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PREFACE.

Tue Differential and the Integral Calculus have been esta-
biished upon entirely different axioms and definitions by the
several founders of those sciences. The primary ideas of
infinitesimals, fluxions, and exhaustions, though their results
coincide, for the simple reason that all pure truth is con-
sistent with itself, are widely diverse in their abstract nature.
In writing, therefore, on the principles of either Calculus, a
difficulty presents itself in the necessity of electing between
systems, each of which has the sanction of high authority
and peculiar intrinsic merits.

This consideration is of especial importance in a  Rudi-
mentary Treatise,” which cannot, of course, fulfil the pro-
fession of its title without singleness and simplicity of its
fundamental ideas, and an exactness of thought and language
often very difficult of attainment. The choice of methods
in the present work has been determined partly by historical
considerations. The discoverers of new truths usually search

- after them by the simplest and most familiar considerations;
and it seems natural to presume that, as far at least as
abstract principles are concerned, the way of discovery is the
easiest way of instruction.

The original idea upon which Newton based the system of
fluxions, regarded a differential coefficient as the rate of
increase of a function. The idea upon which Leibnitz and
the Bernouillis established the Integral Caleulus, regarded
an integral as the limit of the summation of an indefinite
number of indefinitely diminishing quantities. The facility
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with which the idea of “rate” may be conceived and applied
to the science of which Newton was the great founder, and tlie
similar advantages of the idea of summation in the Integral
Calculus,, determined, | the,selection of the first idea as the
basis of the “Manual of the Differential Calculus” by the
present writer, and the second as the basis of the present
treatise.

The value and importance of what is termed by Professor
De Morgan the ¢ summatory” definition of integration, has
been insisted upon by him and others of the most eminent
modern mathematicians; but the present is probably an almost
solitary attempt to establish the Integral Calculus on ths:
definition exclusively. Throughout the entire range of the
practical applications of the Integral Calculus—to Geometry,
Mechanices, &e.—the idea of summation is solely and universally
applied. The rival definition of the Integral Calculus—as
the inverse of the Differential Calculus—has a merely rela-
tive signification, and is, therefore, essential only in ana-
Iytical investigations of the relations of the two sciences.

But whatever system be adopted for establishing either
calculus must of necessity involve the idea of limits and
limiting values. An unreasonable reluctance has been some-
times exhibited in adopting this idea in elementary treatises,
whereas that it is one by no means difficult to be conceived is
shewn Dby its adoption in the first ages of mathematics. By
far greater difficulties have arisen from the shifts to which
resort has been had to evade it in theorems of which
demonstrations without it are necessarily illogical.

The idea of limits occurs, or ought to occur, much earlier
in the study of exact science than is generally allowed.
This idea is essentially involved in Arithmetic, Euclid, and
Algebra.  The laws of operation with recurring decimals
and surds cannot be accurately established without limits—
for in what sense is the fraction § equal to *3333...., or
~2 equal to another interminable decimal, except as the
limits of the two infinite convergent series represented by
the decimals? Euclid's definition of equality of ratios
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(Book V., Def. V.), is made to include incommensurable
ratios by considerations dependent on the method of limits,
which also occurs repeatedly in Book XII. In Algebra,
as the present,writet has|endeavoured to shew elsewhere
(Cambridge Mathematical Journal, Feb., 1852), an exact
demonstration of the Binomial Theorem must involve the
method of limits. The same remark applies to the operation
of equating indeterminate coefficients and the theorem a°=1.
Neglect of these considerations involves the writers of some
treatises in obscurities, errors, and inconsistencies, which
bring to remembrance the supposed common origin of the
words ““gibberish” and  algebra.”*

Throughout the present work, the language of infinites
and infinitely small quantities has been carefully avoided,
partly because they cannot, except by an inaccuracy of lan-
guage, be spoken of as rcally existing magnitudes which may
be subjected to analytical operations, partly because the
language of the method of limits is equally concise, and is,
moreover, exact,

That infinity has a real existence must be admitted; for let
us conceive any distance, however great, such that the remotest
known star is comparatively near; we cannot say that space
terminates at that distance. What is beyond the boundary ?
A void, perhaps, but still space; so that unless we can
conceive the existence of a boundary which includes all space
within it, and to which no space is external, we are forced
to admit the existence of infinite space. DBut this admission
is altogether different from that which subjects infinity to
mathematical operations. How is the infinity thus operated
upon to be defined? As a magnitude than which none other
is greater? DBut by hypothesis it is the subject of analytical

* Algebra.— Some, however, derive it from various other Arabic words,
" as from Geber, a celebrated philosopher, chemist, and mathematician, to
whom they ascribe the invention of this science.”— Hutton’s Mathematical
Dictionary. Gibberish.—“1It is probably derived from the chemical cant,

and originally implied the jargon of Geber and his tribe.”—dJoknson’s
Dicitonary.
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operations, and therefore of addition. Add, therefore, some
quantity ; the result is greater than this infinity, or the
definition is contradicted. The truth is, that absolute in-
finity, such as the infinity of space, cannot be intelligibly
conceived\/on/\the| [stpposition) that anything can be added
to it.

Similar considerations apply to infinitely small quantities.
There is no difficulty in seeing, that of any kind of mag-
nitude the parts may be diminished infinitely, for. however
small a part be taken, it may be divided, and thus smaller
parts are taken. If, then, an infinitesimal quantity, the
subject of analytical operation, be defined to be a real quan-
tity less than any other, the definition may be readily shewn
to be inconsistent with itself.

When, therefore, infinitesimals and infinity are introduced
into mathematical operations, they ought to be regarded not
as having an absolute existence, but merely as the means of
expressing the limits to which results approach, as quantities
in them are continually increased or diminished.

M. Cournot, in his admirable treatise ‘“ Des Fonctions et
du Caleul Infinitesimal” (Paris, 1841), asserts, indeed, that
the infinitesimal method does not merely constitute an in-
genious artifice; that it is the expression of the natural
mode of generation of physical magnitudes which increase
by elements smaller than any finite magnitude. But he
does not appear to have anywhere defined what he under-
stands by elements smaller than any finite magnitudes; and
without such a definition it is impossible to investigate his
proposition accurately.  If the words of it be interpreted
literally it appears to lead to this dilemma: if the elements
be not magnitudes, the addition of them produces no in-
crease—if they be magnitudes, they cannot be less than any
finite magnitude ; for, being magnitudes, they may he divided
into less magnitudes.

With respect to the method of limits, M. Cournot is of
opinion that questions must occur in which it is necessary
to renounce this method, and to substitute for it in language
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and in calculations the employment of infinitely small quan-
tities of different orders. e has not, however, specified any
instance in which the substitution in question is required.

The following demonstrations do mnot refer directly or
indirectly to different orders of small quantities, nor, indeed,
to small quantities at all; for the use of the term ‘“small,”
in an absolute sense, in mathematics, is objectionable on
account of its inexactness. The limit where greatness ceases
and smallness begins cannot be distinguished. Hence, though
one quantity may be accurately said to be smaller than another,
the former cannot with perfect exactness be said to be neces-
sarily and absolutely small with respect to the latter.

The exclusive adherence to the ¢ summatory” definition
of the Integral Calculus, has rendered it necessary to present
the greater part of the following propositions in a new form,
and scarcely anything here given (except the historical
notices) is compiled from analogous treatises. The first
section contains a popular exposition of the Integral Cal-
culus; and the second a brief account of its history, com-
piled from one or two cyclopedias and dictionaries. The
two following sections are probably in a great measure new,
as in them the general principles of integration and the
integration of the fundamental functions are derived from
the definition above referred to. The three short sections
which succeed contain nothing original; but the eighth, on
Rational IFractions, is almost entirely newly written. The
ordinary demonstration of the possibility of resolving a
rational fraction into partial fractions proceeds by the method
of equating coefficients, and is defective in this respect—
that it neglects to shew, a priori, that the assumed co-
efficients have any real existence, and that the equations
determining them do mnot give impossible or inconsistent
results.

To the kindness of Proressor DE Moraax, of University
College, London, the Author is indebted for an exact de-
monstration of the existence of partial fractions correspond-
ing to rational fractions, with denominators resolvable
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INTEGRAL CALCULUS.

SECOTION 1.

GENERAL ACCOUNT OF THE OBJECTS OF THE INTEGRAL
CALCULUS.

1. Amongsr the most important uses of the Tntegral Calculus
are its applications to the measurement of the lengths of
curves, the areas of curvilinear figures, the contents of solids
contained by curved surfaces, and the effects of forces. This
Calculus is required in the most important investigations in
every branch of the exact sciences.

2. The names of the Integral and Differential Calculus
sufficiently indicate the distinction between them. 'The In.
tegral Caleulus determines the whole sum or integral magni-
tude of a quantity of which the differential parts are given,
The Differential Calculus, on the contrary, investigates the
relations of the differential parts of a quantity of which the
integral magnitude is given.

3. The process of Integration is therefore the inverse of
Differentiation : in the same way as Subtraction is the jn-
verse of Addition, Division the inverse of Multiplication,
Evolution the inverse of Involution. DBut in the same sense
that Integration is the inverse of Differentiation, the latter
operation is the inverse of the former. As, therefore, the
Differential Calculus is defined and investigated irrespectively
of the Integral, so may also the Integral independently of
the Differential. It is an unnecessarily restricted view
which regards the Integral Calculus as a dependent science.
"Throughout the following pages its rules will be indepen-
dently demonstrated ; though the close relation between the
.wo Calculi requires careful consideration, for the sake of its
aid in comprehending both subjects, its suggestiveness in
uvestigation, and its test of results by inverse operation.

B
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4. Tt was said above, that the Integral Calculus deternines
the integral magnitude of a quantity from its differential paris
Now of cour-c this indirect method of measurement would
not be usually resorted .to, if a more direct were practivable.
But there arc inhtmerable dases Mlwhidh direct measureincut
is impracticable. The measurement of the lengths of lues
affords a simple illustration. If the lines be straight. the
method of moasuring them is obvious and direct. It cons.sts
in successive applications of a straight *rule” or standard
of a unit of length (a yard, metre, cll, &), along the straight
line to be mcasured, and ascertaining how many times if von-
tains the unit and known parts of it. DBut if the linc to
be measured be a curve, no such application of a straight
s« rule” can be performed; it will coineide with the curve Jor
no portion of it, however small.

5. A rough way of effecting the required measurement
is, however, readily suggested. A number of points may
e arbitrarily taken in the curve, and be joined, or be sup-

posed to be joined, by dotted lines. Then, if these chords
be measured, their total length is an approximate measuve
of the length of the curve.

6. It was long ago perceived, that by diminisliing the
lengths of the chords, aund increasing their n'umber, the ap-
proximation became closer and closer. An improvement 1n
the method was effected by drawing from the extremities and
intermediate points of the curve, tangents meeting each other
at points in the convex side of the curve, as in the following
diagram.  1f the curve be such that the tangent, at any
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point of it, cannot meet it at any other point, the total
lengths of these tangents is less than the length of the
curve. In this way the length of the curve, though it could
not he exactly determined, might at any rate be ascertained
to he less than one)'anld'greatetthamy another, of two quan-
fities ; which might be made to differ by a quantity less and

less, as the number of chords and tangents was increased.
So that the error of the approximation would be determined
within closer and closer extremes, as the geometer expended
more and more labour on the mensuration. It is clear,
however, that the length of the curve has some exact value,
which is the it of the operations above explained; and
tue discovery of that exact limit is the solution of a problem
of the Integral Calculus.

V. Again, the area of any plane curvilinear figure is certainly
greater than that of any polygon of straight sides inscribed
in it, and less than that of any such polygon circumscribed.
By increasing the numbers of sides of the circumscribed and
inscribed polygons, their areas are made to differ less and
less. The area of the curvilinear figure lying between them
way thus be determined within any degree of approximation.

For instance, le' the area ACB be included by a curve AB,
and two straight lines, AC, CB, at right angles to each other.
It requires little science to perceive that one of the readiest
ways of roughly measuring this area, is to divide it into portions
by lines parallel to AC, but not necessarily equidistant, and
to compute the area of each such portion as if it were a rect-
angle. Yet this method would give the arca of the figure
boundeéd not by the curve, but by the zigzag dotted line

B 2
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within or without the figure. The difference between the two
rectilinear figures bounded by the two zigzag lines may be
reduced by increasing the number and diminishing the areas
of the rectangles. [hus the curvilinear avea may be deter-

A

C

mined within a margin of error which may be diminished af
pleasure. This process for determining areas is called the
Method of QUADRATURES.

8. It may happen that this method of approximation sug-
gests the limit to which it tends. The Integral Caleulus
differs from the preceding method only in that it substitute:
absolute exactness for mere approximation. The curviiir 2ai
figure must have some exact area which is the limit of 11«
results of the above operations. If, therefore, that limit may
be inferred from them, they lead to the solution of a prollem
of the Integral Calculus.

9. Agaii, one of the most frequent problems of Dynamics
is to ascertuin the distance passed over in a given time by
a point moving with continually-varying velocity. 1f the
poiut were moving with uniform velocity, the distance de-
scribed by it in any time could be immediately ascertained.
The approximation to the distance described by a varying
velocity is analogous to the approximations above described,
and consists in supposing the velocity to change not conti-
nuously but after intervals, and remain uniform during each
interval. The shorter the intervals, the more nearly does the
distance computed on this supposition approximate to the
real distance described. Let the distances be computed on
the hypotheses, first, that the point retains throughout
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cach of the intervals into which its motion is hypothetically
divided, the velocity it actually has at the commencement of
that interval; secondly, that the point has throughout each
interval the velocity it actually has at the termination of that
interval.  The first hypothesis evidently gives the distance
traversed too small; ‘the 'second hiypothesis too large, if the
velocity be a continuously-increasing one. By diminishing
the hypothetical intervals, the error of approximation is re-
duced; and if the limit to which these operations lead can be
found, the result is the solution of a problem of the Integral
Caleulus.

10. The principle on which all the above cases depend,
may be stated generally thus:—A quantity is to be measured
which cannot be immediately compared with the unit of mea-
suremicnt. The quantity is therefore divided into several
parts, and it is ascertained of each of these, that it exceeds
one, and falls short of another, of two quantities measurable
by the given unit. The sums of the two series of measur-
able quantities are the one greater, the other less, than the
whole quantity to be measured.

This process has been continually practised by the most
unskilful as well as the most skilful computers. It is applied
in innnmerable cases in the ordinary avocations of life. The
science which from this kind of approximation extracts
rigorous and exact truth, is the INTEGRAL CALCULUS.

The foregoing remarks will probably suffice to show the
student what kind of reasoning may be expected to engage his
attention in this subject. They serve also to render intelli-
gible the following slight sketch of its history.
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SECTION II.
EARLY RISTORY OF TIHE INTEGRAL CALCULUS.

PyrHAGORAS, born about 590 B.c., died about £97 t.c. L'he
history of his mathematical discoveries rests generally ou no
higher authority than that of tradition. The discovery of the
quadrature of the parabola has been ascribed to him, a< ap-
pears from the following passage in Dr. Hutton’s Matke-
matical Dictionary. In reference to the theorem tha: the
square on the hypothenuse of a right-angled triangle is equal
to the sum of the squares on the sides, it is remarked. that
¢ Plutarch even doubts whether such a sacrifice was mudo
for the said theorem, or even for the area of the Paruboly,
which it was said Pythagoras also found out.”

Eucrip, who lived about 280 B.c., and about 50 years before
Archimedes, showed, in his 10th Book, that the arcas ot the
Cirele and Polygon inscribed in it are ultimately equal. He
demonstrated that the area of the circle is equal to hali the
rectangle contained by the radius and cireumference, and thus
found out a problem of Integration. His method is kuown
as the method of IKahaustions. The first proposition of tlie
10th Book asserts that, if from the greater of two given
quantities be taken more than its half, from the resubting
remainder more than its half, and so on continually, tlcre
will remain at last a quantity less than either of the g¢iven
quantities. Dy this reasoning, the difference betweer the
circle and polygon is exhausted, and the circle becomes ulti-
mately equal to the polygon.

Arcuiveprs, who lived about 250 B.c., investigated the
ratio of the circumference of a circle to its diameter. DBy
calculating the length of the periphery of a circumscribad
polygon of 192 sides, and an inscribed polygon of 96 sides,
he found that the circumference of the circle is betwe m
340 and 314 of the diameter. IHe left a treatise cn tue
Spiral which now bears his name; and determined the :la-
tion of the area bounded by that curve to that of tha «iv
cumscribed cirele. To Archimedes is attributed the quadra-
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ture of the parabola, which discovery, however, as appeare
above, has been assigned to Pythagoras also. Let AO be
a portion of a parabola, O

its vertex, OB a part of its ¢ A
axiy, and AB, a straightiding -~/
at right angles to it. ~The
proposition  in  question,
which is interesting from
its antiquity and intrinsic
importance, asserts that the
area AOB is two-thirds of
the rectangle ACOB. The !
student may easily ascertain ¢ f
after reading the following

pages, that this result is equivalent to the integration of a
function of the form ca?, where ¢ is constant and « variable,

Archimedes showed in his treatise TTegl TQalews xai xvAindpou,
that the content of a sphere is two-thirds of that of the
cylinder which just contains it; that the surface of a sphers
is four times as great as that of one of its great circles, &o.

Coxox, a contemporary of Archimedes, is said to have
invented the spiral which bears the name of the latter, and
to have proposed to him problems respecting it, which were
solved by him.

1'arrus, who lived towards the end of the fourth century
(about A.p. 880), demonstrated some of the principal pro-
perties of the same spiral, by adding together an indefinite
number of parallelograms and cylinders, into which he sup-
posed a triangle and cone ultimately divided. Pappus also
gave in the preface to his 7th Book, the centrobaric method
of determining the content and superficies of a solid of revo-
lution in terms of the dimensions of the gemerating figure,
and the position of its centre of gravity. The theorems of
the centrobaric method discovered by Pappus, frequently are
rilled Guldin’s properties, from a much later mathematician,
xuldini, by whom they were demonstrated.

GArILEo, born 1564, died 1642, proved that a body
moving in a straight line with a constant acceleration, such
es that produced by gravity, describes in any time from the
commencement of the motion a distance proportional to that
time. He thence showed that the path of a projectile is a
parabola. The determination of the distance described by a
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c(}nsfantly—accelemted point depends necessarily on the prin-
ciples of the Integral Calculus, as explained in Article 9.

TorrICELLI, born 1608, died 1647, was a disciple of (ia-
lileo, and wrote a treatise De Dimensione Parabole, with un
appendix De Dimensione Cycloidis. Dr. Hutton says, that
Torricelli/VAiYst dhewed hatl theeycloidal space is equal to
triple the generating circle (though Pascal contends that
Roberval shewed this) ; also, that the solid generated by the
rotation of that space about its base, is to the circumserib.ng
cylinder as 5 to 8: about the tangent parallel to the base, 13
7 to 8; about the tangent parallel to the axis, as 3 to 4, &
(See DESCARTES.)

Cavanirrr, a disciple of Galileo, and friend of Torricelli,
published in 1635, Geometria Indivisibilibus continuortun
novd quddam ratione promota, 4to., Bononie.  This worlk,
which obtained for the author the eredit in Italy of inventing
the Infinitesimal Calculus, proceeds by division of geometrical
figures into indefinitely small parts.

ROBERVAT, in 1646, determined the centres of percussion
and centres of gravity of sectors of cylinders and circles, & ,
by methods equivalent to Integration. From the letters of
Descartes, it appears that these discoveries were subjects of
controversy between him and Roberval. Roberval’s Treatisc
on Indivisibles, appeared in 1666, in the Memoirs of the
Academy of Sciences at Paris.

DESCARTES, born 1596, died 1650, determined the centves
of gravity and centres of oscillation of various curvilinear
figures. His method of demonstrating the proposition ve-
specting the cycloid, referred to in the preceding notice of
Torricelli, is an excellent instance of the geometrical investi-
gation of the quadrature of curves. —The following is an
extract from a letter from him to Father Mersenne, in 1638,
(Lettres de Descartes, tome iii. page 384, Paris, 1667.)

“You commence by an invention of Monsieur de Roberval,
respecting the space included by the curve described by a
point of the circumference of a circle supposed to roll on @
plane; with respect to which, T acknowledge that I have
never before thought of it, and that the observation of it i3
pretty enough. But I do mot see that there is reason tc
make so much noise at having found a thing which i~ so
easy, and which any one who knesw ever so little of geometry
could not fail to find if he sought for it. For if ADC le
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this curve, and AC a straight line equal to the circumference
of the circle STVX, having divided this line AC into 2, 4,
R, &e.. equal parts, by the points B, G, H, N, 0, P, Q, &ec., it

N D

v A N & 0 B P H 0 [¢

1s evident that the perpendicular BD is equal to the diameter
of the circle, and’ that the whole area of the rectilinear
triangle ADC is double of this circle®. Then, taking E for
the point where the same circle would touch the curve AED,
if it were placed on its base at the point G, and taking also
F for the point where it touches this curve, when it is placed
on the point H of its base, it is evident that the two
rectilineal triangles AED and DFC are equal to the square
STVX inscribed in the circle. Similarly, taking the points
L K. L, M for those where the circle touches the curve when
it touches its base at the points N, O, P, Q, it is evident
that the four triangles AIE, EKD, DLF, and FMC are
together equal to the four isosceles triangles inscribed in the
eivele SY'T, TZV, VIX, and XQS; and that the eight other
triangles inscribed in the curve on the sides of these four
are equal to the eight inscribed in the circle, and so on to
infinity ; whence it appears that the whole area of the two
segments of the curve, which have AD and DC for bases, is
equal to that of the circle; and, consequently, the whole area
contained between the curve ADC and the straight line AC,
is triple that of the circle.”

Grecony (St. Vincent) of Bruges, published in 1647,
Opus (reometricum Quadrature Circuli et Sectionum Coni.
He showed that the space between a hyperbola and its
asymptote is divided into equal portions by straight lines,
which divide the asymptote into parts in geometrical pro-
gression, and which are parallel to the other asymptote.

Feryar, who died 1663, was author of a “ Method for
Quadrature of all sorts of Parabolas,” and a treatise on

* By a property of the circle mentioned in the notice of Euclid,
B 3
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Maxima and Minima, in which problems concerning the
centres of gravity of solids are solved by a method re-
sembling Newton’s Fluxions.

HuveENs, in 1651, published Theoremata de Quadraturd
Hyperbole, Ellipsis et Cireuli ex dato Portionum Gravitatis
Clentro ; andyin, 1658, at the Hague, his celebrated Horolo-
gium Osctllatorium sive de motil Pendulorwm, in which he
states that he was the first discoverer that a certain segment
of the cycloid is equal to a regular hexagon inscribed in the
generating circle. He showed that the time of oscillation of
the eycloidal pendulum is independent of the extent of vi-
Dration, and from the principles of the pendulum measured
the effect of gravity, by which he showed that a body
descended vertically from rest in vacuo, in the latitude of
Paris, 15 French feet in one second.

WarLis, in 1655, published his Arithmetica Infinitorum, a
great improvement on the Indivisibles of Cavalieri. Wallis
treats of quadratures, and gives the fivst expression for the
quadrature of a circle by an infinite series in this work,
in which,” says Professor De Morgan, *a large number
of problems of the Integral Caleulus is solved, and which
contained more hints for future discovery than any other
worls of its day.”

NEar, in 1657, made a remarkable step in the Integral
Calculus. He appears to have been the first person who
determined the exact length of any curve. Wallis, in his
Treatise on the Cissoid, states that Neal's rectification of the
semi-cubical parabola was published in July or August, 1657.

Vax Havrest, in Holland, in 1659, also gave the rectifi-
cation of the semi-cubical parabola, as appears from Schooten’s
Commentary on Descartes’ Geometry.

GREGORY (JAMES) published, in 1667, Vera Circuli et Hy-
perbole Quadratura, to which he added in the year following
Geometria Pars Universalis, of which the method resembles
that of Roberval's Indivisibles.

Dr. Barrow, in 1670, published his Method of Tangents.
e died in 1677, and the year following appeared his demon-
strations of Archimedes’ properties of the Sphere and Cy-
linder, by the method of Indivisibles.

Laiyirz, in 1684, gave in the Leipsic Transactions an
account of his Differential Calculus. It is agreed that this
was the first time that this grand discovery appeared in print;
though in the celebrated controversy which arose as to his
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elaim to the priority of this invention, a Committee of the
Royal Society decided that ¢ Sir I. Newton had even in-
vented his method before 1669.” The general opinion of
modern mathematicians appears to concede to Leibnitz the
merit of an independent discovery, and to exempt him from
the charge of plagiarism.

Grrcory (Davip) “published, 'in' 1684, Euxercitatio Geo-
metrica de Dimensione Figurarum.

Nuwron published his Principia in 1687, the most memo-
rable year, therefore, in the annals of science. The doctrine
of limits, conceived and applied in the earliest periods of
mathematical research, had been rapidly growing in import-
ance at the time of Newton and Leibnitz. The great step
made by them consisted in connecting the idea of limits with
a specific notation, and in erecting into a regular system a
suicnce which before their time had been exhibited only
it Isoluted theorems. A large part of the rvesults of the
P'rivcipia are demonstrated by geometrical methods equiva-
lent 1o Iutegration. Newton’s Method of Fluxions was first
publishicd i 1704, subjoined to his treatise on Optics.

Miroaror (NicHoLAs), in 1688, published his Logarith-
motechiia, and is stated to have been the first person who
cver investigated the quadrature of curves analytically. This
he did in a Demonstration of Lord Brouncker’s Quadrature
of the Hyperbola, by Wallis’s method of reducing an alge-
Dbraicul fraction to an infinite series by division.

By the IJinglish contemporaries of Newton, the Integral
Culealus, a Differential Coeficient, and an Integral, were
called the Inverse Method of Iluxions, a Fluxion, and a
Fluent respectively. The notation and phraseology of fluxions
1s now almost obsolete. The methods of Exhaustions, Prime
and Ulumate Ratios, Infinitesimals, Indivisibles, Residual
Analysis, Analysis of Derivations or Derived Functions, and
of Limits, are different appellations which the same subject
has at different times received.

From the time of Newton and Leibnitz the Integral Cal-
culus yapidly advanced. Its progress was in a great degree
due to John and James Bernouilli, who published a large
number of memoirs on the subject; to Maclaurin, whose
[luxions appeared in 1742; to Cotes, whose Harmonia Men-
surarum appeared in 1722; to D’Alembert, who gave Memoirs
on the Calculus in the Paris and Berlin Memoirs; and to
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Euler’s great work, Institutio Caleuli Integralis. Petr. 1768,
3 vols. 4to.

The analytical part of the Integral Calculus consists in
reducing integrals to forms by which their numerical values
may be computed. This computation is usually facilitated
by the common mathematical tables of sines, cosines, loga-
rithms, &' 'But 'niany-integrals” cannot be found by these
tables. In order to compute such integrals, other tables
have been constructed, of which the principal are called
Tables of Elliptic Integrals, from their relation to the length
of elliptic ares.

Taayaxo, in his Produzione Matematiche, 1750, investi-
gated a remarkable theorem respecting these arcs, which
bears his name, and shows how the length of two arcs may
be taken so as to differ by an assigned algebraical quantity.

Eurer gave to the world some of the most important dis-
coveries which constitute the basis of this branch of the In-
tegral Caleulus. In 1761 he published, in the Petersburgh
Transactions, the complete integration of an equation in-
volving two terms, each an elliptic function not separately
integrable. Liuler also invented the class of integrals which
are known as Iulerian Integrals.

Laxpey, in 1775, published his theorem showing that any
arc of a hyperbola may be measured by two arcs of an
ellipse.

LacraNGE’s Memoirs in the Turin Transactions, in 1784
and 1785, greatly extended the subject of elliptic functions
in a part of it which Iiuler had not discussed, and rendered
the determination of numerical values of elliptic functions
very complete.

Lrcrxore undertook the task, involving immense labour,
of computing a greatly-extended series of tables. The second
volume of Legendre’s great treatise on clliptic functions, to
which a large part of his life had been devoted, appeared in
1827. To him is attributed the merit of giving to the sub-
ject that systematic arrangement and connection which con-
stitute it a separate science.

Jacosr, Professor of Mathematics in Koningsburg, pub-
lished shortly afterwards, in Schumacher’s Journal, his re-
searches on elliptic functions. His principal object was the
investigation of certain general relations of these functions,
of which the investigations of Lagrange and Legendrc involve
particular cases.
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ABEr, Professor of Mathematics in Christiania, gave in-
vestigations of the subject in Crelle’s Journal, in 1827. He
arrived independently at many of the important discoveries
of Jacobi, and contributed valuable theorems respecting what
are called ultra-elliptic functions. The works of Abel, who
died at the early age of 27 years, are esteemed among the
most important ‘contributions to’modern analysis.

For some account of modern discoveries in Calculus, the
reader may be referred to Moigno’s edition of Cauchy's Legons
de Caleul Différential et de Calcul Integral, 1844,

Among the best known general works on the Integral Cal-
culus are the following:—

Bossut, Cal. Diff. et Integral. Paris, 1798.

Boucharlat, Differential and Integral Calculus, Eng. Translation, Cam-
bridge, 1828,

sarnot, Metaphysique de Calcul Infinitesimal. Paris, 1796.

Cauchy, Legons de Cal. Diff. et Int. Vol. 2, Calcul Integral. Paris,
1844,

Condorcet, Calcul Integral. Paris, 1765.

Cournot, Des Fonctions et du Caleul Infinitesimal. Paris, 1841,

De Morgan’s Diff. and Integral Calculus. London, 1842,

Dubamel, Cours d’Analyse. Paris, 1847.

Euler, Institutiones Calculi Integralis. Petersburgh, 1792,

Gregory’s Examples on the Diff. and Int. Cal. Cambridge.

Hirsch, Integraltafeln. Berlin, 1810.

Lacroix, Calcul Diff. et Integral. Paris, 1797.

Lagrange, Legons sur le Calcul de Fonctions. Paris, 1806.

Landen’s Residual Analysis. London, 1758.

Legendre, Exercices du Calcul Integral. Paris, 1816,
Traité de Fonctions Elliptiques, 1825-8.

Littrow, Anleitung zur hiheren Mathematik. Vienna, 1836,

Mending’s Tables of Integrals.

Ohm (Martin), System der Mathematik, 1833-51.

Raabe, Die Differential und Integral Rechnung mit Functionen Mchrerer
Variabeln.

Schlomlich, Handbuch der Differenzial Rechnung, 1847,

Taylor, Methodus Incrementorum. London, 1715,
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RILCDIONIILL
DEFINITIONS.~—GENERAL PRINCIPLES OF INTEGRATION.

11. QuanTiries are said to be functions of one another, if
their values depend in any manner on each other. The
letters I, f, ¢, &e., prefixed to quantities, are used to denote

51, 1 3 @
functions of them. A function of several quantities is ex-
pressed by writing the letters F', f, &ec., before them all sepa-
rated by commas.

12. A variable is a symbol of quantity to which different
values may be assigned.

18. An independent variable is a symbel of quantity, on
the value of which the value of a function of it is considered
dependent.

14. A limit is the exact value which a function approaches
nearest, as the variables on which it depends approach assigned
values.

15. The limit of a finite continuous jfunction of several
quantities is the same function of their limits, or if y;, yo ¥
... be the limits of 7,, ., 7, ... respectively,

3

Timit of f (9 Yor Yy oor) =S (T For ¥y oee) weeeee (1),

where f means ¢ any finite continuous function of.”

A continuous function is one such that the series of opera-
tions denoted by it when performed on more and more nearly
cqual quantities, produce more aud more nearly equal results ;

G F s U Yy oer) — S (T For Ty oee) weeeen (R,
is smaller, as ¥,, ¥, ¥ &c., are more and more nearly equal

t0 y,, Yo ¥ &c., respectively. Therefore, the limit of the
finite quantity (2) is zero, or
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limit of £ {(¥1s Yo 95 +++) —F (v Yoo Y5 00) 3 = 0,
from which equation (1) immediately follows.

16. The quadrature of a finite continuous function of one
variable having a limited range of values is the sum of pro-
ducts of sucdessivé valués) ot that function, each multiplied
by the differences between the corresponding value of the
independent variable and the next preceding or succeeding
value.

17. The integral of such a function is the limit which its
quadrature has when the differences of the independent vari-
able approach zero, and their number approaches infinity.

18. Let f« denote a finite continuous function of 2, and
let b, and b, be two constant assigned values of 2. Also, let
X, &y, &, ... &, be any successive intermediate variable values
of . Then the quadrature of f2 is by the definition, either

fa (v, —b) + S, (v,—a) + Sy (w—2,)+ ... +/0,(0,—=,),
or fo (@, —b) + /2 (2, - @) + /2, (@,—2)+ ... + f@,(b,—a,).

The integral of the function is the limit which these series
approach when the differences #, — b, 2, — 2, &c.,.approach
zero, and their number infinity.

19. In Art. 7, let @ be the abscissa, measured from B
along BC of any point in the curve BA, and let f denote the
corresponding abscissa. Then it is clear that the differences
x,—b, »,—u=, &c., denote the breadth of the rectangles
drawn in the figure, and fx, f=z, &c., the corresponding
altitudes. Hence, the several terms in the foregoing series
denote the areas of those rectangles, and their sum is an
approximation to the curvilinear area ABC, whence the term
quadratvre is derived, since that quantity expresses approxi-
mately the number of square units (square feet, square yards,
&c.) contained in ABC.  Also, the integral is the exact area
ABC; for the magnitude of this area is between the magni-
tudes of the inscribed and circumscribed figures. But the
difference between the two latter magnitudes has the limit
zero. A fortiori, the curvilinear area differs from either of
them, by a magnitude which has the limit zero.
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As the figure last referred to is drawn, the initial values of
2 and of fa are both »
supposed to be zero. If, —
however, they be finite
positive quantities, the
integral vepresentsyran
area such as abcd, where
o is the origin from which
the abscisse are drawn,
and

oc=10, bec=jfb,

od =10, and od=fb, ° ¢ ¢

20. DBoth capressions for the quadrature in Article 18 have
the samme limit, if fo have only one finite value for each
value of @ from b, to b, for then they differ by the quantity

(fa,—=Jb) (2, —0b) + (S, —f2) (2, —2,) +
(S, = fay) (wy—a,) + oo +(fly— f@,) (by—2,).

Let Az be the greatest of the successive differences of
in the preceding quantity, which is therefore less than

(fo,—Sb)ax + (fa,—fo)dw + .. + (fby—fu,) o,

which expression is equal to (b, — /b))Ax. This, there-
fore, is the difference between the two quadratures; but if
b, and /b, be finite, /b, — fb, is finite; Ax is zero in the
limit.  Therefore, the difference between the two quadra-
tures is zero in the limit, . ¢., they have the same limit.

21. The preceding article is exactly illustrated by the
Lemma iii. of Newton's Principia, which is as follows (sup
posing all the parallelograms spoken of in the original to
be rectangles) :—

In the plane figure bounded by the curve AF and straight
lines AA’, AF, at right angles to each other, are inscribed
any number of rectangles AB’, BC’, CD’ ... on unequal
bases AB, BC, CD ..., and the rectangles AB”, BC”, CD”

. are completed. 1f the breadth of these rectangles De
diminished, and their number increased indefinitely, the in
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seribed figure AKB'LC’'MD'NE'E, and the circumscribed
figure AA’B”B'C”C'D”"D'E"EF are ultimately equal
For let A/ be equal to

the greatest breadth ¥ :
of the rectangles, and , & 7
complete the Tectargle L L4
A /", then this parallel- ¢
ogram will be greater M Y
than the difference be-
tween the inscribed N
and the circumscribed
figures.  But when
its breadth is dimi-
nished, it will be less A B s ¢ L E F
than any assignable

quantity, and, therefore, & fortiori, the difference between
the inscribed and circumscribed figures will be less than
any assignable quantity, and, therefore, they are ultimately
equal.

B y

E/

Q. When fa continually increases or continually decreases,
as x increases, the value of the integral is between those of its
quadratures.  First, let fa continually increase as @ in-
creases, then the integral is less than the first quadrature,
Art. 18; for let 2’ and 2” be any two successive values of
@, then one of the terms of this quadrature is f2” (2" — /).

Now, take a value @, between 2’ and 2, then the term
in question is replaced by

S, (75— &) + fa (& — a),
which is less than the term just mentioned by

(f2" — fa) (2, — ),

a quantity which is positive, since fa” is always greater
than f«’; therefore, the effect of increasing the number of
terms is to diminish the quadrature. But as the number
of terms is increased, the value of the integral is more and
more nearly approached ; therefore, the integral is less than
the first quadrature.

Similarly may it be shown that the integral is greater than
the second quadrature,

The same reasoning may be applied when the function f&
continually decreases as @ increases; therefore, in either case,
the integral has a value between those of its quadratures.
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23. The symbol of integration is f, which derives its

form from the initial letter of the word Swmma, or fum.
The integral of a function fa of a variable & is written
JFz.dz; where the limit of the difference between two suc-
cessive valuey\of | ihisrepresented by dw, which is, therefore,
differential, or diminished without limit; and fz.dx is the
general form of the limit of any term of the series in Art. 7,
and 1s also differential.

24. The limits of an integral are the two constant assigned

values of the independent variable b, and b, in Art. 7. The
greater and less of these values are frequently dosmnate‘i
the superior and inferior limit respectively.

25. When the limits of an integral are expressed, or
defined, it is said to be definite; when they are not defined,
indefinite. In the first case, the integral is said to be taken
between limits. 'The usual way of expressing this symbolically
is, by writing the superior limit above, and the inferior below,

0, . .
the symbol of integration. Thus, ; fa.dz is the integral
. . 1
of fx, between limits b; and 0,

26. The value of the integral is independent of the differ-
ences of the independent variable in the quadrature. For the
limit of the quadrature is, by Art 14, an exact quantity, there-
fore it cannot depend on the values 2,, #,, @, ... #,, nor their
differences, which may be altered arbitrarily. Also, it is
evident that the integral does not involve any other values of
@, except b, and J,.

by b, .
Cororr.aRY. THence ﬁ fada = ﬁ *fzd» where z is
1 ¢ 1

any other quantity than a.

R7. The sum of definite integrals, the inferior limit of each
being the superior limit of the next. If the series in Art. 18
were continued to the right, to the term in which @ =128,
the limit of this additional pzut of the series would, by the

preceding definitions, be / JFa.dw.  Also, the limit of the
whole series, including the additional part, would Dbe
/ Jx.dz.  Dut this whole series is the sum of that written
in Art. 18, + the supposed additional part. Hence,
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Similarly,
f Jadae = f z. dz +
n-—\ n

f 3fx.dx+/ fa . da.
B, 5,

28. An Integral between limits is the dlﬁl«zrence between two
values of the same function. By Art. 206, / fx d is inde-

pendent of all the values of #, except b, and b,.  Therefore
this integral may be put equal to F (b b,), some function
which contains no value of 2 except b, and b Similarly, if
the form of this function be general, that is, capable of repre-

fx de + ... +

b,
senting the integral for all values of the limits, A Sfada=
¥ (b, b)). Hence, from (1) Art. 27, transposiné, l

b
/ Yu . dao =T (b,0) — F (by b):

hut/ fa . da involves no other value of @ than b, and b,.

Therefore b, disappears from the last equation, which, conse-
quently, may be written

b,
.ﬁ. fo.de =Fb,—Fb,;
by 3,
COROLLARY,‘L/,v fxdx:—-‘/b Srde.
Oy 3

29. By Article 20, the value of the integral is independent
of the differences #, — b, #, — #,, &c., in Art. 18. We may
therefore suppose those differences all = 3, so that
(n + 1) 8w =0b,—b,. Then, by Art. 28,

limit of (f&, + fz, + S, + ... + S, + fb) dx =Fb, — Fb,.

The number of terms in the parenthesis is » + 1. Now
suppose, first, that the /@ is always positive; and let fa'
be its greatest, fa” its least value between the limits;
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then fa’ is greater and fa” less than any other of the
terms in the parenthesis. Hence (n + 1) fa’ is greater,
and (» 4 1) f2” is less than their sum ;

St l) fa e >Fo—Fb; (n+ 1) fa"da<Vh,— Fb;
or, putting (n + 1) dw =7 hfa’ > ¥Fb, — ¥ ;
hfa’ < Fb,—TFb,.

There must therefore be one or more values of 2 between z,
and b,, for which /Zfz=TF0l,— Fb,. But this intermediate
value of @ must also be between b, and &,, since @, may be
taken as near b, as we please. Therefore the intermediatc
value in question may be expressed by b, + 6%, where 6 is
some positive proper fraction. Ience, since we have sup-
posed b, = b, + &, we have the formula

b+7
/zf(bl+6/z)=F(bl+h)—Fbl=ﬁ . dw

The same conclusion would be arrived at if fa were sup-
posed to be always negative. Hence the formula is true
when fa is either always positive or always negative be
tween the limits 4, and &, + /.

30. The following is a geometrical illustration of the
formula hf (b, + 6h) =

by+h S
/3 + fxdx. Lr.j’/ 1

Let fx represent, as in
Art. 19, the ordinates of the
curve ab, and x its abscissa,
measured from o along
od; oc=Db, od=D>b, + h;
coed=nh. Also bec =1b;
ad=f(b,+h). Then the ) ¢ ¢ a

+b-+h
area abed = /b fxdx. Now the formula asserts that
a 1

between b¢ and ad there is some intermediate ordinate repre-
sented by fe in the figure, and by f (b, 4 6h) in the formula,
such that fe x cd = area abed, a proposition which, from
geometrical considerations, is evidently true.
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31. A Function is the differential coefficient of its Integral
Dividing by #, the result in Article 24,

F (b +h) — ¥l

I

Pl A0

Taking the limit of both sides of this equation, when % has
the limit zero,

fb, = differential cocfficient of Fo,.
by the definition of a differential coefficient. Hener is seen

that INTEGRATION IS THE OPERATION INVERSE OF DIFFEREN-
TIATION.

32. The integral of the sum of several functions between
given limits = the sum of the integrals of the several func-
tions between the same limits. Let the several functions be

flm’\f;‘.’,‘m’ woe Juls
b2 .

ﬂ fiedz=1imit of (f, 2, +/,%,+ 12, +.../ib,) o=
1

by -
/; f,& do = limit of (f,, + fo2, + [o25 + c foby) da
1

ﬂb’fnm do = limit of (£, + folty +fuly + - fub)d2
1

b 2, b
Adding, [ :cdx-l—f‘ zdz+ ... +/” & da =
77777 Ldding ﬂl.ﬂ 5, Je 5, Jukt da
limit of {(f, 2, +/o%+ - + fo2) +(f1@y+ Lot oo F Lo+
&c. + (fi@s + [o2n + oo +fu)} 32 =

b
ﬁ o +fo + oo + o) d2.

83, A constant multiplied by the integral of function between
given limits = the integral of the function multiplied by the
constant between, the same limits. Let ¢ be the constant. Then
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b
cﬂ Sr da = climit (fo, + fa, + f2, + o +f5) 32
= (by Art. 15) limit of (¢f@, + cfa, + ¢fa, + ... cfb,)dx

0
-_-‘/] ‘ofx . dz.
o, .
34. To show t]mt‘/b ‘yda +/ “, dy =b,e,— b, ¢, if
c

1 1
Y be a function of u, and Lave the values c,, c,, when u has the
values by, by, respectively. y,, y,,y, ... y, being successive
values ¢ the function y and Uy, Uy ... 2, of u, we have, by
Art. 18,

b2 . . ; p
% Y du=limit of {e (u,— 1)) + y, (u, - ) +
1
.92 (MJ - u},) + .. + Yn (b:},_ ’M,,)}
‘/.cﬂu dy = limit of {u, (y, — ¢,) +
€

Uy (y2 - -,l/l) T e U, (.'% -.?/lz‘l) + 6,3 (Cz —.%t)}

By adding together the quantities in the { }, it will be found
that all in each line except one appear in the other line with
contrary signs. So that the sum in question is reduced to
bye,—b,c,. Hence

b, )
f ydu +f udy = bye,~bc,.
A 91 -

85. The conclusion of Art. 34 may be arrived at from geo-
metrical considerations, ag follows : :
Let AB be a curve re~ P
ferred to, O@, Oy as
axes of co-ordinates. Let ¥
oC = 61, oD = J,.
Then the area ABCD=

bﬂ
ﬁydx. LA e

1
In the same way, if
OE == ¢,, OF = ¢,, the 4

A Ce : .
area ABEF =f wdy.  © o r—
¢

1

ba A
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. b, e,
I'herefore‘/[: yda +/ ‘wdy = figure AFEBCD =
1 G
rectangle AO — rectangle BO = b,¢, — b,¢c,.

36. To determinefa’w. Tn the first equation, Art. 29, it
is not mnecessary that fw should be variable. Let it =1.

Then limit of (32 + 32 + ... + M-):/b’b*dx.
U

But, evidently, the left-hand side of this equation =&, —b,,

b
by — b = ﬁ *da.
J 0y

37. If @ and y be functions of each other, so that

ﬁxfxdw =./c‘y¢_1/d_7/ (1), and @ =0 when y =e¢,

then fadx = ¢y dy.

For let (Art. 28) the first of these integrals = Fa — FJ,
and the second = &y — ®¢. Then

Fz—TFb=0dy— oc.
1.t @ become @ 4+ da when y becomes y + 8y. Then
F(z43e) —Fb=230(y +3y) — @c.
Subtracting the last equation from this,
F(z +3da) —Fa=0(y + 3y) — ¢z,

LEEri) —Te_e@+in=0y 3
Y 3x = 3y .3‘”---0‘.

Now this equation is true, however small 2 and dy may be;
therefore, the limits of both sides (corresponding to the limit
zero of da and dy) are equal; or, by Art. 17,

dy  , dx _
fa,_-q)y%, or f& dy—@_z,/............(ﬁ),

whence, foda = ¢y dy.
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38. To prove that if fadaw=¢ydy, and & be equal to
b, and by when y is equal to ¢, and ¢, respectively, then

712 1I‘.“
" Sfada =L/cl Py dy.

b, e,
For let ﬂ fadx =/C@ydy +/c'¢lg/a’y,
1 <4 €

then, by the last proposition, fz = ¢y + ¢,7.
But by the hypothesis fz = ¢y,

N4
N ¢1‘7/=0, .'./cl¢1ydy=0,

for this last integral is the limit of the sum of a series
of which the terms are all absolutely zero;

/fa, clx.../ @_/d_// ( %—)di by (3.

39. From the preceding article follow many important re-
lations among definite integrals. For instance, let y+ o =w:
then ¢, +a_6,;, ¢ +a__bl, dy =du; .. fo=9qy=
f(y — a), and the formula becomes

Wy, —a

/f/-a)fly“/ @/d/— - | Jeda,

Now in the first of these integrals we may, by the Corollary.
Art. 26, write y for 2.  Therefore

/ fle—a)de = / "’M“f.'vdx rereeirieisienias (I)

—a

Similarly,

f f.z'—l—ada,-—f “feda.. oot (IL)
v by—10, . 70,

/0 J,—2)da -..l/bl Sadx ... (ITT.)

Putting y — @ =« and b, —y = & successively.
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12 —b
Puttingy:—z;ﬁ * fads =fb 'A—a)da ... (IV.)
1 -V
And generally, if # =4y, whence y = 4a, doe=Vydy,

. fati [ﬁzbﬂf(tp AW e (V)

40. Indefinite Integration. We have shown that if

function can be integrated between any limits ¢ and>

its independent variable, the integral is of the form F (@) —
¥(4). There is a large class of functions which cannot be
thus integrated between all limits, or of which the general
integral cannot be found. The first part, however, of the
science of integration, is confined to the investigation of
general integrals. Our object is, therefore, to find the form
of the function F, which represents the result of the inte-
gration of the function /. It is not mecessary for this pur-
pose to find Fa — Fb, but, simply, Fe, from which Fa —Fb
may be found by substituting ¢ and & sucecessively for #, and
subtracting. In the following chapter, therefore, F 2 alone is
required.

CororLARY. It follows that the formula of Art 34 may
be written

Sydu +‘fzadg/=zag/, orfydu =uy —fudy.
41. Differentiation of Integrals.

From (a) and (B), Art. 37, it follows that

d z 'd ..
l—itxﬂ S dx = fu =‘/ﬂfmda:, or, writing « for ,

d )

%‘A afada = fa; or, by corollary (Art. 20),
d @

%ﬁ SJaxdx = fa. Also,

d a d b

-d—bﬂ fwdw:—ﬁ‘/a. Sade = — fb.

From the first of these equations, it appears that the

differentiation of an integral may be performed under the
sign of integration.

C
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SECTION 1V.
FUNDAMENTAL INTEGRALS.
42. To integrate a* dx where a is a positive jinite quantity

By Art. 15, puiting 2, = b, + @, 2, =10, + Rdw, &c.,
@, =b +ndx, b,=0, + (n + 1)da,

b,
/ “atdx
b,
= limit Of( o + d b+ 2%z +. i+ e+ l)B:c) Su
= limit of ab1 3% 1+ a® -+ a2ds + a"‘s”’) Ja

a1z __q

atr —1

= limit of a%1 132

= limit Of———(ab o gh iy L, v (1)
a?

Now the quadrature of which the limit is here to be taken
is finite, since all the quantities are finite. By Art. 2%, the
integral of such a function as o* has a value between those of
the iwo quadratures, from which it may be obtained. Buw
the quadratures evidently may here be finite quantities with
the same sign. Therefore, the integral between them is not
zero, nor infinite.

5> is some @Xact
@’ — 1

function of a. Call it A. Then taking the limit of (1)

It follows that in (1) the limit of

al/} p
/b ‘o do = A (a¥ — o). Also, [a*dz = Aa
o 1 «

If A be such a function of @ that A=1 when @ has somo
value e, /1 . -
Edu = ¢,
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Also, fa*dw = [ o g,

T

1 rlor o e
€% %2 J(log a,
ogia) €T d(log, a.a)
1
log: @/

a®

. glogean

log: a*
Q

. d
43. To integrate ;'-z Let # = ¢”, and when ¥y =c,

cp "21
let x =9, by, b, respectively. Then
r—b=e — ¢,
but # — =‘/I:x(l.q;, and ¢/ — ¢ :f ye”dy,
c
by Art. 36, and the last article respectively.  Hence by
Art. 87,
do = gdy; .. -d% =dy.
Therefore, by Art. 38,
b da
S, 7= . dy__ ¢, = ¢ = log: b, — log, 4,

since if o = ¢¥, y = log, . The indefinite integral is

/ d__a,_ = log, 4.
44. To integra

rate &, where @ is a finite constant and &
variable.

Let y = o+l op log, = (a + 1)log, #, @ having any
real value except — 1; when 4 y=c¢, ore, ore, letw=5 or
b,, or b,, respectiv ely. Then

log. ¥ — log ¢ = (a + 1) (leg, & ~ log o).
By the last article, log, y — log, ¢ =fy dy

and (& + 1) (log @ —log b) = (a + 1)/@ dz

C

W
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Then by Art. 37, & _ (@+1) d_x;
Y x

. dy:(a—}—])%z.x““: [Lildy~(l.u.x“
Hence /bzm”.dw= 1 "y = ! (¢, —¢)
J b, a+1J¢ a—+1
» o+l
=T 1( 0t — ¢ a+1), Also,/x“(lx=(6+l.

45. JouN BERNoulLLI's series. By repeated integration
by parts, and Arts. 37 and 44, we have,

“%dx S, Tt

x a*dX + 2 d*X ‘/"t z° cl"’Xd
== Sde Tasdr J, T 3d7 "
=&C.

—x 2*dX 2 d°X " d"X
=Xr—g o tesar TS, TE 4 e

On the second side of this equation all the quantities are

taken between the required limits # and 0; since each is zero
dX d*X

Tz daE .. being supposed to be

for the latter limit; X,

always finite.

If the last term of this series become zero when # is
sufficiently increased, we have

wxd < 2 dX + xr d*X 1 infinit
= ANl — - —_————,,. ad 1nn .
/o * S dz 9.3 da ad infinitum

By Art. 29,
x a* d'x
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Hence, a criterion that the last series may be continued

ad infinitum, is, that f(8a) become zero when » is suffi-

" d*X

2.8.4...n da*
of « between the limits-@and O-

ciently large, or that then =0 for all values

46. € is the base of the Napierian logarithms. By Art. 42,

SEAr =€ oo, e (L)
STl == [T d(—a)=—€" ... @)
Therefore, in Bernouilli’s series (Avt. 43), if
— dX — d*X —
X =€ —;l—m- = — € N —(W = € , &(,,

Hence the series becomes

z _, ot z | -
.'/OE d.z‘_{.c+7~;+m+...J.€

For all values of # in this series the criterion of Art. 45
is satisfied, so that the series may be continued ad infinitum.
The first side of the equation by (2) is equal to — e~ taken
between limits 0 and @, or = — (e=* —1)

2 x’i
—(e—z—1)={x+% +ﬁ+...}.e—z

Dividing by €, and transferring one term to the second
side of the equation

e=liot+l 4 2
In this equation put z=1. Then

1
R.3.4

Therefore, € is the base of the Napierian logarithms.

1
€=1+1+é'+5*‘§+ 4 ..
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by . -
47. To integrate sin xda. ﬂ “sin 82 = limit of

{sin (b, + &) + siny(b, + 282) + ... +sin(b,+n+1. S} da,

where b, = b, + (2.4 1) 3.
By a known trigonometrical formula,
cos (A — B) — cos (A + B) = 2sin A sin B.
Therefore, putting B = % da
Osin (b, + 32)sin & d& = cos (b, + 4 82) — cos (b, + 3 )
2sin (8, + 23) sin § 3o = (cos b, + 3 d2) — (cos b, + 33 2)

Adding these equations,

2sin L da {sin (b, + 3a) + sin (b, + 2%2) + ...
+sin (b, +n + 132)}

=cos (, + 3 dx) — cos (b, + n + § 3%)
=cos (b, + & 8a) —cos (b, + Lda);
"Dy
/b sin #dz = limit of
0y

cos (b, + 132) — cos{b, +4 32)

sindda

iz,

Assuming the demonstration given in the subsequent sec-
tion on Rectification of Curves, that the limit of } da =~
sin 332 =1 when d has the limit 0, we have,

by . .
ﬂ sin zdw = cos b, — cosb,. Also,fsm adw =— cos x.
/0y
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b,
48. To integrate cosxda. /; *cos #da = limit of

J b
fcos (B, + 8&) + cos (b, + 23&) + ... cos (b, +n + L3a)} da,
where b,=15, + (n 4 1) 3.

By the trigonometrical formula
sin (A + B) — sin (A + B) = 2cos A sin B;
we have, putting B = }dz,
2 cos (b; + 32) sin L da = sin (b, + 392) — sin (b + } o)
Qcos (b, + 2dx)sind 3o =sin (b, + $32) — sin (b + 3 d2)

v 2sin 1 da {cos (b, + Sa) + cos (b, + ?9%) +
cos (b, 4 33a) + ... +cos (b, + n 4+ 132)}

= —sin (b, + % 32) + sin (b, + 332),
"
/b cos #¥da = limit of
[ 1

sin (b, + 532) — sin (b, + §9%)

132 =sin b, — sind
sin 3 da o 2 v

putting limit of 32 +sinldx =1, as in the last article.
Also, f cos xdz = sin .

This integral may be obtained immediately from the pre-
ceding article, for

ﬁoswdm:—/sin (g—'v) d(g—.«:):

(by the last article) cos (% - x) = sin a.
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w’z' cos zdz
—— and ———~

49. To integrate siu @ ——. Since
cos® sin®z
JSsin ade = — cos 2, .dceosa = — sin adx,
rsinada 'dcos z_ 1
. / = — by Art. 44,
. cos® @ cos’x  cos @
. - cos ada 1
30, Similarly, /—— =
J  sinfa sin @
51. To integrate (1 + tan®z) da.
. sin*x da sinzd cos
tatwdy = ——— =— " """ ydu,
cos*x cos® &
" . deosx
if y=sinwand du = —;
cos®
. 1
-+ by the last article v =— ——, also dy = cos w da.
cos @

Now, by Art. 40, f ydu = yu—fudy,

) sin @ cos zdx
- tan® ada = — =tana -— 2
N COS ¥ cos &

Therefore,l/.(l + tan’e) de = a2 + j'tanﬂwdw = tan a.

52. Similarly, J (1 + cotan®@)da will be found to be
— cotan @,

or,/(1 + cotan*a) dor =

/ {1 +tan*<———w>}d <-§—a> =-—-tan(

(as has been just proved) =— cotan .

- L)

3y
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. d
53. To integrate = xa-.:- If @ be not zero,

1 _ 1 1 1 )
7@t (2 (w—w z+a)
) dxz 1 dz 1 dz
o m_b—a‘/:v«—w 2a) z + a
Now, dx = d(z — a),

o ! L. ya d—f__“a‘i) = log, (¢ — a) (Art. 43)

dx 1
._/z‘-—ia—l =4 {log, (# — a) — log, (x + a)}

1 1 T —a
Ra "tz + o

If @ be less than a, the logarithm just found is the loga-
rithm of a negative quantity; and is, therefore, impossible.

In order to express the integral in a possible form in this
case, put

dv dx _ 1 da dx -
2?—a  JE—za" 9 ‘/‘u—x-*_‘/_}z-{—xf
1 1 a—x
= —Q—a{—log(a—x)+log(a+m)}=2—“log e
b4, To integrate — de -
(m‘lia2)z
Lot dy =da + —— 2% (1)
(a* £ a?)

rd 1
Now \/ﬁ)}— = 5/(.%“ * a*)~1d (2 + a?)

= ("% o) (Art.44), .. y=2z + (x® &= @)t .
c3
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Also from (1),
d. du

dv__ {(a® = ) 42, o L=

dy = ——r —
g (,bv + az)i Yy (x“ + a?)}

da 9 ol
Hence, ~fm =og,y = log, {& +(2* & &) 3

. R dz .
55, To integrate——————= : where, in order that the
z(a® = &)

denominator may be possible, @’ is greater than a7, if 2° be

. L1
affected Dby the negative sign. In Art. 54, write - for a,
€

1 1
— for @, and, therefore, — — . da for d=.

Then [ ——%_4% _ _, /__l_
(" X (

J @ ey o+ 7;5‘—
- P a + (a* £ 2°)
— log, fa~1 + (= £ @) J=log, =
» dx 1 ax
. /————————,—- = — log B —
J oz (2 £ a’) @ a + (@ £ a7)

(since the logarithm of any quantity = — the logarithm of
its reciprocal),

1 log v + 1—100' a
= °(Z+(€62j‘;$‘z)é a °¢

. . 1 .
of which expression the last term —log o may be omitted,
a £

as it disappears when the integral is taken between limits.

: where a > .

h6. To integrate -
((62 . .272)’}

Let dz = cosydy. Then (Art. 48),

z=siny, (1—a*)t =cosy,
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de cosyd .
/ = / 72y =y =sin"lz. Hence,
0 —a) J cosy
z
iz

Sy /ey

T

. X v X ﬂz .
sin™h ~= o —cos™!= = —cos™! = if — be included in
a ~ a a ~

the value of the integral at its inferior limit.
dz
@ (2* — )t

integral of the first side of this equation is — g, and of the

57. To integrate Let % dez=sinydy. The

a
second — cos 7; .. we may therefore put 5 = cosy. Hence

@ —a) _ “dysiny
_.T sin Y and / ( -—a‘)* /‘a, m

1 1 a 1 z
—/dg/-.:‘g =Zcos™!—=-gec™ =~
a, a « x a a
xa e dz
58. To integrate ————
‘ (Raz — a?)

> daz (@ — @)
(Rax — xz)* /;fa“ — (@ — 2"t

o —a . @
= cos™—1 (Art. 56) = versin—! -,
«w

. dz »
59. To integrate ——. Let - = tany,
@ + @

do =a(l + tan®y) dy (Art. 51),

. de_ ra(l +tan’y)dy 1
'(/naz—i—a:" _/ @ (1 + tan® y) —.(_Lt/‘dy

1%
a

tan

=
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Collecting the results of this Chapter, we have the fol-

lowing

TABLE OF FUNDAMENTAL INTEGRALS.

* at ARTICLE
o

log, &

» ',vn-}—l
arda =
N n 41

dx
— =108, & vovrrriiiii

&

except 7 = — 1 when, .....covuenie

/sin B8 == = COS & vvrreerireriirererainineienineneeenn
L=

fcosx.d.x:sinx

sin x 1
J costa cos x

Ccos & 1
J osinta sin @

/(1 +tana)de =tan @ v

/(1 + cotan® ) dax = — cotan & ...oovviniiniiiiininnen,

/‘ dx 1 loo T—a (x> )
—_— X 3
*—a® Ra fada

T 2a Og‘ @+ x

> da N ny
/ m =]0gs {x -+ (1”1' a*)“} Ceeerereretiaeiaiaees

gl dx 1 @
— g =-log, —————— e,
J (@) a a + (a* & a*)

&

dx & .
= SINT —, OF — COS7 " —erverserrenanransnnos
(rr—w « a

44

48

49

e

<

LE}



FUXDAMENTAL INTEGRALS. 37

& 1 a 1 _ @
——— =05 — = =sec™ = e 97
(‘ S LI x o« a
da . &
—_— = versinT! — .. Ceerrareesesieraaae 58
- (Rax — a7 @

7
\/.4,('13.,=1ta11"‘f .............. PN venene B9
@+ a 17

60. The foregoing integrals are all found in terms of loga-
rithmie, exponential, and circular functions. Tables may be
obtained which contain numerical values of these functions
computed to any required degree of accuracy. Therefore the
values of these integrals may be completely determined.
Similarly, other integrals which can be reduced to any of the
forms in the preceding list, may be completely determined.

61. The operations of integration consist chiefly in reducing
integrals to these fundamental forms. In many cases, how-
ever, this reduction cannot be effected by known methods.
Where it is impracticable, resort is had to methods of express-
ing integrals in terms of convergent algebraical series, or in
terms of elliptic and other functions not contained in the
preceding list, but which have been partially tabulated.

62. For the present, however, attention will be confined to
those integrals which can be reduced to the forms investigated
above. The methods of effecting this reduction may be
classified as follows :

1. Integration by Algebraical Transformation.
2. Integration by Parts.

. Tntegration by Formule of Reduction.

. Integration by Rational Fractions.

. Integration by Rationalization.

CT o D

Of each of these five methods a brief account will be
given in the following sections.
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SECTION V,
INTEGRATION BY ALGEBRATCAL TRANSFORMATION,

63. Turs method, of which instances occurred in Arts. 54,
56, &c., consists in finding for the expressions to be inte-
grated algebraical equivalents which are of the forms of one
of the fundamental integrals, or are the sum of quantities
having any of those forms. The requisite transformation
is effected by substitutions and other processes, for which
no general rule can be given. It is only by continual
practlce and experience of the effect of various transforma-
tions that facility in the successful application of this method
of integration can be attained. One or two examples are
appended, but for an adequate knowledge of the subject, the
student must be referred to larger collections of examples of
the Integral Calculus.

64. Every pol;,nomnl of the form (¢ 4 bz +ca’ +...)" da,
may be integrated in finite terms when # is a positive integer,
and the number of constants a, b, ¢, &e., finite. For the poly-
nomial may be raised to the power »; the result is the sum
of a finite number of terms involving only integral powers
of @, and each term: may be integrated separately.

65. For e\ample/ W + by do = [‘(a +R2ala+ Pa¥)da

--ax*dab——{—b
P 3

G6. If the function to be integrated can be expressed
as the product of two quantities, Fw, and dF &, or more gene-
rally (Fa)”, and dFa, it may be always integrated. For if
Fa be put = g, the expression takes the form y"dy, of which

i1
q : N - £ is .
the integral (Art. 44) is =~ +1

67. Tor emmple S @+ ba+cat) (b + 2 ca) da becomes,
ita+ba+ cat=y fydy=Ly*=3%a+bx+ca®)
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68. Again, / (loge 2) o _ / (log, )" d (log, x)

&

(log, gyr+1
T n4 1 .

6o, [ 4 _ A rdE)
'./:1-1-] —__/‘s—x(sx+1)_ 14

_ d(]-l—s_'x)_ o .
__/T{-—E_T_—lob(l_!—e ).

70. All the preceding formule for integrals of functions of
v may be extended to like functions of o + ba, by putting

a+be=3X, . bde=dX, and dx:%dx.

In this manner it will be found that

aa+bz
/‘a““” de =
blog, a

dz 1
/a ¥ bxdw: Zlogs (@ + ba)

1 ba)n+1
f(a +bayde = 7 (a;;%__ except 7 = — 1

/sin (@ + ba) do = -—blcos (a + b2)
/cos (@ +b2)de = -;—sin (@ + b2)
/‘{'l +tan®(a +b2)}de = %tan (@ + ba)

f{l + cotan® (& + b2)} dor = — % cotan (¢ + bz).

71. A similar extension of formule for functions of
a* + &% to like functions of « +bx 4 ca®, where @, b, and
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¢ are positive or negative, may be effected by the following
transformation:

e melt o L (L ey
a+botodt=ciT— 20-{-.@) =c(A + %)

@ b*

if — — yv i A, where A may be positive or negative, and
[

b ; o d 1

-(fz—(-:-i-.'l,:y, S dxe = dy.

Hence it will be found that

dx _L dy
./a+bx+c:v"’—c '+ A
1 1 y—(—A) , .,
= c A=Ay Og‘y—*- (Zay Art. 53,
(A negative)

— tan™ ' —-
¢ A Az

da _1 dy
/(a +bw e ) c’*ﬂA + ¥

1 . s
=5 log, {¥ + (¥* + A)'} (c positive,

(A positive), Art. 59.

A positive or negative), Art. 54.

1 . .
= = sin—1 (_-’/A)i (A and ¢ negative),
Art 56,

(impossible if A be positive and ¢ negative).



INTEGRATION BY PARTS. 41

SECTION VI.

INTEGRATION BY PARTS.

72. A rormura has been given, in Art. 40, of which very
extensive use is made in integration, and of which applica-
tions have been already given in Art. 45 and 51. This for-
mula, called the formula of integration by parts, is

fudv=uv — fodu.

Any differential function of one independent variable may
be put in the form udv. If, then, j “vdu can be found, J'udv
can also be determined by the preceding formula.

73. To integrate x log, #dx. Let log, & =wu, whence
l
¢_._x__ dw (Art. 43).  Also let #dx = dv, whence § 2* = v,

(Alt 44),
-‘.fwlogg :m’w:fudv =uv —-J‘vdu

L g e [t

1 22 — 1
1 atlog, v — L at.

74. To integrate 2" dx. Lets*dao=dv. Then & =7,
Art. 41. Also,let 2 =u; da = duw.

Sasda = fudv=uv — fodu =2 — [<da

= 2 — %,
. ) zdx Qx dx
75. To integrate m . Letdv = (-1——:—“;—0?

d(l-—.z)
U

(At 44) 0 = i 1 Also let u=1a.

$2
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The formula gives

» 2 da 1 L daz
J 1=a) T 2l —a? o L/%—m"‘

w 1 1% 4 da
Tar—ar 2/ ar—
| B r—1

T2

70, To integrate da (o — &*)t.  Since

I_ad,. 1 l"l_.,fz .
/#L_:f A=) (2 — ), by Att. 41,

(@=a?— J 2 ("= @'y

— zdz

Therefore, d (@ — a7 = m

Hence, integrating by parts,

> 2
o \ x*dx
/c/a: (a*— 2 =w(a® — 2% + TERPTIVY
. ) J (@ — @t

a2 2 o2\ T
= (& — o) + / : @ dw” _ /(a @ )‘d.@

a@* — &°) (@* — a*)
T SR J da
=a(a*> — 2°) + ¢’ sin™! — — — 3
(@ S+ a (@ — 2

consequently, transferring to the first side of the equation
the last member of the second side, we have

ol Y N 1 . . 1, . @
/(l.z: (@ — 2 =a(@® —a?) + sa’sin™"
2 2 a

LY

77. To integrate @ coszda. Putting_fcos xdx =sin @,
we have fzcos ada = @ sinz — [sinadzx

=asina + cosa.
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78. To integrate € coswdx. Performing the operation of
integration by parts twice,

fet cos ada = e*cosx +fe" sinadx

= €t coslaCR€er8in 2 —fe-” cos zd x.

Transposing and dividing both sides of the resulting equa-
tion by 2,

J e cosade =1 € (cosx + sina).
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SECBIONN VIL
FORMULE OF REDUCTION.

79. By Formule of Reduction, integrals involving powers
of functions are expressed by integrals involving higher or
lower powers of the same functions. These formulse are
obtained by the principles of integration by parts and alge-
braical transformation.

80. For instance, the integral of &™cos may be made to
depend on a function of #"~'; the latter, similarly, on a
function of 2”72, and so on continually. If m be a positive
integer, and the process be continued a sufficient number of
times, the last integral is that of cosa or sinux, which have
been found in Art. 47 and 48.

Integrating by parts,

Ja"cosw = a"sine —m [ sinada
=a"sine + ma" 'cosx — m.m—1 .f;v”“3 cos adw
=a"sinze + ma" cosx —m.m — 1a"*sinzy —
m.m—1.m—2a" 3cosa + &e.

the positive and negative signs succeeding in pairs.
For instance, let m = 4

St cosade = a'sinae — 4 [z sinada
= a'sinw 4+ 4 .2° cosx — t}.4f.7c2cos.z'(l‘v
=m‘sinx+4.z“cosx—3.4m?sin.z-+3.4.Q./'xsinwdx
= 2'sine + 42’ cosa — 3 .4.a%sinz —
3.4.2.xcosw + 3.4.2.1sina.

81. The preceding integral is an instance of a general
formula which is an extension of John Bernouilli’s series.
By the same method as that by which Bernouilli's series was
obtained (Art. 45), we have, if P and Q be functions of «,
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al}d Q, Q”, Q" ... successive differential coefficients of Q
with respect to @, and

P, =/Pdx, P,=/P da, P,=/P,dx, &.
S PQdx 2ge, L @pdy
= QP, — QP, + /Q"P,dx = &c.
= QP,— Q'P, + Q"P,— Q”P, + Q"P,— ... ./ QM P, du.
82. To integrate x" €*, n being a positive integer. Here
Q=2", Q=1na""1, Q" =n.n—1.2"73
Q"=n.n—1.n—2.2"%&e.,
QW=n.n—1..2.1, P=¢, P, =¢, P, =€, &
Therefore,
_f.'v”e:‘(lm =o' —na" e +n.n— 1.2 — ...
Fu.n—1 ‘..2.1.f€"(l.fc
=@ —na" 4+ n.n—1.2"7— ..
Fnr.n—1..2.1).

The formula of the last article but one is inapplicable,
except where the successive integrals P,, P,, P, ... are simple
quantities, and Q™ such that f Q"P,dx may be found. This
will not generally be the case for functions involving frac-
tional indices. Such functions may, however, be frequently
reduced by combining integration by parts with algebraical
transformation, as in the following example : —

83. To integrate (a* — 2°)dx, » being an odd integer.
In the formula for integration by parts

_fudv = uv —fvdu, let (@®* — :c")_; = u.
Then — na (a* — 2°): " de =du; dv = dx.

_f(a”‘—me)% dw=(a2'-m2)%x+ nf(a*—a?)r ™ 2dz ... (1)



46 INTEGRAL CALCULUS.
Now,
A . A o~ 1
(@—=2a*)? " =—(a*—a*)(*—a")1 4 &’ (¢ —27)2
. n
Integrating this equation, n_f (¢ — )7 dw =
e ", o\ =1 o
nat J(a*— a7 da—n f (@ — &) Pda ... ()

Adding (1) and (®), and dividing both sides of the re-
sulting equation by 2 + 1,

/ (@@= )2 da=
L5

(a* = ¥ +

I o
nﬁ_: 1‘/V(a9—,9:')2 Y da.

By this formula of reduction, the integral is made to

depend ultimately on S (@* — x*)~*d, which has been found
in Art. 56.

n-}—l

84. To integrate In the formula of integration

da
(l,v‘zia?n
fudv = uv —f@'du, Put v=z, u =

Rpade

Then

cdy =—

a*dae

/(x +a)" (w+a)1'+ P‘/(x‘—*-az)"“

da da

(’l/?"‘*‘(t )P+ P/( + )p+ f;’p(r /(w'_*_ a.Z)p+]

Whence, transposing, putting p + 1 =7,

da
@ * @)

. =x1 @ {n—3 1 da
_27?{_2 a?(m?iaz)n—x —Qn — 92 aZ/(xZia2)1L—x

Lxcept when # = 1.
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When # is a positive integer, this formula of reduction re-
. . dz 2
duces the integral ultimately to f ——— = tan™!— (when
z + @ a
a® has the positive sign). When @® has the negative sign,
. . . dz 1 z—o
the ultimate ‘utegral is / 5 1

5

__.__=.__.Og
J a&t—at  Ra z 4 a

83. To integrate

~ (A + B:v) da (Ra + 2b)d=
(;z:’£+26w+c)" fx +°b’c+c;

+(A~Bb),/(v+ 2614—0)" =

(Art. 44, except when z = 1),

— B
Q(n—1)(2*+ b + )"

+

dx
=3 [ e =
— B
G) — T
2(n—1) (a* + 2bx + ¢)*!
A —Bb x4+ b

P Oy O N (RN S ) Ll

qn—3 1 (A — B g da
An—Rc—0" " )/W+b)"+c—b‘5}"“

by the last article, putting @ + 6 for @, and ¢ —0* for @’ All
the constants may be positive or negative.

‘When 7z =1, we have from the first equation of this
article and Arts, 43 and 59,

(A + Ba)da B o
mx-]—c—QIOge (ﬂ +2b$+0)
-+ A —].Sb’(an'“1 o+

= =
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SECTLONNVIIIL.
RATIONAL FRACTIONS.

86. A rational integral function of x is the sum of a finite
number of terms which involve only positive integral powers
of z, and these as factors.

87. A fraction rational with respect to @ is a fraction of
which the numerator and denominator are rational integral
functions of .

88. The partial fractions of a given rational fraction are
those rational fractions with different denominators of which
the sum is equal to the given fraction.

89. If the numerator of a rational fraction, cleared of
negative indices of @, be of higher dimensions in z than the
denominator (i.e. contain higher powers of & than the de-
nominator), the fraction may be reduced to a rational integral
function, + a rational integral fraction of lower dimensions
in the numerator than in the denominator.

For if a rational function of @, az?+2 4 barti-1 .., be
actually divided by another such function of lower dimensions
in &, AaP + BaP~! 4 CaP—2 + ... (p and ¢ being positive
integers), it will be found that the quotient consists of terms
with descending positive integral powers of @, commencing
with the index ¢, and ending with the index 0; and the
remainder, after division, has terms with only positive inte-
gral powers of #, commencing with the index p — 1, and
ending with the index 0. So that

auPtd 4 bapte—l 4 capto—2 |
AzP + Bar—! 4 Ca?-2 + ..,

axP=l 4 har—2 4 ...
B -1 eon ?
Ajat+ Bt + Az? 4+ Bar—l14 ...

where the coefficients A, B, ... @, b ... are to be determined
in the course of the process of division.
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90. The rational function A, + B,29-14 ... is imme-
diately integrable by Art. 44. So that for the complete
integration of a rational fraction, all that is required is to
integrate a rational fraction of which the numerator is of
lower dimensions than the denominator.

91. If in any rational integral function of @, 2% be as-
sumed to have the value b + ¢, the function becomes linear
(i.e. of one dimension in z). For &’ =2, 2= bz + ¢)z
by the hypothesis; = 62> + ¢, which again, by the hy
pothesis, is equal to & (bx + ¢) + ca, which is linear.

So, likewise, may «*, 2%, &c., be reduced to a linear form.
So that any rational function of « takes the linear form .

ax + f3,
when bz + ¢ is substituted continually for 2: « and B being
quantities not affected by / —1.

9R. If the preceding a o+ B=10 (1), then « =0 and = 0.
For the original assumption a* = ba + ¢, gives @ =
{6+ (& + dcp}, and 2z = 10—+ 4¢)t}.  Therefore
equation (1) is required to be true for two different values
of @ (except when 4¢ =— 2?); call them x,z, Then

e + B =0
axy,+B=0.
Subtracting, « (¢, —2,) =0, .. «=0, since &, — 2, is
not zero.
Substituting & =0 in either of the equations last written,
we get 8 = 0.

93. To show that real quantities, A and B, independent of z,
may be found such that
bz Az + B
: = —_""T7 Loz 1.
(@*—bx—c)"Ya (& — bz —c) +xe (1)
where ¢ and Y& are rational integral functions, and do
not contain 2’ — bz — ¢ as a factor, X a rational fraction,
and 7 a positive integer.
b2 — (Az + B) ya
= T XD e e, (2.)
(#* —ba — o)y Ya
Now, by a prineiple proved in the theory of equations, any
D
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rational integral function of @ contains 2* — bz —c¢ as a
factor if the function = 0 when 2* — b2z —c = 0.

The numerator on the first side of (2) is a rational integral
function of .  If, therefore, rcal quantities A and B can
be determined, so that this numerator =0 when &*— bx —
¢ = 0; thenVthe aneratorisdivisible once, at least, by
2’ —ba—ec.

The quotient will be a real rational integral function ¢, 2.
Then (2) becomes

oz
(#* — bx — )" 'Y
or xo is a rational fraction.
1t only remains to be shown that A and B are veal quan-

tities, when determined by the condition supposed, namely,
that

¢z — (Ax + B)Yyx=0..(4), when 2* — bz —c¢=0.

Tt has been shown by the last article but one, that when
' —bx —c=0, or 2°=bx + ¢, P is reduced to the linear
form ax + B, and Yo to a similar linear form o’z + #/,
where «, B, «’, §’, are real quantities; therefore, (4) takes
the form

S €A veee (3)

al + B — (Ax + B) (a’w -+ B’) =0,
or, multiplying the quantities in parentheses, and putting
' =ba + ¢,
ez +fB— Ad (ba+¢)+ A2+ B (4 F)=0.
By the last article the coefficient of @ in this equation is
zero, and the quantity independent of x is zero, or
oc——-—A(u’[)——B’) + Ba =,
B— Ada'c + BE = 0.
(Except, as before, when —d4c¢=10% when (2*— bz — ¢)"
= (2 — 5 b)*"; see next article but one.)
It is clear that the values of A and B found from these
equations are real quantities, independent of .
From (1) and (38),
Pz _ Az + B
(B—ba—c)"Ya (& —bx —c)
bz

(.flf" — by — c)u-l\l,‘,v AR L AR (“)

-+
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94. Supposmg the last fraction in this equation in its
lowest terms in a* — da — ¢, we have, similarly,
b2 . Az + B,
(@ =bp—e)T Y (2*—bx—c)"
(@* — b —c)" "2y’

and so on. Therefore, generally,

+

(¥ . Az + B
(¢ — bx — )"y~ (@ — ba —¢)*
n Az + B, I A,z + B, bz

F—bx—c ' Y&

(@t —ba — )y
where ®& is a rational integral function of .

95. To shew that a real quantity, C, independent of =,
may be found such that

dx C
= ;o ceens (L
(z—a)Yva (z—a ' ()
where ¢« and Yz are rational integral functions of z, xz a

rational fraction, 2 a positive integer, $a not zero, and ¥«
not zero.

po—Cye _ : 9
@—ave X% civriinnns e Chereaerinens (R)
Let ¢ = pa which is finite by hypothesis).
va y hyp
Then ¢z — %g— Y&, the numerator of the fraction on the

first side of (R}, is zero when @ — @ is zero; and, therefore,
is divisible by # — a, once at least.
Then () becomes

2k
= xa
(‘T —_— a)n—-l ’\l’;@ X
From this equation and (1),
o c ¢,

(@—ayVa  (#—a) + (@ —a)y" "o T (&)

DR
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96. If the last fraction in (8) be in its lowest terms with
respect to £ — «, the numerator does not contain 2 — a, and
@ia 1s not zero. We, therefore, proceed as before, and put

(i)lx - C, + ¢2 &z
(& Ly YT ey T (w— o) s’
and so on. Therefore, ultimately,

¢ . C c, bu
(-'17 —_ a)"‘\’lw - (w — a)u + (-'U — (Z)"_l 4 e W'

97. In the formule marked () and (8) in the last article
and the preceding, respectively, the numerators ¢, ¢, 2, ¢,,
&e., have been supposed not to contain the simple or quadratic
factor expressed 1n the denominators. If, however, either of
these numerators happen to contain any number of times
a factor of its denominator, reduce the rational fraction by
division by the factor that number of times, and proceed to
reduce the resulting fraction into its partial fractions.

98. If the quantities U,, U, ... represent quadratic, and V,,
V, ... simple factors, we have, by the last two articles, con-
tinually reducing the rational fractions into partial fractions,

[o¥)
;Ulul an? ese Vlml 'V'2m2

_Ax+B+Alw+B, +A$7Ll+Bnl

- U,n‘ Uln,—-.l o 'U1
Ae+ B Afe+B/ +£}z2_x + Ba,

U U2n2—1 N UL‘

+ &e.

40 —&— o+ U,
"rlml Vlml— 1 'V1

+ 20 O O
Vzm2 ngﬁ_ 1 o v,

-+ &e.
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99. In resolving rational fractions into partial fractions,
the greatest difficulty occurs in those cases in which there are
quadratic dencminators of the partial fractions, and their
numerators are therefore linear in #  Where, however, the
partial fractions have only simple denominators, there are
no (A)s and \(B)§/Vand{liel numerators (C) are easily found
by either of the following methods.

(1.) Clear the equation of the last article of fractions, by
multiplying by the denominator of the first side. As the
denominator is supposed to contain no quadratic factors, it is
equal to V™. V,™ ..., and therefore is of m, + m, + ...
dimensions in #. Therefore, when the equation is cleared
of fractions by multiplication by this denominator, there are
terms in the second side of the resulting equation of (m, + m,
+ ...)—1 dimensions in . The new equation contains,
therefore, (m, +m, + ...) different powers of @, and (equating
coefficients of those powers) there are therefore m, 4 m, +
cquations to find the m, + m, + ... quantities (¢).

1 1
F—at—x+1 (@—1F(@+1)
into partial fractions. Assume

1 c c, C,

G-It s—1  Go1f Tat1

ExamprLe.—To resolve

Clearing the equation of fractions
1=Cc(@—1)+C(z+1)+C@*"—2x +1)... (a)
Equating coefficients of #° 0 = C + C,
’s s of @, 0 = C, —202
» 3 0fa:",1=——-C+C,+Cz.

Adding these equations we have 1 =2¢,, .. C,=3}.
Substltutmg this in the second of these equations, wo have
€, = %, and therefore, from the first equation, C = — %.

/~ d.zc_ 1 dz +
Joro—d—z+1_ 4fw—l 2/ (z—1)

1 dz 1 11 1
L =_1 _py_r_t 1 1.
4fw+1 g (@—D =g =5+ glg(@+)




54 INTEGRAL CALCULUS.

(2.) The numerators of the simple partial fractions may
be found by another method, which is frequently more con-
venient than that of equating coefficients. In the equation
cleared of fractions, give & successively the values which make
each of the (V)s zero. Then, in each case, all the (C)s
disappear but/on el ivhichcis therefore determined.

For instance, in the equation (), in the last example, put
z =1. Then (¢) becomes 1 =¢,.20r L =c¢,.

Put 2 = — 1. Then () becomes

1=¢,.4,0or¢,=1.

100. By this method of substitution, it is clear that as
many coeflicients (C) are determined as different simple
factors of the denominator of the fraction to be resolved into
partial fractions are made zero. DBut when this denominator
contains higher powers than the first of any of its factors,
there are more (C)s to be determined than there are different
factors. For instance, in the example just considered only
two different factors # — 1 and # + 1 can be made zero, and
therefore only two out of the three (C)s can be thus found.

To determine the remaining (C)s, differentiate each side of
the equation equivalent to («) in the last example; for since
that equation holds for all values of =z, the differential coeffi-
cients of the two sides of the equation are equal.

In the new equation obtained by differentiation, put the
factors = 0 successively, and so obtain more values of (C)s.
Then, if necessary, differentiate again, and equate factors to
zero, and so on continually, till all the (C)s are found.

For instance, in the last example, differentiate (a), then

0=C.22+C,+C,2.(xz—1).

Putxz=1. Then

0=C.2+4¢C, ..sinceC,=1,C=—1.

101. We will take, as another instance, a fraction to be
resolved of which the denominator contains the third power
of a factor, and which therefore requires two successive
differentiations.

Qwﬂ—{—l 2= c_, G L+ C, L
(@ — R) (x + 3) z—2 (z—2)y  (2—2P a+3
cl

(z + 3)"

+



[
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Clearing this equation of fractions,

Ra® +1=C(2x—2) (z+3)+ C (& — ) (« + 3)*

+C(e+8)° +ec(x—2)° (2 +38) +e(w—2) ...... (a.)
Putting @ =2/2//9 E=CHORS0ML ) = %
z=—3, 19 =¢ (—5)°, ..o0=— -:;—?

Now differentiate (a).
de=C{R@x—2)(#+3)+2(x—2)(z+3)}
+C{(z+82+2(@x—2) (¢ +3)}+C, 2=+ 3)

+c{8(z—20 (@ +38) +(x—2°}+¢3(x—2)7..(b)

. 22 9
Puttingz=12,8=10¢, 25 4 ¢,.10, . €, ==, since C =
4 2 57
2=—3, —12=¢(—5) +¢ 3(5)"=c(—5)“—~5—
. 19 1757 d
S1ce ¢, =—?, .'.C=—5—3(—5——12)=5_4'

Differentiate (b), retaining only terms which do not vanish
when = 2; then

4=0C2.(2+8)+C, {R@+8)+2x+38}+C,.2,
2 being supposed = 2. Consequently,

4=0C.2.5°4¢C2.(5+5)+2c, .-.c=—%
2 +1 3 2 9
G @FI . Fe—9 Fe—ar T B@=2y

3 19
5wt Feioy

as may be verified.

102. Where the denominator of the fraction to be resolved
contains quadratic factors (and especially where each such
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factor is trinomial (= 2°—ba —¢), the difficulty of resolving
the proposed fraction is considerably increased. The student
will probably be inclined to think that considerable labour is
saved by the following method, if he will compare the amount
of work which it requires for a difficult example with the
amount required | forthe sameexample by other methods
which have been proposed.

Assume the proposed fraction to equal a series of partial
fractions, as in Art. 96. Clear this equation of fractions, and
so obtain an equation corresponding to(a) in the last examples.
In this equation make each quadratic factor 42 — bz — ¢ = 0
(i.c., substitute ba + ¢ for 2%). Then the equation may
be reduced to the linear form az + 8= 0 (Art. 91), and
@=0,8=0 (Art.92). From these two ecquations the A
and B corresponding to the factor 2° — bax — ¢ may he found.

This method will give as many different (A)s and (B)s
as there arve different quadratic factors, successively made
zZero.

If there be more (A)s and (B)s (i.e., if any quadratic factor
appear in («) of higher power than the first), differentiate (a),
and in this derived equation make all the quadratic factors
zero successively, then, if necessary, differentiate again, and
in the second derived equation make the factors again zero,
and so on continually, till all the (A)s and (B)s are found.
The (C)s, if any, corresponding to simple factors, may be de-
termined from (@), and the derived equations by the method
already explained.

Let us take, first, an instance of the simplest case, that of
quadratic factor, which wants its second term, and is therefore
binomial.

2dax
G- EF+D)

a? _Az+B ¢ c,
(#—1p2 @+ 1) a*+1 Tm—1+(x—1)2’

103. 7o integrate

Assume
s =(Az + B) (2 — 1) + C(a* + 1)@—1)
—C (2 + 1) ... (a)

First, to determine the (C)s by the method of Art. 98, let
a=1, .. 1=C.%o0rC =1
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Differentiating (), and for brevity retaining only terms
which do not vanish when 2 = 1, we have then
3a*=cC(@@*+ 1)+ C,2a,
where @ = 1/V/VConsequently' 8= ¢ . 2 4+ ¢, . 2, or

C=g—-01=1.

Secondly, to find A and B by the method of the last article.
Make the quadratic factor zero in (a); ¢.e. put — 1 for a*
continually; () becomes (expanding (# — 1)* and putting
P=z.2t=— z)

—2=Ax+B)(—1—22+1)
= 2A — 2Bz (putting — 2 Aa® = 24),
=OA-—(2B—1)$,

which is of the linear form required by Art. 91. By Art. 92
the coefficient of # in this equation, and the quantity inde-

pendent of x are each zero; .. A=0; 2B—1=0, or
& il
B=1. ence, —————————
: G—1F @+ 1)
11 1 L1
—2x‘2+1+x_1+2(x-1)’~’
2*dzx 1 ) 1 1
o = " tan— —1)—
V/(‘a: —1y@+1) 2 tan™ @ +log(2—1) 8 ax—1

Next take a case in which all the operations for resolving
partial fractions are required, and the quadratic factor is tri-
nomial, and raised to a higher power than the first.

104. To integrate ﬁ——'x—LS x;g‘o Assume the
(#*— 2 + 1) (z—1)°
. Az+B Az +B, c c,
flaCtmm_:c‘l—.ae+1 (x‘l—.z+l)2+w— 1+(.¢v——-1)2

@+ 32—2= (Az+B) (@*—a +1) (x —1)°
+A2+B)@—1F+C@—a+ 1P (®—1)

+C (@ —a+ 1) .. (a)
D 3
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First, to determine the (C)s, Art. 100. Puta=1, .. R=C,.
Differentiate, retaining only terms which do mnot vanish
when x =1,

22+ 3=t A3 6R - R — 1)(a*—a+1),
where =1, .. h=C-+2C,, .. Cc=1.

Secondly, to find the (A)s and (B)s, Art. 102, put a*=a—1
continually in (a); («)becomes (z — 1) + 32— 2 =(A, 2 + B,)
(2—1—2z+1)=(Ax+B)(—2)=—4,(— 1) — Ba,,
or 0=3+ A, —a(A, + B, +4), whence Art. 92, 3 +A,=0,
or A,=-3. Also A, + B, +4=0, .. B;= — 1.

Now differentiate (@), retaining (for brevity) only terms
which do not vanish when a® —a +1=0,

20 4 5= (Aw + B) (R0 — D (e —1)F + A, (3 — 1)
(Ajw+B)2 (@ —1),

when a?=a — 1. Making this substitution continually,
to bring the equation to a linear form, we have, since
(x—1)y=—ux

Qx+3={2A(x—1) — Az +B (Re—1)} (—2)
—2A,24+24,(z—1) + B, 2(z—1)
=(Ax+2Br— 2A—B)(—2) — A+ 2B, 2 —RA —RB,
0=—22—3 —(A +2B)(z— 1)+ (RA 4 B)z
— (A, — 2Bz —2A,— 2B,

This equation being of the required linear form, make

the coefficient of z and the quantity independent of x each
= 0. Art 92.

O=—Q+A—B—A1+QB1, S A—DB =1,
0=—58+4A-+2B—24,—2B,, .. A+2B=—25,
B=——Q/,A=—1.

Tence the proposed fraction is equal to

2+ 2 . 3z + 1 1 + 2
Tat—a41 (m‘z—x—l—l)'z_l-:c—

17 @—1)2’
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(24 2) do _ 5 Re—1 1 0
/ —exi s Ty talel@—et D)

Art. 85.

(3w-l—l)d.:v_ —3 +é Qr —1
/(mz—x+1)'~'_ Q@ —a+1)  23@—a+1)

Qa —1
N

f d_xl =log (#—1)

dz. 1
(z—1P z—1

o [ dx 2P+ 32— 2 . T—b2
/ (v*—=x + 1)2(x—1)2_3(m2—w+1)+a;—1

_ 204] tan“gx—l+l x—1
EWE! va TG a1y

+ tan—! s Art, 85.

ol ot
|0
ol

» Art, 44,

0.
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SECTION IX.
RATTONALIZATION.

105. TruE last method of reducing functions of one variable
to integrable forms which we have here to consider, is the
method of Rationalization, which is a system of algebraical
substitution, by which, for an irrational algebraical function,
is found an equivalent which is rational, and therefore
integrable by the preceding section.

106. A rational function has a rational differential coeffi-

cient. Every rational function of ~ may be reduced to the form
. a+bzr4cs®+ ket
a+brtet+ .17

and it is clear the differentiation of this quantity cannot
introduce fractional indices of z. It follows, that if 2 be

»

any rational function of z, 75 s 8 rational function of

z=R_; suppose, ... de=R,.dz, where R. is a rational
function of 2.

107. A rational function of a rational function of x1is a
rational function of x. Tor if ¢, f, both indicate rational
functions, fa involves only integral powers of #, and ¢ ( f)
involves only integral powers of f@; .. ¢ (f) involves only
integral powers of @, or is a rational function.

108. A universal method of rationalization cannot be given,
as many irrational expressions are reduced to rational forms,
by artifices peculiar to the cases in which they are applied.
But the most general principle of rationalization may be
stated as follows :—

Suppose that the expression to be rationalized is a rational
function of an irrational function (I,) of #, and of a rational
function (R,), so that the expression to be rationalized is

J (@, R);
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where s indicates a rational function. Then assume, if
possible, # equal to such a rational function of 2, that I,
becomes equal to a rational function (R,) of 2. Then also,
by Art. 106, do = R’,d2. Also, by Art. 107, R, =R",
another rational fanctionof)2;

- f (1, R)dz = f (R, R”,) R, dz.

But £ indicates a rational function. Hence, by the article
last referred to, f(R,, R”,)R.dz is rational in 2 or
S (I, R)dx is reduced to a quantity which is rational,
and therefore integrable by the methods of the preceding
section.
az +b )1 dz, where R, is a

oz + b,

rational function of & and m, = positive or negative integers.
This is a particular case of the last article.

109. To rationalize Rx(

axr + b a— a 2"
—=2", = i 1),
’ b — b2 M

or x is a rational function of z. Then by the last article,

a% + b )_n- mn
) =,
oz + b,

and so the whole of the proposed expression is rationalized.

R, =R’z dz=R.dz, I, = (

110. To rationalize (o' @ + & )* (ax + b)’ d2, where one of
the three quantities

ps v, OF p -+ v is a positive or negative integer ... (R.)

In the expression proposed to be rationalized in the
last article, put R,=(¢’x +¥)}, where ¢ is a positive or
negative integer.

Put ¢, =/, b, =10. Then the expression becomes

. m
i

(% + 1) o (az + by da,
which may be written

(@z + VY (ax + 0) da,
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where p +v(=1) is an integer, or (2) is satisfied; and by (1),
ax + b _
e+

Next, let/'R) =(a”s)+ 47, -ond in 1, let a4, =0, ?, = 1.
Then the expression rationalized becomes

(¢ + V) (ax + b)"da,
which, again, is of the form
(dx + V) (az + 1) da,
where one of the quantities ¢ or v is an integer, and the
condition (R) is satisfied. In this case (1) in the last article
becomes
2 —b

ax +b=2", ¥= ” veenne (4)

111. To rationalize a? (a2? + ?))wa.
1 1. z
Put x?=w, .. —.x?* dx=dw», a’=1x7, and the

expression proposed to be rationalized becomes
p. 1
Ly m
Lxa%a T (ax 4 by ds.
q
This can be rationalized by the last article, whenever
p+1

2y ! tisan integer, and, therefore,
7
1 7 .
or £ + - —1+ 77; an integer, and, therefore,
i
an integer.

an integer;

+ 1 »
P +_l

”

The First Criterion of rationalization of

af (aa! + b)v da,

1 " . .
is, that r+l be a positive or negative integer, when

(since 27 = x) we have to assume aa? + b = 2" by (4).
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p+1l m
—— + —
n
be a positive or negative integer, when we have to assumo
ax! + b
7

The Second Criterion of rationalization is, that

x’l
—_— = 4"
p ANBy/(3).
112. The method of Art. 108 may be extended to several
irrational functions 13°, 1%, 1 ... if it be possible to assume
2 such a rational function of z, that these irrational functions
of # become equivalent to rational functions of 2.
For instance, if the irrational function of # be

1 1

1
() (2 Y, (Y ke Jda
a;, + b a, +bw a, + b

where m, », &c., are integers.

_ MNPose
Put & + bz . ook G
a +ba ’ e O
) @ ®
IJ = 2"PYe s Ix —_— zmpq..., I.:: o mnq..c,

dz is rational in #; and so the whole expression may be
rationalized.
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SECTION X.

INTEGRATION OF FUNCTIONS OF SEVERAT, VARIABLES.

113. 'We have hitherto considered the integration of func-
tions of only one independent variable. The magnitude of a
quantity may, however, depend upon the magnitudes of several
other quantities, each of which is susceptible of independent
and separate variation.

For instance, the cubic content of a right cylinder de-
pends on two independent magnitudes, the altitude and the
area of the base. Fach of these magnitudes may be con-
sidered to vary independently of the other, for we may
conceive the existence of any number whatever of cylinders
with equal bases but different altitudes, and of any number
of cylinders of equal altitudes but different bases.

Again, the content of a rectangular parallelopiped is a func-
tion of three independent variables the lengths of three of its
edges. The content of an oblique parallelopiped is a function
of five independent variables, namely, the lengths of three of
its edges, and the inclinations of two of them to the third.
The weight of a solid is a function of two independent
variables, its volume and specific gravity. The time of
vibration of a perfect pendulum vibrating in vacuo is a
function of three independent variables—its length, the force
of gravity, and the extent of the oscillation.

114. DEermzition.  The Quadrature of a finite continuous
function of several independent variables having a limited
range of values, is the sum of a series of different values of
the function, each multiplied by the differences between the
corresponding values of all the variables and their next pre-
ceding or succeeding values.

115. The Multiple Integral of such a function is the limit
which its quadrature has when the differences of the inde-
pendent variable approach zero, and their number infinity.

[These definitions are cxtensions of those of Articles 16
and 17.]
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116. Let f(2, y, @, w...) be a finite continuous function of
any number (N) of independent variables. Suppose 7, values
given to 2, m, values to y, n, values to @, &. Then the
total number of different values of the function will be the
total number of different combinations of », + n, 4+ n; + ...
different things/taken INtogetlier,

Let Z,z, Y, y, X, x... be the superior and inferior limits
of the several variables. If ¥ be understood to be the
abbreviation of the words ¢ sum of terms of the form of,”
the quadrature of

fry 2w )=2f(27 2 ©w..)82.8y.0x.0w..
where 8z, 8y, 8z, 8w ... indicate differences between succes-
sive values of the variables. Also,
limit of £f(2, v, @, % ...)82.8y.8z.8w...

(when 87, 8y, 8a, 8w ... approach the limit zero), is equal to
the multiple integral of f(z, 7, x, w ...) between the limits
Z,z, Y,y, X,x... This multiple integral is written

Z Y X
/;/}: ST Sy e ) dzdydud ..

the sign ./ being repeated as many times as there are in-
dependent variables.

117. Multiple integrals found by successive integrations.

Let 2, 2, 2, eoo Yy Yo Yy - &c., be successive inter-
mediate values of the variables between their limits. Also,
let 3z, 82,, 82, ... 8y,, 8¥,, 8¥, ... &c., denote the successive
differences of the values of the variables. The integral is
the limit of the sum of terms of the form

S Zms Yus 2, ..0) 82,,.8, . 82, ...

First. The sum of the terms in which z alone has dif-
ferent values, while the other variables have their first
values, is
{ /(20 v 2 00) 82 + f(2y 91 2, ...) 0,

+f(z3, Yo 2, “') d2; + } 8y, 82, ...
of which the limit (since here # alone varies) is equal to

Z
limit of 3y, da, ﬂ (2 Yy, @ 000)dz.
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This integral being taken between limits, involves only
those limits, which may be functions of =, Y, ... or any other
quantities whatever. But the variable intermediate values
of & disappear (Art. 26) from the integral, which, therefore,
takes the form f] (y,, #,, w, ...), # being omitted.

Secondly. Add all the terms in which # alone varies, Y

having its second value, @, w ... as before their first values.
The limits of the sum of these is

Z
limit of 8y, .8z, / Sy 2,0, ..)d
Z
= limit of 8y,. 82, ... f, (v, @, 0, ...).

Similarly for the terms is y,, 7, & The sum of all
these is

{1 2 0 ) 8y + f (Y, @y, w..)8Y,
+ Sy @ 0,0 ) 8yy + 302 800, ..

of which the limit is (by reasoning with respect to y similar
to the preceding with respect to z) the

.. Y
limit of 8, . 8w, ... /; Si(xy 0, .0)dy

= limit of da, dw, ... £, (@, 0, ...),

y being omitted from f,. .

Continuing the process, #, w ... successively disappear
by successive definite integrations; and the final result, or
required multiple integral, is the result of as many succes-
sive integrations as there are independent variables. )

Hence, where there are only two independent variables,
if » be the last of the independent variables, this result is
of the form

jR frdr = F(R) — F (7).

S reasay = [ ay{ [ e naz)
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where there are three independent variables,

v/z..z_/yY/;Xf(z, y, @) dzdyda
=£de [./yY"y{ﬂ e w)dz}].

And, generally, a multiple integral is formed by inte-
grating the proposed function with respect to one variable,
as if the others were constant ; substituting the limits of that
variable; integrating the result with respect to another vari-
able, as if the rest were constant; substituting the limits,
and so on, till as many integrations have been performed as
there are independent variables.

118. Order of integration indifferent. The sum of any
number of quantities does not depend on the order in which
they are added. Hence in the summation of the quadrature,
the terms involving different values of any variable may
be first collected, and the limit of their sum involves an
integral with respect to that variable. Therefore, the vari-
able with respect to which the first integration is performed,
is indifferent. Similar reasoning applies to the other in-
tegrations.

COROLLARY../;Y(]}/ (‘/;Zf(z’y) dz)
= /" a:( [ s o)

119. The cubature of solids affords a very complete illustra-
tion of the foregoing principles.

Let 202, 20y, y0Oz be three planes perpendicular to
each other; and let ABCDabcd, be a solid bounded by
the curved surface ABCD, by a rectangle ac in the plane
202z, by two planes Ab, Dc parallel to the plane yOz,
and two planes Ad, B¢ parallel to the plane 20z.

Consider now the base a@c of the solid divided into any
number of rectangles, represented by dotted lines in the
figure, and on these rectangles, as bases, let rectangular
parallelopipeds be described, of which the sides cut the upper
surface ABCD in the curves shewn in the diagram.
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If @, y, = be co-ordinates of any point (P) in the curved
surface referred to rectangular axes O, Oy, O, the relation
between @, 7, # may be expressed by an equation

z=f@ )
in which z is supposed to be finite and continuous ;
and pg=wx, Og=y, Pp==2.

7

Let Pp be the altitude of one of the elementary parallelo-
pipeds, dx and 3y the length and breadth respectively of its
base. Then the solid content of the parallelopiped is the
product of these quantities, or 2823y = f(x, y) d=.2y.

Let 2y, x;, x5 ..., L,y

Yor Y15 Y eeeer Yu
be corresponding successive values of the co-ordinates, and
3=, 3y, the common differences of the successive values of
x and y respectively. Then it may be seen that the solid
Ac contains parallelopipeds, of which (reckoning them in
rows parallel to ab) the solid contents are

I (@ y)dxdy, f (2 95)0@3y, f(x,y,)02dy ... f (2, y.)dady,
S @y 91)0@dy, f (5 ,) 008y, f(@y yy)dady ... f (@ y,)dady,
S (@, 9)023y, f (25 9,)320y, f(ag y5)320y ... f (2, 7,) 23y,

S (@ ) 028y, f (@0, ) S0y, f (@ 1) S0y, . (2, ¥.) 323y,
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Also, as will be proved hereafter, the more the number
of these parallelopipeds is increased, and their length and
breadth diminished, the more nearly is their sum equal to
the content of the solid AC. If the limits of the sums
of the contents just;written be taken in rows across the
page, the result is

limit {82 y‘%f(xl, 9)dy + sz/j P f @y y)dy + ...

9
+oa f, °f (% ) dy}

= ‘A x { ./; "‘% f (2, 9) dy}dw.

If, however, the parallelopipeds had been reckoned in rows
parallel to the longest side of the page, that is, parallel to
ab in the diagram, the limit of the summation would be

‘/ynyo {‘ﬂ xf (@ 9) yx} dy.

And since both results represent the same solid content,
they are equal.
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SECTION XI.
QUADRATURE OF GURVES.

120. THE Integral Calculus is applied to the rectification, or
determination of the lengths of curves; to the quadrature, or
determination of areas of curves; the complanation of sur-
Saces, or determination of their superficies; and the cubature
of solids, or determination of their volumes or contents.

121. The methods of determining Quadratures and Cu-
batures are readily demonstrated by principles already laid
down. Rectification and Complanation depend on geometrical
theorems, hereafter given.

It has been shown, Art. 19, that if @ and » be the rect-
angular co-ordinates of any point of a plane curve, X, Y,
and x, y the co-ordinates of its extremities, the area included
by it, and straight lines from its extremities parallel to the
axes of « and y respectively, is given by the formule

'X Y
/ ady, or f ryde,
x y

where it is supposed that
2 and y are always positive
and finite, and to neither
is assigned more than one
value corresponding to any
value of the other, between

the limits X, Y, x, y. 4 '\

122. Quadrature of the
Circle. Let # be the radius
of the circle; a, y, its co-
ordinates at any point re- T
ferred to the centre as ori-
gin of co-ordinates; then #
and y are connected by the o
equation,
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2 2 2.
&+ gt =1

or, ¥y = (% — a®)},

/g/(].@‘ =./'(r'3 T &R da

= (° — 2?)} r_da (integrating by
E (7' ) x +/ (1‘2 _ x‘z')& parts),

myfw~wM=w_wm

+ 7'i/‘ da — ros da.
=y ) =y

The last integral on the second side of this equation is
identical with the integral on the first side. Therefore,
transposing and integrating the remaining integral by Art. 56,

B o 1 e
L/.(r2 — &) de =42 (* — a®)t + L »2sin1 2
>

If 0Oc=X, anu 0b=x, we have to take this result
between limits X and x, to find the area Abe ;

S Abe =X (" — X — dx (r* — x2)
. X . ;
-+ %7"3 sin! 7 —_ é 7?2 gin~! E‘
" r

If it were required to find the area of a quadrant, B,
C would be supposed to meet Oy, Oz, respectively, and there-
fore X =7, x=0. Therefore, since sin—!( (or the angle
of which the sine is 0)=0, and sin~'1 = ‘1

quadrant = —} »2
Therefore, area of whole circle = 722
123. Area of Ellipse. The equation to the ellipse referred

to the major axis, and a line at right angles to it at its
extremity as axes of co-ordinates, is
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b

y=— RQax — 2},
@

where ¢ is the semi-axis major, and 4 the semi-axis minor.

¥

P .

\\
\
\//
fydx:f%@ax—-w“)"fd.z

z bla—a)
T 2

=%abcos‘1a; Raz —a*)} ... (1.)

When # = 0 the preceding expression vanishes. It may,
therefore, be supposed to be taken between the limits 0
and @; consequently, if OB =z, the expression is the value
of the area PBO.

When ¢ =20 the ellipse becomes a circle, and the ex-
pression (1) for the area becomes

Z a6 —

p @ — 4
1 @* cos™? —— % Q(Qaw — 2 (R)

Hence, if OP’M be a circle having the same centre C with
the ellipse OPM, and OM, the diameter of the circle, be also
the major axis of the ellipse, we have, comparing (1) and (?),

area OP’B a

area OPB b~

Tt appears also from (1), that the area OPB is proportional
to 4. IHence, if any number of concentric ellipses were
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deseribed on the sawme axis major, the areas of them having
the same base. OB, would Te in the proportion of the
several minor avos.

y

The area of a quadrant of the ellipse is found from (1),
by putting 2 = a, to be

tabeos™10 = % ab.
Hence the area of the ellipse = = ab.

1R4. Quadrature of curves referred to oblique co-ordinates.
The method of obtaining, in Art. 19, the quadrature of curves
referred to rectangular co-ordinates, consists in dividing the

¥y
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area by rectangles, and taking the limit which their sum
has when their breadth is indefinitely diminished and their
number indefinitety increased. =

Similarly, if an area, ABCD, bounded by the curve BC, and
three straight lines, of which BA is parallel to €D, be divided
by parallelogramg | tpon)AD-having sides parallel to CD, the
limit of their sum is the area APCD. Also, let the curve be
referred to oblique axes of co-ordinates Oy, Oz, inclined to
each other at an apgle «. If da and y be the lengths of two
sides of one of The parallelograms, ysine is its altitude,
and ysin «d is its area; whence it is easily seen, that the

area ABCD = [ sin zda, taken between proper limits.

125. Quadrature of the Hyperbola. Let the hyperbola, of
which A is the vertex, be referred to its asymptotes Oz, Oy,

Y

o B M *

inclined to each other at an angle «, as axes. Draw AB
parallel to Oy, and let OB =e¢. The equation to the hyper-
bola is yw =€ Om =x.

. x . x ¢?
Area ABPM =sinea yde = sin oaf —da
e e &
. x
= sin ae® log —.
e

126. Quadrature of the Witch of Agnesi. In the last
example, as x increases, the area increases indefinitely; and,
therefore, the whole area between the curve and the asymptote
is infinite. There are, however, curves in which the area
between an infinite branch of the curve and its asymptote are
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finite. The ¢ witch,” or ¢ vers\"era” of
Donna Maria Agnesi, is an irgstance.
Let AB be a diameter of a circlle =g,
AC a tangent, P any point in the ‘curve, /
AM =x; AB, AC being the axes: of @ e
and y respectively.

The curve is defined by the 1e1at10n
rectangle PA = rectangle DB.

The equation to the curve will be

found to be zy® = a’(a — 2). i L
— 3 @& — X BV A
N , /a x) = ]
Now \ (aa;—-x“)* 1
, a—Rz ta

z(aw—x)f*-{ —(ta— w)z}*’

. ﬂd:v:a/(a_;m)%dw

2 2 gl 2O
=a(aw — &P + }a® cos™ ——)\

la
Arts. 44 and 56.

This expression is to be taken between limits # =a and
& = x, to give the area PBM.

The area between AC, AH, and the curve, is the limit
which the result thus obtained has when x has the limit 0.
This evidently is found by taking the expression for the
integral between limits # = ¢ and 2 =0;

*. required area = {cos™!(— 1) —cos™'1} L a® = ma’

The whole area between the asymptote and the whole
curve on both sides of AB, is double the preceding, or =wa?;
and, consequently, is four times the area of the circle.

127. Quadrature of the Cissoid of Diocles. 'This curve, in-
vented by Diocles, a Greek mathematician, about the sixth
century, and used for finding two mean proportionals, re-
sembles the curve last considered in several respects. It
affords another instance of a finite area included between an
infinite curve and its asymptote.

The cissoid may be defined by Newton’s method of tracing

E 2
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it. The arms of a bent lever are at right angles to each
other, and the end of onel of them slides along a straight
line, while the other is allways in contact with a point of
which the distance from the straight line is equal to the
length of the first arm. The angle of the lever traces out
the cissoid.

Tet B be the fixed point. Then, if AP =BD, and the
end A of the lever move along a straight line, while PC-
remains in contact with B, the cissoid is the locus of P.

Let AC=a, AB=2, pB=y. The
equation to the cissoid will be found to be

P (a—2z) = .

do = w% dz
‘/'.'V'”"‘f (a_m)g

=—2(a— w)*:v% + 8/ (a — apardx
(integrating by parts).

Also, (2 — apatde = (ax — 27 da

— {3 — = hof Y

which is of a form which has been already
integrated (Art. 83);
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o Syde =—2(a — ahat

, z
+3Gz—%a)(az — 2*P + Zolvers™ —
3@

For the whole)ared| bétween 0AC,CCH, and the curve, it
appears by the same considerations as in the last article, that
this integral is to be taken between the limits 2 =a and
x =0, when

Syde = 3a* {vers1 2 — vers™ 0} = g a*n.

The whole area included by both branches of the curve
and the asymptote is double this, or $ma® = three times the
area of the circle of which AC is the diameter.

128. Polar co-ordinates. Let the position of any point in
a plane curve be referred to polar co-ordinates, namely, the
length () of the straight line
drawn from the point in the ¥
curve to the pole, an assigned
point in the plane of the curve;
and the inchnation (6) of that
line, to some fixed line in the
same plane passing through the
pole. Let S be the origin or
pole, P the point in the curve,
SP = r, which is called the
radius vector, and Sa the assigned fixed line from which the
angle PSz=10 is measured. If P be also referred to rect-
angular co-ordinates of which Sz and Sy perpendicular to
Sa are axes, it is easily seen by trigonometry that

rsinh =y, rcosd = a.

Suppose now that it is desired to determine the sectorial
area included between the radii vectores at two points in a
curve and the arc between them. When a curve is referred

to rectangular co-ordinates # and y, the integrals f ydz or

JSxdy between limits determine the area included by a curve
and straight lines parallel to the axes. The relation between
such areas and a sectorial area is established by the following
proposition.
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129. Sectorial area in terms of rectangular co-ordinates.
Let PQ in either of the accompanying figures be the curve,
which is taken of such length that it is not met at two
points by any one of its co-ordinates, and PSQ the required
sectorial area.

(1) (2)

Tet SK=x, SH=X, QKk=y, PH=Y. It is evident that

X
PQKH = [{ yda.

Also, triangle QKS = §7y¥, triangle PSH =3 XY. Also,
Fig. (1), PQS + QSK + QKHP make up the whole PSH;

X
- PQS =} (XY —xy) —f yda.
X

Fig. (2), PQS + PSH makes up the whole figure, as does
also QKHP + QSK. Therefore,

X
— PQS = 3 (XY —xy) _f yda.
X

‘Hence in both cases, PQS, the sectorial area, is, by Art. 34,

equal to
X Y
t%(/ ydx—f wdy)
x y
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130. Sectorial area expressed by polar co-ordinates. In the
last article the sectorial area was found to be equal to
(S wdy ——fg/dx) between proper limits,
Putting & = 7 cos 6, y =17siné,
Ap/= dress0 0 sin 646,
dy = drsin 6 4 » cos 8d8;
ady — yda =1*dé;
. sectorial area =  _/7*d#,

where the limits of § are the angles between the prime radius
vector and the radii vectores which bound the required area.

131. The same result may be deduced directly from geo-
metrical considerations. Divide the sectorial area by radii
vectores 7, 7, 7, ... between the extreme radii vectores R, 7,
with S as centre, and at distances R, r, 7, ... describe circular

S

ares represented in the figure by dotted lines. The sectorial
area is less than the sum of the sectors of which the arcs are
without it, and less than the sum of the sectors of which the
arcs are within it. The area of a circular sector, of which
the radius is » and the angle 80, is 1+°30. Therefore, the
required sectorial area is

less than § (R*38, + 230, + ¢330, + ...) (L)
greater than § (%30, + 2%,30° 42,30, + ...) (2.)
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where 30, 30, ... are the angles between the radii. Now,
# is a finite continuous function of 8. Therefore, by Art. R0,
the above expressions (1) and (2) have the same limit, and as
the sectorial area is between them, it is equal to that limit, or

e @ » O /' 7
sectorial aréd/=\} / At / / rdrd8, where O,
S Jo I J0
9 are the inclinations of R, » respectively to the prime radius.
132. Quadrature of the
spiral, * =asinnf, where n
is an integer. This curve has
2n similar loops, and, there-
fore, the whole area contained

by it is equal to 2z times the
area of one loop.

%frzdga;f;ag_fsingnerl(). ( \

Integrating Dy parts,

fsinnG. sinnbhdf =— —lzcosn{}sinne + [ cos®’nbdb
7

=— %cosnG sinzd + /ﬁ(l——sin?ne‘)de.

Therefore, transposing and dividing by 2, we have

/;in2 nhdy =

» 1 .
. ,%,/redl):ia?( b — —lcosnesmng)-
o 7

1]

( 0 — ]— cos 79 sinne)
n

From the equation to the curve, it is evident that @ is the
greatest value which » can have, and that then it is drawn
bisecting one of the loops. Since r =@« when n8 =14,
and » = 0 when 6 = 0, the half loop lies between the two
positions of the radius vector corresponding to those values
of 8. Therefore, taking the preceding expression for the

area between limits g- and 0 of §,
n

o k2
area of half loop = Ja*. T
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The whole area is 47 times this, or = 7;_(1', which is half

phe area of the circle circumscribing the curve. The result
18 remarkable, as it is the same whatever the number of
loops of the curye.

133. Of curves, such that one co-ordinate has more than one
value for one value of the other co-ordinate, the quadratures
are found by dividing the curve into several parts, each
of which is of such length that it is not met at two points by
any one of ity co-ordinates, and determining by the preceding
methods the quadrature corresponding to each such part.

¥

> fm

(6] a c d x

For instance, in the accompanying figure the ordinates
parallel to Oy have three values for each value of & between
Oc and Ob, where Cc, B), are ordinates touching the curve
at C and B respectively. But the areas AabB, CcbB, CedD,
may each be found by the preceding methods. Also, the
required area

ABCDda = AabB + bBDd, and bBDd — ¢CDd — ¢CBb;
*. required area = AabB - CcdD — cCBb.

Tt may easily be seen that the generalization of this rule
is, to divide the area into as many parts as the curve has
parts, alternately receding from and approaching the axis
of 7; to find each of these parts by integrating ydz between
corresponding limits; and to take the difference between the

E 3
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qum of the areas under receding parts of the curve, and the
sum of the remaining areas.

184. Area in terms of the length of the curve. The
parts of the curve which recede from Oy are those for
which @ incveases |asithe length-of the curve measured
from its extremity mnearest to Oy increases; and where,

consequently, if s denote the length of the curve, % is

- lx . .
positive. In the other parts of the curve ;—‘: is negative.

Now, [z = ﬁ %” ds (Art. 39).

Tf, then, 8y, Sy, -+« Su» De the respective lengths of the curve
. . dx
from its commencement up to the points where —— changes

ds
Sigl’l, 5, deo s, dx
0 Z/—(—l—s'ds, ‘/s‘l Ki 'd—s'ds, &e.

are the component parts of the required area. But the
alternate parts are to be subtracted from the sum of the
rest. 'The result will be the algebraical sum of all the parts,

. dw . . .
since — is alternately positive and negative.
]

Therefore, the required area (S being the whole length
of the curve)

s, deo s, da
::ﬂ j/—ggds-}-‘/;l y—d:ds-i- ..... .

s daz S dx
+£n vop= [ g

if y %fg be a continuous finite function of . By the nature
of the quantities y can only have one value for each value
of s; and, if the curvature be continuous, % has only one
value for each value of s; so that the result of integrating

de . . .
v ds is necessarily definite.
ds

18%. Negative ordinates. Tn investigating areas of curves,
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it has been assumed that the co-ordinates are positive. When
one of the co-ordinates is negative, the processes described
in the preceding articles will require modification.

By the principles, of analytical geometry the symbols +
and — prefixed 'to’ symbols-of 'length, are interpreted to
indicate contrary directions of measurement; so that if from
any point in a line curved or straight a length measured
off along the line towards one of its extremities be reckoned
positive, a length measured from any point in the line along
it towards its other extremity is affected by the negative sign.
But no such convention applies to areas which are considered
essentially positive.

If the curve be referred to rectangular co-ordinates, and »
do not change sign between the limits, and x be positive

or negative, _f yda is of the same sign as y, if the limits
be taken in the same order as was prescribed (Art. 19)
for positive co-ordinates; that is, if # increase positively in
passing from its value which is the inferior limit to its value
which is the superior limit. This is shewn as follows :—

Syda is the limit of the sum of terms of the form ydz,
where 3o, the increment of @, is positive, since # increases
positively in passing from the inferior to the superior
limit; consequently, ¥ has the same sign as g, and f yd=
has the same sign.

It follows, that for all areas on the negative side of the
axis of @, [ydx is negative and [yde is positive for all
areas on the positive side of the axis of .

In order, then, to determine the whole area bounded by a
curve, of which part is on the positive and part on the
negative side of the axis of the independent variable, the
two parts must be determined by separate integrations, and

the negative part must be added positively to the positive
part.

136. Negative polar co-ordinates. In determining the sec-

torial area of curves referred to polar co-ordinates, /r*df is
to be taken between limits such that § increases positively in
passing from its value at the inferior to its value at the
superior limit. Hence it appears, by similar reasoning to
that used in the last article, that, whether 8 be positive or
negative, Sranis positive.



S84 INTEGRAL CALCULUS.

SECTION XII.
CUBATURE OF SOLIDS.
137. Ler a solid, ABCcdab, be bounded by a curved surface

abed and by five bounding planes, viz.:—by a rectangle, of
which AB, BC are two sides, and by four planes dA, «B,

Be, Cd, perpendicular to the plane of the rectangle, passing
through its sides and meeting the curved surface in four
plane curves ab, be, c¢d, da.

Let the curved suiface be referred to rectangular co-
ordinates (x, y, 2) of which the axes are parallel to BA, Bd,
BC respectively, and let the surface be such that cach
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co-ordinate has but onc value for each value of the other
co-ordinates.

Draw within the solid planes, parallel to the bounding
planes and cutting off within the solid, a number of rect-
angular parallelopipeds, of which, since they are within the
solid, the total'¢ontent'is‘less than' the volume V of the solid.

Add, now, a set of rectangular parallelopipeds (not shewn
in the figure), within which the curved surface wholly lies,
and which are formed by the above-mentioned parallelopipeds
produced. It is clear, that as these additional parallelopipeds
are increased in number and diminished in magnitude, their
sides approach continually closer to the curved surface; and
that, consequently, their volume (v) may be diminished with-
out limit.

V is greater than the solid content of the first set of
parallelopipeds, and less than that solid content -+ v.

Therefore, V lies between two quantities, of which the
difference may be diminished indefinitely. A fortiori, the
difference between either of them and V may be diminished
indefinitely.

Let the lengths of edges of one of the parallelopipeds be
dn, dy; = its altitude; zdady its volume. Let Tzdzdy
denote the sum of the volumes of the parallelopipeds within
the solid Vv,

V = limit of £ 23z 3dy
=/ zdx dy (Art. 117)

:_fffd.x dy dz,
the integral leing taken between limits which depend on
the boundaries of the solid.
In the figure, for the sake of simplicity, the internal
planes are supposed to be equidistant.

138. The limits of integration for the cubature of a solid
may be investigated by the following method of exhibiting the
result just obtained. ILet MM’ NN’ be an clement of the
curved surface, QQ'RR’ its projection on the plane of zy.
Let QQ, =32, QR =2Jy. TIn the limit the solid M'R is
a prism, of which the altitude is = and the area of the

dady;
LAV =zdady.
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A

A

e ¥
/’/ |
‘v
Suppose the equation to the curved surface gives z = f{(=, z).
Then

av =£/f(x, y)dzdy.

In this expression take first (Art. 117) y constant, and
integrate f(», y) dady with respect to #. The result is
the limit of the sum of the prisms, of which the bases are
between the parallel lines ¢Q’, rR’. Let a=X and z=x
be co-ordinates of the extremities of their lengths in the

solid ;
X
. d zdx
‘? l/); 7

is the analytical expression of the content of the row of
prisms just defined.

In order to find V, we have to add together this and the
parallel rows of prisms, and to take the limit of their sum.
If Y, y be co-ordinates of the bounding planes parallel

to zw,
Y X
V= / / zdady.
JY JX

139. Solid bounded laterally by a curved surface. We have
in the preceding articles taken the most simple case of
cubature, that in which the solid is bounded laterally by four
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planes. The limits of = and y are then the same for every
point of the solid, and independent of each other. In this
case the integrations are comparatively easily effected. If,
however, the solid be bounded laterally by curved surfaces,
the extreme values of| & and » are-no-longer independent, but
are connected by the equationsto these curved surfaces.

Let X, x be constant quantities; Y, y two functions of the
variable z; Z, z two functions of the two variables # and v.
Then it may be shewn that if the volume included between
the six surfaces, of which the equations are respectively

v=X, a=x,y=Y,y=y, 2=5%, 2=1,

be designated by V,
v =f X/ Y/ z dady dz.
x Y 2

From the equations to x
the six surfaces it will
be seen that V is the
volume of a solid, De,
bounded by two cylin- >
drical surfaces ECce

and FDdf, of which 7

the traces are Ae and Cf—e

Bb respectively; by »
two parallel planes ed, RS-

ED, of which AB, ab ;
are the intersections
with zz, and by two

curved surfaces CDdc 4 \
and EefF. y

140. Hyperbolic paraboloid. The equation to the surface
of the hyperbolic paraboloid is #y =c# when ¢ is a constant.
The general expression for the volume becomes

V= ;[/xy dy da.

Let it be required to find the volume contained by this
surface, the plane @y, and a cylinder of which the base is a
circle of radius 7, and the axis parallel to the axis of 2.
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Integrating first with respect to y between limits Y, y,
1
V=—/(Y—y)zda.
5=/ (v~ y)eds

Now the efuation tolfhe cplindet-is (x — a)? 4 (y — b)* =77,
which gives two values of y for each value of . One of
these values is the superior, and the other the inferior limit
of the integration just performed; or,

Y=04+ {r*—(z—ay}, y=0— 17?7 — (v — a)*};
s YRy =4b{r— (. —afP;

SV = %.f{rz——(x—a)g}ixdm.

The extreme values of x are evidently @ +7r and @ — 7.
Taking the last integral between those limits, it will be

abr?
found that V = z

141. Solids of revolu- A
tion are those generated
by the revolution of a
plane figure about a fixed
axis. Let the revolution
of a curve AB about an
axis through A generate
the surfice of such a
solid, and let the equa-
tion to AB be y=fa,
where @ 1is measured
from A along the axis
of revolution.

It is clear that the
volume of the solid is the limit of the sum of a number of
clementary cylinders having the same axis. Let d@ be the
altitude of one of these cylinders, y the radius of its base;
.. my® is the area of the base; and that area multiplied by
the altitude, or wy*dz, is the volume of the elementary
cylinder. Therefore, the required volume is equal to ’

the limit of T (my28a) == [ y*da.
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142. Content of a cone. A cone is generated by the rota-
tion of a triangle about one of its sides. Let y = «a be the
equation to the straight line generating the conical surface,
where « is the tangent of the angle at which that straight
line is inclined to the axis of revolution. The content of
the cone = mo?fa3d 4 dmla?x(taking the integral be-
tween limits 0 and x) = J#y*x?% or the solid content of a
cone is one-third the area of the base multiplied by the
altitude = one-third of the content of the cylinder having
the same base and altitude.

143. Paraboloid of revolution. The surface generated by the
revolution of a parabola about its axis, is called a paraboloid
of revolution. To find the solid bounded by such a surface,
and a plane perpendicular to the axis, we must put y* = az,
the equation to a parabola.

The required volume = ra f2da = Lraa®

144. Solid of revolution through any angle. The quantity
nfyrde =2 f[fydyds. Also it is evident, that if the

generating figure turn through an angle ¢ instead of 2, the
solid content generated is equal to

¢j‘/’g/(lydx.

145. Limits of the preceding integrals. If the generating
figure have not for one of its boundaries the axis of revolu-
tion, but a curved line, of which the equation is y = ¢,
the limits of integration of ydy are fx and ¢o. Similarly,
if it be required to find the solid generated by the portion
of such a figure of which the extreme co-ordinates are two
particular values X and x of @, the integral with respect to
2 must be taken between those limits.

146. Content of a solid of revolution in terms of its area.
Let 77 be some constant quantity. Then if § were equal to the

greatest value of the variable v, S g dydx would obviously
be greater than Sy dydz. If § were equal to the least
value of the variable g, f f ydyda would be less than
_/fg/dydm. There is, therefore, some value of the con-
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stant 7 between the greatest and least values of y, for which

ffﬁ dyde, or

5ffdg/dx ::j}/n’g/dx.

(By Pappus’s Theorems, 7 is shown to be the distance
of the centié/\6f/grdvity (of el generating figure from the
axis of revolution.) The integral on the first side of the
preceding equation expresses the area of the generating
figure. Therefore, from the last article, the content of the
solid of revolution through an angle ¢, is equal to

¢ x area of generating figure,
where 7 is a line less than the greatest and greater than the

least distances of points in the generating figure from the axis
of revolution.

147. Cubature of a solid of revolution by polar co-ordinates.
Tet PSA =6, PS=1 be the
co-ordinates of any point P
in a plane figure referred to
the pole 8. The area of an
clement PP’ of the figure is
(by Article 131) rd8dr. By P
the last article, the solid v
generated Dby the revolution
of PP’ about SM through an
angle ¢, is rdbdr x a dis-
tance which is ultimately
equal to the distance of P
from SM, which is equal to L (G -
rcos b. Therefore, by the ° ’
last article, the elementary solid = ¢rcosfdbdr, and the
content of a solid of revolution gencrated by a sectorial area
revolving, about an axis fixed with respect to it, through an
angle o, is equal to

(Y

(j)‘ffrcosGdQ(lr.

148. Cubature by polar co-ordinates. Tivery solid may be
generated by the rotation about a fixed axis of a generating
figure of which the form is variable. Suppose the angle of
rotation to be ¢. Then any solid may be considered to be
generated by the rotation of a figure bounded by a curve of
which the equation is » =1 (¢, 0).
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When the generating figure has revolved through an
angle ¢ 4 3¢, the equation to this curve becomes :

r=f($+3¢,0).

The solid bounded by the two corresponding generating
figures may be always so taken as to be within that generated
by the rotation of 'one of -them, ‘and' partly without that gene-
rated by the rotation of the other, through an angle 2¢.
Hence, ultimately, the required content is equal to that due to
the rotation of either figure; and, therefore, by the last article,

is equal to 3¢ f/rcostdbdr. Hence, the whole required
solid content is equal to

fffrcos@ded’rdcp.

149. Cubature by polar co-ordinates by direct investigation.
Let an assigned point S be the
pole; let SRQ be an assigned r
flane, and SR an assigned straight
ine in that plane. The position
of a point P may be determined
by the length (r) of SP, the radius
vector, 9§, the angle at which SP .
is inclined to the plane, and ¢, the ¢
angle at which the projection of
SP on the plane is inclined to the
assigned line SR.

(This is evidently similar to
a determination of the distance of S R
a point above the earth by its
distance (7) from the observer, its angular elevation above
the horizon (8), and (¢) its * bearing” north or south.)

In order to find the solid content bounded by a curved
surface and planes meeting it and passing through the pole
S, suppose that, by a number of planes passing through the
pole, the solid is divided into a number of pyramids having
all their vertices in 8.

The required solid content is greater than the sum of
the pyramids within it, and less than the sum of a cor-
responding set of pyramids partially external to it; and
as the difference between these two sums may be dimi-
nished indefinitely, the limit of either of them is the required
solid content.
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Let P, P’ be two 4
adjacent points in
the curved surface;

PSp=0, pSR=¢,
co-ordinates, of, P

9430, ¢ + 39,

co-ordinates of P’.
Draw through P, P’
respectively,  the
planes PQSp and P’Sq’Q’, perpendicular to the plane in
which ¢ is measured.  Also, draw the planes P’QS and
PQ’S, respectively perpendicular to the last-mentioned planes
through P, P’.  Therefore the angle PSQ = 3§ and
pSq =8¢,

Ultimately, P’S=PS =17, and the pyramid on the rect-
angular base P’P is an element of the required solid. Now
the content of such a pyramid = } area of base x altitude.
QP =¢'p=Sp.3¢ ultimately (assuming the proof given
hereafter, that the lengths of a chord and its arc are ulti-
mately equal). But pS=rcosf, .. PQ'=rcosbd¢p ulti-
mately.

Similarly, QP = 730 ultimately; altitude of the pyramid
= r ultimately; .. its content — 3rcos 03¢ . 730 . r ulti-
mately. The required solid content is the limit of the sum
of such elements, and therefore is equal to

Sy cosbdepds, or fff 72 cos b drde do.

This result is the same of the last article, in which the
same letters evidently signify the same quantities.
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SECTION XIII.
RECTIFICATION OF CURVES AND COMPLANATION OF SURFACES.

Axrom I. Of lines which join two assigned points, a
straight line is the least.

Axrom II. Of superficies which have an assigned plane
perimeter, a plane is the least.

150. Of all lines having the same extremitics as a given
curve, and met by planes which meet every point of it but
cannot cut it, the curve itself is the least. This proposition is
proved by an extension of a method given in the Author’s
““Manual of the Differential Calculus,” Art. 68.

Let AB be the assigned
curve, either plane or of ¢
double curvature. Then
lines joining A and B and
met by planes which meet
but cannot cut APB, are all
of some length, but not all
of the same length. There
is, therefore, one at least
of these lines which is the
shortest possible. Let (if
possible) ACB be one of )
these lines. Then, by hy- 4
pothesis, ACB is met by
the plane at any point P of APB. Two different lines
cannot have common to all their points, planes which meet
but cannot cut them; therefore, the plane through P may be
taken to cut ACB in two points E and F, Therefore, FE,
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a straight line, is shorter than FCE (Axiom 1). Therefore,
ACB is not the shortest of the lines in question. In the
same way it may be shewn that any other line than APB
is not the shortest, but a shortest exists, therefore APB is
the shortest.

151. Of all surfaces having the same perimeter as a given
surface, and met by planes which meet every point of it but
cannot cut it, the given surface is the least. Let APB be
the assigned surface,
having an assigned pe-
rimeter AaBb. Then,
surfaces having that pe-
rimeter and met by
planes which meet but
cannot cut APB, have
all some magnitude, but
not all the same mag-
nitude. There is, there-
fore, one at least of
these surfaces which is
the least possible. Let
ACB be one of these
surfaces. Then, by hy-
pothesis, ACB is met by the plane through any point P of
APB. Two different surfaces cannot have common tangent
planes at all their points. Therefore, the plane through
P may be taken to cut ACB, which cuts off from that plane
a plane superficies. This plane superficies is less (Axiom
II.) than the curved surface between it and C. Therefore
ACB is not the least of the surfaces in question. In the
same way it may be shewn that no other surface than APB
is the least. But a least surface exists. Therefore APB
is the least surface.

152. The length of a curve the limit of the length of
a polygon. Let AB be a nmormal to any curve, CBc (plane
or of double curvature) and Cc a chord intersecting the
normal perpendicularly at D. Draw ¢BE at right angles
to AB, and in the same plane the normal ACE, and CF
perpendicular to AC. ECF is a right angle; .. EF > CF.
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Let the arc ¢BC be of such i
length that its curvature is con-
tinuous; then F and the curve
are on opposite sides of touching
planes at all points between C
and B.  Therefore,  by: jthe last
article but one,

BF 4 CF >CB, but EF >CF; A D
‘. BE > BC.

Arc CB > chord CB > CD (a
JSortiort).

v

By similar triangles, o
BE: DC:: AB: AD. .

As the curvature is continuous, the chord Cc¢ ultimately
coincides with the tangent at B, when the arc CB is in-
definitely diminished. Hence, ultimately, AD is equal to
the finite line AB, which is the length of two ultimately
intersecting normals, and therefore is a radius of curvature ;
.. the limit of the ratio CD: EB is 1. Hence, since the
arc CB is between CD and BE in magnitude, the limit of
its ratio to either of them is 1,

. . CB .. . .. ¢cB
o limit —— =15 similarly, limit — = 1.
CD ¢D

arc
chord — 77

Hence it follows, that if in or about any curve of finite
magnitude be described a polygon of any number of sides,
the length of the curve is equal to the limit of their sum
when they are indefinitely diminished in magnitude and
increased in number.

. . CB¢ L
Adding, limit C—D(é =1, or limit

CoroLLARY. Let CDc¢ be the arc of a circle of which A

. CcB .
is the centre, and the angle BAC:Q:XC— according to

al

. CD .
the circular measure of angles. YChe sinf;

CB CB . [’
oo 1 = Hmit — = limit — = — = limit —.
1 = limit oD mib —= < = Sind
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Similarly, limit ~—9— = 1.
N tan @

153. Rectification of curves. If rectangular co-ordinates,
(2,9, z) and (2 + dz, y + dy, # + J2), define two points in
a curve, the distance between,them is (3a® + 3y° + 32°),
which is the length of the chord. Hence the length of
the curve is the limit of the sum of quantities of the form of
(Fa® + 3y* + 327k

. dy*  dz*\}
= 1452 + == ) da
‘/( +/la:"+fla:3>d'z
When the curve is plane oue co-ordinate may be omitted,
and the expression for the length of the curve becomes

’ dy*\*
1 = &.
./ ( + dwe) da

154. The superficies of « curved surface is the limit of the
superficies of a polyhedron. Lst a polyhedron of any number
of sides be circumscribed about a curved surface which is taken
of such magnitude that its curvature is continuous. Then
all tangent planes of the curved surface cut the polyhedron.
Therefore (Art. 151), it is greater than the curved surface.

Within the curved surface inscribe a similar and similarly
situated polyhedron. It is clear that planes may be drawn
through every point of this polyhedron, which do mnot cut
it, but cut the curved surface. Therefore, by the same
article, this polyhedron is less than the curved surface.

Also, in a continuous curved surface, an inscribed plane
ultimately coincides with a tangent plane when the surface
subtended is indefinitely diminished. Therefore, the edges
of the inscribed and circumseribed polygons ultimately coin-
cide, and the limit of the ratio of the lengths of two homo-
logous edges is 1 (Art. 15R).

Also, their homologous sides, being in the duplicate ratio
of their homologous edges, have 1 for the limit of their
ratio. 'Therefore, the surfaces of the polyhedrons are ulti-
mately equal. Consequently, the curved surface between
them is ultimately equal to that of either polyhedron.

155. Section of a parallelopiped. The following proposition
will be required in determining the complanation of solids.
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Let ABCD be the base of a rectangular parallelopiped, of
which the sides AaD, 4B, bC, ¢CD are cut by the plane
abeD, which is a parallelogram, Its area is required.

In the right-angled triangle aAD, aD? = Aq? + AD?, (1)
Similarly, D¢* = DC? + Cc?, (2.) To find the distance ac,
let a perpendicular ce be drawn from ¢ on to Aq. Then
a¢ = Aa — Cc, and in the right-angled triangle ace,

ac®=ce* + (Aa — Ce)’ = AC® + (Aq — Cc)?
= AD® + CD® + (Aa — Cc)®, (3.)
In the triangle aDe, by a trigonometrical formula,
ac® = aD? + ¢D*— 2aD.cD cos aDC; or from (1), (2, (3)
AD? + CD* + (Aa — Cc)* = aA? + AD? + DC? + Cc?
— R (aA® + AD*)}(De? + Cc*)tcosaDC;
<. Aa.Ce = (aA® 4 AD*)} (DC? 4 Ce2)i cosaDC;
also required area abeD = gD . ¢D sin aDc, and

y .

sin®aDe = 1 — cos®aDe; .. (abeD) = )

(aA? 4+ AD?)(DC? 4 Cc?) {1 -, Ad®.Cd
(aA* + AD*) (DC? + Cc*)
abeD=(aA®. DC’+ AD®. DC? + AD?. Cc?),

156. Complanation of surfaces. Let the surface be re-
ferred to rectangular co-ordinates @, y, z. Also, suppose the
surface be cut by several planes parallel to the planes zz, y«,
respectively. Then, by Art. 154, the surface is equal to the

F
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limit of the sum of the sides of an inscribed polygon, and
therefore is equal to the limit of the sum of parallelograms
inscribed within the surface and bounded by the supposed
lanes.
g In the last figure, let AD be parallel to the axis of a;
AB to that 'of 'y} "Aa/'to-that-of'2; and let (x, ¥, z) be the
co-ordinates of D and DA =38z; AB=20y. Also let D, a,
and b be three.points in a curved surface. Then, if in the
equation to the surface, when & is increased by 3, and y
does not increase, z be increased by 3,2, Aa =23,z Simi-
larly, if 3,z be an increment of z, due to an increment
3y, @ mot increasing, Cc =732 Therefore, by the last
article,

abeD = (8,2° . 8y* + 84 . 8y + 8,27, 8a")h

Hence the required surface is equal to the limit of the
sum of terms of the form

z2

8,2° 8,
8y°

,(1+8w2+

or the surface

- fiea i (22) < ()

where the parentheses indicate partial differential coefficients.

)& 32 8y,
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SECTION-X1V:
INTEGRATION OF DISCONTINUOUS FUNCTIONS.

187. TuE Definitions of Integrals, Arts. 17 and 115, were
restricted to finite continuous functions of a finite variable,
and the principles of integration were established on the
tacit assumption that the integrals were finite exact quantities,
and that, consequently, each function integrated had a single
determinate velue for each value of its independent variable.

If, therefore, a function be discontinuous, or have infinite
or indeterminate values between the limits assigned for inte-
gration, or if either of these limits be infinite, the preceding
defimtions do not z;pply to it. It may be observed, that the
ticeuracy of most of the foregoing theorems depends esgen-
tially on their application to finite functions, and ig violated
by the violation of this condition.

158. The following is an instance of the errof that would

arise from application
of the theorems of the y
preceding sections in
neglect of the consider-
ation of the last para-

graph.
Tet y=— be the
&

2

equation to a curve re- 2
ferred to Ox, Oy, as

rectangular axes. These N
axes are asymptotes of ‘

the curve, which has two similar branches.

The area included by any dportion of the curve, the ordi-
the axis of #, is equal to

JSydz between corresponding limits (Art. 19), if the func-

nates at its extremities, an

tion integrated be finite and continuous between those limits.
Therefore, the drea

F R

eteay
LAY

seny
ees
oo.a.:
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if OA=ga, Ob=10. This value of the area is increased
indefinitely as & is diminished. We may, therefore, make
the area APQ) as large as we please by taking the point
b near enough to O.

If, however, we integrate from a to — @, we find the area

APypa = 2
ypa = P

if 0 =—a. And this result is evidently erroneous, for it
gives the expression for the area, which ought to be positive
(Art. 115), a negative sign, and it makes it equal to a finite
quantity; whereas it has been proved, that of the area a
portion may be taken indefinitely large. The error arises
from integration through an infinite value of the integrated
function.

159. The meaning, then, to be assigned to integrals of
functions which are infinite or discontinuous between the
limits of integration, is up to this place purely arbitrary; a
definition of such integrals may, however, be given, which is
so strictly analogous to the preceding definitions, as to render
obvious the@methods of extending to discontinuous functions
the principles already demonstrated.

Derivimion. If fa become infinite, impossible, or dis-
continuous for either or both the values z#=a, 2=>, but

a
not for intermediate values, let ﬂ Sz dz be defined to be

-3
the limit of ﬁ -T—B 'fadz, when 8, and 8, are any continu-
2

ous quantities which have the limit zero; « — 8, and b+ 8,
being values of @, between « and b.

More generally, if f# become infinite, impossible, or
discontinuous for the finite number of values «a, 8, c...m,
and for none else, of x between X and x, let, by analogy

X
with Art. 27, ﬁ fuda be defined to be the limit of

x as¥, =¥y
-[;+31fx w+ﬁ+32 S w—f-‘[_’_33 Sfeda + ...
m—3,
+ [T fads e (a)
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when 8, & ... are any continuous quantities which have
the limit zero; @ — &, and b + 8, being between « and b,
b~ &, and ¢ + &, between b and ¢, &e.

X
160. Principal values of integrals. The value off Sade,
J x

as just defined, may be dependent on the relative magni-
tudes of the arbitrary quantities 8;, ', ... If these quantities
be assumed to be all equal, the integral has then what is
termed by M. Cauchy its principal value.

ExamvrrLe.—The following is an instance of an integral,
of which the value, according to the above definition, is
essentially arbitrary :—

+a da .. a dx -3 dx
‘/__a —;-hmlt(‘/31 . +t/:w 7)
.. o dx '32 d:v
=1 —_— —_ 't € ,I .
1m1t<l/3: p +‘/a o ) Art. 39, IV

= limit log, ;_I = log, (]imit—% ) , (Art. 15,)
a quantity to which any value whatever may be assigned at
pleasure, by assigning a corresponding relation between the
arbitrary quantities 8, 3,.

If in the preceding result 8, =8, we have the * principal ”
value of the integral equal to log, 1 =0.

161. Condition that integrals may be determinate. Ivery
function which is finite and continuous between any exact
limits, either continually increases or continually decreases,
or alternately increases and decreases an exact number of
alternations. Take two limits, between which it continually
increases or decreases. The integral of the function between
those limits is (Art. 22) between its two finite quadratures,
and is, therefore, a finite quantity. It is also determinate,
not arbitrary, for the only arbitrary quantities in the quad-
ratures disappear from them in the limit, Art. 26. Also,
the whole integral between any finite limits is the sum of
integrals, such as that just considered, and of which the
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number is that of the alternations referred to. Therefore,
the whole integral is an exact quantity.

If, however, the function to be integrated be not always
finite and continuous between the limits of integration, the
integral is the limit of the sum of the integrals of (a) in
the last article, biut; one. ~If, the limit of all of them be

. X . . . .
finite, / Sadz (their sum) is finite. It is then also
X

determinate. For each of the integrals of (&) is determinate
according to the last paragraph, and the only arbitrary quan-
tities ,, &, ... disappear in the limit.

Hence, when / X Jadz is either infinite or indeterminate,
the integrals in Ed)xhave not all finite limiting values. If those
which are infinite in the limit he all positive,ﬂ Xf.wl:v
is evidently equal to + o; if they be all negative, to — co.
Hence, the only case in which‘/;xf:vdm can be inde-

terminate or arbitrary, is when more than one of the inte-
grals in (&) are infinite, and have different signs in the limit,

X
when f Sada takes the indeterminate form (adding to-
X
gether the infinite quantities with like signs) o — o .
. . ra dx .
TFor instance, in the last cxanlple,/ - 5 the limit

J —a
of the sum of two integrals, of which the first has the limit-
ing value + o, and the second — co.

162. The preceding principles may be illustrated geome-
trically. First, with respect to finite continuous functions:
let y be such a function of @, and @, y, the co-ordinates of a
plane curve which will be wnbroken, since the function is
continuous. Whatever may be the form of the curve, a finite
area is included by a finite portion of the axis of @, the
ordinates at the extremities of that portion, and the arc

between them. But this area is equal to./_z/da:, taken be-
tween finite limits.

Next, let the function be not always finite and continuous.
Then it will be represented by a curve, y = f, which has
infinite branches, or breaks, or both.
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Where there are breaks only,
as from B to C and D to F, and
not infinite branches, let o and &
be the values of # at the points
a and b in the diagram. Then
the area ¢ AB{ i3, evidently equal

AVASH
to the limit of/ ' ydz, a
+ 2,

a
finite quantity. Simifarly, the
areas bounded by the other parts
of the curve are expressed by the limits of integrals of the

23

X
form of those in (a), Art. 159; and the quantity/x Sfeda

in that article represents the whole area of the curve, which
is equivalent to the sum of the areas of its parts.

If the curve be of the form
AB, CD, and have no values of y
between Bb, Ce, the function is |v D
impossible for the infinite num- ¢
ber of values of z greater than
0b and less than Oc. Then the R
definition of Art. 159, which is
restricted to functions with a finite
. number of impossible values, is

inapplicable. In order to inter- ° V]
pret geometrically or analytically
integrals of such functions, another definition would be re-
quired, as essentially arbitrary as that just mentioned.

Next, let the curve have infinite ordinates y for finite
values of #. These ordinates are asymptotes of the curve,
and the area bounded by the infinite branches of the curve
may be finite, ag in instances given in Arts. 126 and 127.
If ordinates y be all positive, these areas are positive,

xr

X
and their sum is the quantit; axdzx, which is now
q Y )

under consideration. If some of the ordinates be negative,
the corresponding areas are negative (Art. 185), and the limit
of some of the integrals in (@), Art. 159, will be negative ;

X
so that Jadz, the algebraical sum of the limits of those
X

integrals, will represent the difference between the total
areas on opposite sides of the axis of z.
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X
Lastly, let the curve be such as to represent f fedx
Jx

in the form o —o. The
curve, of which the equation y

. 1 T
is y=—, has two.similar in-
@

finite branches; one on the 5
positive and one on the nega-

tive sides of both axes, which \
are asymptotes. Let OA=a, A in [~

OB=3,. The area BbaA

__/*adx__lo a
VA gSJ'

Let OA) = — a,

=

OB’ = —§,;

’Tm (Art. 135)

area B'V'a’ A’ = /

o —a

3, da S
= " — (Art. IV.) = 2,
/; - (Art. 30, IV)) =log =

o/

’ -3,
The integral “ds is the limit of‘/a@ + / 2dz
—a & 31 x J —a X

= limit of (area BbaA — area B'6’a’A’) as B and B’ ap-
proach O. But the difference between these two is arbitrary,
for it depends on the ratio of the two arbitrary quantities
OB, 0B’. If we choose to assume OB = OB’, the two areas
BbaA and B'ba’A’ are always equal; their difference is
then zero, which is, therefore, the * principal” value of the
. a da

integral —.
—-—a &

163. Integrals with infinite limits. The definitions of
integrals (Arts. 17 and 159) were restricted to finite limits.
The extension of the definition to integrals with infinite
limits, may, by obvious analogy with preceding cases, be taken
to be the limit which the integral with finite limits approaches
when either or both limits are indefinitely increased.



INTEGRATION OF DISCONTINUOUS FUNCTIONS. 105

164. Multiple integrals of discontinuous functions. Many
of the principles of this section respecting integrals of one
independent variable may be extended to multiple integrals.

For instance, it was shewn in Art. 118, that the result of
multiple integration |of)finite_(continuous functions is the
same in whatever order the several integrations be per-
formed. This principle does not hold for functions which for
particular values of the independent variables between the
limits of integration become infinite.

y—2a . .
= if « first approach the limit 0
gy " "

and then g, has the limit o ; and, if v first approach the
limit 0 and then , has the limit — . We cannot, there-
fore, affirm, that

@ b P —a?
./—a(l$/—-b clg/m—w, and

b @ y'z — 2
d / dr—5—ur,
./—b 'S @ gy

have the same result.

Tor example,

P —at —y — 20b
2 232 dy = 2= 3 2?
(@ +°) 4y A+
taking the integral between limits, y = & and y =— 0,
dz z a
— 2 [ s—F=—2tan! = —4tan1 -
oy an= 2 4 tan A
taking the integral between limits, # = ¢ and & = — a.

Now reverse the order of integrations.

‘/‘yZ—midx.: A‘m _ .,Qa _
@t + 4y g+ a

d
Qa y,z—_f? = Qtan“lz = 4 tan~!

= el

3
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taking the integral between the same limits as before.
Hence the two results differ by .

4 tau‘lg—é + 4 tan‘lzi =4 <~:— — tan™! — > + 4 tan™! b 2.
) o ~

165. In order that multiple integrals of discontinuous
functions may be the subjects of exact investigation, a new
arbitrary definition is requisite. The following is an obvious
extension of the definition for discontinuous functions of one
variable.

DErix Omit ranges of values of the function be-
tween arbitrary limits which include the discontinuous values.
Integrate the function for the rest of its values. The limit
of the result when the ranges of excluded values are as far
as possible contracted is the required integral.

166. To illustrate the definition, suppose, first, that there
are only two independent variables, # and y. Consider them
to be rectangular co-ordinates of a point, of which f (@, »),
or #, 1s the third rectangular co-ordinate. Then z = f (=, )
is the equation to a surface. Suppose, first, z to become
infinite only when drawn from an isolated point («, &), in the
plane of @, y.

Now, inclose the isolated point by any contour in that
plane. Then integrate for all values of z drawn from points
1 the plane of @, 7, without this contour. The result is, the
volume of the solid under the supposed surface, minus the

content of a tube swrrounding the infinite ordinate. The

analogy with the preceding definition requires that the bore
of the tube be diminished indefinitely. Now, the bore or
contour may diminish an infinite number of ways. Its
ultimate form may be any curve or a point.

Again, all things else remaining as before, let » be infinite
when drawn from any poiut of some finite curve in the planc
@, 7. Surround this curve by a contour on the same planc.
"I'he solid, minus the content of the tube, having this contour
for its bore, is taken as before; but in this case the contour
necessarily contracts into the assigned curve.

167. If the function include three independent variables
@, 9, #, we may regard f (=, y, #) as some kind of magnitude
(a mechanical magnitude, for instance,) which depends on
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the position of points in space. Then, without assigning a
meaning for the integral, we may suppose that the function
becomes infinite, either at an isolated point, or at all points in
a certain line, or all in a certain surface, or all in a certain
solid. In eithen casé; suppose the point or points surrounded
by a surface. The required integral is the limit of that
of the remaining solid when the surrounding surface is con-
tracted to the utmost. When its ultimate form is a surface,
the equation to it gives one relation between the variable
limiting values of #, y, #; when the ultimate form is a
line, the equations to it give two relations; when the ul-
timate form is a point, three. In the same way with =
independent variables, it may be conceived that 1, or 2,
or 3 ...or = such relations exist, of which, some may be
arbitrary.

168. The required integral, consequently, may depend
on arbitrary relations, and itself, therefore, be arbitrary.
‘Where, however, the function is such as to be infinite only
for isolated values of the variables, and is the same in what-
ever manner the ranges of the excluded values are con-
tracted, the following method gives the required determinate
result.

Let a function f (2, y, @ ... s, ) become infinite or dis-
continuous for a finite number of values of the independent
variables of which those of » are «,, a,, a,, ... @,, and none
elsc between R and r.  Also, let the required integral

“ar [ Ta * ar
./Z‘ z/y yﬂ r (2, Y )

R
be reduced (Art. 117) to the formf F(r)dr, by the
N T

successive integration of f(z, 7 ...7), and other functions
(which have not discontinuous or mﬁmte values until a,, a,,
@, ... be substituted in them for ). Then the required
integral may be considered to be the limit of

d / e
‘/al-}—B ) r +32, nt ay+ 3, (7)(7—*_“‘

-y
+ [T @,
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when 8, 8 ... are any continuous quantities which have

the limit zero; «, — 8, and @, + 8, being between a, and
Y

@y @, — 0, and a, 4 8; between a, and a,, &c.

169. Theintegral is\independepi-of the order of integration.

Let s designate the independent variable preceding # in the
order of integration of f(2, 7 ... s, 7), so that

S
/s‘ f(r,8)ds =Fr,

Just referred to. The integral is, by the preceding suppo-
ition, the limit of

* R S ’“1"’311 8
Soindr [ S ds + f O dr f Ve g ds

a —3 8
T [ s (1)

Let &, b,... b, be the values of s, which correspond to
ay, @, ... a, of r, to render the original function discontinuous
or infinite. It is required to shew that (when ¢, ¢, ... have
the limit zero) the limit of

/‘S 7 ,Rf' d bl—'lld Rf d
St (/sJ/r (r, 8)dn +ﬂ2+‘2 s/, (ry )dr + ...

(¥

is the same as that of (1), if that be not arbitrary.
For brevity, omit all the symbols of integration except the

limits. Then SS indicates the operation of integration of

f(r, s) between limits S and s. Then, since f(r,$) is a
continuous function, while the value of » is general,

’
$

S S bl+51 bl—sll b2+'2 bm+£m. bm_ n
+ " + b"l—a’nl + 8

5 Ute b—¢) bte b,—¢'y

by Art. 27. Therefore (1) becomes, supposing the operation
written outside each bracket to be performed on all within it;
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R js b +£1 m m bm_‘lm}
a+3 (44 I’l“l +‘x + + +5

a+7¥, { bitey | b—¢
ay+3; (B4 Vb e Ul

+ &e.

bm+ m bm - "m
+'"+bm—‘lm +B } (I)

8 bits | b—¢

+ a’!ﬂ_slﬂ{
r byts b= byt

b e b —s
m m m m
bk }

In the same way (2) becomes

s R atd; | o=, @,+3, =¥, }

b+, {“1‘*‘31 a,—?%, a2+3,+"'+a -¥ +

b—s, {R o+, a— a,+3,  a —

vee m Y II.

bytsy “1+31+“1—BI1+ 3 + + m }( )
+ &e.

b —s (R a+3  a, =¥ a +3 a —¥

m °m 1 1 1 1 m T 'm m m
+ ] {al-}-Bl a, =¥, ay+d, Foee +a,m—3'm+r }

It will be found that the alternate expresswns, beginning
with the first and ending with the last in the {}, corre-
spond to integrals which are common to (I.) and (IL.).
Hence, the difference (I.) — (I1.) does not contain those
integrals.

Of all the remaining integrals, the limits written in the
{ } indefinitely approach each other when ¢, ¢, ... 8, &,
approach zero. Hence, the limit of each of these 1ntegrals
is zero. Consequently, as their number is finite, the limit
of the difference (I.) — (IL.) is zero. Therefore, (1)and (2)
have the same limit. This result shews that it is immaterial
with respect to which independent variable the final inte-
gration is performed. And, with respect to all the other
independent variables, the order of integration is proved to
be independent in Art. 117.
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SECTION XV.
DEFINITE INTEGRALS.

170. TeERE are many functions, as has been already
stated (Art. 40), of which the indefinite integral cannot be
expressed in finite terms by ordinary algebraical, logarithmic,
and circular functions; where, however, general integrals

" cannot be found, integrals between particular limits may be

. . [
frequently determined. For instance, , € * dx cannot

be expressed by a finite number of algebraical or trigono-
metrical functions of @ and &; but

® —a? )
0 € de =

as will be presently shewn.

The subject of definite integration is of great importance
in difficult mathematical investigations, and it frequently
happens that the particular limits between which definitc
integrals can be most readily determined, are those to which
such investigations lead. The scope of this treatise will not
allow of more than a very brief notice of one or two of the
most important principles of definite integration.

»
~

. 1 1 \»~1
171. The second Eulerian 11?tegml.ﬂ (logs ——) dz,

® 1
which is equivalent tof 2" le*dx when log, — = @,
0 z

derives its name from Euler, who first investigated it. It is
designated by Legendre by the symbol T'(z), where = is
positive. The integral is evidently a function of » only.

o]
172, To determine A‘ a" e *dax, where n s a positive

[ &
integer. In Art. 80, write P=¢€"; .. Py ="~ a”! €7,
P, =a2e", &e. Therefore,
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/w" e dr =€ (072" + a* . na"!
+o? n.n—1.274+ ... a0t n.n—1...2.1).

When z betomes | infiniitel (@€ 1 has the limiting value
zero, by evaluation according to the methods of the Diffe-
rential Calculus;

o]
ﬁ @ e dy =a-"+D1.2.8...n. When a =1,

ﬂmx"e‘”a’x:l.%.?y...nzr(n+ 1)
by the last article; T(2)=1; r(3)=1.2; r(4)=1.2.3, &c.;
1°.22.8...p°=[T(p + 1)~

(o]
178. To investigate ‘/(; a" e da, when n is not an

integer. Changing @ into ax in the equation

o]
ﬁ & ¢ *da=T(n), we have

0 T
/ e de = —(72 ...... (a),
. 0 al /

for all positive values of z. Integrating by parts,
f ede=— 2" +n f e da.

Taking this between limits # = and =0, we have
I'(n 4 1) =nTn for all finite positive values of #. Similarly,

Fz+2)=@n+1)r(z+1), T(+8)=n+2)r(n+2), &e.

174. The first Eulerian integral. TIn (a) Art. 173, write
p+gq forn,and 1 4+ for . Then

‘/‘ @ apta-le—(140)7 I — T(p+4q)
0 L+ g

. Multiplying by y¢'dy, and integrating between limits
w and O,
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7 o ©0
/0 ‘/O' a;l"’r"l"ly’l"]e—(l"'.’/)l‘dydx

_ © yildy
=r(r+9) [, i

The multiple integral may be integrated first with respect
to », cousidering & constant (Art. 117). The resulting
integral is similar to that of (a) Art. 173. Hence, the
multiple integral becomes

o T [ce]
/ —q-e-’x”’l"‘d:v:rq ("7 emrar-liy = I'q.Tp.
Jo oozt J 0

Whence from the preceding equation,
Tp.Tg w yi-ldy _
F(p + 9) —vﬁ (1 -}—:(/)P+q - (P | q)

The integral is called the first Eulerian integral, and is
designated by the symbol (pl¢), by Cournot. The pre-
ceding formula is the fundamental relation between the two
Eulerian integrals, It is evident from it that

(rle) =(¢1p).
175. Uliimate ratios of Eulerian integrals. In the first Eu-

lerian integral put 1 4+ y = €”. Then, when y=0, 2=0;
and when y = o, = o; so that the limits of the integral

1 2
are not changed. Also, dy =]—7 e?dz, and the integral

becomes
Z z Z
/‘ (e’ — 1)1 eldz f o (er — 1)q-‘(zy
0 2 “Jo -
v p+q (q 1)
pe’ pee’

o -z
=p‘qﬁ {p(Q—e »)}ele2dx

All the steps by which this result is obtained hold when
p is indefinitely increased. Then the quantity in the { }

may be put in the form 0

o’ and by evaluation by differentia-
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tion becomes 2. Hence, when p is indefinitely increased,
the first Fulerian integral

(»1¢) becomes p~? Parlemtds = 1.
0 p!

Therefore, substituting in the last article for (2| ¢),
rp 1 r(p+9_

T(p+gq »p7 Tp

when p is indefinitely increased.

If in the last result we put for ¢, successively, 1 4+ % and
1 — », and multiply together the results so obtained, we have

1=+ 1+m. T(p+1—n

P rpr
=I‘(p+ 14+2).T(p+1—n)
[r(p + 1)

(Art. 178), when p is indefinitely increased.

176. Multiplying together a series of the equations at the
end of Art. 173, p + 1 in number, and omitting common
factors,

91.7z+1.n+2...n+p.=r_(7.2_;(%ﬂ,
: .= 2t 1=,
1=%.2—n.3—n ... p—n.= A=)

writing 1 — » for #, and p — 1 for p. Multiplying together

these two equations, we have

12—n? . B—n® . 3¥—n?... p°—n?
_Ip+n+r(p—n+l
- nTnl (1 —n)

n? n® n? n’
1—F . 1—?2 . ]—-3—_J l—}—);
_I(p+n+)T(p—n+1) 1
- 12.2%.8% ... p? nT(n)T(1—n)
_T(p+a+l).T(p—n+1) 1

[r(p+1p ’ nr(n)l‘(l—n)'
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By Art. 175 the [irst fraction on the second side of
this cquation converges to the value 1, as p is indefinitely
increased ;

n? n? n? 1
11—y 1 i ad inf, ———————

AR 5 35 ad inf nT ()T (1 — )
sinnr 1

,or T(n)T(l—n)= S

nw  al (2)T (1 —n)
Hence when 2 = &,

\ N 0]
r@P=m r@)=r= /(; e da.

.. 1 n—1 T
Also, writing — for n, r (—) T ( = ,

v n n .
sin —

2 2 n—2 T

— for =, T ~) r = ,

n n n . 2
sin —

—1 -1
z forn, T (n ) rlo__ T
n

Multiplying (2 — 1) of these equations together, and re-
R .on—1

. R
membering that sin— .sin—-... sin
° n n

we

T = ——-——2"_1 N

have

1 Q N — 1 2 it . 211-1
[r()r(d)or () T= 2522
n n n n

@ .
From A aYe*da = =}, we easily find

(¢

oo . Y
/O' e dx =}, putting x* = a.
L=

(o]
177. To investz'gat% dz e cosra. Integrating by

parts,
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1 7 .
/d:c € CoSry=— — €08 1 & — —/e‘” sinradx
a @

dm —ars' .__1 —ar o . 1 —ar d .
€ mnre = 7 smre + 2 € ecosrade;

aCcosr2 — rsinra

fdw € esrr=—¢€ W —p—s——
a4+ r°

asinra — rcosra

du’v G_‘n Sinra’ = - G—dI = s
a + re

These integrals are to be taken between limits # = » and
x=0. When a is positive and not zero, € is zero at the
former limit, at which also the fractions on the second sides
of these equations are finite if a and » be not zero, since
sines and cosines are finite by their definition. Again, when
@ has the limit 0, €* =1 if @ be finite; the numerators
of the fractions become @ and r respectively, if ¢ and » be
finite. Hence

o a
Az e cosrae = —,;
0 a®+r

md —ax o3 r 1
ﬂ resinrey = prprp RULL (1)

178. Sine and cosine of an infinite angle. If, in defiance
of the restrictions with respect to @ and », by which these
results are obtained, we put ¢ =0, » remaining finite, and
assume that ¢**=1, for all values of z between its
limits, the results apparently become

© ® . 1
f dwcosraz = 0; f dasineg = —...... (2)
0 0 7

whence, since

sin ra . cos 7
dacosra = o’ dasinre =— ,
o

it would follow that cos @ = 0 and sin o = 0.

But it is essential to the evaluation of the original definite
integral that e = o, when # = o ; a condition which re-
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quires an arbitrary relation between 2 and e« if the latter
have the limit 0. Moreover, the supposed values of cos @
and sin o violate the relation sin® 4 cos® = 1, which is part
of the very definition of “sine” and  cosine.”

The antecedent objection to assigning a definite value to
the sine/\6r/\éosine (0f)lanGinfinite angle 1s perfectly insuper-
able; for, however great a number of times the radius
describing the angle revolve, the sine and cosine will vary
from 1 to — 1 in the course of each revolution.

The correct statement to be substituted for equations (2)
appears to be, that the original definite integrals of €= cosra

. .. 1 .
and e sinsra, approach the limits O and - respectively,
I

when « approaches the limit 0, » remaining finite.

Since equations (1) are true for all finite positive values
of @ and », let »* =na where n is any arbitrary number.
Then, the first equation of (1) becomes

/ ® da e cos (na)la = L
J U a+n

If it were allowable to put @ =0, we should have in strict
analogy with (2), ./0. P da = 1—1L S = % any finite arbi-

trary quantity, — a result which obviously contradicts the
fundamental principles of the Integral Calculus.

T

w
179. To investigate /0 dw e cos*ex. By integration
by parts twice, it is easily found that
siny — acosx Qeer
a* + 4 a(a’*+4)
When @ = o, € is zero for all positive values of a not
zero, and therefore the second side of the preceding equa-
tion vanishes. When 2 = 0, the same side becomes
a 2 .
at+4  a(a*+4)’

® . a4+ 2
/ e cos’ede = —————~
Jo a(a® +4)

»
/ dx e cos’w = € “cosx
T
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180. Differentiation of definite integrals. The differential
coefficient with respect to ¢ of a definite integral

ﬂ af(w, c)da,

is found by differentiating under thé_f the function f(z, c).
Let F be the integral, and 3F its increment, due to an
increment ¢ of ¢; and let df (2, ¢) be the corresponding
increment of f(z, ¢).

3_f=ﬂaf(a;,c+Bc)dx—ﬁaf(x,c)dx
=‘/I:a{f(a:,c+80)—f(x, c)}da,

Sf _ redf(z o df _ paedf(z,c)
Bc_ﬂ de dz, andl-l—c_ﬂ Jo dr,

when 8¢ has the limit zero.

T o

181. To investigate / de e % coscx. The prin-

0
ciple of the last article 1s remarkably illustrated by this
integral. Calling it F,

dF ® —ata? o
%_—ﬁ dz2x ¢ Sin2c¢a vieune (1)

o oo
= 0(a‘g.e‘““’51n20w)—2ca—9 o dz e ** cos 2cw,

integrating by parts. The quantity in the bracket disappears
when taken between the assigned limits, for all finite values
of ¢, a not being zero;

dF dF
. — =—2Q2ca*F; .. — ==—R2ca*.dc.
de F
Integrating, log, ¥ =—c%a™? + a constant, or F=C e~¢*s™%

Equation (1) and all that follow from it are true for all finite
values of ¢, positive or negative. Therefore, if in the last
equation, ¢ having the limiting value 0, we have
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[ 1 (]
C =‘/(; dx e = é—ﬁ z e de,
i a

: 3
putting a®2® = z. Hence, by Art. 176, ¢ = ;— ;

bl

bt 2,2 7t 2q—2
/ dx e—“ cos e = — e—¢2a~2,
0 Ra

This integral is duc to Laplace:—Meémoires de Ulnstitut,
1810.



APPENDIX.

DEMONSTRATION OF TAYLOR'S THEOREM.

Lur any function (f) of a single variable and its suec-
cessive differential coefficients (f/, f”/, &c.) be finite and
continuous for all values of the variable from a to a + 7.
In the expression

a1 x

'/ —_ " ig-__ — n—1 — "
Slata)—fa—fa.z fa1'2 =S x'1.2...n—1 R1.2...n"'(1)’

let R be such a finite quantity, not involving =, that when
2 =T the expression = 0. It is also zero when a = 0.
But a function which is zero for two different values of its
variable cannot be always increasing nor always decreasing
in the interval. Hence there is some value () of @ be-
tween 0 and %, for which the differential coefficient of (1)
(i. e. its rate of increase) is zero; or,

an—l1

Flata)—fla—fac—f"a £ =R

1.2 ‘1.2.2—1"" @)

is zero when @ = a,; (R) is zero also when 2 =0. There-
fore, as before, there is a value of z between @, and 0,
for which the differential coefficient of (2) is zero. Con-
tinuing the process to 7 differentiations, we have, finally,
J"(a + #) — R =0, when z has some value between 0 and A.
Let this value be 6 where 0 is a proper fraction. Then
R =jf"(a + 01), Substituting this value of R in (1), and
putting (1) = 0 when & =7,

7/ 4 }LQ’ "N ’L’L
f(a+7b)—f(a)+f a.h +f a m + e +j ((Z + ell)my
which is Lagrange’s Theorem on the Limits of Taylor’s
Theorem.
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If the last term of this series become zero when = is
sufficiently large,

. h
fla+h)y=fa +j’a.h+f”a.] 5

+ ... to convergence,

which is Taylor's' Theorem.

This demonstration is a somewhat simplified form of one
originally published by the Author, in the “Cambridge and
Dublin Mathematical Journal,” vol. vi., p. 80, and reprinted
in his “ Manual of the Differential Calculus,” Art. 54.

Q. TAYLOR'S THEOREM DEMONSTRATED BY INTEGRATION.

By successive integration by parts,

ff’(a—{-h—z)dz:zf’(a—{-h—z) +‘/‘zf”(a 4+ h—2)dz

a2 2
=zf'(a+h—z) +f—§f”(a+lc—z) +‘/.-1—%f’”(a+h—-z)dz

= &e.

7 " 2* 11 23 11 A
=zf (a‘*‘h"‘)"{‘l 2f (a+k—2)+mf (@+7~2)+ ..

am—1 , R .
+ S gy i

Take this result between #=7% and #=0. The first side
of the equation becomes, by Art. 39, (IIL.), f(a + h)— fa.
Then, transferring fa to the second side of the equation
taken between limits,

fla+1)=fa+fah +f”a.h+ Foun

" et h—2)d
0 Toamt/ Wth =2z
which expresses the remainder of Taylor’s series by a definite
integral.

G. Woodfall and Son, Printers, Angel Court, Skinner Street, London.



PRIZE MEDAL, INTERNATIONAL EXHIBITION. 1862
was awarded to the Puablishers of
‘' Weale's Series.”

A\ 7, Stationers’ Hail Court,

frde e May, 1872,
1 NEW LIST
7 or
WEALE’S

RUDIMENTARY, SCIENTIFIC, EDUCATIONAL
AND CLASSICAL SERIES,

OF WORKS SUITABLE FOR
Engineers, Avchitects, Builders, Artisans, and Students
generally, as well as to those interested in Workmen's
Libraries, I'ree Libraries, Literary and Scientific Insti-
tutions, Colleges, Schools, Science Classes, dec., de.

*,* THE ENTIRE SERIES IS FREELY ILLUSTRATED WHERE
REQUISITE.

(The Volumes contained in -this List are bound in limp clotk, except
where otherwise stated.)

AGRICULTURE,

6. CLAY LANDS AND LOAMY SOILS, by J. Donaldscn. 1ls.
140. SOILS, MANURES, AND CROPS, by R. Scott Burn. 2s.

141, FARMING, AND FARMING ECONOMY, Historical and
Practical, by R. Scott Burn. 3s.

142. CATTLE, SHEEP, AND HORSES, by R. Scott Burn. 2s.6d.

145, MANAGEMENT OF THE DAIRY—PIGS—POULTRY,
by R. Scott Burn. With Notes on the Diseases of Stock. 2s.

146, UTILISATION OF TOWN SEWAGE—IRRIGATION—
RECLAMATION OF WASTE LAND, by R. Scott Burn.
2s. 6d.

Nos. 140, 141, 142, 145, and 146 bound in 2 vols., cloth boards, 14s.

177. CULTURE OF FRUIT TREES, by De Breuil. 187 Wood-

cuts. 3s. 6d. [Now ready.

-~

LOCKWOOD & CO., 7, STATIONERS’ HALL COURT.



2 ARCHITECTURAL AND BUILDING WORKS.

ARCHITECTURE AND BUILDING
16. ARCHITECTURE, Orders of, by W. H. Leeds. 1s. G4.) Iﬂll
17. ————————— Styles of, by T. Talbot Bury. 1s. 6. _fz?e}’t.

18, —— st Priinciples ofDesign, by E. L. Garbett,  2s.
Nos. 16, 17, and 18 in 1 vol. cloth boards, 5s. 6d.

22. BUILDING, the Art of, by E. Dobson. 1s. 6d.

23. BRICK AND TILE MAKING, by E. Dobson. 3s.

256. MASONRY AND STONE-CUTTING, by E. Dobson. New
Edition, with Appendix on the Preservation of Stone. 2s. 6d.

30. DRAINAGE AND SEWAGE OF TOWNS AND BUILD-

INGS, by G. D. Dempsey. 2s.
With No. 29 (See page 4), Drainage of Districts and Lands, 3s.

35, BLASTING AND QUARRYING OF STONE, &e., by Field-
Marshal Sir J. F. Burgoyne. 1s. 6d.

36. DICTIONARY OF TECHNICAL TERMS used by Architects,
Builders, Engineers, Surveyors, &. New Edition, revised
and enlarged by Robert Hunt, I.G.S. L preparation.

42, COTTAGE BUILDING, by C. B. Allen. 1ls.

44. FOUNDATIONS & CONCRETE WORKS, by Dobson. 1s.Gd.

45. LIMES, CEMENTS, MORTARS, &c., by Burnell. 1s. 6d.

57. WARMING AND VENTILATION, by C. Tomlinson, F.R.S. 3s

85, DOOR LOCKS AND IRON SAFES, by Tomlinson. 2s. 6d.

111. ARCHES, PIERS, AND BUTTRESSES, by W. Bland. 1s. 6d.

116. ACOUSTICS OF PUBLIC BUILDINGS, by T.R. Smith. 15.6d.

123. CARPENTRY AND JOINERY, founded on Robison and
Tredgold. 1s. 6d.

123%. ILLUSTRATIVE PLATES to the preceding. 4to. 4s. Gd.

124. ROOFS FOR PUBLIC AND PRIVATE BUILDINGS,
founded on Robison, Price, and Tredgold. 1s. 6d.

124*, PLATES OF RECENT IRON ROOFS. 4to. [Reprinting.
127. ARCHITECTURAL MODELLING IN PAPER, Practical
Instructions, by T. A. Richardson, Architect. 1s. 6d.

128. VITRUVIUS'S ARCHITECTURE, by J. Gwilt, Plates.  bs.

130. GRECIAN ARCHITECTURE, Principles of Beauty in, by
the Earl of Aberdeen. 1s.
Nos. 128 and 130 in 1 vol. cloth boards, Ts.

132. ERECTION OF DWELLING-HOUSES, with Specifications,
Quantities of Materials, &c., by S. H. Brooks, 27 Plates. 2s.6d.
156. QUANTITIES AND MEASUREMENTS, by Beaton. 1s. 6d.
175. BUILDERS" AND CONTRACTORS' PRICE-BOOK, by
G. R. Burnell. 3s. Gd. [Now ready.

PUBLISHED BY LOCKWOOD & CO.,



ARITHMETICAL AND MATHEMATICAL WORKS. 3

ARITHMETIC AND MATHEMATICS.

32. MATHEMATICAL INSTRUMENTS, THEIR CONSTRUC-
TION, ,USE,, &ei, by -J. F. Heather. Original Edition in
1 vol. "15.'64d.

*.* In ordering the above, be careful to say ¢ Original Edition,” to
duistinguish it from the Enlarged Edition in 8 vols., advertised
on page 4 as now ready.

60. LAND AND ENGINEERING SURVEYING, by T. Baker. 2s.

61*. READY RECKONER for the Admeasurement and Valuation
of Land, by A. Arman. ls. 6d.

76. GEOMETRY, DESCRIPTIVE, with a Theory of Shadows and
Perspective, and a Description of the Principles and Practice
of Isometrical Projection, by J. F. Heather. 2s.

83. COMMERCIAL BOOK-KEEPING, by James Haddon. 1s.

84. ARITHMETIC, with numerous Examples, by J. R. Young. 1s. 6d.

84*. KEY TO THE ABOVE, by J. R. Young. 1ls. 6d.

85. EQUATIONAL ARITHMETIC: including Tables for the
Calculation of Simple Interest, with Logarithms for Compound
Interest, and Annuities, by W. Hipsley. 1s.

85*, SUPPLEMENT TO THE ABOVE, ls.

85 and 85% in 1 vol., 2s.

86. ALGEBRA, by J. Haddon. 2s.

86%, KEY AND COMPANION to the above, by J.R. Young. 1s.64.

88. THE ELEMENTS CF EUCLID, with Additional Propositions,
and Essay on Logic, by H. Law. 2s.

90. ANALYTICAL GEOMETRY AND CONIC SECTIONS, by
J. Hann, Entirely New Edition, improved and re-written
by J. R. Young. 2s. [Now ready.

91. PLANE TRIGONOMETRY, by J. Hann, 1Is.

92, SPHERICAL TRIGONOMETRY, by J. Hann. s,

Nos. 91 and 92 in 1 vol., 2s.

93. MENSURATION, by T. Baker. 1s.6d.

94, MATHEMATICAL TABLES, LOGARITHMS, with Tables of
Natural Sines, Cosines, and Tangents, by H. Law, C.E. 2s.6d.

101. DIFFERENTIAL CALCULUS, by W. 8. B. Woolhouse. 1Is.

101¥, WEIGHTS, MEASURES, AND MONEYS OF ALL
NATIONS; with the Principles which determine the Rate of
Exchange, by W. 8. B. Woolhouse. 1s. 6d.

102, INTEGRAL CALCULUS, RUDIMENTS, by H.Cox, B.A. 1s.

103. INTEGRAL CALCULUS, Examples on, by J. Hann. 1s.

104. DIFFERENTIAL CALCULUS, Examples, by J. Haddon. 1s.

105. ALGEBRA, GECMETRY, and TRIGONOMETRY, in Easy
Mnemonical Lessons, by the Rev. T. P. Kirkman. 1ls. 6d.

117. SUBTERRANEOUS SURVEYING, AND THE MAG-
NETIC VARIATION OF THE NEEDLE, by T. Fenwick,
with Additions by T. Baker. 2s. 6d.

7, STATIONERS’ HALL COURT, LUDGATE HILL.
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131.

CIVIL ENGINEERING WORKS.

READY-RECKONER FOR MILLERS, FARMERS, AND
MERCHANTS, showing the Value of any Quantity of Corn,
with the Approximate Values of Mill-stones & Mill Work. 1ls.

RUDIMENTARY ARITHMETIC, by J. Haddon, edited by
Ay Arman.| | [14.(62

KEY TO THE ABOVE, by A. Arman. ls. 64.

STEPPING STONE TO ARITHMETIC, by A. Arman. 1ls.

KEY TO THE ABOVE, by A. Arman, ls,

THE SLIDE RULE, AND HOW TO USE IT. With
Slide Rule in a pocket of cover. 3s.

DRAWING AND MEASURING INSTRUMENTS. In-
cluding—Instruments employed in Geometrical and Mecha-
nical Drawing, the Construction, Copying, and Measurement
of Maps, Plans, &e., by J. F. Heatuer, M.A.  1s. 64.

[Now ready.

. OPTICAL INSTRUMENTS, more especially Telescopes,
Microscopes, and Apparatus for producing copies of Maps
and Plans by Photography, by J. F. Heatuer, M.A. 1s. 64.

[Now ready.

SURVEYING AND ASTRONOMICAL INSTRUMENTS.
Including—Instruments Used for Determining the Geome-
trical Features of a portion of Ground, and in Astronomical
Observations, by J. F. Heaturr, MLA.  1s.64. [Now ready.

* % The above three volumes form an enlargement of the Author's
original work, “ Mathematiwal Instruments,” the Tenth Edition
of whick (No. 82) is still on sale, price 1s. 64.

PRACTICAL PLANE GEOMETRY : Giving the Simplest
Modes of Constructing Figures contained in one Plane, by
J. F. Hearuer, MLA.  2s. [Just ready.

PROJECTION, Orthographic, Topographic, and Perspective :
giving the various modes of Delineating Solid Forms by Con-
structions on a Single Plane Surface, by J. F. Heatner, M. A,

* ¥ The above two wvolumes, with the Author's work alieady in
the Series, ¢ Descriptive Geometry,” will form a complete Ele-
mentary Course of Mathematical Drawing.

CIVIL ENGINEERING.

. CIVIL ENGINEERING, by H. Law and G. R. Burnell. Fifth

Edition, with Additions. 5s.
DRAINAGE OF DISTRICTS AND LANDS, by G.D. Dempsey.

1s. 6d.
With No. 30 (See page 2), Drainage and Sewage of Towns, 3s.

PUBLISHED BY LOCKWOOD & CO.,



WORKS IN FINE ARTS, ETC. 6

31. WELL-SINKING, BORING, AND PUMP WORK, by J. G.
Swindell, revised by G. R. Burnell. 1s.

43. TUBULAR AND IRON GIRDER BRIDGES, including the
Britannia and Conway Bridges, by G. D. Dem psey. ls. 6d.

46. ROAD-MAKING, AND. MAINTENANCE OF MACADA-
MISED ROADS, by Field-Marshal Sir J.F. Burgoyne. 1s.6d

47. LIGHTHOUSES, their Construction and Illumination, by Alan
Stevenson, 3s.

62. RAILWAY CONSTRUCTION, by S1r M. Stephenson. With
Additions by E. Nugent, C. E. 2.6

62%. RAILWAY CAPI‘I‘AL AND DIV IDENDS with Statistics of
Working, by E. D. Chattaway. ls.

No. 62 and 62* in 1 vol., 3s. 6d.

80%. EMBANKING LANDS FROM THE SEA, by J. Wiggins. 2s.

82%*, GAS WORKS, and the PRACTICE of MANUFACTURING
and DISTRIBUTING COAL GAS, by S. Hughes. 3s.

82+%%, WATER-WORKS FOR THE SUPPLY OF CITIES AND
TOWNS, by 8. Hughes, C.E. 3s.

118. CIVIL ENGINEERING OF NORTH AMERICA, by D.
Stevenson. 3s.

120. HYDRAULIC ENGINEERING, by G. R. Burnell. 3s.

121. RIVERS AND TORRENTS, with the Method of Regulating
their Course and Channels, Navigable Canals, &c., from the
Italian of Paul Frisi, 2s. 6d.

EMIGRATION.
1564. GENERAL HINTS TO EMIGRANTS. 2s.
157. EMIGRANT'S GUIDE TO NATAL, by R. J. Mann, M.D., 2s.
169. EMIGRANT'S GUIDE TO NEW SOUTH WALES
WESTERN AUSTRALIA, SOUTH AUSTRALIA, VIO-
TORIA, AND QUEENSLAND, by James Baird,B.A. 2s.6d.
160. EMIGRANT'S GUIDE TO TASMANIA AND NEW ZEA-
LAND, by James Baird, B.A. 2s. [Ready.

FINE ARTS.

20. PERSPECTIVE, by George Pyne. 2s.
27. PAg'll:IINGé; or, A GRAMMAR OF COLOURING, by G.
o)

40. GLASS STAINING, by Dr. M. A. Gessert, with an Appendix
on the Art of Enamel Painting, &o, 1s.

41, PAINTING ON GLASS; from the German of Fromberg. 1s.

69. MUSIC, Treatise on, by C C. Spencer. 2s.

71. THE ART OF PLAYING THE PIANOFORTE, by C. C.
Spencer. 1s.

7, STATIONERS’ HALL COURT, LUDGATE HILL.



6 WORKS IN MECHANICS, ETC.

LEGAL TREATISES.

50. LAW _OF CONTRACTS FOR WORKS AND SERVICES,
by David Gibbons. 1s. 6d.

107. THE COUNTY COURT GUIDE, by a Barrister. 1s. 64.

108. MEPROPOLIS LOCAT MANAGEMENT ACTS. 1s. 6d.

108¥, METROPOLIS LOCAL MANAGEMENT AMENDMENT
ACT, 1862; with Notes and Index. 1s.

Nos. 108 and 108* in 1 vol., 2s. 6d.

109. NUISANCES REMOVAL AND DISEASES PREVENTION
AMENDMENT ACT. 1s.

110. RECENT LEGISLATIVE ACTS applying to Contractors,
Merchants, and Tradesmen. 1s.

151. THE LAW OF FRIENDLY, PROVIDENT, BUILDING,
AND LOAN SOCIETIES, by N. White. 1s.

163. THE LAW OF PATENTS FOR IN VENTIONS, by F. W.
Campin, Barrister. 2s.

MECHANICS & MECHANICAL ENGINEERING.

6. MECHANICS, by Charles Tomlinson. 1s. 6d.

12. PNEUMATICS, by Charles Tomlinson. New Edition, 1s. 64,
33. CRANES AND MACHINERY FOR RAISING HEAVY
BODIES, the Art of Constructing, by J. Glynn, 1s.

34. STEAM ENGINE, by Dr. Lardner. Is.

59. STEAM BOILERS, their Construction and Management, by
R. Armstrong. With Additions by R. Mallet. 1s. 64.

63. AGRICULTURAL ENGINEERING, BUILDINGS, MOTIVE
POWERS, FIELD MACHINES, MACHINERY AND
IMPLEMENTS, by G. H. Andrews, C.E. 3s.

67. CLOCKS, WATCHES, AND BELLS, by E. B. Denison. New
Edition, with Appendix. 3s. 6d.

Appendiz (to the 4th and 5th Editions) separately, 1s.

77%. ECONOMY OF FUEL, by T. S. Prideaux. 1ls, 6d.

73. STEAM AND LOCOMOTION, by Sewell. [Reprinting.

78*, THE LOCOMOTIVE ENGINE, by G. D. Dempsey.  1s. 64.

79%. ILLUSTRATIONS TO ABOVE. 4to. 4s. 6d. [Reprinting.

80. MARINE ENGINES, AND STEAM VESSELS, AND THR
SCREW, by Robert Murray, C.E., Engineer Surveyor to the
Board of Trade. With a Glossary of Technical Terms, and
their equivalents in French, German, and Spanish. 3s.

82. WATER POWER, as applied to Mills, &e., by J. Glynn, 2s,

97. STATICS AND DYNAMICS, by T. Baker. New Edition. 1s.64.

98. MECHANISM AND MACHINE TOOLS, by T. Baker; and
TOOLS AND MACHINERY, by J. Nasmyth. 2s. 6d.

113*. MEMOIR ON SWORDS, by Marey, translated by Maxwell. 1s.

o PUBLISHED BY LOCKWOOD & CO,




NAVIGATION "'AND NAUTICAL WORKS. 7

114. MACHINERY, Constructionand Working, by C.D. Abel. 1s.6d.
115. PLATES TO THE ABOVE. 4to. 7s. 6d.
125. COMBUSTION OF COAL, AND THE PREVENTION OF
SMOKE, by C. Wye Williams, M.I.C.E. 3s.
139. STEAM ENGINE, Mathematical Theory of, by T.Baker. 1s.
162. THE BRASSFOUNDER'S-MANUAL, by W.Graham. 2s. 64.
164. MODERN WORKSHOP PRACTICE. ByJd.G.Winton. 3s.
165. IRON AND HEAT, Exhibiting the Principles concerned in
the Construction of Iron Beams, Pillars, and Bridge Girders,
and the Action of Heat in the Smelting Furnace, by Janmrs
Arvour, C.E. Woodcuts. 2s. 6d. [Now ready.
166. POWER IN MOTION: Horse Power, Motion, Toothed Wheel
Gearing, Long and Short Driving Bands, Angular Forces, &c.,
by Janes Arvour, C.E. With 73 Diagrams. 2s5.6d. [ Now ready.
167. A TREATISE ON THE CONSTRUCTION OF IRON
BRIDGES, GIRDERS, ROOFS, AND OTHER STRUC-
TURES, by F. Campin. Numerous Woodcuts. 2s. [Ready.
171. THE WORKMAN’S MANUAL OF ENGINEERING
DRAWING, by Jonx Maxron, Instructor in Engineering
Drawing, Royal School of Naval Architecture & Marine Engi-
neering, South Kensington. Plates & Diagrams. 3s. 6d. [Ready.
172, MINING TOOLS. For the Use of Mine Managers, Agents,
Mining Students, &e., by WiLLiam Morcaxs, Lecturer on
Mining, Bristol School of Mines. 12mo. 25.64. [ Now ready.
172%.ATLAS OF PLATES to the above, containing 200 Illustra-
tions. 4to. 4s. Gd. [Now ready.
176, TREATISE ON THE METALLURGY OF IRON; con-
taining Outlines of the History of Iron Manufacture, Methods
of Assay, and Analysis of Iron Ores, Processes of Manufacture
of Iron and Steel, &ec., by H. Baverman, F.G.S., A.R.S.M.
Second Edition, revised and enlarged. Woodcuts. 4s.€d. [ Ready.
COAL AND COAL MINING, by W.W. Smyth. [ In preparation.

NAVIGATION AND SHIP-BUILDING.

51. NAVAL ARCHITECTURE, by J. Peake. 3s.

53%, SHIPS FOR OCEAN AND RIVER SERVICE, Construction
of, by Captair H. A. Sommerfeldt. 1s.

63**, ATLAS OF 15 PLATES TO THE ABOVE, Drawn for
Practice. 4to. 7s. 6d. [Reprinting.

54. MASTING, MAST-MAKING, and RIGGING OF SHIPS,
by R. Kipping. 1s. 6d.

54*, IRON SHIP-BUILDING, by J. Grantham, Fifth Edition,
with Supplement. d4s.

54%%, ATLAS OF 40 PLATES to illustrate the preceding. 4to. 38s.

7, STATIONERS’ HALL COURT, LUDGATE HILL.



8 SCIENTIFIC WORKS.

56. NAVIGATION ; the Sailor’s Sea Book: How to Keep the Log
and Work it off, Law of Storms, &c., by J. Greenwood. 2s.

83 bis. SHIPS AND BOATS, Form of, by W. Bland. 1s. 6d.

99. NAYUTICAL ASTRONOMY AND NAVIGATION, by J. R.

oung, 2s.

100*. NAVIGATION’ TABLES, for-Use with the above. 1s. 6d.

106. SHIPS' ANCHORS for all SERVICES, by G. Cotsell. 1s. 6¢.

149. SAILS AND SAIL-MAKING, by R. Kipping, N.A. 2s. 6d.

155. ENGINEER'S GUIDE TO THE ROYAL AND MER-
CANTILE NAVIES, by a Practical Engineer. Bevised by
D. F. McCarthy. 3s.

PHYSICAL AND CHEMICAL SCIENCE.
1. CHEMISTRY, by Prof. Fownes. With Appendix on Agri-
cultural Chemistry. New Edition, with Index. 1s.

2, NATURAL PHILOSOPHY, by Charles Tomlinson. 1s.

3. GEOLOQY, by Major-Gen. Portlock. New Edition. ls. (d.

4, MINERALOGY, by A. Ramsay, Jun. 3s.

7. ELECTRICITY, by Sir W. 8. Harris, ls. 6d.

7%, GALVANISM, ANIMAT, AND VOLTAIC ELECTRICITY,
by Sir W. S, Harris. 1ls. 64.

8. MAGNETISM, by Sir W. S. Harris. New Edition, revised and
enlarged by H. M. Noad, Ph.D., F.R.S. With 165 woodcuts.
3s. 6d. [ This day.

11. HISTORY AND PROGRESS OF THE ELECTRIC TELE-
GRAPH, by Robert Sabine, C.E., F.8.A. 3s.

72. RECENT AND FOSSIL SHELLS (A Manual of the Mollusca).
by 8. P. Woodward. With Appendix by Ralph Tate, F.G.S.
Gs.6d. ; in cloth boards, 7s. 64. Appendix separately, ls,

79%%, PHOTOGRAPHY, the Stercoscope, &c., from the French
of D. Van Monckhoven, by W. H. Thornthwaite. 1s. 6d.

96. ASTRONOMY, by the Rev. R. Main. New and Enlarged
Edition, with an Appendix on “ Spectrum Analysis.” ls. 6d.

183. METALLURGY OF COPPER, by Dr. R. H. Lamborn. 2s.

134. METALLURGY OF SILVER AND LEAD, by Lamborn. 2s.

185. ELECTRO-METALLURGY, by A. Watt. 2s.

138. HANDBOOK OF THE TELEGRAPH, by R. Bond. New
and enlarged Edition. 1s. 6d.

143. EXPERIMENTAL ESSAYS—On the Motion of Camphor
and Modern Theory of Dew, by C. Tomlinson. 1s.

16]. QUESTIONS ON MAGNETISM, ELECTRICITY, AND
PRACTICAL TELEGRAPHY, by W. McGregor. 1s. 6d.

173. PHYSICAL GEOLOGY (partly based on Portlock’s ¢ Rudi-
mentsof Geology "), by Ralph Tate, A.L.S.,&e. 2s. [ Now ready.

174. HISTORICAL GEOLOGY (partly based on Portlock’s “ Rudi-
ments of Geology "), by Ralph Tate, A.L.8,, &e. 2s. 6d.

[Now ready.
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EDUCATIONAL WORKS. 9

MISCELLANEOUS TREATISES.

12. DOMESTIC MEDICINE, by Dr. Ralph Gooding. 2s.
112%, THE MANAGEMENT OF HEALTH, by James Baird. 1ls.

113. USE OF FIELD' ARTILLERY ON SERVICE, by Taubert,
translated by Lieut.-Col. H. H. Maxwell. 1s. 6d

150. LOGIC, PURE AND APPLIED, by 8. H. Emmens 1s. 6d.

152. PRACTICAL HINTS FOR INVESTING MONEY: with :

an ExExnmatlon of the Mode of Transacting Business on the !

Stock Exchange, by Francis Playford, Sworn Broker. 1s.
153. LOCKE ON THE CONDUCT OF THE HUMAN UNDER-
STANDING, Selections from, by S. H. Emmens. 2.

NEW SERIES OF EDUCATIONAL WORKS.

1. ENGLAND, History of, by W. D. Hamilton. 5s.; cloth boards,
6s. (Also in 5 parts, price 1s. each.)

5. GREECE, History of, by W. D. Hamilton and E. Levien, M.A.
2s, 6d.; cloth boards, 3s. 6d. .

7. ROME, History of, by E. Levien. 2s. 6d.; cloth boards, 3s. 64.

9. CHRONOLOGY OF HISTORY, ART, LITERATURE,
and Progress, from the Creation of the World to the Con-
clusion of the Franco-German War. The continuation by
W. D. Hamilton, F.S.A. 3s. cloth limp; 3s. 64. cloth boards.

[Now ready.
11. ENGLISH GRAMMAR, by Hyde Clarke, D.C.L.
11*. HANDBOOK OF COMPARATIVE PHILOLOGY by Hyde
Clarke, D.C.L. 1s.
12. ENGLISH DICTIONARY, containing above 100,000 words,
by Hyde Clarke, D.C.L. '3s. 6d.; cloth boards, 43, 6d.
y With Gmmma.r Cloth bds. 5s. 6d.
14. GREEK GRAMMAR, by H. C. Hamilton. 1s.
15, ———— DICTIONARY, by H. R. Hamilton. Vol. 1. Greck—

English. 2s.

————— Vol. 2, English—Greek. 2s.
————— Complete in 1 vol. 4s.; cloth boards, 5s.
, with Grammar. Cloth boards, 6s,
19. LATIN GRAMMAR, by T. Goodwin, M.A. 1s.
20. —— DICTIONARY, by T. Goodwin, M.A. Vol. 1. Latin

—English, 2s.
22, ———————— Vol. 2. English—Latin. ls. 6d.
~—————— Complete in 1 vol. 3s.64.; cloth boards, 4s. 64,

, with Grammar. Cloth bds. 5s. 6.
24. FRENCH GRAMMAR by G. L. Strauss. 1s.

7, STATIONERS’ HALL COURT, LUDGATE HILL.
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10 EDUCATIONAL  WORKS.

25. FRENCH DICTIONARY, by Elwes. Vol. 1. Fr.—Eng. ls.
————— Vol. 2. Enghsh——French 1s. 6d.

Complete in 1 vol. 2s. 6d.; cloth boards, 3s. 64.

, with Grammar. Cloth bds. 4s. 6d.

27. ITALIAN GRAMMAR, by A, Elwes. 1Is.

28, — L UVTRTGTLOT - DICTIONARY, by A. Elwes. Vol 1.
Italian—English—French. 2s.

30, — Vol. 2. English—French—TItalian, 2s.

Vol 3. French—Itahan—Enghsh 2s.

Complete in 1 vol. Cloth boards, 7s. 6.

, with Grammar. Cloth bds. 8. 6.

34. SPANISH GRAMMAR, by A. Elwes. 1s.

35, ———— ENGLISH AND ENGLISH—SPANISH DIC-
TIONARY, by A. Elwes. 4s.; cloth boards, bs.

, with Grammar. Cloth boards, 6s.

39. GERMAN GRAMMAR, by G. L. Strauss. 1s.

40, —————READER, from best Authors. 1s.

41. ——TRIGLOT DICTIONARY, by N.E. 8. A, Hamilton.
Vol. 1. English—German—French. 1s.

42, ————— Vol. 2. German—French—English. 1s.

43, ———— Vol. 3. French—German—English. 1s.

———— Complete in 1 vol. 3s.; cloth boards, 4s

, with Grammar. Cloth boards, 5s.
44, HEBREW DICTIONARY, by Bresslau. Vol. 1. Heb.—Eng, 6s.

, with Grammar. 7s.
46, ———
————Complete, with Grammar, in 2 vols, Cloth boards, 12s.
46%, GRAMMAR, by Dr. Bresslau. 1Is.
47. FRENCH AND ENGLISH PHRASE BOOK. Is.
48, COMPOSITION AND PUNCTUATION, by J.Brenan. 1ls.
49. DERIVATIVE SPELLING BOOXK, by J. Rowbotham. 1s.6d.
50, DATES AND EVENTS. A Tabular View of English History,
with Tabular Geography, by Edear H. Rand. [InPreparation.
51. ART OF EXTEMPORE SPEAKING. Hints for the
Pulpit, the Senate, and the Bar, by M. Bautain, Professor at
the Sorbonne, &e.  2s. 6. [Now ready.

Vol. 2. English—Hebrew. 3s.

THE
3CHOOL MANAGERS’ SERIES OF READING BOOKS,
Adapted to the Requirements of the New Code of 1871.
Edited by the Rev. A, R. GranT, Rector of Hitcham, an Honorary
Canon of F]y, formerly H.ML Inspector of Schools.
. d.
FIRST STANDARD 0 3 | Trrrp St WDARDO 8 ' FrrTH STANDARD 1 0
Secoxp 0 6| Fourtn ,, 0 10 | SixT ' 12
The following are in prepm‘ation —
Lessoxs FroyM TnE BisLe, Part 1. Old Testament. [Geography.
Lessoxs rrox TnE BiLe, Part 2. New Testament, and Scripture

PUBLISHED BY LOCKWOOD & CO.,




1

EDUCATIONAL AND CLASSICAL WORKS.
LATIN,,AND, GREEK CLASSICS,
WITH EXPLANATORY NOTES IN ENGLISH.
LATIN SERIES.

1. A NEW LATIN DELECTUS, with Vocabulames and

Notes, by H. Young . 1s.
2. CZESAR. De Bello Gallico; Notes by H. Younu 2s,
3. CORNELIUS NEPOS; Notes by II. Young le.
4. YIRGIL. The Georgics, Bucolics, and Doubtful Poems;

Notes by W. Rushton, M.A., and H. Young . ls.6d
5. VIRGIL. Zneid; Notes by H Young . . 2.
6. HORACE. Odes, Epodes, and Carmen Seculare, by H. loung Is.
7. HORACE. Satires and Epistles, by W. B. Smith, M.A. 1s. 6d.
8. SALLUST. Catiline and Jugurthme War, Notes by

W. M. Donne, B.A. . . ls.64.
9. TERENCE. Andria and Heautontxmorumenos Notes by

the Rev. J. Davies, M.A. . . ls. 6d.
10. TERENCE. Adelphi, Hecyra, and Phormlo Notes by

the Rev. J. Davies, M.A. . . 2
11. TERENCE. Eunuchus, by Rev. J. Davxcs MA . 1s.6d.

Nos, 9, 10, and 11 in 1 vol. cloth I/o(m[s, 6s.

12. CICERO. Oratio Pro Sexto Roscio Amerino. Edited,

with Notes, &c., by J. Davies, M.A. (Now ready.) . . 1ls,
14, CICERO. De Amwltla, de Senectute, and Brutus, Notes

by the Rev. W. B. Smith, M.A. . . 2s.
16. LIVY. Books i., ii., by H. Young e ls. 6d.
16%, LIVY. Books iii, iv., v., by H. Young . ¢ o ls.6a.
17. LIVY. Books xxi., xxii.,, by W. B. Smith, M.A. . ls. 6d.
19. CATULLUS, TIBULLUS OVID, and PROPERTIUS,

Selections from, by W. Bodham Donne . . 23,
20. SUETONIUS and the later Latin Writers, Selections from,

by W. Bodham Donne . . 2s.
21. THE SATIRES OF JUVENAL, byT H S Dscott MA

of Queen’s College, Oxford . . 1s.6d

7, STATIONERS’ HALL COURT, LUDGATE HILL.



FDUCATIONAL AND CLAbeCAL W()R.Kb.

GREEK SERIES.

WITH BXPLANATORY,-NOTLS IN HNGLISH.

i A NEW GREEK DELECTUS, by M. Young

PN

. ARISTOPHANES. Acharnenses, by C. 8. D. Townshend,

41.
42.

. HOMER.

. XENOPHON. Anabasis, i. ii. iii,, by H. Young

. XENOPHON. Anabasis, iv. v. vi. vii,, by H. Young
LUCIAN.
. HIOMER.
. HOMER.
. HOMER,
. HOMER.
. HOMER.
. HOMER.
. HOMER.

Select Dialogues, by H. Young

Iliad, i, to vi., by T. H. L. Leary, D. CL 1s.
Tliad, vii. to xii, by T\ H. L. Leary, D.C.L. 1s.
Iliad, xiii. to xviii., by T.H. L. Leary, D.C.L, 1s.
Tliad, xix. to xxiv,, by T. H. L. Leary, D.C.L. 1s.
Odyssey, i. to vi,, by T. . L. Leary, D.C.L. 1s.
Qdyssey, vii. toxii., by T. H. L. Leary, D.C.L. 1s.

6a.
6d.
6d.
6a.

Odyssey, xiii. toxviii,, by T. H. L. Leary, D.C.L. 1s. 6.

Odyssey, xix. to xxiv.; and Hymns, by T.HL L.

Leary, D.C.L.

. RURIPIDES.

. PLATO. Apologia, Crito, and thedo, by dJ. Dawai, MA

. HERODOTUS, Books i. ii., by T. H. L. Leary, D.C.L. 1s.

15. HERODOTUS, Books iii. iv., by T. H. L. Leary, D.C.L. 1s.

3, HERODOTUSR, Booksv. vi. vii,, by T. H. L. Leary, D.C.L. 1s.

. HERODOTUS, Books viii. ix., and Index, by T. H. L.
Leary, D.C.L. . . . 1s,

. SOPHOCLES. (Edipus Tyrannus, by . Yo.mg

. SOPHOCLES. Antigone, by J. Milner, B.A.

Hecuba and Medea, by W. B. Smith, ALA. ls 6d,

. EURIPIDES. Alcestis, by J. Milner, B.A.

. ZESCHYLUS. Prometheus Vinctus, by J. Davies, M.A.

ZASCHYLUS. Septera contra Thebas, by J. Davies, M.A.

MLA.

1s.

23,
2s.
6d.

6d.
6d.
6d.
1s.
2s,
1s.
1s.
1s,

6a.

THUCYDIDES. PeloponnesmnWax Book i, by H. Young 1s.
XENOPHON. Panegyric on Agesilaus, by L1. F. W. Jewitt Ls. 6.4,

LOCKWOOD & C0.. 7, STATIONERs' HALL COURT.
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) HPLASURES, WEIGHTS, AND MONFEYS OF ALL
Y NATIONS, and an Analysis of the Clwistian, Hebrew, and §).
Mubometan Calendars. By W.S. B. Wooruouse, F.RLAS., &e.
1s. Gd.

INTREGRATCHBEIE. B8y Rydimentary Treatise on iy

,L ;Z/p the. By Hoyesuax Cox, B.A. Tilustrated. 1s.
Rt . e
(72 INTEGRAL CALCUL US, Examples on the. By &%
Pty Jaxes Haxx, late of King’s College, London. Illustrated. 1s. ,‘l‘ ‘}‘:‘ 59
~ALKC 'F“‘“.‘{
fqg-)LC‘zC' DIFFERENTIAL CALCULUS, Elements of the. By rp;')«\
;“\({.‘:5. W. 8. B. Woornousg, F.R.A.S., &c.  1s. RIS
et B
DA A LT Csh
7¥SLY DIFFERENTIAL CALCULUS, Examples and Solu- 83
i";f % 5 tions in the. By James Havpox, M.A.  1s. _;J 22
LY YR
A "53‘ GEOMETRY, ALGEBRA, and TRIGONOMETRY, )?:f(f:_ﬂ
S#5,4Y  in Easy Mnemonical Lessons. By the Rev. Tromas PENyNGTON AT
¢ Y y RIS
"‘:?)g.f’,v Kizkyan, M.A. 1s. 6d. (:".5’ %
L K
‘%(.Q}- MILLER'S, MERCHANT'S, AND FARMERS 3%°p2
1%

;p g §}J\’j’ READY RECKONER, for ascertaining at sight the value of 7¥32%
;r.fio %~ any quantity of Corn, from one Bushel to one hundred Quarters,
% y quantity ot ; ‘
(g at any given price, from £11o £5 per quarter. Together with the <452

oG
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< ;S( 4  approximate values of Millstones and Millwork, &c. 1s. o op
SR TEE
drci:; URITHMETIC, Rudimentary, for the use of Schools *j)%
3% %% and Self-Instruction. By James Happox, M.A. Revised by %2 ES
¢ %(,g Y ApramaM ARMAN. 1s. 6d. %?iﬁ
’;’ 35;2;: A EEY to Rudimentary Arithmetic. By A. Armax. 1s. 6d. 'Ciﬁe'g

do L %

)

oIy ARITHMETIC, Stepping-Stone to; being a complete %

Y %
v S . y Lo I~
N ft( course of Excrcises in the First Four Rules (Simple and Com- Sisop
SYY: pound),onan entirely new principle. For the Use of Elementary ;,L"'éé‘&,
5{({2 5‘%’5 Schools of every Grade. Intended as an Introduction to the .;[.}) =
- ’éc,g more extended works on Arithmetic. By ABranad ARMAN. 1s. 5%
< k(i(.( A KEY to Stepping-Stone to Arithmetic. By A. Anryax. ls. IES
T s
C%C rHE SLIDE RULE, AND HOW 10 USE IT; H %
SR Me containing full, easy, and simple instructions to perform all Busi- %;)\, ®
% ;:;( ness Calculations with unexampled rapidity and accuracy. By 3 AN
< %‘ % Onaries Hoare, C.E. With a Slide Rule in tuck of cover. 3s. };’:;é‘g
Jee ¢ Sy %
Y € STATICS AND DYNADMICS, the Principles and Prac- ”Ri N
X 5 tice of; with those of Liquids and Gascs. By T. Baxer, C.I. «3,:{3\;
’% Second Edition, revised by E. Nvueest, C.E. Many Illustra- TF
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