Therefore, (11. 5.) cot. 3 (a3) : tan. } (a—2
i:cot. § (m+n): tan. § (m—n). And because rectangles of the same al-
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titude are as their bases, tan. § (a--8) X cot. § (a-+3) : tan. } (a-}-5) X tan.
i}(a—b) :: tan. § (m--n)Xcot. 3 (m+n): tan. } (mX n)-4-tan. 4 (m—n).
Now the firstand third terms of this proportion are equal, being each equal
to the square of the radius (1, Cor. PL Trig.), therefore the remaining two
are equal (9. 5.), or-tan. 3(m+7p)xtan. (m—n)=tanc 4 (e+3) X tan. }
(6—b);.that is, tan. § (BD+AD) xan. § (BD—AD)w=tan. 4 (BC+AC)
Xtan. § (BC—AC). " R : . '

Cor. 1. Because the sides of equal rectangles are reciprocally propor-
tional, tan. } (BD+AD) : tan.  (BC+AC) : : tan. § (BC — AC) : tan. }
(BD—AD). . S

Cor. 2. Since, when the perpendicular CD falls within the trisngle,
BD+AD=AB, the base ; and when CD falls without the triangle BD—
AD=AB, therefore, in the first case, the proportion in the last coroll
becomes tan. 4 (AB) : tan. § (BC+4-AC) :: tan.4(BC—AC) : tan, } (BD—
AD); and in the second case, it becomes by inversion and alternation, tan.
3 (AB) : tan. § (BC4+AC) :: tan. } (BC—AC) : tan. § (BD+AD).

-0
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SCHOLIUM.

The preceding proposition, which is very useful in spherical trigonome-
try, may be easily remembered from its analogy to the proposition in plane
trigonometry, that the rectangle under half the sum, and half the difference
of the sides of a plane triangle, is equal to the rectangle under half the
sum, and'half the difference of the segments of the base. See (K. 6.), also
4th Case Pl. Tr. We are indebted to Narier for this and the two follow-
ing theorems, which are so well adapted to- calculation by Logarithms,
that they must be considered as three of the most valuable propositions in
Trigonometry. .

33
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PROP. XXX.

If & perpendicular be drawn from anangle of a spherical triangle to the oppe-
fm,ndurbc.n mmﬁmmo the angles at the baseis to the sine
:{ nz:kcy'zlubmtothat ent of half the
m:aafau perpendicular falls within; but as the
co-tangmtqfha{thabaaatothcco—tmgentqfhd the sum of the ,
.when the perpendicular falls without the triangle : And the sine qfthcm
qftluhnadu uu:h aimqfthnrdzfmc:thcco-t
ths angle contained by the sides, to the tangent of half the difference a£
the angles which the perpendicular makes with the sams sides when it fall

within, or to the tangent oflwlfthcwmqftlum wlo: when it all:mtlc-
Mth’aungk 5 4

IfABCbeasphencultmnhandADa ndmulartothehsenc
sin, (C+B) : sin.(C—B) : : tan. § BC : m BD—-DC),wionADfdl-
within thetmnglo,butnn(C+B) sin, --B) eot.}BC cot]
(BD+DC). when AC {alls without. And again,

A

sin. (AB4AC) : sin. (AB—AC) :: cot. + BAC : tan. }(BAD—CAD),
when AD falls within; but when AD falls without the ma?le,
sin. (AB4-AC) : sin. (AB—AC) : cot. § BAC : tan. D+CAD).
For in the triangle BAC (27.), tan. B : tan. C : : sin. D sin. BD, and
therefore (E 5.), tan. C4-tan. B : tan. C—tan. B : sin, BD4-sin. CD :
sin. BD—sin. CD. Now (by the annexed Lemma),tan C+4-tan. B : tan.
C—tan. B : : sin. (C+B) : sin. (C—B), and sin. BD+-si. CD : sin. BD
—sin. CD ; : tan. 4 (BD+CD) : tan. § (BD—CD), (3. PL Trig.), there
fore, because ratios which are equal to the same ratio are equal toono
another (1 1 5), sin. (C+B) : sin. (C—B) :: tan. } (BD+CD): tan. }
(BD—CD)

AN
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Now whan AD mwnlnn the triangle, B 4~CD2=BC, and therefore sin.
(C+-B) : sin. (C—B) :: lfBC : tan. 3 (BD—CD). And again, when
ADis wnbout the lo,B CD:=BC, a.nl therefbre sin. (C+4-B) : sin.
(C—B):: i(BD-I-CD) tan. § BC, or because the tangents of aay
two arcs are reciprocally as their co—tan;}ms, in (C4-B): sin. (€-B) ::

BC : cot. § (BD4CD).

e second part of the proposmon is next to be demonstrated. Because
&8)tan AB : tan. AC :: cos. CAD : cos. BAD, tan. AB-:tan. AC : tan.
B—tan. AC :: cos. CAD-+cos. BAD : cos. CAD—cos. BAD. But

Lemma) tan. AB-Hau AC: tan. AB—tan. AC.:: sin. (AB+AC) :
iAB—AC),md (1. cor. 3, PL Trig.) cos. CAD-+-cos. BAD : cow. AD—
cos. BAD :: cot. (BAD+CAD) tan. } (BAD—CAD). Therefore(11.
5.) sin, (AB+AC sin. (AB—AC) :: cot. § (BAD4-CAD) :-tan. } (BAD
—CAD). Now, when AD is within the triangle, BAD4CAD=BAC,
am(l: therefore sin. (AB<4-AC) : sin. (AB—AC): : cot. $§ BAC : tan. } (BAD
~CA

- But i II)AD be without the triangle, BAD-—-CAD::BAC and therefore

am AB+-AC): gin. (AB—AC) :
BAD+4CAD) : tan. BAC or because -
&BAD-{-CAD : tan. iBAC 1cot. } BAC - '
D+-CAD), sin. (AB+ C) :'sin. (AB-—AC) : cot. § BAC :
i {BAD +CAD)

LEMMA.

The sum of the tangents of any two arcs, is to the difference o tlmrtangmc
astlusmeqfthe:umofthem,’taﬁonhofdthew}{; o

Let 4 u1d B bo two arcs, tan. Atan. B ; tag A~tan. B : sin (A-j-B)
A—B
(For, by §6. page 282, ain. A X cos. B—l'-cos Axam. B=sin. (A4 B),and
therefore dividingall by cos. A cpe. B, S A y 6l B_ sin (A+B)
*cos. A ' c0s. B cos A X cos. B’
:: ‘:.—=un A, tan. A 4-tan, Bac;:' j‘::':’) In the same’

mammer it i proved that tag. A —tan, B== 21@3257]3" _Therefore tas. A

+tan. B : tan. A—tan. B :: sin. (A4 B) : sin, (A~B).

is, because

. PROP. XXXI

ﬂomo lmltlccmo $wo angles of a spherical triangle is to the
ir di] mn'c::nzuh mao,f the side adjacent to these
anglesutotkc tangantaf tlw tha:desoppoamtotkn;
and the cosine of half the sum angles is te the cosine d’:
thwdlercmasthatangmt Mfthudaa@acuththmb
gent o halfthamcfthc opposita.

Let C4+B=28, C—B=2D, the base BC=2B, ahd the difference of
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the segments of the base, or BD—CD=2X. Then, because (30.) sin.
(C+B) : sin. (C—B) : : tan. 4 BC : tan. 4 (BD—CD), sin. 28 : sin. 2D’
:~tan. B 2/tan./X|| (Now, s, 2Sk=sin. (S+S)=2 sin. S X cos. S, (Sect.
HI. cor. Pl, Tr.). In the same manner, sin. 2D=2 sin. DX cos. D

Therefore sin. SXcos. S : sin. Dxcos. D :: tan. B : tan.' X, ’

A A

tan.X_

tan. B
sin. D x cos. D tan. 4 cos.-S Xsin. D ~ P
sin. Sxcos. S° and tan. ¥ sin. S X cos. D’ by -multlplymg equals by
equals tan. X tan. 4 (sin. D)2X cos. S Xcos. D (sin. D)?

’ tan. B tar(an) (Big.) S)’xc;(sA]S?’ ->I<- «X)(s).) D™ (sin. S)"X .

tan. - tan. . tan. tan.

But (29) tnn.g (AB—AC)— tan.3BC ' "% Gn 2w B’
tan. X tan. X Xtan.d also tan. X tan. 4 tan. £
tan. B (tan. B)2 °’ it tan. B  tan. 2 (tan. B)Y
tan. X tan. 4 (sin. D)? (tan. 4)* (sin. D)? tan. 4

But'tax;.) B™tn. = (sin. S’ (. Bp— (s 57" " im B
sin

=rn'—§, or sin. S:sin. D :: tan. B : tan. 4, that is, sin. (C4B) : sin.
(C—B):: tan. } BC : tan. § (AB—AC); which is the first part of the

tan. 4 cos. SXsin.D . tan. X
= D inversely

Sxcos.D : cos. Sxsin. D :: tan. ¥ : tan. 4. Since then

and therefore,

whence

proposition.  Again, since

v . tan. T~ sin. 8 X cos. tan. &4
sin. Sxcos. D . tan.X sin.DXcos. D -
s Sxsn D’ and since &n B —sm Dxocos §' therefore by multipli-

cation. 2™ X o tan: 2 (cos.D)?
"tan. B tan. 4 (cos. S)
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tan. X _ tan. X Xtan. 4

Butit was already shewn tlm BB (e By wherefore also

tan. X tan, 2 (tan. X)?
tan. B tan, 4™ (tan. By
tan. Xxum. 2 (cos.D)?
oo Dp (ﬁf»sz); D_tan. 2

cos cos,
Therefore ——r= (co- SP—(wn. B)? mdcoanuendycos St B,o:oos
S:cos. D :: tan. B : tan. Z, that is, cos. (C+B) : cos. (C—B) :: tan. }
BC : tan. }(C-{-B), whxchlsthe second part of the proposmon

Now, as has just been shewn.

Cor. 1. ying this proposition to the tm.n%lle supplementnl to
ABC (11.) am{by considering, that the. sine of half the sum or half the
difference of the supplements of two arcs, is the same with the sine of half
the sum or half the difference of the arcs themselves : and that the same
is true of the cosines, and of the tangents of half the sum or half the dif-
ference of the supplements of two arcs: but that the tangent of half the
supplement of an arc is the same with the cotangent of half the are itself ;
it will follow, that the sine of half the sum of any two sides of a herical
triangle, is to the sine of half their difference as the cotangent of gmlf
angle contained between them, to the tangent of half the difference of the
angles opposite to them : and also that the cosine of half the sum ef these
sides, is to the cosine of half their difference, as the cotangent of half the
angle contained between them, to the tangent of half the sum of the angles
opposite to them.

Cor. 2. If therefore A, B, C, be the three angles of a sphenca.l trian-
gle, a, b, ¢ the sides opposite to them,

1. sin. 4 (A4B) : sin. 4 (A—B): tan. c: tan a—D). .
II. cos. 4 (A+4B) : cos. (A—B) ia+b
IIL. sin. 4 (a-}+b) : gin. } (a—b

IV. cos. 4 (a+0) : cos. (a-—b;

=]

Ae
tun]C: (A+B§

.
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In a right angled spherical triangle, of the three sides end three angles, amy

SPHERICAL TRIGONOMETRY.

PROBLEM 1.

two being given, besides the right angle, to Jind the other shree.

This problam has sixteen cases, the solntions of which are coﬁtained
in the following table, where ABC fs any spherical triangle right angled

at Al
A GIVEN. SOUGHT. l‘OLUTION.
' | AC. |R:sinBC::sinB:sinAC, (19)] 1
|BCandB. | AB. |R:cosB::tanBC:tan AB, (21),] 2
€. [R:cosBC::tanB:ecot€, (20)f 3¢t
1 . AB. [R:sin AC::tan C:tan AB, (18)] 4
{AC and C. |- BC. C:R::tanAC:tanBC, (21)4 5}
B. :cosAC::8inC:cos B, (23) 6|
: AB. [tan B:tan AC::R:sin AB, (18)| 7}
ACandB. | BC. [sinB :sin AC::R:sinBC, (19)| 8|
1 C. sAC:cosB::R:sinC, {23) 9
AB. |cos AC:cos BC::R:cos AB, (22)} 10
ACand BC{ B. [sin BC:sin AC::R:sinB, (19)] 11
C. [|tanBC:tanAC::R:cosC, (21)} 13 |
BC. [R:eos AB::cosAC: cos BC, (22)] 13
ABand AC| B. sin AB: R::tan AC: tan B, - (18).] 14
C. [sinAC:R::tanAB:tanC, (18)} 14
AB. |sinB:cos C::R:cos AB, (23)| 15
B and C. AC. [sinC:cos B::R:cos AC, (23)| 15 |
BC. JtanB:cot C:: R:cos BC, (20)] 16
B
c A
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TABLE for determining the effections of the Sides and Angles found by

the preceding rules. |
AC and B of the same affection. 1
If BC £90°, AB and B of the same affection, otherwise dif- | -
ferent, . (Cor, 15.) | 2
If BC /90°,C and B of the same affection, otherwise diffe-
_rent, (1) | 3
'AB and C are of the same affection, (14.) | 4
If AC and C are of the same affection, BC / 90° ; otherwise '
BC/90°, " (Cor. 15.) | 5.
B and AC are of the same affection, (14)| 6
Ambiguous. 7
Ambiguous. 8
Ambiguous. 9
When BC /90°, AB and AC of the same; otherwise of dif-
ferent affection, (15.2 10
AC and B of the same affection, }14. 11
When BC /909, AC and C of the same ; otherwise of dif-
ferent affection, (Cor. 15.) | 12
BC £ 90°, when AB and AC are of the same affection,
(1.Cor. 15 | 13
B and AC of the same affection, 14.) | 14
C and AB of the same affection, §l4.) 14
AB and C of the same affection, 14) | 15
AC and B of the same affection, 14.) | 15
When B and O are of the same affsction, BC / 909, other-
wise, BC 7900, (15.) | 16 |

The cases marked ambiguous are those in which the thing sought has
two values, and may either be equal to & certain angle, or to the supple-
ment of that angle. Of these there are three, in all of which the things
given are a side, and the angle opposite to it ; and accordingly, it is easy to
shew that two right angled spherical triangles may always be found that
have a side and the angle opposite to it the same in both, but of which the
remaining sides, and the remaining angle of the one, are the supplements
of the remaining sides and the remaining angle of the other, each of each.

Though the affection of the arc or angle found may in all the other cases
be determined by the rules in the second of the preceding tables, it is of °
use to remark, that all these rules except two, may be reduced to one, viz.

- that when the thing found by the rules in the first table is either a tangent or
a cosine ; and when, of the tangents or cosines employed in the computation of
i, one only belongs to an obtuse angle, the angle required is also obiuse.
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Thus, in the 15th case, when cos AB is found, if C be an obtuse angle,
because of cos C, AB must be obtuse ; and in case 16, if eithex B orC be
obtuse, BC\is\ greater tham (909, but if B and C are either both acute, or
both obtuse, BC is less than 90°, .

It is evident, that this rule does not apply when that which is found is
the sine of an arc ; and this, besides the Sn'ee ambiguous cases, happens
also in other two, viz. the 1st and I11th. The ambiguity is obviated, in
these two cases, by this rule, that the sides of a spherical right angled tri
angle are of the same affection with the opposite angles.

Two rules are therefore sufficient to remove the ambiguity in all the
cases of the right angleq triangle, in which it can possibly be removed.

’



SPHERICAL TRIGONOMETRY. " 285

It may be useful to express the same solutions as in the annexed table.
Let A be at the right angle as in the figure, and let the side opposite to it
be a; let b be'the/side oppasite’to’ B, and ¢ the side opposite to C.

GIVEN. |SOUGHT.{ - mvrxor;;
b. | sinb=sinaxsnB |1
aand B.| . tanc¢c =tan a X cos B. 2
C. cotC=rcosa X tanB. 3
1 e | tancs=sinbxtanC. ‘
. |dand C.| a. ']  tanas= .
. A cosC
B. cosB=zcosd X sin C.
1 A :
4 ‘ . in b
SamdB,} & | m¢=§f:—§;
y . - A
} e aia =28,
] ) _cosh
. #in £ = s, : 101
. cos b
. sin &
aand 2.] B. lmBssina.. 11
. . “tan b
C. E mc=m- 1
a. cos.a == cos b X cos c. 13'
1 tan
] #in ¢
C. tanCa= 20, 14
: sin &
¢ cosc::mc - 15
BadC| & conb = 22, 15
t
.. mc-‘:‘——g. lﬂi

34
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PROBLEM II.
In any oblique angled qu tn';mgle, of the three sides and three aﬁglu’
y any three deing given, it is required to find the other three. ’

In this Table the references (c. 4.), (¢. 5.), &c. are to the cases in the
preceding Table, {16.), (27.), &c. to the propositions in Spherical T'rigo-
nometry. oo

GIVEN. SOUGHT. ’ SOLUTION.

1 Let fall the perpendicular CD from|
‘ : the unknown angle, not requir-|

. : { ed,on AB.
Onesofthe  R:ces8 A::tan AC: tan AD,
(c. 2.) ; therefore BD is known,
- lother angles|- and sin BD : sin AD :: tan A :
. tan B, (27.); B and A are of]

B the ‘same or different affection,
Two sides " according as AB is greater or
lesa than BD, (16.). :
AB, AC, - .
" |Letfall the perpendicular CD from
ard the in- one of the unknown angles on
the side AB. :

2‘cludedanglew The third- R : cos A :: tan AC:tan AD,

-1 (c.2.); therefore BD is known,

A, . side and cos AD : cosBD:: cos AC
: cos BC, (26.); according as]
BC. | thesegments AD and DB are of]
the same or different affection,
AC and CB will be of the same
or different affection. '
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X

TABLE continued.

GIVEN.

SOUGHT.

SOLUTION,

|Two angles,
_|A and ACB,

The side
BC.

From C the extremity of AC neat|
the side sought, 1ot fall the per-|
peadicular CD on AB.

R : ces AC:: tan A :'cot ACD,
(c.3.); therefore BCD is known,
.and cos BCD : cos ACD : :
AC: tan BC,(28). BC isless
or greater than 969, accordin
as the angles A and BCD are
of the same, -or different affec-
tion. .

and
AC,
th-e side be-

ltween them.

The third

angle

" |Let fall the perpendicular CD from|

one of the given’ angles on the

opposite side AB.

R:cos AC::tan A : cot ACD,
(c. 3.); therefore the angle BCD
is given, andsin ACD : gin BCD
::cos A: cos B, (25); Ban
A aro of the same or diff

. ent affection, according as CD
falls within or without the tri
angle, that is, according as AC

is ater or less than BCD
(169.

C
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TFABLE continued,
GIVEN. SOUSHT. SOLUTION, -
The angle [Sin BC : sin AC : : sin A : sin B/
5} B | (24.) The affection of B is am-
opposite to | biguous, unless it can be deter-
[the other giq mined by this rule, that accord-
ven side | ing as AC 4 BCis greater or
Two. sides AC, Jess than 180°, A4-B is
: or leas than 1809, (10.)
ﬁc and BC, .
' From ACB the angle sought draw
randan angle{ The angle | CD perpendicular to AB; th
ACB | R:¢osAC::tamnA: cot ACD,
A contained by| (c. 3.); andtan BC : tan AC 3 :
i the given | cos ACD: cos BCD,(28.) AC
fopposite to |  sides- 4 BCD = ACB, and ACB
6 AC and BC,| ambiguous, because of the am
*one of them, biguous sign 4 or —.
BC. Let fall the perpendieular CD from
The third | the angle C, contained by
7] iven sides, upont the side AB.
side :¢os A ::tan' AC : tan AD
(c-2.); cos AC : cos BC:: cc
AB. AD : cos BD, (26.
AB=AD_BD, wherefore AB|
is ambiguous.

C
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TABLE continued.
GIVEN. SOUGRT. SOLUTION.
The side B:sin A::sin AC: sin BC,
BC | (24); the affection of BC is wm-|
épposite } eertain, except when it can be de-
8 toths -} termined by this rule, that accord-
! ether ing as A4 B is greater or less than|
given an~ | 180°, AC4-BC is also or
. gla A | loss than 1809, (10.).
Twe angles .
fProm the unknown angle C, draw|
A, B, Theside | €D perpendicular to AB; then
AB R :cos A::tan AC : tan AD
and a side | adjacent | (c.2.); tanB:tan A ::sin AD:
: o the sis BD. BD is ambiguous ;
9 AC given 1} therefore AB =s AD 4+ BD
sagles have four values, vome of whi
opposite o A, B. will be excladed by this condition,
] that AB must bo less thun 180°.
aeme of them,
fm the angle required, C, draw CD}
B. Etpu&cdn to AB. 1
The third reos AGz:tan A : et ACD,
: (c.3.),c08 A:cos B :: sin ACD 1
OJ angle sin BCD, (23.). The affection of
1 BCD is uncertain, and
ACB. ACB = ACD J. BCD, has
values, some of which may be ex-
cluded by the condition, that ACB
is less than 180°,
{From C one of the angles not requi
The three ed, draw CD gerpendicul’u to AB.
Find an arc E such that tan § AB
sides, ' :tan § (AC+BC):: tan } (AC—
11 Onoofthe| BC) : tan § E; then, if AB
AB, AC, ater than i, AB is the sum, an
angles the difference of AD and DB;
and but if AB be less than E, E is the
A, sum and AB the difference of AD,
BC. DB, (29.). In either case, AD

BD are known, and tan AC :
AD::R:cos A, -
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TABLE continued.

GIYEN/ SOUGHT. SOLUTION.

. {Suppose the supplements of the
three given angles, A, B, C, to
: be a, 3, c, and to be the sides o

The three | One of the | a spherioal triangle. Find, by,
. - the last case,.the angle of this
12{ angles . sides - ‘| triangle, opposite to the side a;
. : and it will be the supplement o!

A, B, C. BC. the side of the given trizngle op-|-
’ r g:site to the angle A, that is, o

C, (11.);. and therefore BC i

found.

In the foregoing table, the rules are given.for ascertaining the affection
of the. arc or augle found, whenever it can be done : Most of these rules
are contained in this one rule, which is of general ;gplicaﬁon, viz. that
when the thing found is either a tangent or a.cosine, and of the tamgents or
costnes mploaicf in the comlalim of it, either one or thrc{bcloag to ebtuse
angles, the angle found is also obtuse. This rule is particularly to be attend-
ed to in cases 5 and 7, where it removes part of the ambiguity.

It may be nocessary to remark with respect to the 11th case, that the
segments of the base computed there are those cut off by the nearest per-
pendicular ; and also, that when the sum of the sides is less than 1800,
the least segment is adjacent to the least side of the triangle ; otherwise
to the greatest, (17.).
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The last table may also be conveniently expressed in the following
manner, denoting the side opposite to the angle A, by «, to B by 3, andto
C by ¢; and"also the 'segments of ‘the base, or of opposite angle, by »
and . . g

GIVEN. SOUGHT. SOLUTION.
) o Find 2, so that :
Two sides B tan w=tan bx cos A ; th
1| dand ¢, and g t'mB=sm.:=><tanA‘
the angle , : sin (c—2)
between |. . Find &, as above, )
2 a . cos b X eos (c—¢
them A. then cos g== v .
. Find =, so that '
\ 3 Angles . cot z==cos bxtan A ; then]
i A 'nd C . tan ¢-m
) 4 ' fnd . . . Find =, as above, :
sidé 3 .. B theneo-B_.MAxm(c-'.
. . ) . sin 2
5 . B sin B'=sin bxsin A
sina
Sides Find 2, so that
. C cot x=cos L Xtan A ; then
¢ and 3 - _coszXtan b
s O
and
. Find 2, so that :
angle A. tanz==tandXcos A ; and find|
¢, so that
¢ cos aXcos &
CcOo8 y== v b_
c=2ty.
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'TABLE continued,

GIVEN. SOUGHT. SOLUTION.

sinbxsin A
“snB

' I"indz,sotha; 1 '
roles]| tan a==tan HXcos A ; and y, s0f
} | The angles | A»‘ »80)
~ ]9] AanaB | 1 gip g2 =Ktan

. 9 ’ ‘ . ‘mY=‘ tan B -- .
sad the B - e=azly.

side &. : : Find =, so that
cot =008 bXtan A; and also y,
149 - . 80 that

?1q Co . sin 2Xcos B
; ' sny cop A

e

‘ Tmzly. .
4 -] ) R Lat ad-b+te=s, . |
] ] o pan YRGB X ()
12 ab,ec. A ] sin §A V/8in b X sin ¢
| S um]A;:V'i' 2" X sin.(g-‘-a’)‘
’ +/sin b X sin ¢
Let A4-B4+C=S.
| 1. =qua ] S X cos (I S—A)
‘lﬁﬁ 4,B,C e lm}a +/sin Bxsin C
ym@:‘c«(—s—cj‘

'or cosjo= ysin Bxsia C




IVAPPENDIX.
 SPHERICAL
TRIGONOMETRY,

. NAPIER'S RULES OF THE CIRCULAR. PARTS.

;-

TuE rule of the Circular Parts, invented by NAPIER, is of great use in
Spherical Trigonometry, by reducing all the theorems employed in the
- solution of right angled triangles totwo. These two are not new proposi-
tions, but are merely enunciations, which, by help of a particular arrange-
ment and classification of the parts of a triangle, include ell the six propo-
suuons, with their corollaries, which have been demonstrated above from
the 18th to the 23d inclusive. They are perhaps the happiest example of
artificial memory that is known.

DEFINITIONS. *

1. If in a spherical triangle, we set aside the right angle, and consider only
‘the five remaining parts of the triangle, viz. the three sides and the two
oblique. angles, then the two sides which contain the right angle, and
the complements of the other three, namely, of the two angles'and the
hypotenuse, are called the Circular Parts. : i

Thus, in the triangle ABC right angled at-A, tbe circular parts are AC,
AB with the complements of B, BC, and C. These parts are called
circular ; because, when they are named in the na order of &’
succession, they go round the triangle. :

2. When of the five circular parts any one is taken, for the middle par,
then of the remaining four, the two which are immediately adjacent to
it, on the right and left, are called the adjacent parts ; and the other two,
each of which is separated from the middle by an adjacent part, are call-
ed opposite parts. :

[hus in the right angled triangle ABC, A, being the right angle, AC, AB,
90°—B, 90°—BC, 90°—C, are the circular parts, by Def. 1.; and if
35 ,
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any one, as AC, be reckoned the middle part, then AB and 90°—C, which
are contiguous to it on different sides, are called adjacent parts ; and 90°
—B, 90°BC areithe opposite parts. In like manner if AB is taken for -

the middle part, AC and 90°—B are the adjacent parts : 90°~—BC, and
90°0—C are the. apposite.: Or if 90°—BC be the middle part, 90—B,
90°—C are adjacent ; AC and AB opposite, &c. :

‘This arrangement being made, the rule of the circular part is contained
in the following :

PROPOSITION.

Ina htanglad gled spherical Wk,mmwkmmﬁdh&mithm
qfrt;iaid&paft,isogudwtkmtatgkundcrmuugmtsqfthdﬁm
, parts ; or, to the rectangle under the cosines of the opposite parts

The truth of the two theorems included in this enunciation may be
easily proved, by taking each of the five circular parts in succession for
the middle part, when the general proposition will be found to coincide
with some one of the analogies in the table already given for the resolution
of the cases of right angled spherical triangles. Thus, in the triangle ABC,
. if the complement of the hypotenuse BC be taken as the middle part, 90°

. —4B, and 90°—C, are the mggzznt parts, AB and AC the ¢pposite. Then
the general rule gives these two.theorems, R x cos BGz=zcot Bxcot C,
and R X cos BC=cos AB X ¢os AC. The former of these coincides with
the cor. to.the 20th; and the latter with the 22d, . :

‘To apply the foregoing general proposition to resolve any case of a right
angled spherical triangle, consider which of the three. qualities named
(the two things given and the oné required) must be made the middle term,
in oxder that the other twe may be equi-distant from it, that is, may be
both adjacent, or both opposite ; then one or other of the two theorems
conta(ilnedin the above enunciatipn will give the value of the thing re-
quired. : : :
Suppose, for example, that AB and BC are given, to find C; it is evi-
dent that if AB be made the middle part, BC and C are the opposite parts,
and therefore R X sin AB==sin C X sin BC, for sin C=ces {90°—~C); and
~_sin AB
sin BC’ :

Again, that BC and C are given to find AC; it is obvious that
C is in the middle between the adjacent parts AC and (90°—BC), there-

cos (90°—BC)=sin BC, and consequently sin C=
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fore R x cos C=tan AG X cot BC, ortnnACs-g';h%scmC +ﬁnBC'

, because, as has been shewn abave, ——-B—-ttm BC.

In the same way may all the other cases be resolved. One or two tnals
will always lead to the knowledge of the part which in any given case is
to be assumed as the middle part; and a little practice will make it easy,
even without such trials, to judge st onee which of them is to be so, as-
sumed. It may be useful for the learner to range the names of the five
“cireular parts of the triangle rornd the circumference of a circle, at equal
distances from one another, by whlch means the middle part will be imme-
dlately determined.

" Besides the rule of. the cirexlar parts, Napier derived from the last of the
three theorems ascribed to him above, (schol. 29.) the solutions of all the
cases of oblique angled triangles. 'These solutions ate as follows : A, B,
C, denoting the three tnangles of a spherical triangle, and ¢, b, c. the sides
opposite to them.

I
Given two sides J, ¢, and the ngle A between them.
To find the angles B and C.

tan § (B—C)=oot § AX TR g = ; (@1) oon 2.

(b—c)
an (B+C)=cot }Ax—;s—i(—b_‘:) (31) eor. 1.

To find the third side a.
sinB:sin A::sind:sina
.
Given the two sides b, ¢, and the angle B opposite to one of them.
To find C, and the angle opposite to the other side.
sin b:sine¢:: sin B :sin C.
To find the contained angle A.

t

| eotiAmn}(B—C)x—n-;—%t—c) {31) oor. 1.

To find the third side’a. -
"sin B:sin A::sind: sin a
¢ IIL

Given two angles A and B, and the side ¢ between them.
To find the other two sides a, 8.
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tan } (b—a)=tan } cx %ﬂﬂ-‘}l—)g). . (31)
) 068§ (A—B)
tan § (0+a)=tan 4 GXW_*_—-B)- (31.)
| . o find the third angle C. -

sing:sine:: sin A:sin C.

IV.

Given two angles A and B, and the side a, opposite to one of them.
 "To find b, the side opposite to the other.
sin A :ain B :: sin a:sin b.

. To find ¢, the side between the given angles.

sin 4 (A4 B)
tan * c==tan } (a—b) Xm- (31.)
To find the third angle C.
sinag:sinc::sinA:sinC.
The other two cases, when the three sides are given to find the angles,
or when the three angles are given to find the sides, are resolved by the

29th, (the first of NaPIER’s Propositions,) in the same way as in the table
already given for the case of the oblique angled triangle.

There is a solution of the case of the three sides being given, which it
is often very convenient to use, and which is set down here, though the
proposition on which it depends has not been demonstrated.

Let g, b, ¢, be the three given sides, to find the angle A, contained be-
tween b and c. - . :
IfRad =l,anda+4 b4 ¢c=3s,
sin § A = /sin (§ 8—:» X ?m 4 (s—c)

+/8in'dxsin ¢
cos § A = J/sin. (} :vx sin ‘} (s—aW. :
+/8in b Xsin ¢

§ or,

In like manner, if the three angles, A, B, C are given to find ¢, the side
between A and B. .
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LetA+B +C=8, ,

sin } cz-‘—/———;._—__m* §Xcos Q—-——S—A) ; or, -
+/8in B xsin C ,
con § e= vcos (% S-.—B) X¢.:oa (3 S—C).(
/sin Bxsin C.

These theorems, on account of the facility with which Logarithms are
applied to them, are the most convenient of any for resolving the two cases
to which they refer. When A is a very obtuse*angle, the second theorem,
which gives the value of the cosine of its half, is to be used’; otherwise
the first theorem, giving the value of the sine of its half its preferable.
The same is to be observed with respect to the side ¢, the reason of which
was explained, Plane Trig. Schol.

END OF SPHERICAL TRIGONOMETRY.
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NOTES
ON THE

FIRST BOOK OF THE ELEMENTS.

DEFINITIONS.
L

In the definitions a few changes have been made, of which it is neces-
sary to give some account. One of these changes respects the first defini-
tion, that of a point, which Euclid has said to be, ¢ That which has no
parts, or which has no magnitude.’ Now, it has been objected to this defi-
nition, that it contains only a negative, and that it is not convertible, as
every good definition.ought certainly to be. Thatit is' not convertible ia
evident, for though every point is unextended, or without magnitude, yet
every thing unextended or without magnitude, is not a point. To this it
is impossible to reply, and therefore it becomes necessary te change the -
definition altogether, which is accordingly done here; a point being defined
to be, that which has position but not magnitude. Here the affirmative part
includes all that is essential to a point, and the negative part includes
every thing that is not essential to t. I am indebted for this definition to
a friend, by, whose judicious and learned remarks I have often profited.

IL

After the second definition Euclid has introduced the following, « the
“ extremities of a line are points.” o .

Now, this is certainly not a definition, but an inference from the defini-
tions of a point and of aline. That which terminates aline can have no
breadth, as the line in which it is has none ; and it can have no length, as it
would not then be a termination, but a part.of that which is supposed to
terminate. The termination of a line can therefore have no magnitude, and
having necessarily position, it is a point. But as it is plain, that in all this
we are drawing a consequence from two definitions already laid down, and
not giving a new definition, I have taken the liberty. of putting it down as
a corollary to the second definition, and have added, tAat the intersections of
one line with another are points, as this affords a good illustration of the nature
of a point, and is an inference exactly of the same kind with the preceding.
The same thing nearly has been done with the fourth definition, where
that which Euclid gave as a separate definition 13 made a corollary to the
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fourth, beeause it is in fact an inference deduced from comparing the defi-
nitions of a superficies and a line. o

As it is impossiblé)to explain the relation of a superficies, a line, and a
point to one another, and to the soiid in which they all originate, better
than Dr. Simson has done, I shall here add, with very little change, the
illustration given by that excellent Geometer. .

“It is necessary to consider a solid, that is, a magnitude which has
length, breadth, and thickness, in order to understand aright the definitions
of a point, line and superficies ; for these all arise from a solid, and exist in -
it; The boundary, or boundaries which. contain a solid, are called superfi-
cies, or the boundary which is common to two solids which are contiguous,
or which divides one solid into two contisuous parts, is called a superfi-
cies; Thus, if BCGF be one of the boundaries which contain the solid
ABCDEFGH, or which is the common boundary of this solid, and the solid
BKLCFNMG, and is therefore in the one as well as the other solid, it is
called a superficies, and has no thickness; For if it have any, this thick-
ness must either be a part of the thickness of the solid AG, or the solid BM,
or a part of the thickness of each of them. It cannotbe a part of the thick-
ness of the solid BM ; because, if this solid be removed from the solid AG,
the superficies BCGF, the boundary of the solid AG, remains still the
same as it was. Nor can it be a part of the thickness of the solid AG;
because if this be removed from the solid BM, the superficies BCGF, the
boundary of the solid BM, does nevertheless remain; therefore the super-
ficies BCGF has no thickness, but only length and breadth.

_ “The boundary of a superficies is called a line ; or a line is the common
boundary of two superficies that are contiguous, or it is that which divides
- one superficies intg two contiguous parts.: Thus, if BC be one of the boun-
_daries which contain the superficies ABCD, or which is the common boun-
dary of this superficies, and of the superficies KBCL, which is contiguous
to it, this boundary BC is called a line, and has no breadth; For, if it have
any, this must be part either of the breadth of the superficies ABCD or
of the superficies KBCL, or part of :
each of them. It is not part of the H G M
breadth of the superficies KBCL; .
forif this superficies be removed from .
the superficies ABCD, the line BC - B
which is the boundary of the super- . IR IN
ficies ABCD remains the same as it
was. Nor can the breadth that BC J
is m’g}posed to have, be a of the . ) 7]
breadth of the superficies ABCD ; be-- » 4
cause, if this be réemoved from the su-
riicies KBCL, the line BC, which . )
1s the boundary of the superficies o B K
KBCL, does nevertheless remain : Therefore the line BC has no breadth.
And because the line BC is in a superficies, and thata superficies has no
thickness, as was shown ; therefore a line has neither breadth nor thick-
ness, but only length. .
“ The boundary of a line is called a point, or a paint is a common boun-~
dary or extremity of two lines that are contiguous : Thus, if B be the ex-
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tremity of the line AB, or the common extremity of the two lines AB, KB,
this extremity is called a point, and has no length :. Forif it have any, this
length must either’ be patt’of ‘the H G M
length of the line AB, or of the line A )

KB. It is not part of the length of
KB ; for if the line KB be removed . . .
from AB, the point B, whichis the I8 i N
extremity of the line AB, remains the . : . '

same as it was; Norisit partof the ~ ‘ »
length of the line AB; for if AB be . ‘ . -
removed from theline KB, the point . ~ . '

B, which is the extremity of the line
KB, does neverthel::: remaitxlll : '
Therefore the point B has no length ; c

And because apopoint isin aline,and £ B, K
a line has neither breadth nor thickness, therefore 2 point has no length,
breadth, nor thickness. And in this manner the definition of a point, line,
and superficies are to be understood.” : i

II1.

Euclid has defined a straight line to be a line which (as we translate it)
“lies evenly between its extreme points.” This definition is obviously
faulty, the word evenly standing as much in néed of an explanation as the
word straight, which it is intended to define. In the original, however, it
must be confessed, that this inaccuracy is at least less striking than in our
translation ; for the word which we render evenly is s&ioe, equaily, and is ac-
cordingly translated ez equo, and equaliter by Commandine and Gregory.
The definition, therefore, is, that a straight line is one which lies equally
between its extreme points : and if by this we understand a line that lies
between its extreme points 80 as to be related exactly alike to the space.
on the ene side of it, and to the space on the other, we have a definition
that is perhaps a little too metaphysical, but which certainly contains in it
the essential charagter of a straight line. That Euclid took the definition
in this sense, however, is not "certain, bécause he has not attempted to
deduce from it any property whatsoever of a straight line ; and indeed, it
should seem not easy to do so, without employing some reasonings of a
more metaphysical kind than he has any where admitted into his Elements.
To supply the defects of his definition, he has therefore introduced the
Axiom, that two straight lines cannot inclose @ space ; on which Axiom it is,
and not on his definition of a straight line, that his demonstrations are
founded. As this manner of proceeding is certainly not so regular and
scientific as that of laying down a definition, from which the properties of
the thing defined may be logically deduced, I have substituted another defi-
nition of a straight line in'the roomof Euclid’s. This definitionof a straight
line was suggested by a remark of Boscovich, whe, in his Notes on the
philosophical Poem of Professor Stay, says, “ Rectam lineam recte con-
“ gruere totam toti in infinitum productum si bina puncta unius binis al-
“terius congruant, patet ex ipsa admodum clara rectitudinis idea quam
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“habemus.” (Supplementum 1 lib. 3. § 550.) - Now, that which Mr:
Boscovich would consider -as an inference from our idea of straightness,
seems itself'ta\be |the essence of that idea, and to afford the best criterion
for judging whether any given line be straight or not. On this principle
we have given the definition above,ag there be two lines which cannot coin-
cide in twe points, without coinciding altogether,each of them is called a straight
line. L L

This definition was otherwise expressed in'the two former editions ; it
was said, that lines are siraight lines which cannot coincide in part, with-
out coinciding altogether. This was liable to an objection, viz. that it de-
fined straight lines, but not a straight hne; and-though this in truth is but
a mere cavil, it is better to leave no room for it. The definition in the form
now given is also more simple. - :

From the same definition, the proposition which Euclid gives as an
Axiom, that two straight lines cannot inclose a space, follows as a neces-
sary consequence. For, if two lines inclose a space, they must intersect
one another in two points, and yet, in the intermediate part, must not coin-
‘cide ; and therefore by the definition they are not straight lines. It follows
in the same way, that two straight lines cannot have a common segment,
or cannot coincide in part, without coinciding altogether.

After laying down the definition of a straight line, as in the first Edition,
I was favoured by Dr. Reid of Glasgow with the perusal of a MS. contain-
ing many excellent observations on the first Book of Euclid, such as might
be expected from a philosopher distinguished for the aceuracy as well as
the extent of his knowledge. He there defined a straight line nearly as
has been done here, viz. A straight line is that which cannot meet ano-
¢ ther straightlinein more points than one, otherwise they perfectly coincide,
“ and are one and the same.” Dr. Reid also contends, that this must have
been Euclid’s own definition ; because, in the first proposition- of the
eleventh Book, that author argues, ‘ that two straight lines cannot have &
““common segment, for this reason, that a straight line does not meet a
“ straight line in more points than one, otherwise they coincide.” Whether
this amounts to a proof of the definition above having been actually
Euclid’s, I will not take upon me to decide; but it is certainly-a proof
that the writings of that Geometer ought long since to have suggested this
definition to his cominentators ; and it reminds me, that I might have leam-
ed from these writings what I have acknowledged above to be derived from
a remoter source, ' . : S S ,

There is another characteristic, and obvious property of ‘straight lines,
by which 1 have often thought that. they might be very conveniently defin-
ed, viz. that the position of the whole of a straight line is determined by the
position of two of its points, in so much that, when two points of a straight
line continue fixed, the line itself cannot- change its pesition. It might
therefore be said, that a straight line is one in which, if the position of two
points be determined, the position of the whole line is determined. But this de-
finition, though it amount in fact to the same thing with that already given,
is rather more abstract, and not so easily made the foundation of reason-
ing. I therefore thoughtit best to lay it aside, and to adopt the definition
given in the text, N . ’
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Y.

The definition of a plane is given from Dr. Simson, Euclid’s being liable
- to the same objections with his definition of a straight line; for, he says,
that a plane superficies is orie which “lies evenly between its extreme
“lines.” Thedefectsof this definitionare completely removed inthat which
Dr. Simson has given. Another definition different from both might have
been adopted, viz. That those superficies are called plane, which are such,
that if three points of the one coincide with three points of the other, the
whole of the one must coincide with the whele of tgg other. This defini-
tion, as it resembles that of a straight line, already given, might, perhaps,
have been introduced with some agvantage ; but as the purposes of demon-
stration cannot be better answered than by that'in the text, it has been
thought best to make no farther alteration. ‘

VI

In Euclid, the general definition of a plane angle is placed before that of
a rectilineal angle, and is meant to comprehend those angles which are
formed, by the meeting of the other lines than straight lines. A plane
angle is said to be “the inclination of two lines to one another which
“meet together, but are not in the same direction.” This definition is
omitted here, because that the angles formed by the meeting of curve lines,
though they may become the subject of geometrical investigation, certainly
do not bélong to the Elements ; for the angles that must first be considered
are those made by the intersection of straight lines with one another.
The angles formed by the contact or intersection of a straight line and a
circle, or of two circles, or two curves of any kind with one another,
could produce nothing but perplexity to beginners, and cannot passibly be
understood till the properties of rectilineal angles have been fully explained.
On this ground, I am of opinion, that in an elementary treatise it may
fairly be omitted’ Whatever is not useful, should, in explaining the ele-
ments of a science, be kept out of sight altogether ; for, if it does not assist
the progress of the understanding, it will certainly retard it

AXIOMS.

Amone the Axioms there have been made only two alterations. The
10th Axiom in Euclid is, that ¢ two straight lines eannot inclose a space ;”
which, having become a corollary to our definition of a straight line, ceases
of course to be ranked with seli-evident propositions. It is therefore re-
moved from among the Axioms. .

The 12th Axiom of Euclid is, that «if a straight line meets two straight
«lines, so as to make the two interior angles on the same side of it taken
« together less than two right angles, these straight lines being continually
“ produced, shall at length meet upon that side on which are the angles
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«which are less than two right angles.” Instead of this proposition,
which, though true, is by no means self-evident; another that ap,

more obvious; snd| better, entitled to be accounted an Axiom, has been in-
uoduced, viz. “ that two straight lines, which intersect one another, can-
“not be both parallel to the same straight line.” On this subject, how-
ever, a fuller explanation is necessary, for which see the note on the 29th
Prop. ' . .

PROP. IV. and VIII B. I.

e e = e VAVMY— . — e e — o e Dy L . - ——
meant to assert that the method of describing the triangle ]gEF is actually
known, bpt merely that the triangle DEF may be conceived to exist in
all respects equal to the triangle ABC. . Now, there is no truth whatso-
ever that is better entitled than this to be ranked among the Postulates or
Axioms of geometry ; for the straight lines AB and DE being every way
equal, there can be nothing belonging to the one that may not also belong
to the other. .

Onthe strength of this Postulate the IV. proposition is thus demonstrated.

If ABC, DEF be two triangles, such that the two sides AB and AC of
the one are equal to the two ED, DF of the other, and the angle BAC,
contained by the sides AB, AC of the one, equal to the angle EDF, coa
tained by the sides ED, DF of the other; the triangles ABC and EDF are
overy way equal. -
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On AB let a trianglé be constituted every way equal to the triangle DEF ;
then if this triangle coincide with the triangle ABC, it is evident that the
proposition is true, for it is equul to DEF by hypdthesis, and to ABC, be-
cause it coincides with.it; wherefore ABC, DEF are equal to one another.
Butif it does not coincide with ABC, let it have the position ABG ; and first
suppose G not to fall on AC ; then the angle BAG 1s not equal to-the angle
BAC. But the angle BAG is equal to the angle EDF, therefore EDF
and ABC are not equal, and they are also equal by hypothesis, which is
impossible. Therefore the point G must fall upon AC ; now, if it fall gon
AC but not at C, then AG is not equal to AC; but AG is equal to DF,
therefore DF and AC are not equal, and they are also equal by supposition,
which is imposaible. Therefore G must coincide with C, and the triangle
AGB with the triangle ACB. But AGB is every way equal to DEF,
therefore ACB and DEF are also every way equal.

By help of the same postulate, the fifth may also be very easily de-
monstrased. :

Let ABC be an isosceles triangle, in which AB, AC are the equal sides ;
the angle ABC, ACB opposite to these sides are also equal. ‘

Draw the straight line EF equal to BC, and suppose that on EF the tri-
angle DEF is constituted every way equal to the triangle’ ABC, that is,.
having DE equal to AB, DF to AC, the angle EDF to the angle BAC, the
angle ACB to the angle DFE, &c. o

A

B - C K

‘Then because DE is equal to AB, and AB -is equal to AC, DE is equal
to AC ; and for the same reason, DF is equal to AB. And bécause DF is
equal to AB, DE to AGC, and the angle FDE to ths angle BAC, the angle
ABC is equal to the angle DFE. But the angle ACB is also, by hy-
pothesis, equal to the angle DFE ; therefore the angles ABC, ACB are
equal to ene another. :
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Such demonstrations, it must, however, be acknowledged, trespass
against a rule which Euclid has uniformly adhered to throughout the Ele-
ments, except where heOwas forced by necessity to depart from it ; This
rule is, that nothing is ever supposed to be done, the manner of doing which
has not been already taught, so that the construction is derived ‘either di-
rectly from the three postulates laid down in the beginning, or from pro-
blems already reduced to those postulates. Now, this rule is not essential
to geomet.rical demonstration, where, for the purpese of discovering the

PROP. XXI. THEOR.

It is essential to the truth of this proposition, that the straight lines
drawn to the point within the triangle be drawn from the two éxtremities
of the base ; for, if they be drawn from other points of the base, their sum
may exceed the sum of the sides of the triangle in any ratio that is less
than that of two to one. This is demonstrated by Pappus Alexandrinus
in the 3d Book of his Mathematical Collections, but the demonstration is of a
kind that does not belong to this place. Ifit be required simply to show,
that in certain cases the sum of the two lines drawn to the point within the
triangle may exceed the sum of the sides of the triangle, the demonstra-
tion is easy, and is given nearly as follows by Pappus, and also by Proclus,
in the 4th Book of his Commentary on Euclid.

Let ABC be a triangle, having the angle at A a right angle: let D be
any point in AB ; join CD, then CD will be greater than AC, because in
the triangle ACD the angle CAD is greater than the angle ADC.  From
DC cut off DE equal to AC ; bisect CE ,
in F, and join BF ; BF and F'D are greater C
than BC and CA.

Because CF is equal to FE, CF and FB
are equal to EF and FB, but CF and FB
are greater than BC, therefore EF and FB
are greater than BC. To EF and FB add
ED, and to BC add AC, which is equal to A :
ED by construction, and BF and FD will b B.
be greater than BC and CA.
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It is evident, that if the angle BAC be obtuse, the same reuomng may
be applied.

This propesitien is a suffictent vindication of Euclid for ha.vmg demon-
strated the 21st. proposition, which some affect to consider as self-evident ;
for it proves that the circumstance on which the truth of that proposition
depends is not obvious, nor that which at first sight it is supposed to be, viZ.
that of the one triangle being included within the other. For this reason I
caniot agree with M. Clairaut, that Euclid domonstrated this proposition
only to avoid the ¢avils of the Sophists. But I must, at the same time, ob-
serve, that what the French Geometer has said on the subject has certain-
ly been misunderstood, and in one respect, nnjustly censured by Dr. Simson.
The exact translation of his words is as follows : “If Euclid has taken the
“trouble to demonstrate, that a triangle included within another has the
““ sum of its sides less than the sum of the sides of the triangle in which it
“is included, we are not to be surprised. That Geometer had to de with
“ those obstinate So hlsts, who made a point of refusing their assent to the
‘I‘)mgst evident trulﬁs (Elements de Geometrie par M. Clairaut.

e

Dr) Simson supposes M. Clmraut to mean, by the proposition which he
enunciates here, that when one triangle is included in another, the sum of
the two sides of the included triangle is necessarily less than the sum of the
two sides of the triangle in which it is included, whether they be on the
same base or not. Now this is not only not Euclid’s proposition, as Dr
Simison remarks, but it is not true, and is divectly contrary to what has
just been demonstrated from Proclus - But the fact seems to be, that M.
.Clairaut’s meaning is entirely different, ayd that he intends to speak nof of
two of the sides of a triangle, but of all the three ; so that his proposition
is, “ that when one triangle is included within anofher, the sum of all the -
“three sides of the included triangle is less than the sum of all the three
“ sides of the other,” and this is without doubt true, though I think by no
means self-evident. It must be acknowledged also, that it is not exaotly
Euclid’s proposition, which, however, it comprehends under’it, and is the
general theorem, of which the other is only a particular case. Therefore,
though M. Clairaut may be blamed for maintaining that to be an Axiom
which requires demonstration, yet he is not to be accused of mistaking a
false proposition for a true.one.

PROP. XXII. PROB.

Thomas Simson in his Elements has objected to Euclid’s demonstration
of this proposition, because it contains no proof, that the two circles made
use of in the construction of the Problem must cut one another; and Dr.
Simeon on the other hand, always unwilling to acknowledge the smallest
. blemish in thg works of Euclld contends that the demonstration is perfect:
The truth, however, certainly is, that the demonstration admits of some
improvement ; for the limitation that is made in the enunciation of any
Problem ought always to be shewn.to be necessarily connected with the
construction of it, and this is what Euclid has neglected to do in the pre-
sent instance. The defect may easily be supplied, and Dr. Simson him-
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self has done it in effect in his note on this proposition, though he denies it
to be necessary, :

Because that of the three straight lines DF, FG, GH, any two are great-
er than the third, by hypothesis, FD is less than FG and GH, that is,
than FH, and therefore the circle described from the centre F, with the
distance FD must meet the line FE between F and H ; and, for the like

B .

C

reason, the circle described from the centre G at the distance GH, nmst
meet DG between D and G, and therefore the ome of these circles can-
not be wholly within the-other. Neither can the one be wholly without
the other, because DF-and GH are greater than FG; the two circles
must. therefore intersect one another. . : :

~ PROP. XXVIL and XXVIIL

Evcrip has been ‘guilty of a slight inaccuracy in the enunciations of
thesé propositions, by omitting the condition, that the two straight lines on
which the third line falls, making- the alternate angles, &¢. equal, nrust
be in thé same plane, without which they cannot be parallel, as is evident
from the definition of parallellines. The only editor, I believe, who has re-
marked this omission, is M. e Forx Duc pE CANDALLE, in his transla-
tion of the Elements published in 1566. How it has escaped the netice of
subsequent commentators is not easily explained, unless because they
thought it of little importance to correct an error by which nobody was
likely 10 be misled. .

PROP. XXIX. ’

The subject of parallel linés is one of the most difficult it the Elements
of Geometry. It hasaccordingly been treated of in a great variety of differ-
ent ways, of which, perhaps, there is none that can be said to have given
entire satisfaction. - The difficulty consists in converting the 27thand 28th of
Euelid, or in demonstrating, that parallel straight lines, or such as do not
meet one another, when they meet a third line, make the alternate angles
with it equal, or, which comes to the same, are equally inclined to it, and
make the exterior angle equal to the interior and opposite. In order to de-
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monstrate this proposition, Euckid assumed it as an Axiom, that «if ¢
“ straight line meet two, straight lines, so as to make the interior angles on
“ the same side'of it less'than two right angles, these straight lines being
“ continually produced, will at length meet on the side on which the angles
“are that are less than two right angles.” This proposition, however, is
not self-evident, and ought the less to be received without proof, that, as
Proclus has observed, the converse of it is a proposition that confessedly
requires to be demonstrated. For the converse of it is, that two straight
lines which meet one another make the interior angles, with any third line,
less than two right angles ; or, in othet words, that the two interior angles
of any triangle are less than two right angles, which is the-17th of the
First Book of the Elements: and it should seem, that a proposition can
never rightly be taken for an Axiom, of which the converse requires a de-
monstration.

The methods by which Geometers -have attempted to remorve: this
blemish from the Elements are of three kinds. 1.By a new defimition of
parallel lines. 2. By introducing a new Axiom concerning parallel lines,
- more obvious than Euchid’s. 3. Bﬁ'n:(:asbning merely from the definition -

of parallels, and the properties of lines already demonstrated without the
assumption of any new Axiom. ‘

‘1. One of the definitions that has been substituted for Euclid’s is, that
straight lines are paraltel, which preserve always the same disturice from
one another, by the word distance being understood, » perpendicular drawn
to one of the lines from any point whatever in the other. If these perpendicu-
lars be every where of the same length, the straight lines are called parallel.
This is the definition given by Wolfius, by Boscovich, and by Thomas
Simson, in the first edition of his Elements. It is however a faulty defi-
nition, for it conceals an Axiom in it, and takes for granted a property of
straightlines, that ought eitherto be laid down as self-evident, or demonstrat-
ed, } possible, as a 'gheorem. Thus, if from the three points, A, B, and C
of the straight line AC, perpendiculars AD, BE, CF be drawn all equal
to one another, it is implied in the definition D B F
that the Y;)ints D,E and I are in the same .

ight line, which, though it be true, it was .
not the business of the definition to inform.us
of. Two perpendiculars, as AD and CF, arfe
alone sufficient to determine the position of the A B c
straight line DF, and therefore the definition ought to be, * that two straight
*lines are parallel, when there are two points in the one, from which the
« perpendiculars drawn to the other are equal, and on the same side of it.”

This is the definition of parallels which M. D’Alembert seems to prefer
to all others ; but he acknowledges, and very justly, that it still remains a
matter of difficulty to demonstrate, that all the perpendiculars drawn from
theone of these linesto the other are equal. (Encyclopedie, Art. Parallele.)

Another definition that has been given of parallels is, that they are lines
which make equal angles with a third line, toward the same parts, or such
as make the exterior angle equal to the interior and opposite. Varignon,
Bezout, and several other mathematicians, have adopted this definition,
which, it must be acknowledged, is a perfectly good one, if it be understood
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by it, that the twe'lines called parallel, are such as inake equal angles with

A.\G. 4
- \H\. .

~

a certain third line, but not with any line that falls ipon them. ' It remains,
therefore, to be demonstrated, That if AB and CD make equal angles with
GH, they will do so also with any other line whatsoever., The definition,
therefore, must be thus understood, That parallel lines are such as make
equal angles, with a certain third line, or, more simply, lines which are per-
pendicular to a given line. It must then be proved, 1. That straight lines
which are equally inclined to a certainline or perpendicular to a certain line,
must be equally inclined to all the other lines that fall upon them ; and also,
2. That two straight lines which do not meet when produced, must make
equal angles with any third line that meets them. :

The demonstration of the first of these propositions is not at all facilitated
by the new definition, unless it be previously shown that all the angles of &
triangle are équal to two.right angles, c

The second proposition would hardly be necessary if the new definition
wert employed ; for when it is required to draw a line that shall not meet
a given line, thisis done by drawing a line that shall have the same incli-
nation to a third line that the first or given line has. . It is known that lines
so drawn cannot meet. It would no doubt be an advantage to have a defi-
pition that is not founded on a condition purely negative. ‘

2. As to the Mathematicians who have rejected Euclid’s Axiom, and in-
troduced another in its place, it is not necessary that much should be said.
Clavius is one of the first in this class’; the Axiom he assumes is, ¢ That a
“line of which the points are all equidistant from a certain straight line in
“ the same plane with it, is itself a straightline.” This propesition he does
not, however, assume altogether, as he gives a kind of metaphysical proof
of it, by which he endeavours to connect it with Euelid’s definition of a
straight line, with which proof at the same time he seems not very well
satisfied. His reasoning, after this proposition is granted (though it ought
not to be granted as an Axiom), is logical and conclusive, but is prolix and
operose, 50 as to leave a strong suspicion that the road pursued is by no
means the shortest possible. , ' .

The method pursued by Simson, in his Notes in the First Book of Euclid,
is not very different from that of Clavius. He assumes this Axiom, * That
“a straight line cannot first come nearer to another straight line, and then
“ go farther from it without meeting it.” (Notes, &c. English Edition.) By
coming nearer is understood, conformably to a previous definition, the dimi-
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nution of the perpendicularsdrawn from the one line to the other. This
Axiom is more readily assented to than thatof Clavius, from which, how-
ever, it is not very/different:' but'it is-not very happily expressed, as the idea
not merely of motion, but of time, seems to be involved in the notion of first
coming nearer, and tA¢én going farther off. Even if this inaccuracy is pass-
ed over, the reasoning of Simson, like that of Clavius, is prolix, and evi-
dently a circuitous method of coming at the truth. . =~ - '

Thomas Simson, in the second edition of his Elements, has presented
this Axjom in a simpler form. “ If two points in a straight line are posited
“at unequal distances from another straight line in the same plane,
# those two lines being indefinitely produced on the side of the least dis-
“tance will meet one another.” » N

By help of this Axiom it is easy to prove,that if two straight lines AB,
CD.are parallel, the perpendiculars to .the ene, termimated by the other,
are all equal, and are also perpendicular to both the parallels. That they
are equal is evident, otherwise the lines would meet by the Axiom. That
they are perpendicular to both, is demonstrated thus :

" If AC and BD,which are perpendicular to AB, and equal to one another,
be not also perpendicular to CD, from C let CE C;

be drawn at right angles to BD. Then, be- D
cause AB and CE are both perpendicular to E
BD, they are parallel, and therefore the perpen- '
diculars AC and BE are equal. But AC is |
equal to BD, (by hypoiheses,) therefore BE and Al B
BD are equal, which is impossible ; BD is therefore at right mﬁles to CD.

Hence the proposition, that « if a straight line fall on two el lines, it
“makes the alternate angles equal,” is easily derived. Let FH and GE be

C _F @ D

perpendicular to CD, then they will be parallel to one. another, and also at
right-angles to AB, and therefore FG and HE are equal to one another,
by the last proposition. Wherefore in the triangles EI?‘G, EFH, the sides
HE and EF are equal to the sides GF and FE, each to each, and also the
third side HF to the third side EG, therefore the angle HEF is equal to
the angle EFG, and they are alternate angles. . )

This method of treating the doctrine of parallel lines is extremely plain
and concise, and is perhaps as good as any that can be followed, when a
new Axiom is assumed. In the text above, I have, however, followed a
different method, employing as an Axiom,  That two straight lines, which
“ cut one another, cannot be both parallel to the same straight line.” This
Axiom has been assumed by others, particularly by Ludlam, in his very
useful little tract, entitled Rudiments of Mathematics. :
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It is & proposition readily enmough admitted as self-evident, and leads
to the demonstration of Euclid’s 20th Proposition, even with more brevity
than Simsown’s, , ; o . R

3. All the'methods above epumbprated leave the mind somewhat dissatis.
*fied, as we naturally expect to discover the properties of paraliel lines, as
we do those of other geometric quantities, by comparing the definition of
those lines, with the properties of straight lines already known. Thomost
ancient writer who appears to have attempted to do this is Ptolemy the as-
tronomer, who wrote a treatise expressly on the subject of Parallel Lines.
Proclus has preserved some account of t{u work in ths Pourth Book of his

" cemmentaries ; and it is curious to observe in it an argument founded en the
principle which is known to the moderns by the name of the ient reason.

To prove, that if two parallel straight lines, AB and CD), be eut by a
third line EF, in G and H, the two interior angles AGH, CHG will be

. ""A‘is;_'~ f ;J;‘
| 6 \ .
N,

equal to two right angles, Ptolemy reasons thus: If the angles AGH,
CHG be not equal to two right angles, let them, if possible, be greater
than two right angles: then, because the lines AG and CH are not mere
parallel than the lines BG and DH, the angles BGH, DHG are also
greater than two right angles. Therefore, the four angles AGH, CHG,
BGH, DHG are greater than four right angles; and they are also equal
to four right angles, which is absurd. In the same manner it is shewn,
that the angles AGH, CHG cannot be less than two right angles. There-
fore they are equal to two right angles.

But this reasoning is certainly inconclusive. For why are we to sup-
pose that the interior angles which the parallels make with the line cutting
them, are either in every case greater than two right angles, or in every
case less than two right angles? For any thing that. we are yet supposed
to know, they may be sometimes greater than two right angles, and some-
times less, and therefore we are not entitled to conclude, because the angles
AGH, CHG are greater than two right angles, that therefore the angles
BGH, DHG are also necessarily greater than two right angles. It
may safely be asserted, therefore, that Ptolemy has not succeeded in his
attempt to demonstrate the properties of parallel lines without the assist-
ance of a new Axiom. : )

Another attempt to demonstrate the same proposition without the assist-
ance of a new Axiom has been made by 2 modern geometer, Franceschini,

-
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Professor of Mathematics in the University of Bologea, in an essay, which
he entitles, La Teorie delle paraliele rigorosamente dimonstrata, printed in
his Opuscoli Mathematici; st'Bassano-in 1787. ‘

The difficulty is there redisced to a proposition nearly the same with this,
That if BE meke an acute angle with BD, and if DE be perpendicular to
BD «t any point, BE and DE, o o _
if produced, will meet. To de- o /
monstrate this, it is supposed, '
that BO, BC are two parts taken
in BE, of which BC-is greater
than BO, and that the perpendi-
culars ON, CL are drawn to BD ;
then shall BL, be greater than
BN. For, if not, that is, if the
perpendicular CL falls either at-
N, or between B and N, as at
F'; in the first-of these cases the
srigle CNB is equal to the angle ONB, bécause they are both right angles,
which is imposeible ; and, in the second, the two angles CFN, CNF of the
triangle GNF, exceed two right angles. Therefore, adds our author, since,
a8 BC increases, BL also increases,and since BC may be increased with-
out Timit, 50 BL. may become greater than'any given line, and therefore may
be greater than BD ; wherefore, since the perpendicularsto BD from points
be{}md- D meet BC, the perpendicular fro% necessarily meets it.

ow it will be found, on' examination, that this reasoning is no more
conclusive than the preceding. For, unless it be proved, that whatever
multiple BC is of BO, the same is BL of BN, the indefinite increase of
BC does not necessarily imgly the indefinite increase of BL,or that BL, may
be made to exceed BD. ©On the contrary, BL. may always increase, and
yet maydo so in such a manner as never to exceed BD : In order that the
demonstration should be conclusive, it would be necessary to shew, that
when BC increases by a part equal to BO, BL increases always by a part
equal to BN ; but to do this will be found to require the knowledge of those
very properties of parallel lines that we are seeking to demonstrate.

LiEGENDRE, in his Elements of Geometry, a work entitled to the highest
Praise, for elegance and accuracy, has delivered the doctrine of parallel lines
without any new Axiom. He has done this in two different ways, one in
the text, and the other in the notes. In the former he has endeavoured to
. prove, independently of the doctrine of parallel lines, that all the angles of
a triangle are equal to two right angles ; from which proposition, when
it is once established, it is not difficult to deduce every thing with respect to
parallels. But, theugh his demonstration of the property of triangles just
mentioned is quite logical and conclusive, yet it has the fault of being long
and indirect, proving first, that the three angles of a triangle cannot be
greater than two right angles, next, that they cannot be less, and doing
both by reasoning abundantly subtle, and not of a kind readily apprehend-
ed by those who are only beginning to study the Mathematics.

‘The demonstration which he has given in the notes is extremely ingeni-
ous, and proceeds on this very simple and undeniable Axiom, that we.can-
not compare an angle and a line, as to magnitude, or cannot have an equa-
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tion of any sort between them. This truth is involved ia the distinetion
between homogeneous and heterogeneous quantities, (Euc. v. def. ¢.),
which has/long been(received in(Geometry, but led only to negative con-
.sequences, till it fell into the hands of Legendre. The proposition which
he deduces from it is, that if two angles of one triangle be equal to two an-
gles of another, the third angles of these triangles are also equal. For, it
is evident, that when two angles of a triangle are given, and also the side
between them, the third angle is thereby determined ; so that if A and B
be any two angles of a triangle, P the side interjacent,and C the third an-
gle, C is determined, as to its magnitude, by A, B and P; and, besides
these, there is no other quantity whatever which can affect the magnitude
of C. 'This is plain, because if A, B and P are given, the triangle can be
constructed, all the triangles in which A, B and P are the same, being equal
to one another. : .

' But of the quantities by which C is determined, P cannot be one ; for if
it were, then C must bq.a function of the quantities A, B, P ;. that is to say,
the value of C can be expressed by some combination of the .quantities X,
B and P. An equation, therefore, may exist between the quantities A, B,
C and P; and consequently the value of P is equal to same. combination,
that is, to some function of the quantities A, B and C ; but this is impoasi-
ble, P being a line, and A, B, C being angles; so that no funoction of ‘the
first of these quantities can be equal to any function of the other three., The
angle C must therefore be determined by the angles ‘A and B alone, without
any regard to the magnitude of P, the side interjacent. Hence in all trian-
gles that have two angles in one equal to two in another, each to each, the
third angles are also equal. ~ . .

Now, tliis being demonstrated, it is easy to prove that the three angles of
any triangle are equal to two right angles. . L

Let ABC be a triangle right angled at A,draw AD perpendicular to
BC. The triangles ABD, ABC have the an- A
gles BAC, BDA right angles, and the angle
B common to both; therefore by what has just
been proved, their third angles BAD, BCA are
also equal. In the same way it is shewn, that
CAD is equal to CBA ; therefore the two an-
gles, BAD, CAD are equal to the two BCA, — c
CBA; but BAD+CAD is equal to & right B D
angle, therefore the angles BCA, CBA are togethr equal to a right angle,
and consequently the three angles of the right angled triangle ABC are
equal to two right angles. .

And since it is proved that the oblique angles of every right angled
triangle are equal to one right angle, and since. every triangle may be
divided into two right angled triangles, the four oblique angles of which are
equal to the three angles of the triangle, therefore the three angles of every
triangle are equal to two right angles.

Though this method of treating the subject is strictly demonstrative, yet,
as the reasoning in the first of the two preceding demonstrations is not per-
haps sufficiently simple to be apprehended by those just entering on mathe-
matical studies, I shall submit to the reader another method, not liable to
the same objection, which I know, from experience, to be of use in explain-
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ing the Elements. It proceeds, like that of the French Geometer, by de-
monstrating, in the first place] that the angles of any triangle are together
equal to two right angles, and deducing from thence, that two lines, which
make with a third line the interior angles, less than two right angles, must
‘meet if produced. The reasoning used. to demonstrate the first of these
propesitions may be objected to by some as involving the idea of motion, and
the transference of aline from one place to another. This, however, is no
more than Euclid has done himself on some occasions ; and when it furnish-
es 80 short a road to the truth as in the present instance, and does not im-
pair the evidence of the conclusion, it seems to be in no respect inconsistent
with the utmost rigour of demonstration. It is of importance in explaining
the Elements of Science, to connect truths by the shoriest chain possible ;
and till that is done, we can never consider them as being placed in their
natural order. The reasoning in the first of the following prepositions is so
simple, that it seems hardly susceptible of abbreviation, and it has the ad-
vantage of connecting immediately two truths. so much' alike, that one
might conclude, even from thé bare enunciations, that they are but different
cases of the same general theorem, viz. That all the angles about a point,
and all the exterior angles of any rectilineal figure, are constantly of the
sameé magnitude, and equal to four right angles. ’

DEFINITION. -

Ir, while one extremity of a straight line re-
mains fixed at A, the line itself turns about that
point from the. position AB to the position AC, it
is said to describe the angle BAC contained by
the line ABand AC. N : B

Cor. If aline turn about a point from the position AC till it come into
the position-AC again, it describes angles which are together equal to four
right angles. This is evident from the second Cor. to the 15th. 1.

PROP. L

" All the exterior angles of any rectilineal figure are together equal to four
right angles. * ‘ .

1. Let the rectilineal figure be the triangle ABC, of which the exterior
angles are DCA, FAB, GBC; these angfes are together equal to four
right angles. ’

Let the line CD, placed.in the direction of BC produced, turn about the
point € till it coincide with CE, a part of the side CA, and have described
the exterior angle DCE or DCA. _ Let it then be carried along.the line
CA, till it be in the position AF, that is, in the direction of CA produced,
and the point A remaining fixed, let it turn about A till it describe the
angle FAB, and coincide with a part of the line AB. Let it next be car-
ried along AB till it come into the position BG, and by turning about B,
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let it describe the angle GBC, so i
as to coincide, with a part of BC. B
Lastly, Let it be carried along BC
till & coincide with CD, its first.

ition. Then, because the line
CD has turned about ene of its
extremities till-it has come into
the position CD again, it hes by
the corollary to the above defini-
ton described angles which are
together equal to four right an-
les; but the anglés which it

s described are the three ex-
terior angles. of the triangle ABC, 2

therefore the exterior angles eof C D
the triangle ABC are equal to . :
four right angles, 4

2. If the rectilineal figure have any number of sides, the proposition is
demonstrated just as in the case of a triangle. Therefore all the exterior
angles of any rectilineal figure are together equal to four right angles.

Cor. 1. Hence,all the interior angles of any triangle are equal to two
right angles. For all the angles of the triangle, both exterior and interior,
are equal to six right angles, and the exterior being equal to Tour right
angles, the interior are equal to two right angles.. o

Cor. 2. Anexterior angle of any triangle is equal to the two interior and
opposite, or the angle DCA is equal to the angles CAB, ABC. For the
angles CAB, ABC, BCA are equal to two right angles; and the angles
ACD, ACB arealso(13.1.) equal to two right angles ; therefore the three
angles CAB, ABC, BCA are equal to the two ACD, ACB; and taking
ACB from both, the angle ACD is equal to the two angles CAB, ABC. -

Cor. 3. The interior angles of any rectilineal figure are equal to twice
as many right angles as the figure has sides, wanting four. For all the
angles exterior and interior are equal to twice as many right angles as the
figure has sides ; but the exterior are equal to four right angles ; therefore
the interior are equal to twice as many right angles as the figure has sides,
wanting four. ’

PROP. 1I.

Two straight lines, which make with a third line the interior angles on
the same side of it less than two right angles, will meet on that side, if pro-
duced far enough. ) :

Let the straight lines AB, CD, make with AC the two angles BAC,
BCA lelgs than two right angles ; AB and CD will meet if produced toward

and D.

In AB take AF==AC; join CF,produce BA to H, and through C draw
CE, making the angle ACE equal to the angle CAH.

Because AC is equal to AF,the angles AFC, ACF a1e also equal (5.
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1.); bnt the exterior angle HAC is equal to the two interior and opposite
angles ACF, AFC, and therefore it is double of either of them, as of ACF.

Now ACE is\equal 'to)HAC by construction, therefore ACE is double of
ACF, and is bisected by the line CF. In the same maaner, if FG be taken

equal to FC, and if CG be drawn, it may be shewn that CG bisects the

angle FCE, and so on continually. But if from a magnitude, as the an-

gle ACE, there be taken its half, and from the remainder. FCE its

half FCG, and from the remainder GCE its half, &c. a remainder will at

length be found less than the given angle DCE.* :

, ¢ B

‘ H A G

Let GCE be the angle, whose half ECK is less than DCE, then a
straight line CK is found, which falls between CD and CE, but never-
theless meets the line AB in K. Therefore CD, if produced, must meet
AB in a point between G and K.

This demonstration is indirect ; but this proposition, if the definition of
parallels were changed, as suggested at p. 291, would not be necessary ;
and the proof, that lines equalf; iriclined to any one line must be so to
every line, would follow directly from the angles of a triangle being equal

to two right angles. The doctrine of parallel lines would in this manaer
be freed from all difficulty. i

‘PROP. IIL or 29. 1. Euclid;

If a straight line fall on two parallel straight lines, it makes the alternate
angles equal to one another ; the exterior equal to the interior and oppo-
site on the same side ; and likewise the two interior angles, on the same
side equal to two right angles.

Let the straight line EF fall on
the parallel straight lines AB, B
CD; the alternate angles AGH, \

A

GHD are equal, the exterior angle (¢} B
EGB is equal to the interior and

opposite GHD ; and the two inte- '
rior angles BGH, GHD are equal '

to two right angles. :

For it AGH be not equal to C H D
GHD, let it be greater, then add-
ing BGH to both, the angles F
AGH, HGB are greater than the

* Prop. 1. 1 Sup. The refe of this proposition involves nothing i ‘stent with
good reasoning, as the demonstration of it does not depend on any thing that has gone before,
30 that it may be introduced in any part of the glsemenh.
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anglzx; DHG, HGB. But AGH, HGB are equal to two right angles(13.
1.); therefore BGH, GHD are less than two right angles, and therefdre the
lines AB)CD\will'meet) by the last proposition, if produced toward B and
D. Bat they do not meet, for they are parallel by hypotheses, and there-
fore. the angles AGH, GHD are not unequal, that is, they are equal to one
another. ’ : . :

Now the angle AGH is equal to EGB, because these are vertical, and
it has also been shewn to be equal to GHD, therefore EGB and GHD are
equal. Lastly, to each of the equal angles EGB, GHD add -the angle
BGH, then the two EGB, BGH are equal to the two DHG, BGH. But
EGB, BGH are equal to two right angles (13.1.),therefore BGH, GHD
are also equal to two right angles.

The following -proposition is placed here, because it is more connected
with the First Book than with any other. It is useful for explajning the
nature of Hadley’s sextarit; and, though involved in the explanations usual-
ly given of that ingtrument, it hag not, I believe, been hitherto considered as
a distinct Geometrical Proposition, though very well entitled to be so on ae-
count of its simplicity and elegance, as well as its utility. Co

THEOREM.

_ If an exterior angle of a triangle be bisected, and also one of the interior
and opposite, the angle contained by the bisecting lines is equal to half the
other interior and opposite angle of the triangle. . )

Let the exterior angle ACD of the triangle ABC be bisected by the
straight line CE, and the interior and opposite ABC by the straight line
BE, the angle BEC is equal to half the angle BAC.

. The line CE, BE will meet ; .for since the angle ACD is greater than
ABC, the half of ACD is .greater than the half of ABC, that is, ECD
is greater than EBC ; add : )

ECB to both, and the two

. angles ECD, ECB are
greater than EBC, ECB.
But ECD, ECB are equal
to two right angles ; there- .
fore ECB, EBC are less
than two right angles, and
therefore the lines CE, BE — :
must meet on the same side B ‘ C . D
of BC on which the trian ,

gle ABC is. Let them meet in E. x

Because DCE is the exterior angle of the triangle BCE, it is equal to
the two angles CBE, BEC, and therefore twice the angle DCE, that is, the
angle DCi is equal to twice the angles CBE and BEC. But twice the
angle CBE is equal to the angle ABC, therefore the angle DCA is equal
to the angle ABC, together with twice the angle BEC ; and the same an-

N _
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gle DCA being the exterior angle of the friangle ' ABC, is equal t0 the twe
angles ABC, CAB, wherefore the two angles ABC, CAB are equal to
ABC and twice ' BEC. Therdfore, taking away ABC from both, there
remains the angle CAB equal to twice the angle BEC, or BEC equal to
the half of BAG. : : .

BOOK 1II.

Tue Demonstrations of this Book are no otherwise changed than by in-
troducing into them some characters similar to those of Algebra, which is
always of great use where the reasoning turns on the addition or subtrac-
tion of rectangles. To Euclid’s, demonstrations, others are sometimes add-
ed, as Scholiums, in which the properties of the sections of lings are easily
demonstrated by Algebraical formulas. - ‘

'BOOK IIL
DEFINITIONS.

Tz definition which Euclid makes the first of this Book is that of equal
circles, which he defines to be  those of which the diameters are equal.”
This is rejected from among the definitions, as being a Theorem, the truth
of which is proved by supposing the circles applied to one another, so that
their centres may coincide, for the whole of the one must then coincide with
the whole aof the.other. The converse, viz. That circles which are equal
have equal diameters, is praved in the same way. .

The definition of the angle of a segment is also emitted, because it does
not relate to a rectilineal angle, but to one understood to be contained be-
tween a straight line and a portion of the circumference of a circle. In like
manner, no notice is taken in the 16th proposition of the angle comprehend-
ed between the semicircle and the diameter, which is said by Euclid to be
greater thananacute rectilineal angle. The reason for these omissions has
already been assigned in the notes on the fifth definition of the first Book

. PROP. XX!

It has been remarked of this demonstration, that it takes for granted, that
if two magnitudes be double of two others, each of each, the sum or differ-
ence of the first two is double of the sum or difference of the other two,
which are two cases of the 1st and 5tl of the 5th Book. The justness of
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this remark cannot be denied ; and though the cases of the Propositions here
referred to are the simplest of any, yet the truth of them ought not in strict-
ness to be 'dssumed without(proof.C/ The proof is easily given. Let A and
B, C and D be four magnitudes, such that A=2C, and B=2D; then A
+B=2(C+D). For since A=C+4-C, and B=D+D, adding equals to
equals, A4+B=(C+D)+(C+D)=2(C+D). So also, if A be greater
than B, and therefore C greater than D, since A=C+4-C, and B=D+-D,
taking equals from equals, A—B=(C—D)-+(C—D), that is, A—B=3
(C—D). ST

N

BOOK V.
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relate to the language, not to the essence of the démonstrations ; they will
be explained after some of the definitions have been particularly considered.

DEF. IIL

The definition of rat
thors ; but whatever v
has but little in those ¢
perties of ratios, can be
remarked concerning i
¢ ing this definition, th
“ners, by premising tl
“ pitions of ratios that
¢ or less than the other
¢ thematical definition,
¢ duced, nor, as I judg
Lect. 3.) Dr. Simson!
ful editor; butthereis , s SUPP AVl il s WAGE e
ses from the definition being of no use. We may, however, well enough
imagine, that a certain idea of order and method induced Euclid to give
some general definition of ratio before he used the term in the definition of
equal ratios.

DEF. IV.

This definition is a little altered in the expression ; Euclid has it, that
‘ magnitudes are said to have a ratio to one another, when the less can be
“multiplied so as to exceed the greater.”
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" DEF, V. -

One of the chief obstacles to the ready understanding of the 5th Book of
Euclid, is the difficulty that most people find of reconciling the idea of pre-
portion which they have already acquired, with the account of it that is
given in this definition. . Our first ideas of proportion, or of propertionality,
are got by trying to compare together the magnitude of external bodies ;
aud though they be at first abundantly vague and incorrect, they are ustally
rendered tolerably precise by the study of arithmetic ;. from which we learn
to call four numbers proportionals, when they are such that the quotient
which arises from dividing the first by the second, (according to the com-
mon rule for division}, is the same with the quotient that arises from divid-
Jing the third by the fourth. : ' S

Now, as the gperation of arithmetical division is applicable ga readily to.
any two magnitudes of the same kind, as to two numbers, the notion of pre~
portion thus obtained may be considered as perfectly general, For, in arith~
metic, after inding how often the divisor is contained in the dividend, wa
multiply the remainder by 10, or 100, or 1000, or any power, as it is called,
of 10, and procseed to inquird how oft the divisor is contained in this new
dividend ; and, if there be any remainder, we go on to multiply it by 10,
100, &c. as before, and to divide the product by the original divisor, and so
on, the division sometimes terminating when no remajnder is left,and some-
times going on ad infinitum, in consequance of aremaiader being left at each:
operation. Now, this process may easily be imitated with apy two mag-
nitudes A and B, providing they be of the same kind, or such that the ene
can be multiplied so as to exceed the other. For, suppose that B is the
least of the two ; take B out of A as oft as it can be found, and let the quo-
tient be noted, and also the remainder, if there be any ; multiply thisremain-
der by 10, or 100, &c. 80 as to exceed B, and let B be taken out of the quan-
tity produced by this multiplication as oft as it can be found ; let the quotient-
be noted,and also the remainder, if there be any. Proceed with thisremaiun-
der as before,and 50 on continually ; and it is evident,that we have an opera-
tionthat is applicable to all magnitudes whatsoever, and that may be perform-
ed with respect to any two lines, any two plane figures, or any two solids, &c.

Now, when we have two magnitudes and two others, and find that the
first divided by the second, according to this method, gives the very same
series of quotients that the third does when divided by the fourth, we say of
these magnitudes, as we did of the numbers above described, that the first
is to the second as the third to the fourth. There are only two more cir-
cumstances necessary to be considered, in order to bring us precisely to
Euclid’s definition. Co

First, It is known from arithmetic, that the multiplication of the succes-
sive remainders each of them by 10,is equivalent to multiplying the quantity
to be divided by the product of all those tens ; so that multiplying, for in-
stance, the first remainder by 10, the second by 10, and the third by 10, is
the same thing, with respect to the quotient, as if the quantity to be divided
had been at first multiplied by 1000 ; aund therefore, our standard of the pro-
portionality of numbers may be expressed thus: If the first multiplied any
number of times by 10, and then divided by the second, gives the same quo-
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tient as when the third is muliplied as often by 10, and then divided by the
fourth, the four magnitudes are praportionals. ,

Again, it is evident; that there is no necessity in these multiplications for
confining ourselves to 10, or the (powers of 10,and that we do so, in arith-
metic, only for the conveniency of the decimal notation ; we may therefore
use any multipliers whatsoever, providing we use the same in both cases.
Hence, we have this defmition of proportionals, When there are four mag-
nitudes, and any multiple whatsoever of the first, when divided by the
s&cond, gives the same quotient with the like multiple of the third, when
divided by the fourth, the four magnitudes are proportionals, or the first
bas the same ratio to the second that the third has to the fourth. -

‘We are now arrived very nearly at Euclid’s definition ; fer,let A, B; C,
D be four preportionals, according to the definition just given, and m any
number ; and let the multiple of A by m, that is mA, be divided by B ; and
first, let the quotient be the number n exactly, then also, when mC is divided
by D, the quotient will be » exactly. -But when mA divided by B gives n
for the quotient, mA=nB by the nature of division, so that when mA=xB,
mC=nD, which is one of the conditions of Euclid’s definition. =~ -

- Again, when mA is divided by B, let the division not be exactly perform-
ed, but let » be a whole number less than the exact quotient, then nB /
mA, or mA 7nB ; and, for the same reason, mC 7 aD, whichis another of
the conditions of Euclid’s definition. - )

Lastly, when mA is divided by B, let » be a whole number greater than
the exact quotient, then mA / nB, and because » is also greater than the
gﬁem of mC divided by D, (which is the same with the other quotient),

refore mC /nD. - - ' ’

Therefore, uniting all these three conditions, we call A, B, C, D, propor-
tionals, when.they are such, that if mA 7 2B, mC 72D if mA=nB,mC=
nD; andif mA /nB, mC /4D, m and n being any numbers whatsoever.
Now, this is exactly the criterion of proportionality established by Euclid in
the 5th definition, and is derived here by generalizing the common and most
familiar idea of proportion. o '

It appears from this, that the condition of mA countaining B, whether
with or without a remainder, as often as mC contains D, with or without a
remainder, and of this being the case whatever value be assignead to the
number m, includes in it all the three conditions that are mentioned in Eu-
clid’s definition ; and hence, that definition may be expressed a little more
simply by saying, that four magnitudes are proportionals, when any multiple of
the first contains the second, (with or without remainder,) as oft as the same mul-
tiple of the third contains the fourth. But, though this definition is certainly,
in the expression, more simple than Euclid’s, it is not, as will be found on
trial, so easily applied tothe purpose of demonstration. The three conditions
which Euclid brings together in his definition, though they somewhat em-
barrass the expression of it, have the advantage of rendering the demon-
strations more simple than they would ctherwise be, by avoiding all discus-
sion about the magnitude of the remainder left, after B is taken outof mA as
oft as it can be found. - All the attempts, indeed, that have been made to de~
monstrate the properties of proportionals rigorously, by means of otherdefini-
tions than Euclid’s, only serve to evince the excellence of the method follow-
ed by the Greek Geometer, and his singular address in the application of it
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" 'The great objection to the other methods is, that if they are meant to be
rigorous, they require two demonstrations to-every proposition, ofie when
the division of 'mAlinito parts equal to B_can be exactly performed, the other
when it-eannot be exactly performed whatever value be assigned to m, or
when A and B are what is called incommensurable ; and this last case wil'
generally be found to require an indirect dermenstration, or a reductio ad gb-

M. D’Alembert, speaking of the doctrine of proportion, in a discourse .
that contains many excellent observations, but-in which he has overlooked
Euclid’s manner of treating this subject entirély, has the following remark :
“On ne peut démontrer que de cette maniére, (la réduction A absurde,) la
¢ plupart des propositions qui regardent les incommensurables. L'idée de
“Pinfini entre au moins implicitemens dans la notion de ces sortes de quan-
“tités ; et comme nous n’avons qu'une idée negative de I'infini, on ne peut
 démontrer directement, et a priors; tout ce qui concerne linfini mathéma-
“tique.” (Encyclopédie, mot Geomdétrie.) -

- 'This remark sets it a strong and just light the difficulty of demonstrating
‘the propositions that regard the proportion of incommensurable magnitudes,
without having recourse to the reductio ad absurdum : but it is surprising,
that- M. I’Alembert; a geometer no less learned than profound, should
have neglected to make mention of Euclid’s method, the only one in which
the difficulty he states is completely overcome. It is overcome by the in-
troduction-of the idea of indefinitude, (if I may be permitted to use the word),
instead of the idea of infinity ; for m and n, the multipliers employed, are
supposed tg be indefinite, or to admit of all Possible values, and it is by the
skilful use-of this condition'that the necessity of indirect demonstrations is
avoided: In the whole of geometry, I know not that any happier invention
is to be found ; and it is worth remarking, that Euclid appears in another
of  his works to have. availed himself of the idea of indefinitude with the
same success, viz. in his books 'of Porisms, which have been restored by
Dr. Simson,and in which the whole analysis turned on that idea, as I have
shown at length in the Third Volume of the Transactions of the Royal So-
ciety of Edinburgh. The investigations of these propositions were founded
entirely on the principle of certain magnitudes admitting of innumerable
values ; and the methods of reasoning concerning them seem to have been
extremely similar to those -employed in the fifth of the Elements. It is
curious to remark this analogy between the different wotks of the same
author; and to consider, that the skill, in the conduct of this very refined
and ingenious artifice, acquired in treating the properties of proportionals,
may have enabled Euclid to-succeed so well in treating the still more dif-
- fieult subject of Porisms. . - ‘ )
Viewing in this light Euclid’s manner of treating proportion, I had no
desire to change any thing in the principle of his demonstrations. I have
only sought to improve the language.of them, by introducing a concise-
mode of expression, of the same nature with that which we use in arith-
' metic, and in algebra. Ordinary language conveys the ideas of the diffe-
Tent operations supposed to be performed in these demonstrations so slowly,
and breaks them down into s0 many parts, that they make not a sufficient
impression on the understanding. This indeed will generally happen when
the things tréated of are not rcpresented to the senses by Diagrams, as
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they cannot be when we reason concerning maghnitude in general, as in this
part of the Elements. Here we ought certainly to adopt the lan e of
arithmetic'or/algebra; which by. its shortness, and the rapidity with which
it places objects before us, makes.up in the best manner possible for being
merely a conventionsl language, and using symbols that have no resem-
blanee to the things expressed by them. Such a language, therefore, 1
have endeavoured to introduce here ; and I am convinced, that if it shall
be found an improvement, it is the only one of which the fith of Euclid will
admit. In other respects I have followed Dr. Simson’s editien to the accu-
of which it would be difficult to make any addition.
mﬁ one thing I must observe, that the doctrine of proportion, as laid down
here, is meant to be more general than in Euelid’s Elements. 1t is intended
to include the ies of proportional numbers as well as of all magni-
tudes. Euclid has not this design, for he has given a definition of propor-
tional numbers in the seventh Book, very different from that ef proporti
magnitudes in the fifth; and it is not easy to justify the logic of this man-
nmer of proceeding ; for we can never speak of two numbers and two magni-
tudes both having the same ratios, unless the word ratio have in both cases
the same signification. All the propositions about proportionals here
given are therefore understood to be applicable to aumbers ; and accord-
ingly, in the eighth Book, the proposition that proves equiangular parallelo-
grams to be in a ratio compounded of the ratios of the numbers praportionsl
to their sides, is demonstrated by help of the propositions of the fifth Boek.
On accountof this, the word guantity, rather than magnitude, ought in strict-
ness to have been used in the enunciation of these propositions, becanse we
employ the word Quantity to denote not enly things extemded, 4o which
alone we give the name of Magnitude, but also numbers. It will be suffie
cient, however, to remark, that all the propositions respecting the ratios of
magnitudes relate equally to all things of which multiples can be taken, that
is, to all that is usually expressed by the word Quantity in its most extend-
ed signification, taking care always to observe, that ratio takes place only
among like quantities, (See Def. 4.)

DEF. X.

The definition of compound ratio was first given accurately by Dr. Simson ;
for, though Euclid used the term, he did so without defining it. I have
placed this definition before those of duplicate and triplicate ratio, as it is in
fact more general, and as the relation of all the three definitions is best seen
when they are ranged in this order, It is then plain, that two-equal ratios
compound a ratio duplicate of either of them; three equal raties, a ratio
triplicate of either of them, &ec.

It was justly observed by Dr. Simson, that the expression, compound ratio,
is introduced merely to prevent circumlocution, and for the sake. principally
of enunciating those propositions with conciseness that are demonstrated by
reasoning ex eguo, that is, by reasoning from the 22d or 23d of this Book.
This will be evident to any one who considers carefully the Prap. F. of this,
or the 23d of the 6th Book.

An objection which naturally occurs to the use of the term compound ratse,
arises from its not being evident how the ratios described in the definitian
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determine in any way the ratio which they are said to compound, since the
magnitudes compounding them are assumed at pleasure. It may be of use
for removing this difficulty, to state thé matter as follows': if there be any
number of ratios (among magnitudes of the same kind) such that the con-
sequent of any of them is the antecedent of that which immediately fol-
lows, the first of the antecedents has to the last of the consequents a ratio
which evidently depends on the intermediate ratios, because if they are de-
termined, it is determined also ; and this dependence of one ratio on all the
other ratios, is expressed by saying that it is compounded of them. Thus,
if A BCD
BCDE

-%, orof Ato E,is said tobe compounded of 'the ratios %, E, &c. Theratio

%, is evidently determined by the ratios %, -g—, &c. becanse if each of the

latter is fixed and invariable, the former cannot change. The exact nature
of this dependence, and how the one thing is determined by the other, it is
not the business of the definition to explain, but merely to give a name to
& relation which it may be of importance to consider more attentively.

be any series of ratios, such as described above, the ratio

~ BOOK VL

DEFINITION II.

Tr1s definition is changed from that of reciprocal figures, which was of no
use, to one that corresponds to the language used in the 14th and 15th
Ppropositions, and in other parts of geometry.

PROP. A, B, C, &ec.

Nine propositions are added to this Book on acceunt of their utility and
their connection with this part of the Elements. The first four of them are
in Dr. Simson’s edition, and among these Prop. A is given imipediately
after the third, being, in fact, a second case of that propesition, and capable
of being included with it, in one enunciation. Prop. D is remarkable for
being a theorem of Ptolemy the Astronomer, in his Msyady Zvrralis,and the
foundation of the construction of his trigonometrical tables. Prop. E is the
simplest case of the former ; it is also useful in trigonometry, and, under
another form, was the 97th, or, in some editions, the 94th of Euclid’s Data.
The propositions F and G are very useful properties of the circle, and are
taken from the Loci Plani of Apollonius. Prop. H is a very remarkable pro-

erty of the triangle ; and K is a proposition which, though it has been
{itherto considered as belonging particularly to trigonometry, is so often of
use in other paxts of the mathematics, that it may be properly ranked among
elementary theorems of .Geometry.3 o
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BOOK 1.
PROP. V. and VI, &ec.

Dy | JURR RN I.Ul.y CULIPAL. v wee v acen vova vraves an cmeewdl spa‘ -y o -
length of curve lines with the length of straight lines, whether we follow
the methods of the ancient or of the modern geometers. It is therefore a
great injustice to the latter methods to represent them as standing en a foun-
dation less secure than the former ; they stand in reality on the same, and
the only difference is, that the application of the principle, common to them
both, is more general and expeditious in the one case than in the other.
This identity of principle, and affinity of the methods used in the elementary
and the higher mathematics, it seems the most necessary to observe, that
some learned mathematicians have appeared not to be sufficiently aware of
it, and have even endeavoured to demonstrate the contrary. An instance
of this is to be met with in the preface of the valuable edition of the works
of Archimedes, lately printed at Oxford. In that preface, Torelli, the learn-
ed commentator, whose labours have done so much to elucidate the writ-
ings of the Greek Geometer, but whoisso~ ) L
merit of the modern analysis, undertakes to pr

the relation which the rectilineal figures in

about, a given curve have to one another, toc

the properties of the curvilineal space itself, e:

which he has not precisely described. With

that if we are to reason from the relation wk

belonging to the circle have to one anothe

figures may approach so near to the circular

inscribed, as not to differ from them by any a

be led into error, and shall seem to prove, th:

its diameter exactly as 3to 4. Now, as this

coveries of Archimedes himself prove so clea

that the principle from which it is deduced n

he would no doubt be right, if his former con:

But the truth is, that a very gross paralogism
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his reasoning, where he makes a transition from the ratios of the small rect-

angles, inscribed in the circular spaces, to the ratios of the sums of those

rectangles, or'of ‘the whole rectilineal figures. In doing this, he takes for
granted & proposition, which, it is wonderful, that one who had studied
geometry in the school of Arohimedes, should for a moment have suppos~
ed to be true. The proposition is this: If A,B,C, D, E, F, beanynum-
be:&of magmtudes, and q, &, ¢, d, ¢, f, as many others and if

B:

C:D:

E:F::o f,then the sumof A, CandEwﬂlbetothe sam of B, D and
F,as thesumofa,cande, tothesumofb dandj;orA+C+E B4-D
+F : atcte: b+d+f. Now,this proposition, which Torelli supposes
to be- porfeotly general, is not true, except in two cases, viz. either ﬁxat,
when A:C::g:¢c,and

A:E::a:e¢; a.nd conséquently,
B:D::b: d, and

. B:F::b4:f; or,secondly, when all the ratiosof A to B,C to D, E
to F, &c. are equal to one another. To demonstrate this, let us suppese
that there are fom- magnitudes, and four others,

thus A:B::a: 5, and
C:D:: c:d, then we cannot have

A+4C: B4D:: adc: b+d, unless either A :C:: a:c,andB:D::bd:

e;0orA:C::5:dand consequentlya:b::¢:d.

Take & magnitude K, such thata : ¢ :: A : K, and another L, such that
&:d::B:L; andsuppose it true,thatA+C :B4D::

a-}‘i:: b-{l-l-d ';[‘hhen, becml;se by i m;ersaonl KB AL cb a, ’mﬂ

and, b esis, A:B ::a: b,and also d, e b d

ex aqyun,y?{o L::c:d; and consequently, K : L: L—’Ld

C:D.

Again, because A: K :: a: ¢, by addition,
A+K : K :: a4c: c; and for the same reason,
B4+L:L::b4d: d or, by inversion,

. L:B4L::d: b+d And, since it hasbeen shewn, that

K:L:: c:d; therefore, ex equo,

A4+K, K, L, B+L,
atc, ¢, d, b4d.

A4K : B4L:: a4c: b+d; but by hypothesis,
A+4C:B4D:: adc:d4d, thereforo
A4K:A4C:: B4L: B4D.

Now, first, let K and C be supposed equal, then it is evident that L and
D are also equal ; and therefore, since by construction a: c:: A : K, we
. have alsoa:c¢:: A: C; and, for the same reason, b:d::B:D,und
these analogies from the first of the two conditions, of which one is affirmed
above to be always essential to the truth of Torelli’s proposition.

Next, if K be greater than C, then, since -

A4K: A+C : B4L : B4-D, by division,

A4K:K—C:: B4L: L—~D. But,as was shewn,
. K:L::C:D, by conversion and altematlon,

K-C: K::L-D: s L, therefone, ex wquo, :
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A+K:K::B4+L: L, andlastly,bydmnon, . ,
A:K::B:L,orA:B::K:L,thatis, o
A : BN D

Wherefore, in this case the ratio of A to B isequal to that of C to D,
and consequently, the ratio of a to b equal to thatof ¢ to d. The same
may be shewn, if K is less than C ; therefore in every case there are con-
ditions necessary to the truth of Torelli’s proposition, which he does not
take into account, and which, asis easily shewn, do not belong to the mag-
nitudes to which he applies it.

In consequence of this, the conclusion which he meant to ectabhsh re-
specting the circle, falls entirely to the ground, and with it the genenl in»
ference aimed against the modern analysis.

It will not, I hope, be imagined, thatI have taken notice of these cir-
cumstances with any design to lessen the reputation of the learned Italian,
who has in so many respects deserved well of the mathematical sciences,
or to detract from the value of a posthumous work, which by its elegance
and correctness, does so much honour to the Enghsh editors. ButI would
warn the student against that narrow spirit which seeks to insinuate itself
even into the abstractions of geometry,and would persuade us, that ele-
gance, nay, truth itself, are possessed exclusively by the ancient methods
of demonstration. The high tone in which Torelli censures the modern ma-
thematics is imposing, as it is assumed by one who had studied the writings
of Archimedes with uncommon diligence. His errors are on that account
the more dangerous, and require to be the more carefully pomted out.

PROP. IX.

This enunciation is the same with that of the third of the Dimensio Cor-
culi of Archimedes ; but the demonstration is different, though it proceeds
like that of the Greek Geometer, by the continual bisection of the 6th part
of the circumference. )

The limits of the circumference are thus assigned ; and the method of
bringing it about, notwithstanding many quantities areneglected in the arith-
metical operations, that the errors shall in one case be all on the side of de-
fect, and in another all on the side of excess (in which I have followed Ar-
chlmedes,) deserves particularly to be observed, as affording a good mtro-
duction to the general methods of approximation.

BOOK 1L

DEF. VIII. and PROP. XX.

Sorip angles, which are defined here in the same manner as in Euclid,
are magmtudes of a very peculiar kind, and are particularly to be remarked
- for not admitting of that accurate comparison, one with another, which is
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common in the other subjects of etrical investigation. It canmot, for
example; be said of one solid mge, that it is the half, er the double of an-
other solid angle ; nor did any geometer ever think of proposing the pro-
blem of bisecting.a given solid angle. - In a word, no multiple or sub-mul-
tiple of such an angle ean be taken, and we have no way of expounding,
even to the simplest cases, the ratio which one of them bears to anothen.

In this respect, therefore, a solid angle differs from every other i
tude that is the subject of mathematical -reasoning, all of which ln'vme.ﬁ
common' property, that multiples and sub-multiples of them may be found.
It is not our business here to inquire into the reason of this anomaly, but it
is plain, that on account of it, our knowledge of the rature and the proper-
ties of such angles can never be very far extended, and that our reason-
ings concerning them must be chiefly confined to the relations of the plane
angles, by which they are contained. One of the mojst remarkable of those
relations is that which is demonstrated in the 21st of thia Book, and which
is, that all the plane angles which contain any solid angle must together
ll)«]e less than four right angles. This proposition is the 21st of the 11th of

uclid.

This proposition, however, is subject to a restriction in certain cases,
which, I believe, was first observed by M. le Sage of Geneva, in a com-
munication to the Academy of Sciences of Paris in 1756. When the sec-
tion of the gynmid formed by the planes that contain the salid angle isa
figure that has none of its angles exterior, such as a triangle, a paralielo-
gram, &c. the truth of the proposition just enunciated. cannot be question-
ed. But, when the aforesaid section is a figure like that which is annexed,
viz. ABCD, having some angles such
as BDC, exterior, or, as they aresome- A
times called, re-entering angles, the
proposition is not necessarily true;
and it is plain, that in such cases the
demonstration which we have given,
and which is the same with Euclid’s,
will no longer apply. Indeed, it were
easy to showlr, tlllat on hbases of thi? _
kind, by multiplying the number of ;
sides, solid angles maybe formed, such B o C
that the plane angles which contain them shall exceed four right angles by
any quantity assigned. An illustration of this from the properties of the
sphere is perhaps the simplest of all others, Suppose that on the surface
of a heisphere there is described a figure bounded by any number of arcs
of great circles making angles with one another, on opposite sides alter-
nately, the plane angles at the centre of the sphere that stand on these arcs
may evidently exceed four right angles, and that too, by multiplying and
extending the arcs ia any assigned ratio. Now, these plane angles con-
tain a solid angle at the centre of the sphere, accotding to the definition of
a solid angle. :

We are to understand the proposition in the text, therefore, to be true
only of those solid angles in which the inclination of the plane angles are
all the same way, or all directed toward the interior of the figure. To dis-
tinguish this class of solid angles from that to which the proposition does
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not apply; it is perhaps best to make use of this criterion, that they are suck;
that when any two points whatsoever are taken in the planes contain
the- solid angle; the 'straight line, joining those points, falls wholly within
the solid angle : or thus, they are such, that a straight line cannot meet the
planes which contain them in more than two points. It is thus, too, that I
would distinguish s plane figure that has none of its angles exterior, by
saying, that it is a rectilineal figure, such that s straight line eannot meet
the boundary of it in mere than two points. - - C o
We, therefore, distinguish solid angles into two species : one .in which
the-bounding planes can be intersected by a straight line only in two
peints ; and another where the bounding &lanes may be intersected by a
straight line in more than two points: to the first of these the proposition
in the text applies, to the second it does not.: - :
Whether Euclid meant entirely to exclude the consideration of figures
of the latter kind, in all that he has said of solids, and of solid angles, it is
not now easy to determine : it is certain, that his definitions involve no
such exclusion ; and as the introduction of any limitation would conside-
rably embarrass these definitions, and render them difficult to be understood
by a beginner, I have left it out, reserving to this place a faller explanation
of the difficulty. I cannot conclude this note without remarking, with the
historian of the Academy, that it is extremely singular, that not one of all
those who had read or explained Euclid before M. le Sage, appears to
have been sensible of this mistake. (Memoires do I'Acad. des Sciences,
1756, Hist. p. 77.) A circumstance that renders this still mere singular
is, that another mistake of Euclid on the same subject, and perhaps of all
other geometers, escaped M. le Sage alse, and was first discovered b,
Dr. Simson, as will presently appear. - -

PROP. IV.

This very elegant demonstration is from Legendre, and is much easier
than that of Euclid.

The demonstration given here of the 6th is also greatly simpler than
that of Euclid. It has even an advantage that does not belong to Legen-
dre’s, that of requiring no particular construction or determination of any
one of the lines, but reasoning from properties common to every part of
them. The simplification, when it can be introduced, which, however,
does not appear to be always possible, is, perhaps, the greatest improve-
ment that can be made on an elementary demonstration.

PROP. XIX.

The problem contained in this proposition, of drawing a straight line per-
pendicular to two straight lines not in the same plane, is certainly to be ac- .
counted elementary, although not given in any book of elementary geome-
try that I know of before that of Legendre. The solution given here is
more simple than his, or than any other that I have yet met with : it also,
leads more easily, if it be required, to a trigonometrical computation.
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BOOK IIL
DEF. 1L and PROP. L

- 'T'uese relate to similar and equal solids, 2 subject on which mistakes have
prevailed not unlike to that-which has just been mentioned. The equality
of solids, it is natural to expect, must be proved like the equality of plane
figures, by shewiag that they may be made to coincide, or to occupy the
same space. But, though it be true that all solids which can be shewn to
coincide are equal and similar, yet it.does not hold conversely, that all salids
which are equal and similar can be made to coincide. Though this asser-
tion may appear somewhat paradoxical, yet the proof of it is extremely
simple. - ‘ .
- Let ABC be an isosceles-triangle, of which the equal sides are AB and
AC; from A draw AE perpendicular to the base BC,and BC will be bisected
in E. - From E draw ED perpemdicular to the
plane ABC, and from D, any point in it, draw D
DA, DB, DC to the three angles of the tri- : ‘
angle ABC. The pyramid DABC is divided
into two pyramids DABE, DACE, which,
though their equality wilt not be disputed,
cannot be so applied to one another as to coin-
cide. Fot, though the triaugles ABE, ACE
are equal, BE being equal to CE, EA common
to both, and the angles AEB, AEC equal, be-
¢ause they are right angles, yet if these two
triangles be applied to one another, so as to
coincide, the solid DACE will nevertlieless,
as is evident, fall without the solid DABE, for the two solids will be on the
oppogite sides of the plane ABE, In the same way, though all the planes
of the pyramid DABE may easily be shewn to be equal to those of the py-
ramid DACE; each to each ; yet will the pyramids themselves never coin-
cide, though the equal planes be applied to one another, because they are
on the opposite sides of those planes. - ’ ’ :
- It may be said, then, on what ground do we cenclude the pyramids to
be equal? The answer is, because their constraction is entirely the same,
and the conditions that determine the magnitude of the one identical with
those that determine the magnitude of the other. For the magnitude of
the pyramid DABE is determined by the magnitude of the triangle ABE,
the length of the line ED, and the position of ED, in respect of the plane
ABE ; three circumstances that are precisely the same in the two pyra-
mids, so that there is nothing that can determine one of them to be greater
than another. o ‘

This reasoning appears perfectly conclusive and satisfactory; and it
seens also very certain, that there is no other principle equally simple, on
which the relation of the solids DABE, DACK to one another can be de-
termined. Neither is this a case that occurs rarely; it is one, that, in the
comparison of magnitudes having three dimensions, presents itself conti-
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nually ; for, though two plane figures that are equal and similar can always
be made to coincide, yet, with regard to solids that are equal and similar, if
they have not a cértain similarityin their position, there will be found just
as many cases in which they cannot, as in which they can coincide. Even
figures described on surfaces, if they are not plane surfaces, may be equal
and similar without the possibility of coinciding. Thus, in the figure de-
scribed on the surface of a sphere, called a spherical triangle, if we suppose
it to be isosceles, and a perpendicular to be- drawn from the vertex on the
base, it will not be doubted, that it is thus divided into twe right angled
spherical triangles equal ard similar to one another, and which, neverthe-
less, cannot be so laid on one another as to agree. The same holds in in-
numerable other instances, and therefore it is evident; that a principle, more
general and fundamental than that of the equality of coinciding figues,
ought to be introduced into Geometry. 'What this principle is has also ap-
peared very clearly in the course of these remarks; and it is indeed no
other than the principle so celebrated in. the philosophy of Leibnitz, under
the name of THE SUFFICIENT REASON. For it was shewn, that the pyra-
mids DABE and DACE are concluded to be equal, because, esch of them
is determined to be of a certain magnitude, rather than of any ether, by
conditions that aye the same in both, so that there is no Rrasox for the one
being greater than the other. ‘This Axiom may be rendered general by
saying, That things of which the magnitude is determined by cenditions
that are exactly the same, are equal to one ‘another; or, it might be ex-
pressed thus ; Two magnitudes A and B are equal, when there is no rea-
son that A should exceed B, rather than that B should exceed A. Either
of these will serve as the fundamental principle for comparing -geometrical
magnitudes of every kind ; they will apply in those cases where the coin-
cidence of magnitudes with one another has no place ; and they will apply
with.great readiness to the cases in which a coincidence may take place,
such as in the 4th, the 8th, or the 26th of the First Book of the Ele-
ments. .

The only objection to this Axiom is, that it is somewhat of a metaphy-
sical kind, and belongs to the doctrine of the sufficient reason, which is looked
on with a suspicious eye by some philosophers. But this is no solid objec-
tion ; for such reasoning may be applied with the greatest safety to those
objects with the nature of which we are perfectly acquainted, and of which
we have complete definitions, as in pure mathematics. In physical ques
tions, the same principle cannot be applied with equal safety, because in
such cases we have seldom a complete definition of the thing we reason
about, or one that includes all its properties. 'Thus, when Archimedes prov-
ed the spherical figure of the earth, by reasoning on a principle of this sort,
he was led to a false conclusion, because he knew nothing of the rotation of
the earth on its axis, which places the particles of that body, though at
equal distances from the centre, in circumstances very different from one
another. But, concerning those things that are the creatures of the mind
altogether, like the objects of mathematical investigation, there can be no
danger of being misled by the principle of the sufficient reason, which at the
same time furnishes us with the only single Axiom, by help of which we
can compare together geometrical quantities, whether they be of ene, of
two, or of three dimensions.
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Legendre in his Elements has made the same remark $hat nas heen just
stated, that there are solids and other Geometrical Magnitudes, whioh,
though similar and equal, camnot be brought to coincide with one another,
and he has distinguished them by the.name of Symmetrical Magnitudes. He
has also given a very satisfactory and ingenious demonstration of the equa-
lity of certain solids of that sort, though not se concise as the nature of a
simple and elementary truth would seem to require, and consequently not
such as to render the axiom proposed above altogether unnecessary

But a circumstance for which I cannot very well account is, that Legen-
dre, and after him Lacroix, ascribe to-Simeon the first mention.of such solids
as we are here considering. Now I must he permitted to say, that no re-
mark to-this purpose is to be found in any of the writings of Simson, which
have come tomy knowledge. He hasindeed made anobservation concerning
the Geometry of Solids, which was both new and important, viz. that solids
may have the condition which Euclid thought sufficient to determine their
quality, and may nevertheless be unequal ; whereas the cbservationmade
here is, that solids may be equal and similar, and may yet want the condition
of being able to coincide with one another. These propositions are widely
different ; and how so accurate a writer as Legendre should have mistaken
the one for the other, is not easy to be explained. It must be observed,
that he does not seem in the Jeast aware of the cbservation which Simson
has really made. Perhaps having himself made the remark we now spesk
«of, and on looking slightly into Simson, having found a limitation.of the
usual degcription of equal solids, he had without much inquiry,set it down
as the same with his own notion ;. and so, with a great de:{ of candour,
and some precipitation, he has ascribed to Simaon 2 discovery which really
belonged to himself. This at least seerns to be the most probable solution
of the difficulty. :

I have entered into a fuller discussion of Legendre’s mistake than I
should otherwise have done, from having said, in the first edition of these
elements, in 1795, that I believed the non-coincidence of similar and
solids in certain circumstances, was then made for the first time. ‘This it
is evident would have been a pretension as ridiculous as ill-founded, if the
same observation had been made in a book like Simson’s, which in this
country was in every body’s hands, and which I had myself professedly
studied with attention. As I have not seen any edition of Legendre’s Ele-
ments earlier than that published in 1802, I am ignorant whether he or I
was the first in making the remark here referred to.. That circumstance
is, however, immaterial ; for I am not interested about the originality of the
remark, though very much interested to show that I had no intenton of ap-
propriating to myself a discovery made by another.

Another observation on the subject of those solids, which, with Legendre,
we shall call Symmetrical, has occurred to me, which I did not at first
think of, viz. that Euclid himself certainly had these solids in view when he
formed his definition (as he very improperly calls it) of equal and similar solids.
He says that those solids are equal and similar, which are contained under
he same number of equal and similar planes. But this is not true, as Dr.
Simson has shewn in a passage just about to be quoted, beeause two solids
may easily be assigned, bounded by the same numbe: of equal and similar
planes, which are obviously unequal, the one being contained within the

40
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: other. Simson observes, that Euclid needed only to have added, that the
. equal and similar planes must be similarly situated, to have made his des-

cription'éxa¢t. | | New)litistrue, that this addition would have made it exact
in one respect, but would have rendered it imperfect in another ; for though
all the solids having the conditions here enumerated, are equal and similar,
many others are equal and similar which have not those conditions, that is,
though bounded by the same equal number of similar plases, those planes
are not similarly situated. The symmetrical solids have not their equal

- and similar planessimilarly situated, but in an order and position directly con-
- trary.  Euclid, it is probable, was aware of this, and by seeking to render

the description of equal and similar solids so general, as to comprehend so-
lids of both kinds, has stript it of an essential condition, se that solids ob-
-viously unequal are included in it, and has also been led into a very illogical
eeding, that of defining the equality of solids, instead of proving it, as if

e had been at liberty to fix a new idea to the word-equal every time that
he applied it to & new kind of magnitude. The nature of the difficulty he
had to contend with, will perhaps be the more readily admitted as an apo-
logy for this error, when it is considered that Simson, who had studied the
matter 8o carefully, as to set Euclid right-in one particular, was himself
wrong in another, and has treated of equal and similar solids, so as to ex-
clude the symmetrical altogether, to which indeed he seems not to have at

_all adverted.

1 must, therefore, again repeat, that I do not think that this matter can
be treated in-a way quite simple and elementary, and at-the same time
general, without intreducing the principle of the sufficient reason as stated

-above. It may then be demonstrated, that gimilar and equal solids are

these contained by the same number of equal and similar planes, either with
similar or contrary situations. If the word contrary is properly understood,
this desoription seems to be quite general. ' o

. Simson’s remark, that solids may be unequal, though contained by the

.same number of equal and similar planes, extends also to solid angles

which may be unequal, though contained by the same number of equal
plane angles. These remarks he published in the first edition of his Eu-
clid in 1756, the very same year that M. le Sage communicated to the
Academy of Sciences the observation on the subject of solid angles, men-
tioned in a former note ; and it.is singular, that these two Geometers, with-
out any communication with one another, should almost at the same time
have made two discoveries very nearly connected, yet neither of them com-
prehending the whole truth, so that each is imperfect without the otlrer.

Dr. Simson has shewn the truth of his remark, by the following reason-
ing.

¢ Let there be any plane rectilineal figure, as the triangle ABC, and from
a point D within it, draw the straight line DE at right angles to the plane
ABC; in DE take DE, DF equal to one another, upon the opposite sides
of the plane, and let G be any point in EF; join DA, DB, DC; EA, EB,
EC; FA,FB,FC; GA,GB, GC: Because the straight line EDF is at

right angles to the plane ABC, it makes right angles with DA, DB, DC,

which it meets in that plane ; and in the triangles EDB, FDB, ED and
DB are equal to FD, and DB, each to each, and they contain right angles ;
therefore the base EB is equal to the base FB ; in the same manner EA is
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equal to FA, and EC to FC: and in the triangles EBA, FBA, EB, BA are
equal to FB, BA, and the base EA is equal to the base FA ; wherefore
the angle EBA is equal to the angle FBA, and the triangle EBA equal
to the triangle FBA, and the other angles equal to the other angles ; there-
fore these triangles are similar: In the same manner the triangle EBC is
similar to the triangle FBC, and the triangle EAC to FAC ; therefore there
are two solid figures, each of which is contained by six ti'iangles, one of them
by three triangles, the common vertex of which is the point G, and their
bases the straight lines AB, BC, CA, and by three other triangles the com-
mon vertex of which is the point E, ard their bases the same lines AB, BC,
CA. The other solid is contained by the same three triangles, the common
vertex of which is G, and their bases AB, BC, CA ; and by three other tri-
angles, of which the common vertex is the point F, and their bases the same
straight lines AB, BC, CA: Now, the three triangles GAB, GBC, GCA
are common to both solids, and the three others EAB, EBC, ECA, of the
first solid have been shown to be equal and similar to the three others,
FAB, FBC, FCA of the other solid, each to each; therefore, these two
solids are contained by the same number of equal and similar planes : But
that they are not equal is manifest, because the first of them is contained in
the other: Therefore it is not universally true, that solids are equal which
are contained by the same number of equal and similar planes.”

“Cor. From this it appears, that two unequal solid angles may be con-
tained by the same number of equal plane angles.” -

“ For the solid angle at B, which is contained by the four plane angles
EBA, EBC, GBA, GBC is not equal to the solid angle at the same point
B, which is contained by the four plane angles FBA, FBC, GBA, GBC;
for the last contains the other. And each of them is contained by four
plane angles, which are equal to one another, each to each; or are the self-
same, as has been proved: And indeed, there may be innumerable solid
angles all unequal to one another, which are each of them contained by
plane angles that are equal to one another, each to each. It is likewise
manifest, that the before-mentioned solids are not similar, since their solid
angles are not all equal.”
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THEOREM.

I}, as the greater of any two sides of a triangle to the less, so the radius to the
tangent of a certain angle; then will the radius be to the tangent of the diffe-
rence between that angle and half a right angle, as the tangent o{;dhalj{k
sum of the angles, at the bass of the triangle so #he tangent of half
difference. '

Let ABC be a triangle, the sides of
which are BC and CA, and the base (o}
AB, and let BC be greater than CA.
Let DC be drawn at right angles to
BC, and equal to AC; join BD, and
because (Prop. 1.) in the right angled
triangle BCD, BC : CD:: R : tan
CBD, CBD is the angle of which the
tangent is to the radius as CD to BC,
that is, as CA to BC, or as the least A B
of the two sides of the triangle to the
greatest. o

But BC+CD : BC—CD :: tan § (CDB+CBD) :
tan } (CDB—CBD) (Prop. 5.);
and also, BC4-CA : BC—CA :: tan 4 (CAB+4-CBA) :
tan 4 (CAB—CBA). Therefore, since CD=CA,
tan 4 (CDB-+CBD) : tan 4 (CDB—CBD):: M
tan § (CAB4-CBA) : tan} (CAB—CBA). But because the
angles CDB-4-CBD=909,tan } (CDB4-CBD) :
tan 4 (CDB—CBD) :: R : tan (45°—CBD), (2 Cor. Prop. 3.),
therefore, R : tan (45°—CBD) : : tan 4 (CAB+4CBA):
tan § (CAB—CBA); and CBD was already shewn to be such an angle
that BC : CA :: R : tan CBD.

their

Cor. If BC, CA, and the angle C ate given to find the angles A and B ;
find an angle E such, that BC : CA :: R : tan E ; then R : tan (45°—E)
:: tan $ (A+B) : tan} (A—B). Thus § (A—B) is found, and § (A+B)
being given, A and B are each of them known. Lem. 2.

In reading the elements of Plane Trigonometry, it may be of use to ob-
serve, that the first five propositions contain all the rules absolutely neces-
-sary for solving the different cases of plane triangles. The learner, when
he studies Trigonometry for the first time, may satisfy himself with these
propo:itions, but should by no means neglect the others in a’'subsequen*
perusal. :

PROP. VII. and VIII

I have changed the demonstration which I gave of these propositions in
the first edition, for two others considerably simpler and more concise, given
me by Mr. JARDINE, teacher of the Mathematics in Edinburgh, formerly
one of my pupils, to whose ingenuity and skill I am very glad to bear this
public testimony. .



! SPHERICAL

TRIGONOMETRY.

strictly geometrical.

For the demonstrations of the two propositions that are given in the end
of the Arppendix to the Spherical Trigonometry, see Elementa Sphericorum,
Theor. 66. apud Wolfii Opera Math. tom. iii.; Trigonometrie par Cagnoli,
§ 463 ; Trigonometrie Spherique par Mauduit, § 165.

FINIS.
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