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PKEFACE.

The Differential and the Integral Calculus have been esta-

blished upon entirely different axioms and definitions by the

several founders of those sciences. The primary ideas of

infinitesimals, fluxions, and exhaustions, though their results

coincide, for the simple reason that all pure truth is con-

sistent with itself, are widely diverse in their abstract nature.

In writing, therefore, on the principles of either Calculus, a

difficulty presents itself in the necessity of electing between

systems, each of which has the sanction of high authority

and peculiar intrinsic merits.

This consideration is of especial importance in a *' Rudi-

mentary Treatise," which cannot, of course, fulfil the pro-

fession of its title without singleness and simplicity of its

fundamental ideas, and an exactness of thought and language

,often very difficult of attainment. The choice of methods
in the present work has been determined partly by historical

considerations. The discoverers of new truths usually search

after them by the simplest and most familiar considerations
;

and it seems natural to presume that, as far at least as

abstract principles are concerned, the way of discovery is the

easiest way of instruction.

The original idea upon which Newton based the system of

fluxions, regarded a differential coefficient as the rate of

increase of a function. The idea upon which Leibnitz and
the Bernouillis established the Integral Calculus, regarded

an integral as the limit of the summation of an indefinite

number of indefinitely diminishing quantities. The facility
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IV PREFACE.

with which the idea of " rate" may be conceived and applied

to the science of which Newton was the great founder, and the

similar advantages of the idea of summation in the Integral

Calculus, determined the selection of the first idea as the

basis of the "Manual of the Differential Calculus" by the

present writer, and the second as the basis of the present

treatise.

The value and importance of what is termed by Professor

De Morgan the *' summatory" definition of integration, has

been insisted upon by him and others of the most eminent

modern mathematicians ; but the present is probably an almost

solitary attempt to establish the Integral Calculus on thai

definition exclusively. Throughout the entire range of the

practical applications of the Integral Calculus—to Geometry,

Mechanics, &c.—the idea of summation is solely and universally

applied. The rival definition of the Integral Calculus—as

the inverse of the Differential Calculus—has a merely rela-

tive signification, and is, therefore, essential only in ana-

lytical investigations of the relations of the two sciences.

But whatever system be adopted for establishing either

calculus must of necessity involve the idea of limits and

limiting values. An unreasonable reluctance has been some-

times exhibited in adopting this idea in elementary treatises,

whereas that it is one by no means difficult to be conceived is

shewn by its adoption in the first ages of mathematics. By
far greater difficulties have arisen from the shifts to which

resort has been had to evade it in theorems of which

demonstrations without it are necessarily illogical.

The idea of limits occurs, or ought to occur, much earlier

in the study of exact science than is generally allowed.

This idea is essentially involved in Arithmetic, Euclid, and

Algebra. The laws of operation with recurring decimals

and surds cannot be accurately established without limits

—

for in what sense is the fraction J equal to '3333 , or

V2 equal to another interminable decimal, except as the

limits of the two infinite convergent series represented by

the decimals? Euclid's definition of equality of ratios
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PREFACE. V

(Book v., Def. V.), is made to include incommensurable

ratios hy considerations dependent on the method of limits,

which also occurs repeatedly in Book XII. In Algebra,

as the present writer has endeavoured to shew elsewhere

(Cambridge Mathematical Journal, Feb., 1852), an exact

demonstration of the Binomial Theorem must involve the

method of limits. The same remark applies to the operation

of equating indeterminate coefficients and the theorem a°= 1.

Neglect of these considerations involves the writers of some

treatises in obscurities, errors, and inconsistencies, which

bring to remembrance the supposed common origin of the

words "gibberish" and " algebra."*

Throughout the present work, the language of infinites

and infinitely small quantities has been carefully avoided,

partly because they cannot, except by an inaccuracy of lan-

guage, be spoken of as really existing magnitudes which may
be subjected to analytical operations, partly because the

language of the method of limits is equally concise, and is,

moreover, exact.

That infinity has a real existence must be admitted; for let

us conceive any distance, however great, such that the remotest

known star is comparatively near ; we cannot say that space

terminates at that distance. What is beyond the boundary?
A void, perhaps, but still space; so that unless we can

conceive the existence of a boundary which includes all space

within it, and to which no space is external, we are forced

to admit the existence of infinite space. But this admission

is altogether different from that which subjects infinity to

mathematical operations. How is the infinity thus operated

upon to be defined ? As a magnitude than which none other

is greater? But by hypothesis it is the subject of analytical

* Algebra.—" Soma, however, derive it from various other Arabic words,

as from Geber, a celebrated philosopher, chemist, and mathematician, to

whom they ascribe the invention of this science."

—

IIuttoTis Mathematical
Dictionary. Gibberish.—'^ It is probably derived from the chemical cant,

and originally implied the jargon of Geber and his tribe/'—Jo/m^OTi'^
Dictionary.
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VI PEEFACE.

operations, and therefore of addition. Add, therefore, some

quantity; the result is greater than this infinity, or the

definition is contradicted. The truth is, that absoh.ite in-

finity, such as the infinity of space, cannot be intelligibly

conceived on the supposition that anything can be added

to it.

Similar considerations apply to infinitely small quantities.

There is no difficulty in seeing, that of any kind of mag-

nitude the parts may be diminished infinitely, for, however

small a part be taken, it may be divided, and thus smaller

parts are taken. If, then, an infinitesimal quantity, the

subject of analytical operation, be defined to be a real quan-

tity less than any other, the definition may be readily shewn

to be inconsistent with itself.

When, therefore, infinitesimals and infinity are introduced

into mathematical operations, they ought to be regarded not

as having an absolute existence, but merely as the means of

expressing the limits to wdiich results approach, as quantities

in them are continually increased or diminished.

M. Cournot, in his admirable treatise " Des Fonctions et

du Calcul Infinitesimal'' (Paris, 1841), asserts, indeed, that

the infinitesimal method does not merely constitute an in-

genious artifice; that it is the expression of the natural

mode of generation of physical magnitudes which increase

by elements smaller than any finite magnitude. But he

does not appear to have anywhere defined what he under-

stands by elements smaller than any finite magnitudes; and

without such a definition it is impossible to investigate his

proposition accurately. If the words of it be interpreted

literally it appears to lead to this dilemma : if the elements

be not magnitudes, the addition of them produces no in-

crease—if they be magnitudes, they cannot be less than any

finite magnitude ; for, being magnitudes, they may be divided

into less magnitudes.

With respect to the method of limits, M. Cournot is of

opinion that questions must occur in which it is necessary

to renounce this method, and to substitute for it in language
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and in calculations the emploj^ment of infinitely small quan-

tities of different orders. He has not, however, specified any

instance in which the substitution in question is required.

The following demonstrations do not refer directly or

indirectly to different orders of small quantities, nor, indeed,

to small quantities at all; for the use of the term "small,"'

in an absolute sense, in mathematics, is objectionable on

account of its inexactness. The limit where greatness ceases

and smallness begins cannot be distinguished. Hence, though

one quantity may be accurately said to be smaller than another,

the former cannot with perfect exactness be said to be neces-

sarily and absolutely small with respect to the latter.

The exclusive adherence to the *'summatory" definition

of the Integral Calculus, has rendered it necessary to present

the greater part of the following propositions in a new form,

and scarcely anything here given (except the historical

notices) is compiled from analogous treatises. The first

section contains a popular exposition of the Integral Cal-

culus ; and the second a brief account of its history, com-

piled from one or two cyclopaedias and dictionaries. The

two following sections are probably in a great measure new,

as in them the general principles of integration and the

integration of the fundamental functions are derived from

the definition above referred to. The three short sections

which succeed contain nothing original ; but the eighth, on

Rational Fractions, is almost entirely newly written. The

ordinary demonstration of the possibility of resolving a

rational fraction into partial fractions proceeds by the method

of equating coefficients, and is defective in this respect

—

that it neglects to shew, a 'priori^ that the assumed co-

efficients have any real existence, and that the equations

determining them do not give impossible or inconsistent

results.

To the kindness of Professor De Morgan, of University

College, London, the Author is indebted for an exact de-

monstration of the existence of partial fractions correspond-

ing to rational fractions, with denominators resolvable
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INTEGKAL CALCULUS.

SECTION I.

f-ENERAL ACCOUNT OF THE OBJECTS OF THE INTEGRAL
CALCULUS.

1. Amongst the most important uses of the Integral Calculus
are its applications to the measurement of the lengths of
curves, the areas of curvilinear figures, the contents of solids
contained hy curved surfaces, and the effects of forces. This
Calculus is required in the most important investigations in
every branch of the exact sciences.

2. The names of the Integral and Differential Calculus
sufficiently indicate the distinction between them. The In-
tegral Calculus determines the whole sum or inte^^ral mao-ni-
tude of a quantity of which the differential parts are given.
The Differential Calculus, on the contrary, investigates the
relations of the differential parts of a quantity of which the
integral magnitude is given.

'). The process of Integration is therefore the inverse of
Differentiation

: in the same way as Subtraction is the in-
verse of Addition, Division the inverse of Multiplication,
Evolution the inverse of Involution. But in the same sense
that Integration is the inverse of Differentiation, the latter
operation^ is the inverse of the former. As, therefore, the
Differential Calculus is defined and investigated irrespectivelv
of the Integral, so may also the Integral independently of
the Differential. It is an unnecessarily restricted view
which regards the Integral Calculus as a dependent science
Throughout the following pages its rules will be indepen-
dently demonstrated

; though the close relation between the
.wo Calculi requires careful consideration, for the sake of its
aid in comprehending both subjects, its suggestiveness in
-nvestigation, and its test of results by inverse operation.
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TNTEGKAL CALCULUS.

4. It was said above, that the Integral Calcukis deteriniue^

the integral magnitude of a quantity from its differential pari^

Now of course this indirect method of measurement ^\onid

not be usually resorted to, if a more direct were practical >l.;.

But there are innumerable cases in which direct measurement

is impracticable. The measurement of the lengths of hues

affords a simple illustration. If the lines be straight, the

oiethod of measuring them is obvious and direct. It consist^

in successive applications of a straight '^ rule " or standurd

of a unit of length (a yard, metre, ell, &c.), along the straigbt

line to be measured, and ascertaining how many times it ion-

tains the unit and known parts of it. But if the line tu

be measured be a curve, no such application of a straiglit

*' rule" can be performed; it will coincide with the curv-. .or

no portion of it, however small.

5, A rough way of effecting the required measurement

is, however, readily suggested. A number of points may

be arbitrarily taken in the curve, and be joined, or be sup-

posed to be joined, by dotted lines. Then, if these chords

be measured, their total length is an approximate measure

of the length of the curve. _ .

G It was long ago perceived, that by diminishuig the

lengths of the chords, and increasing their number, the ap-

proximation became closer and closer. An improvement in

the method was effected by drawing from the extremities and

intermediate points of the curve, tangents meeting each other

at points in the convex side of the curve, as m the following

diagram. If the curve be sUch that the tangent, at any
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OBJECTS OF THE INTEGRAL CALCULUS. 3

point of it, cannot meet it at any other point, the total
lengths of these tangents is less than the length of the
curve. In this way the length of the curve, though it could
not he exactly determined, might at any rate be ascertained
to bo less than one, and greater than another, of two quan-
tities

; which might be made to differ by a quantity less and

less, as the number of chords and tangents was increased.
Bo that the error of the approximation would be determined
within closer and closer extremes, as the geometer expended
more and more labour on the mensuration. It is clear,

however, that the length of the curve has some exact value,

which is the llmit of the operations above explained; and
thr discovery of tliat exact limit is the solution of a iiroUem
of the Integral Calculus.

T. Again, the area of any plane curvilinear figure is certainly

greater than that of any polygon of straight sides inscribed
in it, and less than that of any such polygon circumscribed.
By increasing the numbers of sides of the circumscribed and
inscribed polygons, their areas are made to differ less and
less. The area of the curvilinear figure lying between them
mjiy ilsus be determined within any degree of approximation.

For instance, le' the area ACB be included by a curve AB,
and two straight lines, AC, CB, at right angh3S to each other.

It requires little S( ience to perceive that one of the readiest

ways of roughly measuring this area, is to divide it into portions

by lines parallel to AC, but not necessarily equidistant, and
to compute the area of each such portion as if it w^ere a rect-

angle. Yet this method would give the area of the figure

bounded not by the curve, but by the zigzag dotted line

B 2
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INTEGRAL CALCULUS.

within or without the figure. The difference hetween the two

rectihnear figures bounded by the two zigzag lines may be

reduced by increasing the number and diminishing the area?^

of the rectangles. Thus the curvilinear area may be deter-

mined within a margin of error which may be diminished a1

pleasure. This process for determining areas is called th(

Method of Quadeatuees.

8. It may happen that this method of approximation sug-

gests the limit to which it tends. The Integral Caiculu!-

differs from the preceding method only in that it substitutes

absolute exactness for mere approximation. The curviiiioai

figure must have some exact area which is the limit of r ic

results of the above operations. If, therefore, that limit may

be inferred from them, they lead to the solution of a jn^ohlew

of the Inter/ral Calculus.

9. Again, one of the most frequent problems of Dynamics

is to ascertain the distance passed over in a given time by

a point moving with continually-varying velocity. If the

point were moving with uniform velocity, the distance de-

scribed by it in any time could be immediately ascertained.

The approximation to the distance described by a varying

velocity is analogous to the approximations above described,

and consists in supposing the velocity to change not conti-

nuously but after intervals, and remain uniform during each

interval. The shorter the intervals, the more nearly does the

distance computed on this supposition approximate to the

real distance described. Let the distances be computed on

the hypotheses, first, that the point retains throughout
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OBJECTS OF THE INTEGRAL CALCULUS. 5

each of the intervals into which its motion is hypothetical!

j

divided, the velocity it actually has at the commencement of

that interval; secondly, that the point has throughout each

interval the velocity it actually has at the termination of that

interval. The first hypothesis evidently gives the distance

traversed too small; the second hypothesis too large, if the

velocity be a continuously-increasing one. By diminishing

thu hypothetical intervals, the error of approximation is re-

duced; and if the limit to -which these operations lead can be

found, the result is the solution of a p'ohlem of the Integral

Calculus.

10. The principle on which all the above cases depend,

may l>e stated generally thus :—A quantity is to be measured

which cannot be immediately compared with the unit of mea-

surement. The quantity is therefore divided into several

parts, and it is ascertained of each of these, that it exceeds

one, and falls short of another, of two quantities measurable

by the given unit. The sums of the two series of measur-

able quantities are the one greater, the other less, than the

whole quantity to be measured.

This process has been continually practised by the most

unskilful as well as the most skilful computers. It is applied

in innumerable cases in the ordinary avocations of life. The
science which from this kind of approximation extracts

rigorous and exact truth, is the Integral Calculus.

The foregoing remarks will probably suffice to show the

student what kind of reasoning may be expected to engage his

attention in this subject. They serve also to render intelli-

gible the following slight sketch of its history.
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SECTION II,

EABLY HISTORY OF THE INTEGRAL CALCCLUS.

Pythagoras, born about 590 e.g., died about 19T B.C. The
history of his mathematical discoveries rests generally ou no

higher authority than that of tradition. The discovery of tho

quadrature of the parabola has been ascribed to him, as ap-

pears from the following passage iu Dr. Hutton's Mathe -

matical Dictionary. In reference to the theorem tha^. ilie

square on the hypothenuse of a right-angled triangle is fqiidl

to the sum of the squares on the sides, it is remarked, that

" Plutarch even doubts whether such a sacrifice was mado
for the said theorem, or even for the area of the Parabulu*

which it was said Pythagoras also found out."

Euclid, who lived about 280 e.g., and about 50 years l»efure

Archimedes, showed, in his 10th Book, that the areas oi the

Circle and Polygon inscribed in it are ultimately equal. He
demonstrated that the area of the circle is equal to half iha

rectangle contained by the radius and circumference, and tlius

found out a problem of Integration. His method is kno^\u

as the method of Exliausliom. The first proposition oi' the

10th Book asserts that, if from the greater of two given

quantities be taken more than its half, from the resukiug

remainder more than its half, and so on continually, -here

will remain at last a quantity less than either of the gi\en

quantities. By this reasoning, the difference betweei; rhe

circle and polygon is exhausted, and the circle becomes ulti-

mately equal to the polygon.

Archimedes, who lived about 250 B.C., investigated the

ratio of the circumference of a circle to its diameter. By
calculating the length of the periphery of a circumsoihed

polygon of 192 sides, and an inscribed polygon of 96 sides,

he found that the circumference of the circle is bet we -n

o\% and ^\^l of the diameter. He left a treatise on tue

Spiral ^vhich now bears his name; and determined the ela-

tion of the area bounded by that curve to that of tho . ir

cumscribed circle. To Archimedes is attributed the quadra-
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EABLY HISTORY. 7

ture of the parabola, wliicli discovery, however, as appears

above, has been assigned to Pythagoras also. Let AO be

a portion of a parabola, O
its vertex, OB a part of its c a

axis, and AB a straight line

at right angles to it. The
proposition in question,

which is interesting from

its antiquity and intrinsic

importance, asserts that the

area AOB is two-thirds of

the rectangle ACOB. The
student may easily ascertain

after reading the following

pages, that this result is equivalent to the integration of a

function of the form cd', where c is constant and x variable,

Archimedes showed in his treatise ns^l i:(pcci^ccc y.ocl >LvMpv,
thai the content of a sphere is two-thirds of that of the

cyUnder which just contains it; that the surface of a sphere

is four times as great as that of one of its great circles, &c.

CoNON, a contemporary of Archimedes, is said to have

invented the spiral which bears the name of the latter, and

to have proposed to him problems respecting it, which were

solved by him.

Tappus, who lived towards the end of the fourth century

(about A.D. 380), demonstrated some of the principal pro-

perties of the same spiral, by adding together an indefinite

number of parallelograms and cylinders, into which he sup-

posed a triangle and cone ultimately divided. Pappus also

i^ave in the preface to his 7th Book, the centroharic method
of determining the content and superficies of a solid of revo-

lution in terms of the dimensions of the generating figure,

and the position of its centre of gravity. The theorems of

the centroharic method discovered by Pappus, frequently are

cidled Guldin's properties, from a much later mathematician,

Guldini, by whom they were demonstrated.

Galileo, born 1564, died 1642, proved that a body

moving in a straight line with a constant acceleration, such

rs that produced by gravity, describes in any time from the

commencement of the motion a distance proportional to that

time. He thence showed that the path of a projectile is a

parabola. The determination of the distance described by a
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8 INTEGRAL CALCULUS.

coipistantly-accelerated point depends necessarily on the prin-

ciples of the Integral Calcukis, as explained in Article 9.

ToERiCELLi, bom 1608, died 1047, was a disciple of Ga-

lileo, and wrote a treatise De Dlmensione Paraholw, with un

appendix De Dlmensione Cycloidis. Dr. Hutton says, that

Torricelli "first shewed that the cycloidal space is equal to

triple the generating circle (though Pascal contends that

Roberval shewed this) ; also, that the solid generated by the

rotation of that space about its base, is to the circumscrib.ng

cylinder as 5 to 8 ; about the tangent parallel to the base, ts

7 to 8 ; about the tangent parallel to the axis, as 3 to 4," ih\

(See Descartes.)
,

Cayaliert, a disciple of Galileo, and friend of Torricelh,

published in 1035, Geometria Indivisihilibus cmtmiiorum

nova qiiddam ratione j^romota, 4to., Bononioe. This work,

which obtained for the author the credit in Italy of inventing

the Infinitesimal Calculus, proceeds by division of geometncaJ

figures into indefinitely small parts,

Eoberval, in 1646", determined the centres of percussion

and centres of gravity of sectors of cylinders and circles, .i^e
,^

by methods equivalent to Integration. From the letters of

Descartes, it appears that these discoveries were subjects <)f

controversv between him and Roberval. Roberval's Treatise;

on Indivisibles, appeared in 1666, in the Memoirs of the

Academy of Sciences at Paris.

Descartes, born 1596, died 1650, determined the centres

of gravity and centres of oscillation of various curvilinear

figures. His method of demonstrating the proposition re-

specting the cycloid, referred to in the preceding notice ol'

Torricelli, is an excellent instance of the geometrical investi-

gation of the quadrature of curves. The following is an

extract from a letter from him to Father Mersenne, in V'y^S^

(Lettres de Descartes, tome iii. page 384, Paris, 1667.)

" You commence by an invention of Monsieur de Eobo-vaL

respecting the space included by the curve described by a.

point of the circumference of a circle supposed to roll on a

plane; with respect to which, I acknowledge that I have

never before thought of it, and that the observation of it is

pretty enough. But I do not see that there is reason to

make so much noise at havhig found a thing which ]^> s(-

easy, and which any one who knew ever so little of geometry

could not fail to find if he sought for it. For if ADC be
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this curve, and AC a straight line equal to the circumference
oi the Circle STVX, having divided this line AC into 2, 4,
'"^. &c.. equal parts, by the points B, G, H, N, O, P, Q, &c.', it

AnGOBPPI QC
IS evident that the perpendicular BD is equal to the diameter
of the circle, and that the whole area of the rectilinear
triangle ADC is double of this circle >^ Then, taking E for
the point where the same circle would touch the curve AED,
if It were placed on its base at the point G, and taking also
F for the point where it touches this curve, when it is placed
on the point H of its base, it is evident that the two
rectilineal triangles AED and DEC are equal to the square
STVX inscribed in the circle. Similarly, taking the points
I, K, L, M for those where the circle touches the curve when
It touches its base at the points N, O, P, Q, it is evident
than the four triangles AIE, EKD, DLF, and EMC are
together equal to the four isosceles triangles inscribed in the
circle SYT, TZV, VIX, and XQS; and that the eight other
triangles inscribed in the curve on the sides of these four
are equal to the eight inscribed in the circle, and so on to
infinity

;
whence it appears that the whole area of the two

segments of the curve, which have AD and DC for bases, is
equal to that of the circle ; and, consequently, the whole area
contained between the curve ADC and the straight line AC
IS triple that of the circle."

'

Gregory (St. Vincent) of Bruges, published in 1647,
Opus (Teometricum QuadraturcB CirciiU et Sectioniim Coni.
He showed that the space between a hyperbola and its
asymptote is divided into equal portions by straight lines,
which divide the asymptote into parts in geometrical pro-
gression, and which are parallel to the other asymptote.

Fermat, who died 1663, was author of a "Method for
Quadrature of all sorts of Parabolas," and a treatise on

By a property of the circle mentioned in the notice of Euclid.

B 3
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10 iNTEGEAL CALCULUS,

Maxima and Minima, in TNhich problems concerning the

centres of gravity of solids are solved by a method re-

sembling Newton's Fluxions. ,

HuYGENs, in 1051. published Theoremuta de Q.uadratura

Hvperbola; EUipsh et Circuli ex data Fortiomm Gravitati,

Ceniro; and in 1058, at the Hague, his celebrated Uorolo-

mum Osdllatorium slve de motu Pendulonim, m which he

states that he was the first discoverer that a certain segment

of the cycloid is equal to a regular hexagon inscribed m the

generating circle. He showed that the time oi oscillation of

the cycloidal pendulum is independent of the extent of vi-

bration, and from tlie prin.dples of the pendulum measured

the eflect of gravity, by ^vliich he showed that a body

descended vertically from rest in vacuo, m the latitude ol

Paris 15 French feet in one second.
^

Wallis, in 1655, published his AritJmetica Inpntonmi n.

great improvement on the Indivisibles of Cavalien. Wal is

treats of quadratures, and gives the first expression for the

quadrature of a circle by an infinite series m tins work,

'' in which," says Professor De Morgan, " a large numbei

of problems of the Integral Calculus is solved, and which

contained more ^hints for future discovery than any other

work of its day."
. ^i t i i

Neal in 1057, made a remarkable step m the Integral

Calculus. He appears to have been the first person who

determined the exact length of any curve. Wal is, in liis

Treatise on the Cissoid, states that Neal s rectification of the

semi-cubical parabola was published in July or August, lbo7.

Van Haurent, in Holland, in 1059, also gave the rectiti-

cation of the semi-cubical parabola, as appears from Schooten s

Commentary on Descartes' Geometry.

Gregoey (James) published, in 1007, Vera Cuxuh et Ihj-

perbohB Quadratura, to which he added in the year following

Geometric Pars Universalis, of which the method resembles

that of Eoberval's Indivisibles.
, „ ,„

Dr Barrow, in 1670, published his Method of langeuts.

He died in 1677, and the year following appeared his demon-

strations of Archimedes' properties of the Sphere and Cy-

linder, by the method of Indivisibles.

Lfibnitz, in 1084, gave in the Leipsic Transacions an

account of his Differential Calculus. It is agreed that this

was the first time that this grand discovery appeared in 2}nnt;

though in the celebrated controversy which arose as to his
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claim to the priority of this invention, a Committee of the
Royal Society decided that " Sir I. Newton had even in-

vented his method before 1669." The general opinion of

modern mathematicians appears to concede to Leibnitz the
merit of an independent discovery, and to exempt him from
the charge of plagiarism.

Gregory (David) published, in 1684, Exercitaiio Geo-
metrica de Dlmensione Figurarum.
Newton pubHshed his Frinclpia in 1687, the most memo-

rable year, therefore, in the annals of science. The doctrine
of limits, conceived and applied in the earliest periods of

mathematical research, had been rapidly growing in import-
ance at the time of Newton and Leibnitz. The great step
made by them consisted in connecting the idea of limits with
a specific notation, and in erecting into a regular system a
science which before their time had been exhibited only
i!i isolated theorems. A large part of the results of the
I'niicijda are demonstrated by geometrical methods equiva-
lent 10 Integration. Newton's Method of Fluxions was first

published in 1704, subjoined to his treatise on Optics.

Mercator (Nicholas), in 1688, published his Logarithm
7notechu(a, and is stated to have been the first person who
ever investigated the quadrature of curves analytically. This
he did 11) a Demonstration of Lord Brouncker's Quadrature
of the Hyperbola, by Walliss method of reducing an alge-

braical fVuction to an infinite series by division.

By the English contemporaries of Newton, the Integral
Calculus, a Differential Coefficient, and an Integral, were
called the Inverse Method of Fluxions, a Fluxion, and a
Fluent ivspectively. The notation and phraseology of fluxions
is now almost obsolete. The methods of Exhaustions, Prime
and Lliimate Ratios, Infinitesimals, Indivisibles, Eesidual
Analysis, Analysis of Derivations or Derived Functions, and
of Limits, are different appellations which the same subject
has at different times received.

From the time of Newton and Leibnitz the Integral Cal-
culus rapidly advanced. Its progress was in a great degree
due to John and James Bernouilli, who published a large
number of memoirs on the subject; to Maclaurin, whose
Fluxions appeared in 174'2; to Cotes, whose Harmoyiia Men-
S2(rarw?;i appeared in 1722; to DAlembert,who gave Memoirs
on the Calculus in the Paris and Berlin Memoirs; and to
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Euler's great work, InstlUitio Calculi Integralis. Petr. 1768,

3 vols. 4to.

The analytical part of the Integral Calculus consists in

reducing integrals to forms by which their numerical values

may be computed. This computation is usually facilitated

by the common mathematical tables of sines, cosines, loga-

rithms, &c. But many integrals cannot be found by these

tables. In order to compute such integrals, other tables

have been constructed, of which the principal are called

Tables of Elliptic Integrals, from their relation to the length

of elliptic arcs.

Fagnano, in his Produzione Matematiche, 1T50, investi-

gated a remarkable theorem respecting these arcs, which

bears his name, and shows how the length of two arcs may
be taken so as to differ by an assigned algebraical quantity.

EuLER gave to the world some of the most important dis-

coveries which constitute the basis of this branch of the In-

tegral Calculus. In ITOl he published, in the Petersburgh

Transactions, the complete integration of an equation in-

volving two terms, each an elliptic function not separately

integrable. Euler also invented the class of integrals which

are known as Eulerian Integrals.

Landen, in 1775, published his theorem showing that any

arc of a hyperbola may be measured by two arcs of an

ellipse.

Lagrange's Memoirs in the Turin Transactions, in 178-1

and 1785, greatly extended the subject of elliptic functions

in a part of it which Euler had not discussed, and rendered

the determination of numerical values of elliptic functions

very complete.

Legendre undertook the task, involving immense labour,

of computing a greatly-extended series of tables. The second

volume of Legendre's great treatise on elliptic functions, to

which a large part of his life had been devoted, appeared in

] 827. To him is attributed the merit of giving to the sub-

ject that systematic arrangement and connection which con-

stitute it a separate science.

Jacobt, Professor of Mathematics in Koningsburg, pub-

lished shortly afterwards, in Schumacher's Journal, his re-

searches on elliptic functions. His principal object was the

investigation of certain general relations of these functions,

of which the investigations of Lagrange and Legendrc involve

particular cases.
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Abel, Professor of Matliematics in Christiania, gave in-

vestigations of the subject in Crelle's Journal, in 1827. He
arrived independently at many of the important discoveries
of Jacobi, and contributed valuable theorems respecting what
are called ultra-elliptic functions. The works of Abel, who
died at the early age of 27 years, are esteemed among the
most important contributions to modern analysis.

For some account of modern discoveries in Calculus, the
reader may be referred to Moigno's edition of Gauchy's Lemons
de Calcid Differential et de Calcul Integral, 1844.
Among the best known general works on the Integral Cal-

culus are the following:

—

Bossut, Cal. Diff. et Integral. Paris, 1798.
Boucharlat, Differential and Integral Calculus, Eng. Translation. Cam-

bridge, 1828.

Carnot, Metaphysique de Calcul Infinitesimal. Paris, 1796.
Oauch3-, Lecons de Cal. Diif. et Int. Vol. 2, Calcul Integral. Paris,

1814.

Condorcet, Calcul Integral. Paris, 1765.
Cournot, Des Fonctions et du Calcul Infinitesimal. Paris, 1811.
De Morgan's Diff. and Integral Calculus. London, 1842.
Duhamel, Cours d'Analyse. Paris, 1847.
Euler, Institutiones Calculi Integralis. Petersburgh, 1792.
(jregory's Examples on the DifF. and Int. Cal. Cambridge.
Hirsch, Integraltafeln. Berlin, 1810.
Lacroix, Calcul DifF. et Integral. Paris, 1797.
Lagrange, Le9ons sur le Calcul de Fonctions. Paris, 1806.
Landen's Uesidual Analysis. London, 1758.
Legendre, Exercices du Calcul Integral. Paris, 1816.

Traite de Fonctions Elliptiques, 1825-8.
LittroAv, Anleitung zur hoheren Mathematik. Yienna, 1836.
Mending's Tables of Integrals.

Ohm (Martin), Systsm der Mathematik, 1833-51.
Raabe, Die Differential und Integral Reclmung mit Functionen Mehrerer

Variabeln.

Schlomlicli, Handbuch der Differenzial Pechnung, 1847.
Taylor, Methodus Incrementorum. London, 1715.
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SECTION III.

DEFINITIONS.—GENERAL PRINCIPLES OE INTEGRATION.

11. Quantities are said to be fmictions of one another, if

their values depend in any manner on each other. The

letters F,/, (^, &c., prefixed to quantities, are used to denote

functions of them. A function of several quantities is ex-

pressed by ^Yriting the letters F,/, &c., before them all sepa-

rated by commas.

12. A variahle is a sym])ol of quantity to which different

values may be assigned.

18. An independent variahle is a symbel of quantity, on

the value of which the value of a function of it is considered

dependent.

1 4. A limit is the exact value ^vhich a function approaches

nearest, as the variables on which it depends approach assigned

values.

15. The limit of a finite continuous function of several

quantities is the same function of their limits, or if y^ yo, y^

... be the limits of y^ y,, ?/.^ ... respectively,

limit of /(^„y2,?/3...) ==/(yj,, y,, 73...) (1),

where / means " any finite continuous function of."

A continuous function is one such that the series of opera-

tions denoted by it when performed on more and more nearly

equal quantities, produce more and more nearly equal results

;

••• /(J/P y- ^3 -) -f(jv y- Js •••) C'^)'

is smaller, as ^p j/^, y.3, &c., are more and more nearly equal

to y^ y^, y^, &c., respectively. Therefore, the limit of the

finite quantity (2) is zero, or

www.libtool.com.cn



PRINCIPLES OF INTEGRATION, 15

limit of /{(yp j/2' y, •••) -/(yp 72' Ys •••)} = 0'

from which equation (1) immediately follows.

1 6. The quadrature of a finite continuous function of one

variable having a limited range of values is the sum of pro-

ducts of successive values of that function, each multiplied

by the differences between the corresponding value of the

independent variable and the next preceding or succeeding

value.

IT. The integral of such a function is the limit which its

quadrature has when the differences of the independent vari-

able approach zero, and their number approaches infinity.

18. Lety^ denote a finite continuous function of o), and
let ^i and ^o be two constant assigned values of ^. Also, let

X,., oj.-y, iv.^... Xn be any successive intermediate variable values

oi' .r. Then the quadrature oi fx is by the definition, either

or fh^{x^—h^ +AiK - ^^) +/a;.(^3— ^,.)+ ... + fx,(h.^--x,).

The integral of the function is the limit which these series

approach when the differences x-^ — h^, x.^ — x^, &c.,. approach

zero, and their number infinity.

19. In Art. 7, let x be the abscissa, measured from B
along BC of any point in the curve BA, and \etfx denote the

corresponding abscissa. Then it is clear that the differences

x^ — ^p x.2 — x^, &c., denote the breadth of the rectangles

drawn in the figure, and fx^, fx^^, &c., the corresponding

altitudes. Hence, the several terms in the foregoing series

denote the areas of those rectangles, and their sum is an

approximation to the curvilinear area ABC, whence the term
quadrature is derived, since that quantity expresses approxi-

mately the number oi square units (square feet, square yards,

&c.) contained in ABC. Also, the integral is the exact area

ABC ; for the magnitude of this area is between the magni-

tudes of the inscribed and circumscribed figures. But the

difference between the two latter magnitudes has the limit

zero. A fortiori, the curvilinear area differs from either of

them, by a magnitude which has the limit zero.
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As the figure last referred to is drawn, the initial values 01

and of fx are both

supposed to be zero. If,

however, they be finite

positive quantities, the

integral represents an

area such as a 6 c d, where

is the origin from which

the abscissa? are drawn,

and

oc = h^, be •= fh^,

od=^h.-^, and od=^fh.y

20. Both expressions for the quadrature in Article 18 have

the same limit, if fx have only one finite vahie for each

value of X from b^ to b.^, for then they differ by the quantity

Let Ax be the greatest of the successive differences of ./^

in the preceding quantity, which is therefore less than

{fx,-^fh)Ax+{fx,^fx,)Ax-\-,.,~\-(fb,--fx,)Ax,

which expression is equal to {fb.,--/b^)Ax. This, there-

fore, is the difference between the two quadratures ; but if

fb^ and fb^ be finite, fb^ —-/bi is finite; A^ is zero in the

limit. Therefore, the difference between the two quadra-

tures is zero in the limit, i. e., they have the same limit.

21. The preceding article is exactlj^ illustrated by the

Lemma iii. of Newton's Principia, which is as follows (sup

posing all the parallelograms spoken of in the original to

be rectangles) :

—

In the plane figure bounded by the curve AF and straight

lines AA', AF, at right angles to each other, are inscribed

any number of rectangles AB^ BC^ CD' ... on unequal

bases AB, BC, CD..., and the rectangles AB'', BC'', CD"
... are completed. If the breadth of these rectangles bp

diminished, and their number increased indefinitely, the in
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A' B'—f'
C"

K
^^^--^^

B'

L
H\ D"

! c'\
j
M

1

\^ E'f

i)'\
\

1

N \
E'

\
B f

scribed figure AKB'LC'MD'NE'E, and the circumscribed
figure AA'B^'B'C'^C^D^^D'E'^EF are ultimately equal
For let A/be equal to

the greatest breadth

of the rectangles, and
complete the rectangle

A/", then this parallel-

ogram will be greater

than the difference be-

tween the inscribed

and the circumscribed

figures. But when
its breadth is dimi-

nished, it will be less

than any assignable

quantity, and, therefore, a fortiori, the difference between
the inscribed and circumscribed figures will be less than
any assignable quantity, and, therefore, they are ultimately
equal.

^'2. When fx continually increases or continually decreases,

as X increases, the value of the integral is between those of its

quadratures. First, let /x continually increase as x in-

creases, then the integral is less than the first quadrature,
Art. 18; for let x' and x'^ be any two successive values of
X, then one of the terms of this quadrature is fx;'(x" — x').

Now, take a value x^ between x' and x'\ then the term
in question is replaced by

which is less than the term just mentioned by

{fx''^fx^(x,^x%
a quantity which is positive, since fx'^ is always greater
than/^'; therefore, the effect of increasing the number of
terms is to diminish the quadrature. But as the number
of terms is increased, the value of the integral is more and
more nearly approached ; therefore, the integral is less than
the first quadrature.

Similarly may it be shown that the integral is greater than
the second quadratm^e.

The same reasoning may be applied when the function fx
continually decreases as x increases ; therefore, in either case,

the integral has a value between those of its quadratures.
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23. The symbol of integratmi is j\ ^Yhicll derives its

form from the initial letter of the word Summa, or J urn.

The integral of a function /.^ of a variable .v is written

^//> . div ; where the limit of the difference between two suc-

cessive values of .t? is rej)resented l)y cLv, which is, therefore,

differential y or diminished without limit ; and fo) . do) is the

general form of the limit of any term of the series in Art. 7.

and is also differential.

24. The limits of an integral are the two constant assigned

values of the independent variable b^ and b.,, in Art. 7. The
greater and less of these values are frequently designated

the superior and inferior limit respectively.

25. When the limits of an integral are expressed, or

defined, it is said to be definite; when they are not defined,

indefinite. In the first case, the integral is said to be taken

between limits. The usual way of expressing this symbolically

is, by writing the superior limit above, and the inferior below,

rh,
the symbol of integration. Thus, / ~fx . dx is the integral

of /ii% between limits b^ and h.^.

26. The value of the integral is indejyendent of the differ-

ences of the independent variable in the quadrature. For the

limit of the quadrature is, by Art 14, an exact quantity, there-

fore it cannot depend on the values x^, x.^, x.^ ... x„, nor their

differences, which may be altered arbitrarily. Also, it is

evident that the integral does not involve any other values of

X, except b^ and b.-,.

fxdx-=. I fzdz, where z is

any other quantity than x.

27. The sum of definite integrals, the inferior limit of each
being the superior limit of the next. If the series in Art. 18
were continued to the right, to the term in which x = Z>.j,

the limit of this additional part of the series would, by the

fx . dx. Also, the limit of the

whole series, including tlie additional part, would be

I fx. dx. But this whole series is the sum of that written

in Art. 18, -f the supposed additional part. Hence,
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I fxdx^=-l fxdx'\i fxdx (1)

Similarly,

t,
/* '^^ =y,^__ /«> dx

+y^_^_^
/^ .

ci^ + ... +

J^Jx.dcc+J^fx.da,.

28. An Integral hetiveen limits is the difference hetiveen two

values of the same function. By Art. 26, / fx dx is inde-

pendent of all the values of x, except h.^ and h^ Therefore

this integral may be put equal to F (h.^, h^\ some function

which contains no value of x except h^ and 63. Similarly, if

the form of this function he general, that is, capable of repre-

senting the integral for all values of the limits, / fxdx=z

F (^2, h^). Hence, from (1) Art. 27, transposing,

A\x.dal = F{h,,b,)--F{b,,b^),
^2

./V.^ . clut / fx . dx involves no other value of x than b.. and h.,.

Therefore ^^ disappears from the last equation, which, conse-

(|uently, may be written

5.3

fx . dx = Fh^'-Tb./,A
COROLLAEY, / fxdx^=.-^j fxdx.

29. By Article 26, the value of the integral is independent
of the differences x^ — b^, x.^ — x^^ &c., in Art. 18. We may
therefore suppose those differences all == ^ a?, so that

{n -\- l)^x = b^ — b^. Then, by Art. 28,

limit ofO, +/x^ +fx, + ... +/^„ +fb,) ^x=Yb,-.Fb,,

The number of terms in the parenthesis is n + 1. Now
suppose, first, that the /x is always positive; and let fx'
be its greatest, fx'^ its least value between the limits;
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then f x^ is greater and fx'' less than any other of the

terms in the parenthesis. Hence {n + V) fx' is greater,

and {ji + 1)/^'' is less than their sum ;

or, putting (?^ + 1) ^^' = /i ; hfx' > F^^ — F^^;

7^/'?;^' < F^^ — FZ>^.

There must therefore be one or more values of x between ^',

and 6^, for which hfx == F ^^ — F ^^ . But this intermediate

value of X must also be between h^ and h.,, since x^ may bo

taken as near h^ as we please. Therefore the intermediat*;

value in question may be expressed by h^ + Bh, where B is

some positive proper fraction. Hence, since we have sup

posed h.y^=h^-\- h, we have the formula

hfih^ + eh) = F (^, + h) - F^, =y^^^+V^ • ^^'^

The same conclusion would be arrived at ii fx were sup-

posed to be always negative. Hence the formula is true

when fx is either always positive or always negative be

tween the limits h^ and h^ + h.

80. The following is a geometrical illustration of the

formula h f (b, + i9 h) =

/>
bi+h

f X dx.

Let fx represent, as in

Art. 19, the ordinates of the

curve ah, and x its abscissa,

measured from o along

od; oc = bp ot/ = bj -f h;
.-. cd = \\. Also ^c = f b^;

fliZ=f(b^4-h). Then the

area ahcd =^ j fxdx.
J\

between he and ad there is some intermediate ordinate repre-

sented hjfe in the figure, and by f (b^ + ^h) in the formula,
such that y^e X c<f = area ahcd, a proposition which, from
geometrical considerations, is evidently true.

Now the formula asserts that
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31. ^ Function is the differential coefficient of its Integral

Dividing by /?, the result in Article

f{h,-^ek):
h

Taking the limit of both sides of this equation, when h has

the limit zero,

fb^ = differential coefficient ofFh^.

by the definition of a differential coefficient. Hence is seen

that INTEGEATION IS THE OPEEATION INVERSE OF DIFFEREJ^T-

TIATION.

32. The integral of the sum of several functions between

given limits = the sum of the integrals of the several func-

tions between the same limits. Let the several functions be

f^xj.x, .„fni^,

f\wdx=\imit of (/i^i+A^2+/i^^3 +---/i^2) ^^'

f\x dx = limit of (J,x, +f^x., +/^x, + ...fA) ^^

Adding, f\a) dx-^- r '/g^ dx+ .,. -^

J^
'/»^ ^^ =

limit of {(/i^i 4-/2^1+ ... +/„^'i) +(/l^2+/2^2+ - +/n«?2)+

&C. + (/i^n 4-/2^« + ... +/n^«)} ^^ =

33. -4 constant multiplied by the integral offunction between

given limits = the integral of the function multiplied by the

constant between the same limits. Let c be the constant. Then
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'fh,
'^"^ ^"^ "" "" ^''""'^ ^^"^^ '^'f''^ '^'f^^-' + ••• -^f^^^ ^"^

= (by Art. 15) limit of {cfx, + cfx., + c/^t-^ + ... c/y .^^

34. To sJioiv that I - ^ dx -^ I \id7/ =:h.^c.,'- h^ c^ , if

y he a function of u, and have the values c^, c^, when u has the
values 61, &2, respectively, y^, J/2>i^3 ••• Vn being successive
values '^ the function ?/ and u., u^ ... 2^„ of u, we have, by
Art. 18,

J^ y du = limit of [c, (u^ - dj + ^, (u, - ^^J +

\i dy c= limit of {u^ {y^ — c/) -f

By adding together the quantities in the { }, it will be found
that all in each line except one appear in the other line with
contrary signs. So that the sum in question is reduced to
h ^ 7. . Hence^2^2 •^^i-

J^
''ydu ^n^'^^dy = ^2^2 — ^1^1-

35. The conclusion of Art. 34 may be arrived at from geo-
metrical considerations, as follows :

Let AB be a curve re-* w

ferred to, Ow^ Oy as

axes of co-ordinates. Let
OC = 5^, OD *r ^2.

Then the area ABCD=

y dx.

In the same way, if

OEa^c^jOFtec^, the

areftABSI" ^f\dt,.

bi A

fc^
.

'b
a

Cl

www.libtool.com.cn



PRINCIPLES OF INTEGRATION. S3

Therefore f ' y dx -^ I ''xdy = figure AFEBCD =

rectangle AO — rectangle BO = J^Co — h^c^.

86. To determineJ dx. In the first equation, Art. S9, it

is not necessary that fx should be variable. Let it = 1.

Then limit of (^^ + ^^ -f ... + ^^0 = f 'dx.

But, evidently, the left-hand side of this equation = J^ — h^,

riT. If X and y hefunctions of each other, so that

I "^
fxdx = / <pydy (1), and m=^h when y'=-c,

then fxdx-=:^(py dy.

For let (Art. 28) the first of these integrals = Vx — Fh,

and the second = <I»y — <I)c. Then

Let X become x ^ ^x when y becomes y + ^y. Then

F (x-\'^x) — Vh = ^(y + hj) - ^c.

Subtracting the last equation from this,

F (^ -f ^x) — Fa^ = ^ (y + ^) — Oy,

Y(x -\-^x) — Vx ^ (y -h ^j/) — ^3^ ^y /
>,

or ^— = . ^- . -^ ...(-).

Now this equation is true, however small Ix and ^ may be;

therefore, the limits of both sides (corresponding to the limit

zero of ^x and ^y) are equal; or, by Art. 17,

fx^^y^. or>-g = $j/ (^),

whence, /^ dic = ^y c/y.
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24 IHTEGRAL CALCULUS.

38. To prove that if fxdx = (py dy^ and x he equal to

h.^ and h^^ u-Jien y is equal to c.^ and c^ respectively, then

f^y^d.^J\ydy,

For let
J^

'fxdx =:J\ydy
\-
J\^y dy,

then, by the last proposition, fx = (fy + (f^y.

But by the hypothesis fx = (^^s

,\ (p^y = 0,
.\J^

Q^^ydy^^,

for this last integral is the limit of the sum of a serit's

of which the terms are all absolutely zero

;

89. From the preceding article follow many important j'o-

lations among definite integrals. For instance, let y-\-a = w:

then €.-, + a =h.^, c^ + a = b^, dy z=: dx; .*. fx =: (py
--

f(y — a), and the formula becomes

. Ay - «) dy = / 'Pydy^ fx dx.

Now in the first of these integrals we may, by the Corollary,

Art. 26, write y for x. Therefore

^ /(^-«)'^*'=y,^:„ f'^dx (I.)

Similarly,

f(x^a)dx:=^ ; fxdx (lU

f

^

f{K-«)'J«:=J^ faicU (III.)

Putting y~a = .v and b^ —y — x successively.
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Putting y=.-^x\ I ^fxdx = /
^
f{—^ dx ... (IV.)

And generally, if x '=-^y, whence y :=:^'^x, dx = -^^'ydy,

f^y.d.=f^\y(^,.w.d. (V.)

40. Indefinite Integration. We have shown that if

function can be integrated between any limits a and^

its independent variable, the integral is of the form F (a) -—

F(/y). There is a large class of functions which cannot be

thus integrated between all limits, or of which the geno'al

integral cannot be found. The first part, however, of the

science of integration, is confined to the investigation of

general integrals. Our object is, therefore, to find the form
of the function F, which represents the result of the inte-

gration of the function J". It is not necessary for this pur-

pose to find Fa — Fb, but, simply, F^, from which Fa-^Fh
may be found by substituting a and h successively for .^', and
subtracting. In the following chapter, therefore, F^ alone is

required.

CoEOLLAEY. It foUows that the formula of Art 34 may
be written

jy du -VJu dy = ity^ ^^jy du = tiy —J it dy.

41. Differentiation of Integrals.

From (a) and (0), Art. 37, it follows that

d fx p (I

"f I f^ ^^ =/a; = I —fxdx; or, writing a for x,

-T- I fada^=fa\ or, by corollary (Art S6),

7~ / fxdx = fa. Also,

d pd d nt>

From the first of these equations, it appears that the
differentiation of an integral may be performed under the
sign of integration.

c

www.libtool.com.cn



^f) INTEGEAL CALCULUS.

SECTION IV.

FUNDAMENTAL INTEGEALS.

42. To integrate a' da) where a is a positive finite quantity

By Art. 15, putting o)^ == S^ + ^w, w,^ = ^i + 2^.t, &c.,

w,^ = h^ -{- n^cc, ^^ = J^ 4- (?^ + 1)<^^',

Jh,

h,
' a" dx

== limit of (a^i + ^•^' + a^ + 2 ^ ^' + . . .
a^'i + ('^ + ^)^^'0 ^ ''«''

= limit of a^i+ ^^-^l + a^'' + a"^^- + ... a^'^^'^O^^'^'

= limit of a^ + ^^ ^ / ^ ^
^^

= limit of --/^^(a^^+ ^'^^^~-«^i + ^*0 (} )

Now the quadrature of which the limit is here to be taken

is finite, since all the quantities are finite. By Art, 22, the

integral of such a function as a^ has a value between those of

the two quadratures, from which it may be obtained. But
the quadratures evidently may here be finite quantities with

the same sign. Therefore, the integral between them i^ not

zero, nor infinite.

It follows that in (1) the limit of —^r is some exact

function of a. Call it A. Then taking the limit of (I)

/ \i dx = A («^2 — cJ^x), Also, fa" dx == Aa\

If A be such a function of a that A= 1 when a has Bom<

value c, r V 1 -
'

I
€^ dx = e\
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FUNDAMENTAL INTEGBALS. ^7

l<^gs^ log, a'

43. To integrate ^. Let ^ = e^, and when 2j = c, c„ c,,

let .^ = h, b^, h^, respectively. Then

X — 3 = e^ — /'j

bul X ~ h =yj 'dx, and .' - .' =.y ^. rf^,

by^Art. 36, and the last article respectively. Hence by

dx = ,ydy; /. ~ = dy.
X

Therefore, by Art. 38,

/^*i da ^ pc^

^ h '^ ~-Jc,
'^^=c,~c, = log, b, - log, l^,

since if ^j;^,!', y = log^^. The indefinite integralis

J ~=hg^x.

Let ./ = .^«+., or log^y = («+ i)iog_^, ^ 1,^^,;„„ ^^^
real value «a;c«^«_ i ; ,vhen ^z = c, or c„ or c let ^— /, r„.
6„ or h^, respectively. Then ' '' ~ '

^^

log, y - log, c = (a + 1) (log, X - log^ 5).

By the last article, log, ^ _ log c = C" il.

and (a + 1) (log x - log^ h) = {a + 1)
/"*' ^.
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•28 INTEGEAL CALCULUS.

Then by Art. 3T, ^ = (a -f-l)—

;

V OS

,'. dv = (a + 1) — .
^«+^

; .'. dy = dx , of .

'^
^ ' w a + 1

/^2'o 1 PC.2 i

'pif . dx = r / dy ^ —--r- (c% — c.)

1 /^ ^"^+^= (c/+i — c«+i). Also, I x^dx^ -.

45. John Bernouilli's series. By repeated integration

by parts, and Arts. 37 and 44, we have,

/ yidx-=yiX— I X -r-dx
Jo J dx

^^ dx Jo 2 0?^;''

— ^^^ -^^_ r^ x"" d^X

=:&C.

On the second side of this equation all the quantities are

taken between the required limits x and ; since each is zero
dx d^X.

for the latter limit; X, -y-, —-^ ... being supposed to be
CiX UiX

always finite.

If the last term of this series become zero when n is

sufficiently increased, we have

no: x^ dx x cVX ^ . ^ .

/ Xdx = Xx —
-
— h ^r~^ -7 ... ad innnitum.

J 'fl dx ^."^ dx

By Art. 29,

yo X c()^ d X
fxdx. Put TT-TT-; TT = A'«
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FUNDAMENTxVL INTEGRALS. 29

Hence, a criterion that the last series may be continued

ad infinitum, is, that f{^x) become zero when n is suffi-

ciently large, or that then —--—: ;—= for all values

of 0) between the limits a) and 0.

46. e is the base of the Napierian logarithms. By Art. 4S,

f^'dx=z e' (1.)

.•./6"-^^^ = -/e-^J(-^)=~e-^ (2.)

Therefore, in Bernouilli's series (Art. 45), if

-^ dX ^^ d^X :,

dx dxr

Hence the series becomes

For all values of w in this series the criterion of Art. 45
is satisfied, so that the series may be continued ad infinitum.
The first side of the equation by (2) is equal to — e-*^ taken
between limits and x, or = -— (e"-^ —1)

_ (e-^ ]) =
J^

+ I +^ + ...

I
.
^-.

Dividing by e""'"", and transferring one term to the second
side of the equation

2 2.3^

In this equation put a;= 1. Then

1 1

^- ^2.3 ^2.3.4 ^

Therefore, e is the base of the Napierian logarithms.
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30 INTEGEAL CALCULUS,

^^mx^x = limit of

{%m[h, + ^^^') + sin*(5i + ^ ^^) + .- + sin (Jj + n + l. ^a^} ^x,

where 6^ = ^^ 4- [n -{ 1) ^x.

By a known trigonometrical formula,

cos (A — B) — cos (A 4- B) = 3 sin A sin B.

Therefore, putting B = | h3

2 sin {h, + ^^) sin i ^^ = cos [h, + | S^) — cos {b, + | ^^)

2sin(Z>^ +2^^) sin|^^ = (cos /^^ + p^') — (cos&i + 1^*^)

Adding these equations,

2 sin I ^^' {sin (^^ + ^^^0 + sin {h, + 2^0 + ...

+ sin (^^1 + 11 + 1 Ix)}

— cos (Z^i + \ Ix) — cos (Zi, + 7^ + | ^^•)

= cos [l\ + I ^.^•) ~ cos (^^ + I ^ii?)

;

/. / SI

'^0

sinxdx = limit of

cos(6, + px) — cos(^>2 +p^) 1 .^
=; — 75" d it ,

smi^.i?

Assuming the demonstration given in the subsequent sec-

tion on Eectification of Curves, that the limit of J ^^ -r-

sin l^x=l when ^x has the limit 0, we have,

f %m xdx = cos h^ — cos Jg. Also, / sin xdx =— cos x.
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48. To integrate cosxdw, I "^cos xdx = limit of

[cos {b, + Ix) + cos {h, + 2 ^^0 + ... cos (h, + ii + 1 ^.-i;)} .^i»,

where ^f^ = 6^ + (?i + 1) ^x.

By the trigonometrical formula

sin (A 4- B) — sin (A + B) = 2 COS A sin B;

we have, putting B = i^^,

0, cos (^j + ^^) sin I ^.r == sin (Jj -f |^^) — sin (^ + | ^i^i)

2 COS (Ji + 2^a;)sin^^^ = sin (h, + |^^'??) — sin (h + f ^.^•)

,-. 2 sin 1 ^^r (cos {h, + U') + cos {h, + 2 ^o;) +

COS (5, 4- 8^^) + ... + cos (5^+^ + 1 ^x)}

= — sin (&i + I ^x) 4- sin {h^ + i ^^) >

.-. / cos.^•VL'^J = limit of

,m{h, + ljx)-^.m{h,-^l^x) ^^ ^ ^^ _ ^^^^
sin I dx

putting limit of | ^;?? -f- sin | ^^ = 1, as in the last article.

Also, fcos xdx = sin x.

This integral may be obtained immediately from the pre-

ceding article, for

/cos xdx = — /sin (n"~''^)^(o~^')~

(by the last article) cos f -— — ^
)
= sin x.
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49. lo integrate -— and —:
. Since

cos~»^' sm~A'

../ sin ;?; J^' = —
. cos x, /. <^cos x z= — sin ^(/a%

50. >Smilarly, /
cos A'</i^'

sm ^

51. To integrate (1 + tan^ a:) J.^^

tan\^dx = ?^^^!^ ^^ sin^^s_^^ __
cos^'?; cos'^o? "" -^ '

if ^ = sin .^' and du ==
(icosa;

cos^^

.-. by the last article lo =
, also dv = cosxdx.

cos ^' ^

Now, by Art. i.^,J\jdu =yu ^J'udy,

tan- .'?;(/a; = / . = tan x — w.
COSOJ J cos^

Therefore,y(l + tan^^v) dx = ^' + ftdn'xdx = tan a-.

52. Si7nilarly,f{l-\-Qoidi\i"x)dx will be found to be
— COtan ^,

ory(l 4- cotan'^^^)^^ =

(as has been just proved) =— cotan^.
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FUNDAMENTAL INTEGKALS. 33

53. To integrate ~
r,. If a be not zero,

ic' — a^
'

-J-^j_(_i L_^
^"' — a^ 2a \a; — a ic + a)'

. r dx _ 1 r^dx__ \_ n dx
"Jx^ — a^ 2aJ x^-a '^aJlT^

Now, dx =^ d {x -- «),

JV^a=J "T^^ = 1"^. (* - «) (^rt' 43),

/• dx 1 ^,
•• yaTZ^ = ^a ^H (*-«)- log. (a, + «)}

X ~- a

If X be less than ^, the logarithm just found is the loga-
rithm of a negative quantity; and is, therefore, impossible
In order to express the integral in a possible form in this
case, put

= - g-- {-log(«-^) +log(« +«;)} = i. log ^^.^1^.

54. To integrate

{x'±a'y

Let dtj = dx + -^'^'^-
^ / n

(x'^±a^f
^^^

= {x'' ± a') (Art. 44), .-. y = ^ + (a;2 -f- ^2)J

c 3
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Also from (1),

dx r/ o L o.x ,

-J

dy dx

Hence, f ^-;t = log. V = ^^g. {^ + (^' ± «')^ ^

55. To interjrate —-—x'- ^^'li^i'^' i^^ order that tlie

x(or rt:
-^''^y

denominator may be possible, a/ is greater than r/% if .^''^ be

affected by the negative sign. In Art. 54, write - for a,

- for X and, therefore, 7 . dx for dx.
X x^

.. ' dx r dx
Thei]

/* — X ^ dx /*

J [x - ±€t y J ic
{

(^-- ± cr'J J 07 [a" ± xy

a + [a" ± X'Y= log^ {x-^ + {x-^^ ± ar^^ }= log^
^^

dx 1 ,

. = - lop

X (^^- ± (ff « a + (/r ± X-)

(since the logarithm of any quantity = — the logarithm of

its reciprocal),

1 X 1 ,

=: _ \oa r + -log. a,

a ^ a + (^' ± ^')^ ^

of which expression the last term - log^ a may be omitted,

as it disappears when the integral is taken between limits*

50. To inteqrate
^

r • ^^"here a > x.

(<:r — .^^-}

Let dx = cosi/dy. Then (Art. 48),

^ = sin
J/, (1 — x'^-y = cosy,
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z=.y =. sin~^ X. Hence,
cos y

^-Jt
a

pH^
«(-5)' -^(-S)

sill ^ - = cos~^ - = — cos~^ - 11 -TT vG included in
a 2 a a 2

the value of the integral at its inferior limit.

57. To inteqrate ,

'

^

r* Let — c^^= sin ydy. The

integral of the first side of this equation is , and of the

second — cos 3^; .•. we may therefore put - = cosy. Hence

{x^ — a~y^ . n dx r^ d y sin yf . -, /* ux rx^ a y
L. = sin y, and /—7—7 -r = / ~

aj ^ a

1 , a 1
T X

: - cos""-' - = - sec~"^ - •

a X a a

dx
58. To inter/rate ,^ ^,.

/^ dx /^ d{a — x)

Q2ax — x'^)^ J {a^ — (« — x^}^

T
ci —~ X . X= cos— -^ (Art. 06) = versm-^ -.

a ^ a

69. To inteqrate —

;

t, . Let - = tan ?/,

dx = a (1 + tan^y) dy (Art 51),

/' dx /^a{l -{- tan'^y)dy 1 p
a- -\- x' '^J «-(] + tan- J/)

"" aJ ^

1 + ~i^= - tan - •

a a
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Collecting the results of this Chapter, we have the fol-

lomng

TABLE OF FUNDAMENTAL INTEGRALS.

/» ^^» Article

a^ dx = -z 42
log^ a

/ x''ax = r except ^^ = — 1 when, 44

/t = ^^-^ •

•

''

sm .v . dx = — cos X 47

cos a; . r/o: = sin a^ 48

/
/

/* sin X , 1

/ —::—dx = 49
^/ COS^ X COS X

y^COS X
,

1
/ ~^-Tr-dx=: :— 50

^ / sin~ X sm X

I (1 + tan^ x) dx = tan x 51

/ ( 1 + cotan^ x) dx = — cotan x 52

/dx 1 , X — a ,

-7, r> = --— log, (x>a)

1 , a — X ,

)la a -\- X '

^-,^^=log,{. + (.-±«^)i} 54

y^ dx 1 ,^^

x{d'-±.x-f~a ^*
rt^ -j-

(^2 _4. ^ij^ '••

p dx . , X X
I -7—^ T = sm~^ -

, or — cos7^ - 56
^/ {a' — X / a * a
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TT = -cos~^ - = -sec ^ - 57
^ — a^)' a X a a

dx . _ X
,r. HTi = versm ^ - 58
yXax -— x-y a

dx 1 x
,,

7= -tan ^- 59
a^ + »'^"' <^ ^

(

60. The foregoing integrals are all found in terms of loga-

rithmic, exponential, and circular functions. Tables may be
obtained which contain numerical values of these functions

computed to any required degree of accuracy. Therefore the

values of these integrals may be completely determined.

Similarly, other integrals which can be reduced to any of the

forms in the preceding list, may be completely determined.

61. The operations of integration consist chiefly in reducing

integrals to these fundamental forms. In many cases, how-
ever, this reduction cannot be effected by known methods.

Where it is impracticable, resort is had to methods of express-

ing integrals in terms of convergent algebraical series, or in

terms of elliptic and other functions not contained in the

preceding list, but which have been partially tabulated.

62. For the present, however, attention will be confined to

those integrals which can be reduced to the forms investigated

above. The methods of effecting this reduction may be
classified as follows

:

1. Integration by Algebraical Transformation.

2. Integration by Parts.

8. Integration by Formulae of Eeduction.

4. Integration by Rational Fractions.

5. Integration by Rationalization.

Of each of these five methods a brief account will be
given in the following sections.
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SECTION V,

INTEGEATION BY ALGEBEAICAL TEANSFORMATIOX,

03. This method, of wliich instances occurred in Arts. 54,

56, &c., consists in finding for the expressions to be inte-

grated algebraical equivalents which are of the forms of one

of the fundamental integrals, or are the sum of quantities

having any of those forms. The requisite transformation

is effected by substitutions and other processes, for which

no general rule can be given. It is only by continual

practice and experience of the effect of various transforma-

tions that facility in the successful application of this method
of integration can he attained. One or two examples are

appended, but for an adequate knowledge of the subject, the

student must be referred to larger collections of examples of

the Integral Calculus.

64. Every polynomial of the form (a -{-bx -{ car -f ...)" da),

may be integrated in finite terms when n is a positive integer,

and the number of constants a, h, c, &c., finite. For the poly-

nomial may be raised to the power n', the result is the sum
of a finite number of terms involving only integral powers

of .^^ and each term may be integrated separately.

05. For exampleyV)^ -f hxY dx z=z^f{c(r + ^alx-\- ¥x^)dx

06. If the function to be integrated can be expressed

ns the product of two quantities, Fx\ and dFw, or more gene-

rally (Fa;)™, and dFx, it may be always integrated. For if

Fo) be put = ?/, the expression takes the form y'^'dy, of which

the intec^ral (Art. 44) is .

° ^ ^ VI -r 1

07. For example, f(ci -^hx -\- cx^^ (^ + 2 cx^ dx becomes,

if a -|- h X + c iV^ =. y^ J ]j dy = h y' = \ {ft -^-hx \- cx^'f.
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68. Again,y(log, mf^ = ^{hg^ xf rf(log, x)

~ « + 1

./£' + ] J r' (=^ + 1)
~ y 1 + .-

70. All the preceding formulsD for integrals of functions of
X may be extended to like functions of ^ + boj, by putting

a + haj=zX, .'. hdx=zdX, and dx = - dX.
h

In tins manner it will be found that/^(i + hx
a«+^^ dx^

logg a

/(« + ^.)'. d. =
^
^-Ml^ except n = -i

j sin (a + hx) dx=. — ~ cos (a + hx)

I cos (« + hx) dx = - sin (« + Z>;i-)

^ {1 + tan^ (« + 5^) { ^-2; ^
^ tan (a + hx)

y {1 + cotan2(f^ + ^.^)} ,/^ = _
^ cotan (^ + ^^) .

o ?• o\ ^\'lf ^^'; extension of formula for functions of
a^ ± x% to like functions (yi a-\-hx \. cx\ where a, h, and
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c are positive or negative, may be effected by the following

transformation

:

a + hx + ex' = c |y
— — + {— + ii;

J j = c (A + y%

if :,
= A, where A may be positive or negative, and

Hence it will be found that

dx I p dy/dx __^ r
a-\-hx + cx"

~~
c J y^ + A

— ^ lort ± ^ L^ Art. 53,

(A negative)

11 ?/= r tan"^-^ (A positive), Art. 59.
C AJ'' aj*

ydx __ 1 /*

{a-\-hx-\-cxf
"" Sy I

dy

A + ff

=
"i

log, {y + (/ + A)*} (c positive,

A positive or negative), Art. 54.

1 ?/= ; TiSin"^ , ., (A and c negative),

Art 56,

(impossible if A be positive and c negative).
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SECTION VI.

IlsTEGRATlON BY PARTS.

72. A FORMULA has Leen given, in Art. 40, of which very

extensive use is made in integration, and of which applica-

tions have been already given in Art. 45 and 51. This for-

mula, called the formula of integration by parts, is

^ Itdv =::UV — J'vdu.

Any differential function of one independent variable may

be put in the form itdv. If, then, fvdu can be io\ind,J'udv

can also be determined by the preceding formula.

73. To integrate £C log^ ccdx. Let log^ x=zu, whence

—= du (Art. 43). Also let xdx = dv, whence ^ x^ = Vy

(Art. 44),

-'-f X logs Xdx =y

w

d V = u V — fv d

u

= - ^' iog,^~y^-^*^

= I
^2 log, x - i x^ .

dx

X

74. To integrate xs'^'dx. Ltot s'^dx = dv. Then £*' = i?,

Art. 41. Also, let x = tr, dx = du.

J Xh"-' dx z=f'udv = uv —Jvdu = xi^ —f^^ dx

/' x^ dx T ^ 7
^xdx

— —7 • Let dv = orr,

[i-'xy (i^x-y

:=:^ f(^'-^2 >
.-. (Art.44)«= -i-^. Also let t^= i;f.

(1 — X'Y
^ '

\ —X-
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12 INTEGKAL CALCULUS.

The formula gives

n x"^ dx 1 e^' 1 p dx

J [i—x'f ^ 3 1 - a-
"" Sj r^^^

1 X ^ r ^^
^ ^ 3 — x'

"^ 27 r>y- -- 1

70. To integrate dx (a^ —> ii''^)l Since

Therefore, r/(a^-~^'^)^
'^ '''^''

Hence, integrating by parts,

fdx {a' ~ x^^ = X {cr ^ xj + T—^^

' J (a- — x-y J (ci- — x^

= xia^ — x^y + a^ sm ^

/ --; —
;

^ ^ a J [a- — x-y

consequently, transferring to the first side of the equation

the last member of the second side, we have

' sm ' -.

a
i dx [a- — 07^)^ = - a: («^ — x^^' + ^ ^^ sir

n. To integrate x cos x dx. Puttingy cos xdx = sin x,

we have Jx cos xdx = x sin x —J sin xdx

= X shi a: -j- cos x.
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78. To integrate e'^Qo^xdx. Performing tlie operation of

integration by parts twice,

J e"" cos xdx = €* cos a; -{-J e" sin xdx

= €"" cos X + €* sin X -^J e" cos xdx.

Transposing and dividing both sides of the resulting equa-

tion by 3,

J e" cos xdx'=-\ e" (cos x + sin x).
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SECTION VII.

FOEMULiE OF EEDUCTION.

79. By Formulse of Reduction, integrals involving powers

of functions are expressed by integrals involving higher or

lower powers of the same functions. These formulae are

obtained by the principles of integration by parts and alge-

braical transformation.

80. For instance, the integral of a;"*cos^ may be made to

depend on a function of a)"'~^ ; the latter, similarly, on a

function of x"'~~, and so on continually. If w be a positive

integer, and the process be continued a sufficient number of

times, the last integral is that of cos w or sin a-, which have

been found in Art. 47 and 48.

Integrating by parts,

Jx'" cos 0) = 0)"' sin o) — ??^J ^'"~^ sin xd:c

= ^'" sin;?? + mx"^~^ cos x — m , m— 1 . J x"'~'^cos xdx

-=. ^''" sin X + mx'"'"^ cos x — m .m — 1 x"'~- sin x —
m . 7)1 — I . m — 2 ^'"~^ cos x -\- &c.

the positive and negative signs succeeding in pairs.

For instance, let m = 4

J x^ cos xdx ^=^ x^ sin a: — 4 jx^ sin xdx

= ^^ sin a; + 4. . x^ cos x — o . A fx^ cos xdx

= .ij^sin-t.' 4- 4 .ic^cos^ — o.4^^sin;27 + 3.4. ^fxm^xdx

= ^^ sin^ -f 4 x^ cos ^' — o . 4 .
^"^ sin^' —

o . 4 . 2 . ^ cos .^' + 3.4.2.1 sin x,

81. The preceding integral is an instance of a general

formula which is an extension of John Bernouilli's series.

By the same method as that by which Bernouilli's series was

obtained (Art. 45), we have, if P and Q be functions of x,
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and Q', Q'^ q!'^ ... successive differential coefficients of Q
with respect to w, and

Pj =:zfvdw, P3 z=zfv,dx, P3 z=: fv^dx, &C.

fvQdx = QPi —fQ'V.dx

= QPi ~ Q'P^ +/Q''P2^a: = &c.

= QPi- Q'Ps + Q''P3 - Q'''P4 + Q'''% - . .
. =f/Q^"^ JPn da:.

S'2. To integrate afe^, n being a positive integer. Here

Q = x"", Q' = nx'"'^, Q^' = 7^ . ^ — 1 .
^""^^

Q'^' ^n.n-^X.n — '^. o;"-^ &c.,

Q(") = ;e . ^ — 1 ... 2 . 1, P = 6^ Pi = e^ P3 = €% &c.

Therefore,

J x^'e'dx = x"e'' — waj"~^e'' + n .7i — I ,

^'*~"^€'" — ...

q: 7Z . 71 — 1 ... 2 . 1 .f^Ulx

= €^' (.^•" — wo;""-^ \- n .n — 1 . x^"^ — ...

4= 7^ . ?i —- 1 ... 2 . 1).

The formula of the last article but one is inapplicable,

except where the successive integrals Pp P^, P3 ... are simple

quantities, and Q*^"^ such thaty Q"P„6?^ may be found. This

will not generally be the case for functions involving frac-

tional indices. Such functions may, however, be frequently

reduced by combining integration by parts with algebraical

transformation, as in the following example :

—

83. To integrate [c^ — x'^dx, n being an odd integer.

In the formula for integration by parts

j tidv = w^? — J vdu, let {a^ — ^'^)"2 = 21.

n

Then — w^ («^ — o?^) =
~ dx = du ; dv = dx.

J {a^ -^ x'^Ji dx= (a'^"^x^y x-\- nj {c^ -^ x'^)^ x^dx ... (1.)
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IG INTEGIUL CALCULUS.

Now,
n n n

(a^— X')
2"~^

x^=— (a-— x^) {a^— x) ^~^
-{- or (cr— or) 2

"

IntegratiDg tliis equatioiij nj(^a^ — x)2dx=z

na\f{a^ - ^-)H dx - nfici" - ^-)H ^^J^ ...
(o.)

Adding (1) and (2), and dividing both sides of the re-

sulting equation by n \- ^,

l\a^ _ cc')^dx = —^ (0? -^ x'y +

nc^ n, „ ^ '1-1 ^

By this formula of reduction, the integral is made to

depend ultimately onJicC^ — xry~^'dx, which has been found
in Art. 56.

dx
84. To integrate

.^
• In the formula of integration

\X^ * Cl~

J

J udv -=2 iiv — Jvdiij put v^=x, w = -,
ix- ± ay

%pxdx
(x^ ± »^)p+

^ (^^±df "^
^V (x^^±a'y "^ ^V (^±<)p+^

Whence, transposing, putting jt? + 1 = 71,

dx/' dx
(x' ± d'f

±1 X 2?z — 3 1 j^ dx

Except when ?e = 1.
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When n is a positive integer, this formula of reduction re-

— ^ = tan~^ - (when
X^ -j- ^"'

(X

a^ has the positive sign). When a^ has the negative sign,

—
r, = TT-ha: .

x^-- cr 2a ^ X -]- a

b5. To integrate /t^—~t—^—r, = tt / t^—Ji

—

—r

(Art. 44, except when n :=l),

— B

2(7i — l)(^-4- 2^.1? + c)
::3r +

{A-^h)f-
{(«! + 5)- + (c -&')}"

— B

2(ra — 1) (.•»'•' + 2 5ie + c)"

A — B5 « + 5

2 w - 3 (c - b-) {{x + A)^ + (c- b')}

2 ?z — 3 1 , , , /' dx

^aT^ +

-^i^ (A - Bt)/:

by the last article, putting x-{-b for it', and c — b^^ for a^. All

the constants may be positive or negative.

When ^i = 1, we have from the first equation of this

article and Arts. 43 and 59,

A — B6 , X -{-h
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SECTION VIII.

RATIONAL FRACTIONS.

86. A rational integral function of ^ is tlie sum of a finite

number of terms which involve only positive integral powers

of X, and these as factors.

87. A fraction rational with respect to x is a fraction of

which the numerator and denominator are rational integral

functions of x.

88. The partial fractions of a given rational fraction arc

those rational fractions with different denominators of which
the sum is equal to the given fraction.

89. If the numerator of a rational fraction, cleared of
negative indices of cc, he of higher dimensions in a; than the

denominator {i.e. contain higher powers of x than the de-

nominator), the fraction may be reduced to a rational integral

function, + a rational integral fraction of lower dimensions

in the numerator than in the denominator.

For if a rational function of x, axP-^^i -{-
5^^+5-i

~\- ... be

actually divided by another such function of lower dimensions

in ^, A^^ + B^P-^ + C^P-2 -]-... (^ and q being positive

integers), it will be found that the quotient consists of terms

with descending positive integral powers of x, commencing
with the index q, and ending with the index ; and the

i^mainder, after division, has terms with only positive inte-

gral powers of x, commencing with the index 2^ — 1» ^i^tl

ending with the index 0. So that

^^p-t-g 4_ ^^p+q-l _|_ c^P+9-2 + ...

AxP -\- BxP-'^ -f CxP-^ + ...
"~

axP-^ + hxP-^ 4- ...

AiX^ + BjA-^-i + ... -f- AxP + BxP-'^-^ ...

where the coefficients A^ B^ ... a^ ^ ... are to be determined

in the course of the process of division.
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90. The rational function A^^^ + Bi^«~i+ ... is imme-
diately integrable by Art. 44. So that for the complete
integration of a rational fraction, all that is required is to
integrate a rational fraction of which the numerator is of
lower dimensions than the denominator.

91. If in any rational integral function of x, x'^ he as-
sumed to have the value hx-]-c, the function becomes linear
{i. e. of one dimension in x). For x^ =zx' .x=z (bx -}- c)x
by the hypothesis; = bx'^ + ex, which again, by the hy
pothesis, is equal to b(hx + c) + ex, which is linear.

So, likewise, may x\ x\ &c., be reduced to a linear form.
So that any rational function of x takes the linear form .

OCX -\- P,

when bx -{ c is substituted continually for x\ cc and & being
quantities not affected by \/— ] .

92. If the preceding ccx-i-^z=zO (1), then a= a7id /3= 0.
For the original assumption x"- = b x -{- c, gives ^• ==
i{bf {b' + 4. ofI and x =. ^ {b - {b^ + 4c)4}. Therefore
equation (1) is required to be true for two different values
of X (except when 4c =— ^»'^); call them x,, x. Then

a e^i -f ^ =
aX.^-\- ^=: 0.

Subtracting, a (x, - x,,) = 0, .-. « = 0, since x, - .^^, is
not zero.

Substituting a = in either of the equations last written
we get = 0.

93. To show that real quantities, A and B, independent of x
7nay be found such that "

'

^^ __ Ao; 4- B
(x' - bx~— cfyj^x

""
(^^ —bx — cy '^ ^^ ^^'^

where (jyx and fx are rational integral functions, and do
not contam^ f — bx—c as a, factor, ^^ a rational fraction,
and n a positive integer.

(I>X — (A x 4- B) yjrx

{x^-bx-cf^f^"^^"^ (^0

Now, by a principle proved in the theory of equations, any
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rational integral function of .^• contains x' -— hx — c as a

factor if the function = when x^ — bx — c = 0.

The numerator on the first side of (2) is a rational integral

function of x. If, therefore, real quantities A and B can

he determined, so that this numerator =0 when w'^—hx—
c = ; then the numerator is divisible once, at least, by

x''^ — hx — c.

The quotient will be a real rational integral function (p^ x.

Then (2) becomes

^'^ ^^^ (3.)
(x^ — bx — cy'~^'\l/'X

or x^^ is a rational fraction.

It only remains to be shown that A and B are real quan-

tities, when determined by the condition supposed, namely,

that

(px — (A a: + B) yj/'X = ... (4), when x' — hx — c =^ 0.

It has been showni by the last article but one, that wdien

x^ — hx — c = 0, ov x^ =^ hx -\- c, (i>x is reduced to the linear

form ax -{- (3, and ^jrx to a similar linear form cc^x + /S^

Avhere a, /?, a', jS^ are real quantities; therefore, (4) takes

the form
ax-\- ^ — (Ax + B) {a!x + &') = 0,

or, multiplying the quantities in parentheses, and putting

x^ z= hx -\- c,

a^ + /5 — Ace' (hx + c) + A^'x + B (cc'x 4- /S') = 0.

By the last article the coefficient of x in this equation is

zero, and the quantity independent of x is zero, or

a — A (cc'h — P') + Be.' = C,

13 — AoJc + B/3' = 0.

(Except, as before, when — 4c = Z>^, when (x^ — hx — c)"

= (^ — i &)^"; see next article but one.)

It is clear that the values of A and B found from these

equations are real quantities, independent of x.

From (1) and (3),

<px Ax + B

(x^— hx — cyyjrx (x""^ — bx — c)"

^ (x'^bx-^cy-'irx
' ^""'^

www.libtool.com.cn



KATIONAL FBACTIONS. 51

94. Supposing the last fraction in this equation in its

lowest terms in ai^ — hx — c^ we have, similarly,

{iG' — bx— c) ""'
y\rX (c'r — hx~ c) " ^

_|
LA

{X' — bx — cy'~''^ y^rX

and so on. Therefore, generally,

^x Ax + B

{x^ — bx — c)" y\tx {x'-' — bx — €)"

AiX + B, A^x -f B^ ^
(^X'i ^ bx — €y~^ X'^ — bx — € -^X

where <l>i» is a rational integral function of x.

95. To shew that a real quantitij, C, indej^endent of x,

may he found such that

^x C .

{x--ayirx (x-ay '^^ ^
'^

where (f)X and ^x are rational integral functions of ^, x^ a

rational fraction, 71 a positive integer, ^a not zero, and ^j^a

not zero.

<f>x — Cyj/X

{x — ay -^x
XX : (2.)

Let C = -y— (which is finite hy hypothesis).

Then (hx ;

—

ylrx, the numerator of the fraction on the
'ya

first side of (2), is zero when x — a is zero ; and, therefore,

is divisible hj x — a, once at least.

Then (2) becomes

{x — a)" ^ y\rx

From this equation and (1),

= X^.

{x — ay "^x {x — ay {x — a) "~* ^ x
D .2
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96. If the last fraction in (P) be in its lowest terms with
respect to ^ — a, the numerator does not contain a* — a, and
(Pia is not zero. We, therefore, proceed as before, and put

{ic -- ay~^ ^x (x — ay~^ (x — ay'~'^'^x
'

and so on. Therefore, ultimately,

(t)X C Ci (px
+ 77.
—

-w=r + +
(x — ay'yjrx {x — ay- (;c — a)"~^ -^x'

97. In the formulae marked (a) and (/3) in the last article

and the preceding, respectively, the numerators (px, (p^x, (p.^x,

&c., have been supposed not to contain the simple or quadratic

factor expressed in the denominators. If, however, either of

these numerators happen to contain any number of times
a factor of its denominator, reduce the rational fraction by
division by the factor that number of times, and proceed to

reduce the resulting fraction into its partial fractions.

98. If the quantities U,, U^ ... represent quadratic, and Vi,

Vg... simple factors, we have, by the last two articles, con-

tinually reducing the rational fractions into partial fractions,

(p X

-[jn, jjn, ... ym, y^.;;

"^ :;—;—i" ••• +

+ &c.

C Ci Cm,
+ + '-—+ ... 4- rrr

y^w^i y Wi - 1 V

1
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90. In resolving rational fractions into jDartial fractions,

the greatest difficulty occurs in those cases in which there are

quadratic denominators of the partial fractions, and their

numerators are therefore linear in x Where, however, the

partial fractions have only simple denominators, there are

no (A)s and (B)s, and the numerators (C) are easily found

by either of the following methods.

(1.) Clear the equation of the last article of fractions, by

multiplying by the denominator of the first side. As the

denominator is supposed to contain no quadratic factors, it is

equal to V"h, V/'a .-, and therefore is of m^ + m^ + ...

dimensions in a^. Therefore, when the equation is cleared

of fractions by multiplication by this denominator, there are

terms in the second side of the resulting equation of (m^ + m.^

+ ...) — I dimensions in w. The new equation contains,

therefore, (m^ + w^^ + •••) different powers of ^, and (equating

coefficients of those powers) there are therefore m^ -f w^ 4- . .

.

equations to find the w^, + 711^ + ... quantities (c).

Example.—To resolve
w' — it- — a; + 1 {x— If {x + 1)

into partial fractions. Assume

1 c c, C^- + >—h^ +(^— 1)^(^+1) iC — l (^'—1)^ ^ + 1

Clearing the equation of fractions

1 =C(a;^— 1) + Ci(^ + 1) -f C2(^'^-. 2x + 1) ... (a.)

Equating coefficients of ^'\ = C + C^

of iv, = 0, — 2C2

of ^^ 1 = — C + Cj + C^.

Adding these equations, we have 1 =2Ci, .*. C^ = J.

Substituting this m the second of these equations, we have

Cg = J, and therefore, from the first equation, C = — ^.

/^ dx ^ r ^^ ^ r ^^

x' -^x'Z x-{-l ^ ~ ij x— 1
"^ V (^—l)"'

'^

\ r dx 1
, . ^^11 1, / . i\
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(2.) The numerators of the simple partial fractions may
be found by another method, wliich is frequently more con-

venient than that of equating coefficients. In the equation

cleared of fractions, give iv successively the values which make
each of the (V)s zero. Then, in each case, all the (C)s

disappear but one, which is therefore determined.

For instance, in the equation (a), in the last example, put

X = 1. Then (a) becomes 1 = Cj . 2 or cj = C,

.

Put c^ = — 1. Then (a) becomes

1 = C., . 4, or C^ = |-.

100. By this method of substitution, it is clear that as

many coefficients (C) are determined as different simple

factors of the denominator of the fraction to be resolved into

partial fractions are made zero. But when this denominator
contains higher powers than the first of any of its factors,

there are more (C)s to be determined than there are different

factors. For instance, in the example just considered only

two different factors ^ — 1 and .t? + 1 can be made zero, and
therefore only two out of the three (C)s can be thus found.

To determine the remaining (C)s, differentiate each side of

the equation equivalent to (a) in the last example; for since

that equation holds for all values of .^v, the differential coeffi-

cients of the two sides of the equation are equal.

In the new equation obtained by differentiation, put the

factors = successively, and so obtain more values of (C)s.

Then, if necessary, differentiate again, and equate factors to

zero, and so on continually, till all the (C)s are found.

For instance, in the last example, differentiate (a), then

= C . 2^ + Cj -I- C^2. (^— 1).

Put/» = 1. Then

= C . 2 + Ci, .-. since 0^ = 1, C = — ^p

101. We will take, as another instance, a fraction to be

resolved of which the denominator contains the third power
of a factor, and which therefore requires two successive

differentiations.

2 ^"^ + 1 ___ C C^ C^ €

(07 — 2f {a) + 3)-
*"

.1?— 2
"^

'{x— 2)-'
"^

[a;— 2)^'
"^ ^+8

^
(^^ + nf
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Clearing this equation of fractions,

2 .2.- + 1 == C (^ — ^f {x + 3)2 + d (;i7 - 2) {x -h 3)^

+ C;{^-^ ^f -Vci^x—^f {x + 3) + ci (.1? — 2)-^ (a.)

Putting 03 = 2, 9 = Cg . 25, .-. C^ = ^^

a;= ^3, 19 = c,(-5)^ .-. 0, = ---
.

19

5^^

Now differentiate («).

4;c = C {2 (a; — 2) (^ + 3)' + ^ (^ — J^)' (^ + 3)}

+ C, {(^ + 37 + 2 (^ - 2) {x + 3)} + c, 2 (^ + 3)

4- c {3 (^ - 2)2 (^ + 3) -f (.1? - 2)^} + Ci 3(^ - 2)2 ... (6.)

02 9
Putting .'T = 2, 8 = Ci 25 + ^2 • 1^' •*• <^i = Til'

since C^ = —

^.= -3, _i2=.c(-5)-^ +Ci 8(5)2==c(-5)'^-^

_ 19 _ 1 /57 \
___

3
since c

Pifferentiate (5), retaining only terms ivliich do not vanish

when x = 2; then

4 == C 2 . (^ + 3)^+ Ci {2(.i? + 3) + 2(0? + 3} + Cg . 2,

ii? being supposed = 2. Consequently,

4 = C.2.52+C,2.(5 + 5) + 2C„ .•.C=-|

2^2 4. 1 3 22 9

{x — 2f{x + 3f 5^(^ — 2) 5^^(i»~2)2 ' 25 (a; -- 2)*

3 19
"^

5^(^ + 3)"" 5^(^ + 3)^'

as may be verified.

102. Where the denominator of the fraction to be resolved

contains quadratic factors (and especially where each such
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factor is trinomial (=^'"— ^;» — c), the difficulty of resolving
the proposed fraction is considerably increased. The student
Avill probably be inclined to think that considerable labour is

saved by the following method, if he will compare the amount
of work whicli it requires for a difficult example with the
amount required for the same example by other methods
which have been proposed.

Assume the proposed fraction to equal a series of partial

fractions, as in Art. 96. Clear this equation of fractions, and
so obtain an equation corresponding to {a) in the last examples.
In this equation make each quadratic factor ^^~5^ — c =
{i.e., substitute bx + c for x-). Then the equation may
bo reduced to the linear form a^ + /5 = (Art. 91), and
a = 0, /5 = (Art. 92). From these tw^o equations the A
and B corresponding to the factor or — bx — c may be found.

This method will give as many different (A)3 and (B)s
as there are different quadratic factors, successively made
zero.

If there be more (A)s and(B)s {i.e., if any quadratic factor

appear in {a) of higher power than the first), differentiate ((^),

and in this derived equation make all the quadratic factors

zero successively, then, if necessary, differentiate again, and
in the second derived equation make the factors again zero,

and so on continually, till all the (A)s and (B)s are found.
The (C)s, if any, corresponding to simple factors, may be de-
termined from [a), and the derived equations by the method
already explained.

Let us take, first, an instance of the simplest case, that of

quadratic factor, which wants its second term, and is therefore
binomial.

1 r\r\ rrf • 9S CtU)

lOo. lo integrate

(^~1)M^' + 1)'

. x/^ A^ + B C C,
Assume

,,, , o
, ,, = —i-T-r + 7+

.-. x^ = (A^ + B) {x -~ 1)^ + C (^^ + 1) (^ - 1)

^0,(0.^+1)... (a.)

First, to determine the (C)s by the method of Art. 98, let
x^\, .-. 1=0^. 2, orCi = i.

www.libtool.com.cn



RATIONAL TRACTIONS. 57

Differentiating {a), and for brevity retaining only terms
which do not vanish when x =. 1, we have tlien

where a? = 1. Consequently 3 = C . 2 -f C, . S, or
3

Secondhj, to find A and B by the method of the last article.

Make the quadratic factor zero in (a); i. e. put — 1 for x'
continually; {a) becomes (expanding (^ — 1)'^ and putting
X^ = X , X'^ z=— x)

— ^ = {Ax + B)(— 1 — 2^+ 1)

= 2 A — 2Bx (putting — 2 A^^ = 2 A),

.-. =2A _(2B~1)^,

which is of the linear form required by Art. 91. By Art. 92
the coefficient of x in this equation, and the quantity inde-
pendent of X are each zero ; .-. A = ; 2 B — ] = 0, or

x^
B = i. Hence, -;;

—
'(x- 1)^(0.^ + 1)

11 111
+ T + n:2 ^-^

-f 1 x—1 ' 2 (a; — 1)-

^ (J^TF(^qni = 2
^'^"" ^ + log(^-i)- -—-^

.

Next take a case in which all the operations for resolving

partial fractions are required, and the quadratic factor is tri-

nomial, and raised to a higher power than the first.

104. To integrate y-z ~^-—-^.^. Assume the
{x^ — X -\- \y {x — ly

. . Ax-\-B A.^ + B, C C,
fraction = —

1 L__!

—

)_. j 1 1

—

x^ — x-\-l {x' — x-\-lYx-l{X'-l)'''
oj-^ 4- 3.^ _ 2 = (A^ + B) (^"- — a; + 1) {x~ If

+ {A^x + B^) {x -1)2 + [x"" —x+ \f {x -. 1)

+ Ci(a7^--^ + l)2... (a.)

D 3
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First, to determine the (C)s, Art. 100. Put x=l, .-. 2=0^.

Differentiate, retaining only terms which do not vanish

when X = 1,

20! + 3 = C (^/-^ + 1)^ + C, 2 . (-2 ^ - 1) (aj'^-'cc + ]),

where ^^=1, .-. r,=C-\-2C^, .', C=].

Secondly, to find the (A)s and (B)s, Art. 102, put x'= x--l

continually in (a); (^.)hecomes (.^ - 1) + 3a;— 2 =(A^^ + Bi)

(a; -> 1 - 2^ + 1) = (A,^ + BJ (~ ^) = - Aj (X - 1) - Bx,,

or = 3 + A^— x(A^ + B^ + 4), whence Art. 92, 3 + A^= 0,

or A, = - 3. Also A^ + B^^ + 4 = 0, .". B^ == - 1.

Now differentiate («), retaining (for hrevity) only terms

u'liich do not vanish when x^ — ^ + 1 = 0,

)lx + 3 = {Ax + B) (2^ - 1) {x - If + Ai {x - 1)-^

(A.o; + B,) 2 (a; - 1),

when .T* = a; — 1. Making this substitution continually,

to bring the equation to a linear form, we have, since

\x — If = - X,

2x 4- 3 = {2A {x - 1) - Ao; + B (2a; - 1)} ( - x)

^2Ai^+2A^(^-l) + Bi2(.'i?-1)

= (Aa?-|-2Ba;-2A-B)(~a;)- A,x + 2B,x^2A^-2B,

=- 2^- 3 - (A + 2B) (.^' - 1) + (2A + B)^'

— (Aj — 2Bi) .V — 2Ai— 2Bi.

This equation being of the required linear form, make

the coefEclent of x and the quantity independent of x each

= 0. Art. 92.

= - 2 + A -B~ Ai4- SB^, .\ A-B=l,

= — 3+A + 2B- 2Ai— 2Bi, .-. A + 2B = ~ 5,

B= — 2, A= — 1.

Hence the proposed fraction is equal to

^ + 2 3^ + 1 , 1 ^ ^

'a)''-^x-\-l (x^ — x + lf x—l (^-
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Art. 85.

y (^^II^"l7 ""
2 (y^ - ^ + 1) 2 3 (^^- ^ + 1)

V '^(«''-
.1; + 1)- (X - If ~ 3 (a;^-« +1) "^

.^• - 1

25 ^ ,
2a;— 1 , a; — 1-5^ tan-' —To- +log-

3^3 V'S ' *(ar^_a;+l)i
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SECTION IX.

RATIONALIZATION.

105. The last method of reducing functions of one variable

to integrable forms which we have here to consider, is the

method of Rationalization, which is a system of algebraical

substitution, by w^hich, for an irrational algebraical function,

is found an equivalent which is rational, and therefore

integrable by the preceding section.

106. A rational function has a rational differential coeffi-

cient. Every rational function of z may be reduced to the form

• a -\-hz -\- cz"^ -^ ,..kz"^

a + b^ + cz" 4- ... 1^"^
'

and it is clear the differentiation of this quantity cannot
introduce fractional indices of z. It follows, that if x be

dx
any rational function of ^, — is a rational function of

z^=:"R.\ suppose, .*. dx =^U.,dz, where R, is a rational

function of z.

107. A rational function of a rational function of x is a
rational function of x. For if (^, J\ both indicate rational

functions, fx involves only integral powers of x, and (^ (/^)
involves only integral powers oi fx\ .*. (f){fx) involves only

integral powers of x, or is a rational function.

108. A universal method of rationalization cannot be given,

as many irrational expressions are reduced to rational forms,

by artifices peculiar to the cases in which they are applied.

But the most general principle of rationalization may be

stated as follows :

—

Suppose that the expression to be rationalized is a rational

function of an irrational function (I,.) of x, and of a rational

function (H^), so that the expression to be rationalized is
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where / indicates a rational function. Then assume, if

possible, X equal to such a rational function of z, that I^

becomes equal to a rational function (R^) of z. Then also,

by Art. 106, dx^^Si^dz. Also, by Art. 107, R^ = R''„

another rational function of z
;

.-. /(I,, R,)^.'^ =/(Rz, R^) "^'zdz.

But / indicates a rational function. Hence, by the article

last referred to, /(R^, n^\)R\dz is rational in z, or

/(I„ R^)da! is reduced to a quantity which is rational,

and therefore integrable by the methods of the preceding

section.

109. To rationalize R^ f r-
V'

(/^, -svhere R^ is a
'\a,x-\-hJ

rational function of x and m, 7i positive or negative integers.

This is a particular case of the last article.

Let^U..., ....=._^:i^ (1),

or X is a rational function of z. Then by the last article,

„ , , ( ax -\-h \~^
R^==R'^;3^, dx = n^dz, 1,^1 r = z"\

\a^x -\- hj

and so the whole of the proposed expression is rationalized.

110. To rationalize {a'x-^- h'Y {ax -\- hydx, where one of

the three quantities

ixy V, or jLt + I' is a positive or negative integer ... (2.)

In the expression proposed to be rationalized in the

last article, put R^= (<*^'^7 + J')', where ^ is a positive or

negative integer.

Put a^ = a\ bi = b\ Then the expression becomes

in m

{a'x + b')'"^ {ax 4- by dx,

which may be written

{a'x + b')f^ {ax + by dx,

www.libtool.com.cn



m INTEGRAL CALCULUS.

where ^-^v{=i) is an integer, or (2) is satisfied; and by (1),

ax ~\- b

a\v + y
' (3)

Next, let R^ = {a'x + ¥)\ and in I, let a^ = 0, h^ = l.

Then the expression rationalized becomes

{o!x -f hy {ax + hydx,

which, again, is of the form

{a'x^Vf {ax^ ly dx,

where one of the quantities /x or i^ is an integer, and the
condition (2) is satisfied. In this case (1) in the last article

becomes

-:' — h
ax -\- h =z z'\ X = (4)

a ^ ^

111. To rationalize x'^ {aafl •'\- &) " dx.

1 1 L-i L
Put x^ = ii% .-. -.x^^ dx = dx, ^p = x% and the

expression proposed to be rationalized becomes

1 ^+--1 -
-xs 3 {ax + hydx.

This can be rationalized by the last article, w^henever

£l -j 1 is an integer, and, therefore, an inteo'er:

or ~ + - — 1 -I— an integer, and, therefore, 1

—

q q,
n q n

an integer.

The Fir^t Criterion of rationalization of

xP(ax'^ + by dx,

p + I
is, that be a positive or negative integer, when

(since x"^ = x) we have to assume ax'^ -\-b^=. z" by (4).
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The Second Criterion of rationalization is, that \-
-

q n

be a positive or negative integer, when we have to assume

112. The method of Art. 108 may be extended to several

irrational functions I^'^ ll'\ I^'^ ... if it be possible to assume

X such a rational function of ;$?, that these irrational functions

of X become equivalent to rational functions of z.

For instance, if the irrational function of x be

Wa^-\-hiX/ \a^-{-b^xJ \a^-\-b^x/ J

where m, n, &c., are integers.

Put ^
,

^^^nnp 1

a^-\'\x ' "^ h^h^z'^^v^^^

dx is rational in ;$;; and so the whole expression may be

rationalized.
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SECTION X.

INTEGRATION OF FUNCTIONS OF SEVERAL VARIABLES.

113. We have hitherto considered the integration of func-
tions of only one independent variable. The magnitude of a
quantity may, however, depend upon the magnitudes of several
other quantities, each of which is susceptible of independent
and separate variation.

For instance, the cubic content of a right cylinder de-
pends on two independent magnitudes, the altitude and the
area of the base. Each of these magnitudes may be con-
sidered to vary independently of the other, for we may
conceive the existence of any number whatever of cylinders
with equal bases but different altitudes, and of any number
of cylinders of equal altitudes but different bases.

^

Again, the content of a rectangular parallelepiped is a func-
tion of three independent variables the lengths of three of its

edges.
^
The content of an oblique parallelepiped is a function

of five independent variables, namely, the lengths of three of
its edges, and the inclinations of two of them to the third.
The weight of a solid is a function of two independent
variables, its volume and specific gravity. The time of
vibration of a perfect pendulum vibrating in vacuo is a
function of three independent variables—its length, the force
of gravity, and the extent of the oscillation.

114. Definition. The Quadrature of a finite continuous
function of several independent variables having a limited
range of values, is the sum of a series of different values of
the function, each multiplied by the differences between the
corresponding values of all the variables and their next pre-
ceding or succeeding values.

115. The Multiple Integral of such a function is the limit
which its quadrature has when the differences of the inde-
pendent variable approach zero, and their number infinity.

[These definitions are extensions of those of Articles 10
and 17.]
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116. Let f{z, y, x, zc? ...) be a finite continuous function of

any number (N) of independent variables. Suppose n^ values

given to z, n^ values to y, n.^ values to Xy &c. Then the

total number of different values of the function will be the

total number of different combinations oi n^'\- n^-\- n.^ -\- ,,,

different things taken N together.

Let Z, z, Y, y, X, X ... be the superior and inferior limits

of the several variables. If S be understood to be the

abbreviation of the words " sum of terms of the form of,"

the quadrature of

f(z, y, X, w, ...) = S/(^, y, X, w ,.,)^z .^t/ .^x ,dw ...

where 8z, Sy, dx,^w ... indicate differences between succes-

sive values of the variables. Also,

limit of 2/(^, y, X, w .,.)bz .dt/.dx.^w ...

(when bz, Sy, bx, S^0 ... approach the limit zero), is equal to

the multiple integral of f[z,y, x, w ...) between the limits

Z, z, Y, y, X, X ... This multiple integral is written

nZ nX rXIII »,.f{z, y, X, w ,»,)dzdydxdw ,..

the sign ^f being repeated as many times as there are in-

dependent variables.

117. Multiple integralsfound by successive integrations.

Let ;^^, z^, ^2 ••• ^v ^2' ^3 ••• ^^'^ ^^ successive inter-

mediate values of the variables betw^een their limits. Also,

let 8zj^, bz..^, dz.^ ... Sy^ dy.^, by.^ ... &c., denote the successive

differences of the values of the variables. The integral is

the limit of the sum of terms of the form

First. The sum of the terms in which z alone has dif-

ferent values, while the other variables have their first

values, is

of which the limit (since here z alone varies) is equal to

limit of ^2/1 ^^1 ••• / /(^» 2/p ^i ••O^'^-
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^6 JNTEGEAL CALCULUS.

This integral being taken between limits, involves onlv
those limits, which may be functions of x, y, ... or any other
quantities whatever. But the variable intermediate' values
of X disappear (Art. 26) from the integral, which, therefore,
takes the form/ (y,, x^, w^ ..,), z being omitted.

Secondly. Add all the terms in which z alone varies, y
having its second value, x, w ,.. sls before their first values.
The limits of the sum of these is

limit of Sf/,
. dx, ...y^ V(^, 2/2^ ^v ^^1 •••) ^^-

= limit of ay,
. 5^-1 ... /i (y„ X,, w, ...).

Similarly for the terms is y^, j/,, &c. The sum of all

these is

of which the limit is (by reasoning with respect to y similar
to the preceding with respect to z) the

- y

= limit of hx^ hw^ .../sC^i, ^1 -.)'

y being omitted from Z,-
Continuing the process, x, w ,.. successively disappear

by successive definite integrations; and the final result, or

required multiple integral, is the result of as many succes-

sive integrations as there are independent variables.

Hence, where there are only two independent variables,

if r be the last of the independent variables, this result is

of the form

/ irdr = F(R) — F(r).

J^ y^ /(^. y) dz dy =J dy
| J^ f[z, y) dz^\^

;
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where there are three independent variables,

/^Z pY /-X
/ / / f{z,\j,x)dzdydx

And, generally, a multiple integral is formed by inte-

grating the proposed function ivitJi respect to one variable,

as if the others ivere constant ; substituting the limits of that

variable; integrating the result ivith respect to another vari-

able, as if the rest were constant; substituting the limits,

and so on, till as many integrations have been j^erformed as

there are independent variables.

118. Order of integration indifferent. The sum of any
numher of quantities does not depend on the order in which
they are added. Hence in the summation of the quadrature,

the terms involving different values of any variable may
be first collected, and the limit of their sum involves an
integral with respect to that variable. Therefore, the vari-

able with respect to which the first integration is performed,

is indifferent. Similar reasoning applies to the other in-

tegrations.

CoKOLLARY. / dy { j f{^,y)dz\

119. The cubature of solids affords a very complete illustra-

tion of the foregoing principles.

Let xOz, xOy, yOz be three planes perpendicular to

each other; and let ABCDa^cdf, be a solid bounded by
the curved surface ABCD, by a rectangle ac in the plane
xOz, by two planes Kh, Dc parallel to the plane yOz,
and two planes A J, Be parallel to the plane xOz.

Consider now the base ac of the solid divided into any
number of rectangles, represented by dotted lines in the

figure, and on these rectangles, as bases, let rectangular

parallelepipeds be described, of which the sides cut the upper
surface ABCD in the curves shewn in the diagram.
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If .V, y, z be co-ordinates of any point (P) in the curved
surface referred to rectangular axes O.r, O?/, O^, the relation

between w, ?/, z may be expressed by an equation

in which z is supposed to be finite and continuous

;

and pq = .r, Oq = y, Vp =. z.

Let Vp be the altitude of one of the elementary parallele-

pipeds, ^x and ^y the length and breadth respectively of its

base. Then the solid content of the parallelopiped is the

product of these quantities, or z^xly =y*(a;, y)lx . ^y.

y^^VvV^ Vn.

be corresponding successive values of the co-ordinates, and
Ix, ^y, the common differences of the successive values of

X and y respectively. Then it may be seen that the solid

Ac contains parallelepipeds, of which (reckoning them in

rows parallel to alj) the solid contents are

fi^vVi)^^^!/^ /(^v^'^^^h^ f{xvy-^^^^h''Ji.^vyn)^x^y,

f(x-,,y{)^x^y, f{x^,y^)^x^y, f{x^.y^)^xly,,J{x.^,y:)^xly,

f{x,n,yi)^x^y,f(x,„,yo)^x^yJ(x„,,y.^^x^y...f(x,,,yn)^x^y.
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Also, as will be proved hereafter, the more the number
of these parallelepipeds is increased, and their length and
breadth diminished, the more nearly is their sum equal to

the content of the solid AC. If the limits of the sums
of the contents just written be taken in rows across the

page, the result is

limit {dx / 'f{x^, y) dy + bx / V(^2» y)dy + ...

+ S^ / ''f{^m.y)dy}

If, however, the parallelepipeds had been reckoned in rows
parallel to the longest side of the page, that is, parallel to

ah in the diagram, the limit of the summation would be

•3/0 f

And since both results represent the same solid content,
they are equal.
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SECTION XT.

QUA13EATURE OF CUKVES.

120. The Integral Calculus is applied to the rectification, or

determination of the lengths of curves ; to the quadrature, or

determination of areas of curves ; the complanation of sur-

faces, or determination of their superficies ; and the cubature

of solids, or determination of their volumes or contents.

121. The methods of determining Quadratures and Cu-

batures are readily demonstrated by principles already laid

dov^^n. Kectification and Complanation depend on geometrical

theorems, hereafter given.

It has been shown, Art. 19, that if w and ^ be the rect-

angular co-ordinates of any point of a plane curve, X, Y,

and X, y the co-ordinates of its extremities, the area included

by it, and straight lines from its extremities parallel to the

axes of X and y respectively, is given by the formulas

r>X
/ a^d^, or / t^d:v,

where it is supposed that

0) and ^ are always positive

and finite, and to neither

is assigned more than one

value corresponding to any
value of the other, between
the limits X, Y, x, y.

122. Quadrature of the

Circle. Let r be the radius

of the circle; cc, y, its co-

ordinates at any point re-

ferred to the centre as ori-

gin of co-ordinates; then x
and y are connected by the

equation.
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^"^ + / = '/^;

or, y = (r^ — ^•-)*,

/ ydx = / (r^ — >^'^)^'^.^^

= {f - ^n^^ + C-^-J^ (integrating by
J {r^ — x^f parts),

Now Cif ~ oir) dx = (r"- - x^x

The last integral on the second side of this equation is

identical with the integral on the first side. Therefore,
transposing and integrating the remaining integral by Art. 56^

/(r' - ^^) dx = ix (r^- - x'^y^ + I ^2 sij,-i

If Oc=X, ana 0^=ix, we have to take this result
between limits X and x, to find the area Abe;

.-. Ahc = iX (r'' -- X')i ^ ix (r" ^ x^y

X , _ X
4- i r"^ sin-J Ir^ sin-^

^* r

If it were required to find the area of a quadrant, B,
C would be supposed to meet Oy, Ox, respectively, and there-
fore X = r, X = 0. Therefore, since sin-^ (or the angle

of which the sine is 0) = 0, and sin"^ 1 == —

quadrant = — r"^.

Therefore, area of whole circle = irr^.

123. Area of Ellipse. The equation to the ellipse referred
to the major axis, and a line at right angles to it at its

extremity as axes of co-ordinates, is
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^Yllere a is the semi-axis major, and h the semi-axis minor.

/ ^dw = / — (2 a a- — ^^y^ dx

: lahcos~^
2a

(2a^-a?^)i ... (I.)

When ^ = the preceding expression vanishes. It may,

therefore, be supposed to be taken between the limits

and X ; consequently, if OB = x, the expression is the value

of the area PBO.
When a = h the ellipse becomes a circle, and the ex-

pression (1) for the area becomes

— X a — X
()iax — xj ,(2)

Hence, if OP'M be a circle having the same centre C with

the ellipse OPM, and OM, the diameter of the circle, be also

the major axis of the ellipse, we have, comparing (1) and (2),

area OP'B __ a

area OPB ~~
~b'

It appears also from (1), that the area OPB is proportional

to b. Hence, if any number of concentric ellipses were
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described on the sa-oe axis mswr^ the areas of them having
the same base. On, wouhl be in the proportion of the
several minor a^'cs.

The area of a quadrant of the ellipse is found from (1),
by putting a: =z a, to he

i ah cos~^ = — a5.
4

Hence the area of the ellipse =.iTah.

124. Quadrature of curves referred to oblique co-ordinates.
The method of obtaining, in Art. 19, the quadrature of curves
referred to rectangular co-ordinates, consists in dividing the
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area by rectangles, and taking the limit which their sum
has when their breadth is indefinitely diminished and their
number indefinitely increased. - .-

Similarly, if an area, ABCD, bounded by the curve BC, and
three straight lines, of which BA is parallel to CD, be divided
by parallelograms upon AD having sides parallel to CD, the
limit of their sum is the area AECD. Also, let the curve be
referred to oblique axes of co-ordinates Oj/, Ow, inclined to

each other at an ag^gle a. If ^x and y be the lengths of two
sides of one of the parallelograms, y sin a is its altitude,

and t/sinocLv is its area; whence it is easily seen, that the

area ABCD =J2/ siiiud.v, taken between proper limits.

125. Quadrature of the Hyperbola. Let the hyperbola, of
which A is the vertex, be referred to its asymptotes Ow, Oy,

inclined to each other at an angle a, as axes. Draw AB
parallel to Oj/, and let OB = e. The equation to the hyper-

bola is yx = Q^. Oin = x.

Area ABPM = sin a / ydx = sin a / — dx
J Q J e X

: sm cce-\o^—.

126. Quadrature of the Witch of AgnesL In the last

example, as x increases, the area increases indefinitely; and,

therefore, the whole area between the curve and the asymptote

is infinite. There are, however, curves in which the area

between an infinite branch of the curve and its asymptote are
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finite. The *' witch," or "versiiera" of

Donna Maria Agnesi, is an ii|.stance.

Let AB be a diameter of a circ|e = a,

AC a tangent, P any point in the ^urve,

AM = X ; AB, AC being the axes, of x
and y respectively. \

The curve is defined by the relation

rectangle PA = rectangle DB.
The equation to the curve will be

found to be xy^ = a^ {a — x).

Now, {
\ X J

75

{ax — x^)^

^ a — 2x

r,fycix^af[^^px

= a(ax — xy^ + i ^^ cos~^^ ,

Arts. 44 and 56.

:a andThis expression is to be taken between limits x •

x=:x, to give the area PBM.
The area between AC, AH, and the curve, is the limit

which the result thus obtained has when x has the limit 0.

This evidently is found by taking the expression for the

integral between limits x =:a and x = 0;

.'. required area = {cos""^ (— 1) — cos~^ 1)2^^== J ^ra^.

The whole area between the asymptote and the whole

curve on both sides of AB, is double the preceding, or =z7ra^;

and, consequently, is four times the area of the circle.

197. Quadrature of the Cissoid of Diodes. This curve, in-

vented by Diodes, a Greek mathematician, about the sixth

century, and used for finding two mean proportionals, re-

sembles the curve last considered in several respects. It

affords another instance of a finite area included between an
infinite curve and its asymptote.

The cissoid may be defined by Newton's method of tracing

E 2
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it Thp arms of a bent lever are at right angles to each

other and The end of ond of them slides along a straight
other, ana im.

^^^^^ ^^^^-^ ^ ^ f

the cissoid.

Let B be the fixed point. Then, if AP = BD, and the

end 1 of Ae lever move along a straxgh hne, .Jile PC

remahis in contact ^vith B, the cissoid is the locus of P.

Let AC = «, AB = ^, V3=y. The

equation to the cissoid will be found to be

/ (a — x) = ay\

J ydx =J
X (^TT^

=_ 2 (a _ x)^x^ + 3/('» - «')***^^"

(integrating by parts).

which is of a form ^vhich has been already

integrated (Art. 83)

;
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+ 3(J^ -— i«) {ax — x^y^ + |a^vers~^Y—

.

For the whole area between AC, CH, and the curve, it

appears by the same considerations as in the last article, that

this integral is to be taken between the limits xr=^a and
a; = 0, when

fydx = f a^ {vers~^ 2 — vers""^ 0} = f o^t:.

The whole area included by both branches of the curve

and the asymptote is double this, or f ttaj^ = three times the

area of the circle of which AC is the diameter.

128. Polar co-ordinates. Let the position of any point in

a plane curve be referred to polar co-ordinates, namely, the

length (r) of the straight line

drawn from the point in the

curve to the i3ole, an assigned

point in the plane of the curve;

and the inclination (S) of that

line, to some fixed line in the

same plane passing through the

pole. Let S be the origin or

pple, P the point in the curve,

SP = r, which is called the

radius vector, and S^ the assigned fixed line from which the

angle VSx-=^^ is measured. If P be also referred to rect-

angular co-ordinates of which ^x and Sy perpendicular to

S^ are axes, it is easily seen by trigonometry that

r sin = y, r cos 9 = ic.

Suppose now that it is desired to determine the sectorial

area included between the radii vectores at two points in a
curve and the arc between them. When a curve is referred

to rectangular co-ordinates x and y, the miGgrdX^jydx or

Jxdy between limits determine the area included by a curve

and straight lines parallel to the axes. The relation between
such areas and a sectorial area is established by the following

proposition.

www.libtool.com.cn



78 INTEGRAL CALCULUS.

129 Sectorial area in terms of rectangular co-ordinates.

Let PQ in either of the accompanying figures be the curve,

^Yhich is taken of such length that it is not met at two

points by any one of its co-ordinates, and PSQ the required

sectorial area.

(1.)
(2.)

Let SK= X, SH = X, QK= y, PH = Y. It is evident that

PQKH = / ^da^.

Also, triangle QKS = i y x, triangle PSH = A X Y. Also,

Fig. (1), PQS + QSK + QKHP make up the whole PSH;

/-X
... PQS = i (XY - xy) -J^

^dw.

Fig. (2), PQS + PSH makes up the whole figure, as does

also QKHP + QSK. Therefore,

- PQS = ^ (XY - xy) -y^ ^d.^'

Hence in both cases, PQS, the sectorial area, is, by Art. 34,

equal to
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130. Sectorial area expressed hj polar co-ordinates. In the
last article the sectorial area was found to be equal to

2 U^dy — fydx) between proper limits.

Putting x — r cos 0, y — r sin 0,

dx = dr cos ^ — r sin Sd6,

dy = dr sin ^ + r cos Bd6
;

.-. xdy — ydx = rdB
;

.*. sectorial area = ^fr'^dO,

where the limits of are the angles between the prime radius
vector and the radii vectores which bound the required area.

131. The same residt may he deduced directly from geo-
metrical considerations. Divide the sectorial area by radii
vectores r^, r^, ^3 ... between the extreme radii vectores R, r,

with S as centre, and at distances R, r., n ... describe circular

arcs represented in the figure by dotted lines. The sectorial
area is less than the sum of the sectors of which the arcs are
without it, and less than the sum of the sectors of which the
arcs are within it. The area of a circular sector, of which
the radius is r and the angle ^0, is ^r^^O. Therefore, the
required sectorial area is

less than | (R^^O^ + r\^0, + r\U., + ...) (1.)

greater than J (r\^9^ + r\^r- + r\^9^ + ...) (2.)
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where (5^0^ ^02... are the angles between the radii. Now,
r is a finite continuous function of 0. Therefore, by Art. 20,

the above expressions (1) and (2) have the same limit, and as

the sectorial area is between them, it is equal to that limit, or

sectorial area = J- / -rd^^. / / rclrd^, where 0,
^J & J J

are the inclinations of R, r respectively to the prime radius.

132. Quadrature oj the

spiral, r=zasinn9, where 7i

is an integer. This curve has

2 71 similar loops, and, there-

fore, the whole area contained

by it is equal to 2 ?^ times the

area of one loop.

Integrating by parts,

/sin n 9 . sin^^ 9<r/9 = cos 7i 9 sin/i G + / cos^ n^d^

: COS7lBSm.7l\
n

+ /|l-sin27i6)^0.

Therefore, transposing and dividing by 2, we have

/ sin''w9 6?9 = I ( — - COS72 sin>^0 j,

.-. i /V^9 = ^a^C 9— -cos^zGsin^oV

From the equation to the curve, it is evident that a is the

greatest value which r can have, and that then it is drawn
bisecting one of the loops. Since r = a when ^^ 9 = J tt,

and r = when 0=0, the half loop lies between the two

positions of the radius vector corresponding to those values

of 9. Therefore, taking the preceding expression for the

area between limits —-- and of y,
%7l

area of half loop = ^ a^
IT

2 w
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The whole area is 4^ times this, or = ~, which is half

the area of the circle circumscribing the curve. The result
IS remarkable, as it is the same whatever the number of
loops of the curve.

133 Of curves, such that one co-ordinate has more than one
value for one value of the other co-ordinate, the quadratures
are lound by dividing the curve into several parts, each
ot wtiich IS of such length that it is not met at two points bvany one of its co-ordinates, and determining by the preceding
methods the quadrature corresponding to each such part.

For instance, in the accompanying figure the ordinates
parallel to O^ have three values for each value of ^ between
Oc and Ob, where Cc, Bb, are ordinates touching the curve
at C and B respectively. But the areas AabB, CcbB, CcdB
may each be found by the preceding methods. Also, the
required area

ABCDda = AabB + bBBd, and bBBd = cCDd - cCBb

;

.-. required area = Aa^B + CcdD — cCB^.

^

It may easily be seen that the generalization of this rule
is, to divide the area into as many parts as the curve has
parts, alternately receding from and approaching the axis
of ?/; to find each of these parts by integrating 7/da; between
corresponding limits; and to take the difference between the

E 3
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sum of the areas under receding parts of the curve, and the

sum of the remaining areas.
, r ,t . .. TV,o

184 Area in terms of the length of the curve, ihe

parts of the curve which recede from Oj/ are those for

which a> increases as the length of the curve measured

from its extremity nearest to Oy increases; and where,

consequently, if « denote the length of the curve, -£ is

positive. In the other parts of the curve £ is negative.

N°^' r^dw ^fvg ds (Art. 88).

If, then, sls„ ... s,„ he the respective lengths of the curve

from its commencement up to the points where ^ changes

sign, ps^ dx , r^i, dx , „

are the component parts of the required area. But the

Xrnate narts are to be subtracted from the sum of the

ristihe result will be the algebraical sum of all the parts,

since — is alternately positive and negative.

Therefore, the required area (S being the whole length

of the curve)

=f:^'i-/-^fyT."^

if y ^ he a continuous fmite function of s. By the nature

of thfquantities y can only have one vakie for each value

of s; and, if the curvature be continuous, -£ has only one

value for each value of s; so that the result of integrating

y'!f.ds is necessarily definite.

ds ,

135. -Negatke ordinates. In investigating areas of curves.
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it has been assumed that the co-ordinates are positive. When
one of the co-ordinates is negative, the processes described

in the preceding articles will require modification.

By the principles of analytical geometry the symbols 4-

and — prefixed to symbols of length, are interpreted to

indicate contrary directions of measurement ; so that if from
any point in a line curved or straight a length measured
off along the line towards one of its extremities be reckoned
positive, a length measured from any point in the line along

it towards its other extremity is affected by the negative sign.

But no such convention applies to areas which are considered

essentially positive.

If the curve be referred to rectangular co-ordinates, and y
do not change sign between the limits, and x be positive

or negative, jydx is of the same sign as y, if the limits

be taken in the same order as was prescribed (Art. 19)
for positive co-ordinates ; that is, if x increase fositimly in

passing from its value which is the inferior limit to its value

which is the superior limit. This is shewn as follows :

—

fydx is the limit of the sum of terms of the form ylx,
where "tx, the increment of x, is positive, since x increases

positively in passing from the inferior to the superior

limit; consequently, y^x has the same sign as y, ecndj^ydx
has the same sign.

It follows, that for all areas on the negative side of the

axis of Xy J ydx is negative and Jydx is positive for all

areas on the positive side of the axis of x.

In order, then, to determine the whole area bounded by a

curve, of which part is on the positive and part on the

negative side of the axis of the independent variable, the

two parts must be determined by separate integrations, and
the negative part must be added positively to the positive

part.

136. Negative polar co-ordinates. In determining the sec-

torial area of curves referred to polar co-ordinates, J r'^d^ is

to be taken between limits such that increases positively in

passing from its value at the inferior to its value at the

superior limit. Hence it appears, by similar reasoning to

that used in the last article, that, whether be positive or

negative,J r'^f? 9 is positive.

www.libtool.com.cn



84 INTEGRAL CALCULUS.

SECTION XII.

CUBATUEE OF SOLIDS.

137. Let a solid, ABC c dab, be bounded by a curved surface

abed and by five bounding planes, viz.:—by a rectangle, of

which AB, BC are two sides, and by four planes dA, ciB,

Be, Cd, perpendicular to the plane of the rectangle, passing

through its sides and meeting the curved surface in four

plane curves ab, be, cd, da.

Let the curved surface be referred to rectangular co-

ordinates (x, y, z) of which the axes are parallel to BA, Bb,

BC respectively, and let the surface be such that each
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co-ordinate 1ms but one value for each value of the other
co-ordinates.

Draw within the solid planes, parallel to the bounding
planes and cutting off within the solid, a number of rect-
angular parallelepipeds, of which, since they are within the
solid, the total content is less than the volume V of the solid.

Add, now, a set of rectangular parallelopipeds (not shewn
in the figure), within which the curved surface wholly lies,

and which are formed by the above-mentioned parallelopipeds
produced. It is clear, that as these additional parallelopipeds
are increased in number and diminished in magnitude, their
sides approach continually closer to the curved surface ; and
that, consequently, their volume (v) may be diminished with-
out limit.

V is greater than the solid content of the first set of
parallelopipeds, and less than that solid content -f v.

Therefore, V lies between two quantities, of which the
difference may be diminished indefinitely. A fortiori, the
difference between either of tbem and V may be diminished
indefinitely.

Let the lengths of edges of one of the parallelopipeds be
^x, ^y; z its altitude; zlxly its volume. Let Y^zlxly
denote the sum of the volumes of the parallelopipeds within
the solid V,

V = limit of Y^z^x ly

^ffzdxdy (Art. 117)

—fffdxdydz,

the integral being taken between limits which depend on
the boundaries of the solid.

In the figure, for the sake of simplicity, the internal

planes are supposed to be equidistant.

138. The limits of integration for the cubature of a solid

may be investigated by the following method of exhibiting the
result just obtained. Let MJM' NN' be an element of the

curved surface, QQ^RR^ its projection on the plane of xy.

Let QQj^ = ^x, QR = hj. In the limit the solid M'R is

a prism, of which the altitude is z and the area of the

dxdy;
.-. dY = zdxdy.
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/
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Suppose the equation to tlie curved surface gives z =^f[x, y).

Then

dV =fff{x,y)dxdy.

In this expression take first (Art. 117) y constant, and
integrate /(^, y) (i;:i?(iy with respect to x. The result is

the limit of the sum of the prisms, of which the hases are

between the parallel lines ^Q^ rR^ Let .^^= X and ^= x
be co-ordinates of the extremities of their lengths in the
solid

;

dy I
" zdoj

is the analytical expression of the content of the row of

prisms just defined.

In order to find V, we have to add together this and the
parallel rows of prisms, and to take the limit of their sum.
If Y, y be co-ordinates of the bounding planes parallel

to zx^

X
'' dx dy.

180. Solid hounded laterally hy a curved surface. We have
in the preceding articles taken the most simple case of

cubature, that in which the solid is bounded laterally by four
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planes. The limits of x and y are then the same for every

point of the solid, and independent of each other. In this

case the integrations are comparatively easily effected. If,

however, the solid he hounded laterally by curved surfaces,

the extreme values of a; and y are no longer independent, but

are connected by the equations to these curved surfaces.

Let X, X be constant quantities; Y, y two functions of the

variable ^; Z, z two functions of the two variables ^ and y.

Then it may be shewn that if the volume included between

the six surfaces, of which the equations are respectively

w — X, ^ = X, y = Y, y = y, z=^Z, ^ = z,

be designated by V,

V = / / / dxdydz.

From the equations to

the six surfaces it will

be seen that V is the

volume of a solid, De,

bounded by two cylin-

drical surfaces ECce
and FD6?/, of which

the traces are Ka and

B h respectively ; by

two parallel planes e d,

ED, of which AB, ah

are the intersections

with xz, and by two

curved surfaces CDdc
and E^/F.

r

/"
f

Jy] _,.-— .-

e

A X d

/
1

1

/

X
. r--------

b

I
140. HyperhoUc paraholoid. The equation to the surface

of the hyperbolic paraboloid is xy^=cz when c is a constant.

The general expression for the volume becomes

V -=^-ffxydydx.

Let it be required to find the volume contained by this

surface, the plane xy, and a cylinder of which the base is a

circle of radius r, and the axis parallel to the axis of z.
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Integrating first with respect to y between limits Y, y,

Now the equation to the cylinder is (^— af + (y— 5f= r",

which gives two values of y for each value of x. One of

these values is the superior, and the other the inferior limit

of the integration just performed; or,

Y = Z* + {r^ — (^ — cif}^, y = J — {r" — {x — af}^ ;

.-. Y2 — y2 = ^h {r- — {x — df}^

;

.-. y =: — f{r'^ — {x — af}^xdx.
c

'

Tiic extreme values of x are evident!}^ a-{-r and a — r.

Taking the last integral between those limits, it will be

found that V = -—

141. Solids of revolu-

tion are those generated

by the revolution of a

plane figure about a fixed

axis. Let the revolution

of a curve AB about an

axis through A generate

the surface of such a

solid, and let the equa-

tion to AB be y=fx,
where x is measured

from A along the axis

of revolution.

It is clear that the

volume of the solid is the limit of the sum of a number of

elementary cylinders having the same axis. Let ^x be the

altitude of one of these cylinders, y the radius of its base;

.-. TTj/"- is the area of the base ; and that area multiplied by

the altitude, or Try'ox, is the volume of the elementary

cylinder. Therefore, the required volume is equal to

the limit of 'Z[TTy'^lx) = ttJ y'^dx.
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143. Content of a cone. A cone is generated by the rota-

tion of a triangle about one of its sides. Let j/ = a.^ be the
equation to the straight line generating the conical surface,

where « is the tangent of the angle at which that straight
line is inclined to the axis of revolution. The content of

the cone = 5ra^y^^6?i«; = ^TTa^x'^ (taking the integral be-
tween limits and x) = ^irfx^ or the solid content of a
cone is one-third the area of the base multiplied by the
altitude = one-third of the content of the cylinder having
the same base and altitude,

143. Paraboloid of revolution. The surface generated by the
revolution of a parabola about its axis, is called a paraboloid
of revolution. To find the solid bounded by such a surface,

and a plane perpendicular to the axis, we must put y^ = a^,
the equation to a parabola.

The required volume = na^fxdx = ^rraa^^.

144. Solid of revolution through any angle. The quantity

TTjy^dx = 2 T^fjy dy dx. Also it is evident, that if the
generating figure turn through an angle <jf> instead of Stt, the
solid content generated is equal to

^ffydydx.

145. Limits of the preceding integrals. If the generating

figure have not for one of its boundaries the axis of revolu-

tion, but a curved line, of which the equation is y=z^x,
the limits of integration of ydy are fx and (jyx. Similarly,

if it be required to find the solid generated by the portion

of such a figure of which the extreme co-ordinates are two
particular values X and x of x, the integral with respect to

X must be taken between those limits.

146. Content of a solid of revolution in terms of its area.

Let j? be some constant quantity. Then if ^ were equal to the

greatest value of the variable y, JJ y dy dx would obviously

be greater than JJ y dy dx. If y were equal to the least

value of the variable y, jfydydx would be less than

Jj ydydx. There is, therefore, some value of the con-
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slant y between the greatest and least values of y, for which

ffydydx, or

y ff^y ^^ = fy ^^ ^^•

(Bj Pappus's Theorems, y is shown to he the distance

of the centre of gravity of the generating figure from the

axis of revolution.) The integral on the first side of the

preceding equation expresses the area of the generating

figure. Therefore, from the last article, the content of the

solid of revolution through an angle ^, is equal to

7/ ^ X area of generating figure,

where ?/ is a line less than the greatest and greater than the

least distances of points in the generating figure from the axis

of revolution.

147. Cuhatiire of a solid of revolution hy iwlar co-ordinates.

Let PSA = 9, PS = r he the

co-ordinates of any point P

in a plane figure referred to

the pole S. The area of an

element FP' of the figure is

(by Article lSl)rdQdr. By
the last article, the solid

generated by the revolution

of PP' about SI^I through an

angle ^, is rd^dr x a dis-

tance which is ultimately

equal to the distance of P

from SM, which is equal to

r cos 0. Therefore, by the

last article, the elementary solid = <f}r cos hUdr, and the

content of a solid of revolution generated by a sectorial area

revolving, about an axis fixed with respect to it, through an

angle (p, is equal to

(jy/Jreos^d^dr.

148. Cuhature hy polar co-ordinates. Every solid maybe
generated by the rotation about a fixed axis of a generating

figure of which the form is variable. Suppose the angle of

rotation to be ((>. Then any solid may be considered to be

generated by the rotation of a figure bounded by a curve of

which the equation is r =/((^, 0).
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When the generating figure has revolved through an

angle <^ + ^<^, the equation to this curve heoomes

r=/(<^ + ^<^, 6).

The solid bounded by the two corresponding generating

figures may be always so taken as to be within that generated

by the rotation of one of them, and partly without that gene-

rated by the rotation of the other, through an angle ifj).

Hence, ultimately, the required content is equal to that due to

the rotation of either figure; and, therefore, by the last article,

is equal to ^<l>ffrco^^d^dr. Hence, the whole required

solid content is equal to

fffr(i0^^dHrd<ii,

149. Cuhature hy polar co-ordinates by direct investigatiori*

Let an assigned point S be the

pole; let SRQ be an assigned

I)lane, and SR an assigned straight

ine in that plane. The position

of a point P may be determined

by the length (r) of SP, the radius

vector, 0, the angle at which SP

is inclined to the plane, and <^, the

angle at which the projection of

SP on the plane is inclined to the

assigned line SR.

(This is evidently similar to

a determination of the distance of

a point above the earth by its

distance (r) from the observer, its angular elevation above

the horizon (0)> and (0) its " bearing" north or south.)

In order to find the solid content bounded by a curved

surface and planes meeting it and passing through the pole

S, suppose that, by a number of planes passing through the

pole, the solid is divided into a number of pyramids having

all their vertices in S.

The required solid content is greater than the sum of

the pyramids within it, and less than the sum of a cor-

responding set of pyramids partially external to it; and

as the difference between these two sums may be dimi-

nished indefiuitely, the limit of either of them is the required

solid content.
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Let P, P' be two
adjacent points in

the curved surface;

PSj9 = a, ^SR=^,

co-ordinates of P;

co-ordinates of P^
Draw through P, P'

respectively, the

planes VQSp and P'S q'Q\ perpendicular to the plane in
which is measured. Also, draw the planes P'QS and
PQ'S, respectively perpendicular to the last-mentioned planes
through P, P^ Therefore the angle PSQ = ^9 and
pSq' = Sct>.

Ultimately, P'S = PS = r, and the pyramid on the rect-
angular base P'P is an element of the required solid. Now
the content of such a pyramid = i area of base x altitude.
Q'p = q^p = Sj} . ^<^ ultimately (assuming the proof given
hereafter, that the lengths of a chord and its arc are ulti-
mately equal). But pS = rcos9, .-. PQ' = r cos ^<^ ulti-

mately.

Similarly, Q-p = r^^ ultimately; altitude of the pyramid
= r ultimately; .-. its content = ^rcos 0^^ . r^fi . r ulti-
mately. The required solid content is the limit of the sum
of such elements, and therefore is equal to

fflr^co^^d(f>d^, orjyyr^ cos Urd(t>d9.

This result is the same of the last article, in which the
same letters evidently signify the same quantities.
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SECTION XIII.

RECTIFICATION OF CUBVES AND COMPLANATION OF SUBFACES.

Axiom I. Of lines which join two assigned points, a
straight line is the least.

Axiom II. Of superficies which have an assigned plane
perimeter, a plane is the least.

160. Of all lines having the same ea^tremities as a given

curve, and met by planes which meet every point of it hut

cannot cut it, the curve itself is the least. This proposition is

proved by an extension of a method given in the Author's

"Manual of the Differential Calculus," Art. 68.

Let AB be the assigned

curve, either plane or of

double curvature. Then
lines joining A and B and
met by planes which meet
but cannot cut APB, are all

of some length, but not all

of the same length. There
is, therefore, one at least

'

of these lines which is the

shortest possible. Let (if

possible) ACB be one of

these lines. Then, by hy-

pothesis, ACB is met by
the plane at any point P of APB. Two different lines

cannot have common to all their points, planes which meet
but cannot cut them; therefore, the plane through P may be
taken to cut ACB in two points E and P. Therefore, FB,
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a straight line, is shorter than FCE (Axiom 1). Therefore,

ACB is not the shortest of the lines in question. In the

same way it may be shewn that any other line than APB
is not the shortest, but a shortest exists, therefore APB is

the shortest.

151. Of all surfaces having the same 'perimeter as a given

surface, and met by planes which meet every point of it hut

cannot cut it, the given surface is the least. Let APB be

the assigned surface,

having an assigned pe- c

rimeter AaBb. Then, ^^^""^^
"""^""^s.

surfaces having that pe-
/^

>y
rimeter and met by / ^ - -\g
planes which meet but p/^*"'"'

,.^^sy»^- ',A'"'"

cannot cut APB, have — / "••r "^^^^^^^^ \
all some magnitude, but / /^" >. \

not all the same mag- / / \ \

nitude. There is, there- // _^_ \|
fore, one at least of lA^

**
"

'^"Al

these surfaces which is ^\7~" ~~" ^^
the least possible. Let ""*-- ''

ACB be one of these
"'&

"

surfaces. Then, by hy-

pothesis, ACB is met by the plane through any point P of

APB. Two different surfaces cannot have common tangent

planes at all their points. Therefore, the plane through

P may be taken to cut ACB, which cuts off from that plane

a plane superficies. This plane superficies is less (Axiom

11.) than the curved surface between it and C. Therefore

ACB is not the least of the surfaces in question. In the

same way it may be shewn that no other surface than APB
is the least. But a least surface exists. Therefore APB
is the least surface.

152. The length of a curve the limit of the length of

a polygon. Let AB be a normal to any curve, CBc (plane

or of double curvature) and Cc a chord intersecting the

normal perpendicularly at D. Draw ^BE at right angles

to AB, and in the same plane the normal ACE, and CF
perpendicular to AC. ECF is a right angle ; .-. EF > CF.
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Let the arc cBC be of such
length that its curvature is con-
tinuous; then F and the curve
are on opposite sides of touching
planes at all points between C
and B. Therefore, by the last

article but one,

BF + CF>CB, but EF>CF;
.-. BE > BC.

Arc CB > chord CB > CD (a

fortiori).

By similar triangles,

BE : DC : : AB : AD.

As the curvature is continuous, the chord Cc ultimately
coincides with the tangent at B, when the arc CB is in-

definitely diminished. Hence, ultimately, AD is equal to

the finite line AB, which is the length of two ultimately
intersecting normals, and therefore is a radius of curvature

;

.*. the limit of the ratio CD : EB is 1. Hence, since the
arc CB is between CD and BE in magnitude, the limit of
its ratio to either of them is 1,

.', limit —— = 1 ; similarly, limit — =1.
CD '^' cD

CBc arc
x^dding, limit ^—~ =1, or limit

,^ CDc chord
= 1.

Hence it follows, that if in or about any curve of finite

magnitude be described a polygon of any number of sides,

the length of the curve is equal to the limit of their sum
when tliey are indefinitely diminished in magnitude and
increased in number.

CoROLLAPvY.

is the centre, and the angle BAC =
Let CDc be the arc of a circle of which A

CB
:-— according to

CD
the circular measure of anejles. — = sin :^ AC

,. . CB ,. . CB CD ,. . <9

.\ 1 = limit— = limit \
= limit -——

CD AC AC sin^
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Similarly, limit
^ '

tan e
1.

153. Rectification of curves. If rectangular co-ordinates,

(w, y, z) and {x + Ix, y -\-^y, z \- lz\ define two points^ in

a curve, the distance between them is {}x^ + ly"^ + 3^-)*,

which is the length of the chord. Hence the length of

the curve is the limit of the sum of quantities of the form of

=y"('+s+s')''"'-

When the curve is plane one co-ordinate may be omitted,

and the expression for the length of the curve becomes

dx.

154. The superjicies of a curved surface is the limit of the

superficies of a i^olyhedron. Let a polyhedron of any number
of sides be circumscribed about a curved surface which is taken

of such magnitude that its curvature is continuous. Then
all tangent planes of the curved surface cut the polyhedron.

Therefore (Art. 151), it is greater than the curved surface.

Within the curved surface inscribe a similar and similarly

situated polyhedron. It is clear that planes may be drawn

through every point of this polyhedron, which do not cut

it, but cut the curved surface. Therefore, by the same

article, this polyhedron is less than the curved surface.

Also, in a continuous curved surface, an inscribed plane

ultimately coincides with a tangent plane when the surface

subtended is indefinitely diminished. Therefore, the edges

of the inscribed and circumscribed polygons ultimately coin-

cide, and the limit of the ratio of the lengths of two homo-
logous edges is 1 (Art. 152).

Also, their homologous sides, being in the duplicate ratio

of their homologous edges, have 1 for the limit of their

ratio. Therefore, the surfaces of the polyhedrons are ulti-

mately equal. Consequently, the curved surface between

them is ultimately equal to that of either polyhedron.

155. Section of a parallelopiped. The following proposition

will be required in determining the complanation of solids.
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Let ABCD be the base of a rectangular parallelopiped, of
which the sides AaD, aB, 5c, cCD are cut by the plane
abel}, which is a parallelogram. Its area is required.

In the right-angled triangle aAD, aD*^ = Aa- + AD- (I

)

Similarly, Do' = DC^ + Cc", (2.) To find the distance ac
let a perpendicular ce be drawn from c on to Aa. Then
«e = Aa — Cc, and in the right-angled triangle ace,

ac^ == ca^ 4- (Aa - Ccf = AC^ + {Aa - Ccf
= AD^ + CD-2 -j- (Aa - Ccf, (3.)

In the triangle aDc, by a trigonometrical formula,

ac^ = aD^ + cD' — 2aD . cD cos aDC ; or from (1), (2), (3),

AD^- + CD'- + (Aa - Ccf = aA^ + AD^ + dc^ + Cc^

- 2 (aA^ 4- AD^)i (Dc^ + Cc^)i cos aDC

;

/. Aa
.
Cc = (aA^ + aD^)* (DC^ + Cc^-)icosaDC;

also required area a^>cD = aD.cDsinaDc, and

sin2aDc= 1 — cos^aDc; .'. (ahcBf =:

(aA2 + AD2)(DC2-}-Cc^)(l Aa\Cc'^
-^

I (aA« + AD'O (DC2 4- Cc)j
ahcD= (aA^ . DC^+ AD^ . DO^ + AD*^ . Cc->.

166. Complanation of surfaces. Let the surface be re-
ferred to rectangular co-ordinates a, y, z. Also, suppose the
sur&ce be cut by several planes parallel to the planes%;?: vx
respectively. Then, by Art. 154, the surface is equal to H^

F
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limit of the mm of the sides of an inscribed polygon, and

therefore is equal to the limit of the sum of parallelograms

inscribed within the surface and bounded by the supposed

planes. .

In the last figure, let AD be parallel to the axis ot aj;

AB to that of y; Aa to that of z; and let (^, y, ^) be the

co-ordinates of D and DA =5^; AB = Sy. Also let D, a,

and h be three points in a curved surface. Then, if m the

equation to the surface, when oj is increased by ^^, and y

does not increase, :z be increased by ^^^, Aa = ^^^. Simi-

larly, if ^ ;2? be an increment of z, due to an increment

^y, i not increasing, Cc^z^^z. Therefore, by the last

article,

abcD = (b^z'' . bf + a^^ . a/ + Byz'' . bxy.

Hence the required surface is equal to the limit of the

sum of terms of the form

or the surface

where the parentheses indicate partial differential caefficients.
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SfiCTlON XIV.

INTEGEATION OF DISCONTINUOtTS FUNCTIONS.

lo7. The Definitioiis of Integrals, Arts. 17 and 115, were
restricted to finite continuous functions of a finite variable,

and the principles of integration were established on the
taoit assumption that the integrsds were finite ezact quantities,

dnd thati consequently^ each fonction integrated had a single

determinate Talue for each value of its independent tariabk.
If*, therefore, a function be discontinuous, or have infinite

or indeterminate values between the limits assigned for inte-

gtation, or if either of these limits be infinite, the preceding
definitions do not apply to it. It may be observed, that the
ftcciirakjy of tucf^t of the foregoing theorems depends essen-

tially on their a|mHcatlon to finite ftinctlofls, and ig viokt^d
by the violation of this condition.

ISS. The following is an instance of th6 erro^ that mnU
arise from application

of the theorems of the

preceding sections in

neglect of the consider-

i^oil of ^e last para-

graph.

Let 3^ == -5 be the
^ or

equation to a curve re-

ferred to Oiv, Oy, as

rectangxilataxes. These
axes ate asymptotes of

the cnrve* which has two similar branches.
The area included_ by any portion of the curve, the ordi-

nates at its extremities, and the axis of a;, is equal to

J'^da between corresponding limits (Art. 19), if the func-
tion integrated be finite and Continuous between those limits.

Therefore, the area

F ^
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if OA = a, Oh — h. This value of the area is increased

indefinitely as h is diminished. We may, therefore, make
the area APQ5 as large as we please hy taking the point

h near enough to O.

If, however, we integrate from a to —a, we find the area

2
APy/>a= ,

a

if Oa^=^—a. And this result is evidently erroneous, for it

gives the expression for the area, which ought to he positive

(Art. 115), a negative sign, and it makes it equal to a finite

quantity; whereas it has been proved, that of the area a

portion may he taken indefinitely large. The error arises

from integration through an infinite value of the integrated

function.

159. The meaning, then, to be assigned to integrals of

functions which are infinite or discontinuous between the

limits of integration, is up to this place purely arbitrary ; a

definition of such integrals may, however, be given, which is

so strictly analogous to the preceding definitions, as to render

obvious thetoiethods of extending to discontinuous functions

the principles already demonstrated.

Definition. If fx become infinite, impossible, or dis-

continuous for either or both the values x-=a, x= b, but

not for intermediate values, let / fx dx be defined to be

the limit of / fx dx, when S, and b., are any continu-

ous quantities which have the limit zero ; a — ^^ and & -f- S^

being values of x, between a and h.

More generally, if fx become infinite, impossible, or

discontinuous for the finite number of values «, h, c.,,m,
and for none else, of x between X and x, let, by analogy

with Art. 27, / fx dx be defined to be the limit of

y^ X pa—y^ r'^—^'2
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when Sp S'-^ ... are any continuous quantities which have

the limit zero ; a — b\ and h ~{- d^ being between a and &,

b — 5^2 ^^^ ^ + ^3 between b and c, &c.

160. Principal values of integrals. The value of / fxdx,
«./ ^

as just defined, may be dependent on the relative magni-

tudes of the arbitrary quantities Sp b\ ... If these quantities

be assumed to be all equal, the integral has then what is

termed by M. Cauchy its principal value.

Example.—The following is an instance of an integral,

of which the value, according to the above definition, is

essentially arbitrary :

—

/•+" If = limit f
r"«f + r-^^^)

J -a X \J^i X J —a SO J

,. . / r<^ dx rh dx\
, , ^^ ^tt= hmit

( / h / — 1 Art. 39, IV.
\J^^ i^ J a ic J

= limit log^ f = log^ f limit y^
^ ,

(Art. 15,)

a quantity to which any value whatever may be assigned at

pleasure, by assigning a corresponding relation between the

arbitrary quantities S^ 5^-

If in the preceding result Sj = d.,, we have the " principal

"

value of the integral equal to log 1 = 0.

161. Condition that integrals may be determinate. Every
function which is finite and continuous between any exact

limits, either continually increases or continually decreases,

or alternately increases and decreases an exact number of

alternations. Take two limits, between which it continually

increases or decreases. The integral of the function betw^een

those limits is (Art. 22) between its two finite quadratures,

and is, therefore, a finite quantity. It is also determinate,

not arbitrary, for the only arbitrary quantities in the quad-

ratures disappear from them in the limit. Art. 26. Also,

the whole integral between any finite limits is the sum of

integrals, such as that just considered, and of which the
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number is that of the alternations referred to. Therefore,

the whole integral is an exact quantity.

If, however, the function to be integrated be not always
fniite and continuous between the limits of integration, the

integral is the limit of the sum of the integrals of (a) in

the last article but one. If the limit of all of them be

finite, / fxdx (their sum) is finite. It is then also

determinate. For each of the integrals of (a) is determinate
according to the last paragraph, and the only arbitrary quan-
tities 5,, h\ ... disappear in the limit.

/ X
Hence, when / fxclx is either infinite or indeterminate,

the integrals in (a) have not all finite limiting values. If those

which are infinite in the limit be all positive, / fxclx

is evidently equal to + oo; if they be all negative, to — od.

7^x
Hence, the only case in which / f xdx can be inde-

terminate or arbitrary, is when more than one of the inte-

grals in [a) are infinite, and have different signs in the limit,

when / jxdx takes the indeterminate form (adding to-

gether the infinite quantities with like signs) oo — oo .

For instance, in the last example, / — is the limit
J -a X

of the sum of two integrals, of which the first has the limit-

ing value + GO, and the second — od.

162. The preceding principles may be illustrated geome-
trically. First, with respect to finite continuous functions:

let y be such a function of x, and x, y, the co-ordinates of a

plane curve which will be unbroken, since the function is

continuous. Whatever may be the form of the curve, a finite

area is included by a finite portion of the axis of x, the

ordinates at the extremities of that portion, and the arc

between them. But this area is equal toJydx, taken be-

tween finite limits.

Next, let the function be not always finite and continuous.

Then it will be represented by a curve, y =/.^^ which has

infinite branches, or breaks, or both.
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Where there are breaks only,

as from B to C and D to F, and

not infinite branches, let a and h

be the values of x at the points

a and h in the diagram. Then
the area aK^h is evidently equal

to the limit of / ^ ydx, a

finite quantity. Similarly, the

areas bounded by the other parts

of the curve are expressed by the limits of integrals of the

form of those in («), Art. 159 ; and the quantity / fxdx

in that article represents the whole area of the curve, which

is equivalent to the sum of the areas of its parts.

If the curve be of the form

AB, CD, and have no values of y
between B&, Cc, the function is

impossible for the infinite num-
ber of values of x greater than

Qh and less than Oc. Then the

definition of Art. 159, which is

restricted to functions with a finite

number of impossible values, is

inapplicable. In order to inter-

pret geometrically or analytically

integrals of such functions, another definition would be re-

quired, as essentially arbitrary as that just mentioned.

Next, let the curve have infinite ordinates y for finite

values of x. These ordinates are asymptotes of the curve,

and the area bounded by the infinite branches of the curve

may be finite, as in instances given in Arts. 126 and 127.

If ordinates y be all positive, these areas are positive,

P X
and their sum is the quantity / fxdx, which is now

under consideration. If some of the ordinates be negative,

the corresponding areas are negative (Art. 135), and the limit

of some of the integrals in (a), Art. 159, will be negative;

so that / fxdx, the algebraical sum of the limits of those

integrals, will represent the difference between the total

areas on opposite sides of the axis of x.
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Lastl}^ let the curve be such as to represent / jxdx

in the form co — oc . The
curve, of ^yhich the equation

1 , . M .

IS y= - , has two similar iii-

finite branches ; one on the

positive and one on the nega-

tive sides of both axes, which
are asymptotes. Let OA=<^,
OB = S^. The area ^haK -

radx . a

Let O.V = — a,

OB' = — S,

;

f

eaB'^VA' ^ f '— (Art. 135)

^^2 dx
(Art. 39, IV.) = log -

' — ^2 dx/^rt dx pt^dx f* ~— is the limit of / h /

= limit of (area B^aA — area "^'U a' A^) as B and B' ap-

proach O. But the difference between these two is arbitrary,

for it depends on the ratio of the two arbitrary quantities

OB, OB'. If we choose to assume OB = OB', the two areas

BhaA and ^'Va'M are always equal; their difference is

then zero, which is, therefore, the "principal" value of the

, ra dx

163. Integrals tvith infinite limits. The definitions of

integrals (Arts. 17 and 159) were restricted to finite limits.

The extension of the definition to integrals with infinite

limits, may, by obvious analogy with preceding cases, be taken

to be the limit which the integral with finite limits approaches

wiien either or both limits are indefinitely increased.
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1 64. Multiple integrals of discontinuous functions. Many
of the principles -of this section respecting integrals of one
independent variable may be extended to multiple integrals.

For instance, it was shewn in Art. 118, that the result of
multiple integration of finite continuous functions is the
same in whatever order the several integrations be per-
formed. This principle does not hold for functions which for

particular values of the independent variables between the
limits of integration become infinite.

For example, -V-—-7::, if x first approach the limit

and then ?/, has the limit go ; and, if ^ first approach the
limit and then x, has the limit — 00 . We cannot, there-
fore, affirm, that

/« , r^ . y"^ — x"
dx I cly-—, —

-, and

/->^/- dx-

have the same result.

J
-^

f' — x" ^ — y — 2 6— dy^ —
(x' + fY x' + y^ x" + 5~'

taking the integral between limits, 1/ = ^ and y =—. ^,

"" ^^ / o
. v^

= - S tan-^ - = — 4 tan-i -,J X- -\-h- b h

taking the integral between limits, a; = a and a^ = — «.

Now reverse the order of integrations.

/
y'^ — x'^

^ X ^a
dx — —

x^ + r ^'^^ + y^ r + ^''

J y -{- a^ a a
F 3
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taking the integral between tlie same limits as before.

Hence the two results differ by

i tan-^ T+ ^ tan"^^ - = 4 f — — tan-^ -W 4 tan"! -= 2
h a \ 2 a J a

TT.

165. In order that multiple integrals of discontinuous

functions may be the subjects of exact investigation, a new
arbitrary definition is requisite. The following is an obvious

extension of the definition for discontinuous functions of one

variable.

Definition,—Omit ranges of values of the function be-

tween arbitrary limits which include the discontinuous values.

Integrate the function for the rest of its values. The limit

of the result when the ranges of excluded values are as far

as possible contracted is the required integral.

166. To illustrate the definition, suppose, first, that there

are only two independent variables, a; and y. Consider them
to bo rectangular co-ordinates of a point, of which /(^, //),

or ^, is the third rectangular co-ordinate. Then z =zf(w, y)
is the equation to a surface. Suppose, first, z to become
infinite only when drawn from an isolated point {i(, h), in the

plane of x, y.

Now, inclose the isolated point by any contour in that

plane. Then integrate for all \alues of z drawn from points

in the plane of x, //, without this contour. The result is, the

volume of the solid under the supposed surface, in'miis the

content of a tube surrounding the infinite ordinate. The
analogy with the preceding definition requires that the bore

of the tube be diminished indefinitely. Now, the bore or

contour may diminish an infinite number of ways. Its

ultimate form may be any curve or a point.

Again, all things else remaining as before, let z he infinite

when drawn from any point of so77ie finite curve in the plane

X, y. Surround this curve by a contour on the same plane.

The solid, mdmis the content of the tube, having this contour

for its bore, is taken as before ; but in this case the contour

necessarily contracts into the assigned curve.

167. If the function include three independent variables

X, y, z, we may regard f{x, y, z) as some kind of magnitude

(a mechanical magnitude, for instance.) which depends on
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the position of points in space. Then, without assigning a

meaning for the integral, we may suppose that the function

becomes infinite, either at an isolated point, or at all points in

a certain line, or all in a certain surface, or all in a certain

solid. In either case, suppose the point or points surrounded

by a surface. The required integral is the limit of that

of the remaining solid when the surrounding surface is con-

tracted to the utmost. When its ultimate form is a surface,

the equation to it gives one relation between the variable

limiting values of x, y, z\ when the ultimate form is a

line, the equations to it give two relations ; when the ul-

timate form is a point, three. In the same way with n
independent variables, it may be conceived that 1, or 2,

or 3 ... or w such relations exist, of which, some may be

arbitrary.

1G8. The required integral, consequently, may depend
on arbitrary relations, and itself, therefore, be arbitrary.

Where, however, the function is such as to be infinite only

for isolated values of the variables, and is the same in what-

ever manner the ranges of the excluded values are con-

tracted, the following method gives the required determinate

result.

Let a function /'(z', y, x .,, s, r) become infinite or dis-

continuous for a finite number of values of the independent

variables of which those of r are a^, a^, a.^, ... fl^,„, and none
else between R and r. Also, let the required integral

be reduced (Art. 117) to the form / Y(r)dr, by the

successive integration oi f{z, y ... r), and other functions

(which have not discontinuous or infinite values until a^ a^^

^3 ... be substituted in them for r). Then the required

integral may be considered to be the limit of

y'-^ E. P'^\~^'i r a^— 'h\

a, + ?.
^W'^'- +X^ + ,^

nr)<lr +J^^^^'^ ir)clr + ...

pa -^
4- / '" '" F (r) dr,
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when Sp d/ ... are any continuous quantities which have
the limit zero ; «j — §i and a^ + Sg being between a^ and
a.,, a^ — d/ and a.^ + d. between a.^ and a.^, &c.

169. The integral is hidej^endent of the order of integration.

Let 5 designate the independent variable preceding r in the

order of integration oi /(jz, y ... 5, r), so that

/
S

f (r, s) ds = ¥r,

just referred to. The integral is, by the preceding suppo-

ition, the limit of

" "^^7g f(r,5)af5 (1.)

Let h^, ^2 ... ^,,j be the values of s, which correspond to

t/i, «2 ••• ^m of ^% to render the original function discontinuous

or infinite. It is required to shew that (when Ej, b\ ... have

the limit zero) the limit of

/ r^5 / f (r, 5)^r + / ^^5 / f (r, s)dr + ...

+ / ^" ""^Vr ^<^'*'^)^^ (^')

is the same as that of (1), if that be not arbitrary.

For brevity, omit all the symbols of integration except the

limits. Then indicates the operation of integration of
s

f (r, 5) between limits S and s. Then, since f(r, «) is a

continuous function, while the value of r is general,

%~~l,-^t, \-l\ h-^i, \-~^^
*"

^„-^'„, 8

by Art. 27. Therefore (1) becomes, supposing the operation

written outside each bracket to be performed on all within it;
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+ &C.

r Ui4-«, ^'i-s'i ^2+«2 ***
^«j-S„ 8

In the same way (2) becomes

^2+62 ia^+Si a^-^i ^2+^2 ^m-^m r j^

+ &c.

It will be found that the alternate expressions, beginning

with the first and ending with the last in the { }, corre-

spond to integrals which are common to (I.) and (II.).

Hence, the difference (I.) — (II.) does not contain those

integrals.

Of all the remaining integrals, the limits written in the

{ } indefinitely approach each other when £^, e^ ... 5p h\ ...

approach zero. Hence, the limit of each of these integrals

is zero. Consequently, as their number is finite, the limit

of the difference (I.) — (II.) is zero. Therefore, (I) and (2)

have the same limit. This result shews that it is immaterial

with respect to which independent variable the final inte-

gration is performed. And, with respect to all the other

independent variables, the order of integration is proved to

be independent in Art. 117.
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SECTION XV.

DEFINITE INTEGRALS.

170, There are many fanctions, as has been already-

stated (Art. 40), of which the indefinite integral cannot be

expressed in finite terms by ordinary algebraical, logarithmic,

and circular functions; where, however, general integrals

cannot be found, integrals between particular limits may be

p Ob ^,2

frequently determined. For instance, / €
''^'

dx cannot

be expressed by a finite number of algebraical or trigone-

metrical functions of a and h ; but

s:
' dx = ^ 7r%

as will be presently shewn.

The subject of definite integration is of great importance

in difficult mathematical investigations, and it frequently

happens that the particular limits between which definite

integrals can be most readily determined, are those to which

such investigations lead. The scope of this treatise will not

allow of more than a very brief notice of one or two of the

most important principles of definite integration.

pl / 1 \«-i

171. The second Eiderian integral. I ( logj — j
dz,

rt CO 1

which is equivalent to / x""^ e~'' dx when logg — = ^,

derives its name from Euler, who first investigated it. It is

designated by Legendre by the symbol T{n), where n is

positive. The integral is evidently a function of n only.

A» 00

172. To determine I cc" e~'''dx, where n is a positive

integer. In Art. 80, write P = e-"''^; .*. P^ = • - a"^ e~"^

p^= «~2^-«x^ ^Q^ Therefore,
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-f- a"-^ . n.n-l .x'~- + ... + a-^^'^'ri) ,n.n— l..,^. I).

When X becomes infinite, ^"e"""*"' has the limiting value

zero, by evaluation according to the methods of the Diffe-

rential Calculus

;

"^
X'' e-'^'dx = «-(«+^) 1.2.S ,,,n. When a = 1

,

^" e'^'dx = 1 .^ .o ... n = T {71 + 1)

by the last article ; r(2)= l; r(3)= l .2; r(4)= 1.2.3, &c.;

r* 00

173. To investigate I x" e~'''' dx, when n is not an

integer. Changing x into ax in the equation

i»"~^ e~''dx=^T (w), we have

x'^-'e-'^dx^ -^ (a\

for all positive values of n. Integrating by parts,

f€~^ x'^dx =— €~''
od'' + n J e~''

x"'~^ dx.

Taking this between limits x == cc and ^ = 0, \ve have

T hi ~\- 1) = nTn for all finite positive values of 7i. Similarly,

^(^^ + 2)=(^ + l)r(?^ + l), r(^ + 3) = (7i +3)r(?2 + 2), &c.

174. The first Etderian integral. In (a) Art. 173, write

p -{ q for 71, and 1 + j/ for «. Then

Jo [I -ry)^+^

Multiplying by y'^'^^dy^ and integrating between limits

CO and 0,
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/-7 OO /^ CO

»co y^~^ dy
^ip^9)f;

\y + yy-^^

The multiple integral may be integrated first with respect

to y, considering x constant (Art. 117). The resulting

integral is similar to that of (a) Art. 173. Hence, the

multiple integral becomes

/^ CO Y a /^ 00

i) X *./

Whence from the preceding equation,

r(i^ + ^) .7 (1+^)^+^ ^^'^^*

The integral is called the fir^t Eulerian ifitegral, and is

designated by the symbol (p \ q), by Cournot. The pre-

ceding formula is the fundamental relation between the two
Eulerian integrals. It is evident from it that

{p\q) = (q\p).

175. TJltimate ratios of Eulerian integrals. In the first Eu-

lerian integral put 1 + ^ = e^. Then, when y = 0, z = 0;

and when y = oo, ^ := oo ; so that the limits of the integral

1 f

are not changed. Also, dy = - e^' dz, and the integral

becomes

(ep'—\)^-^€^'dz__ r ^ {ep — ly-'^dz

Jo T~. Jo

--P'
' f^iPC^-e p)}''-^e-^dz.

All the steps by which this result is obtained hold when

J? is indefinitely increased. Then the quantity in the { }

may be put in the form -, and by evaluation by difi'erentia-
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tion becomes z. Hence, when p is indefinitely increased,

the first Eulerian integral

(/> I q) becomes p"^ I
5 Va
z'i-U-" dz ^

Therefore, substituting in the last article for ( jt>
| q),

^P ^ i_ r(p~h q) ^
Tip-^q) p^' Tp

when p is indefinitely increased.

If in the last result we put for ^, successively, 1 + n and
1 — n, and multiply together the results so obtained, we have

1 - r(;^ + 1 4-^-)-r(jP-f 1 -n)

P' [^Pf

^ T{p + 1 -{-n),r{p + 1 •~^)

[r (/? + !)?

(Art. 173), when p is indefinitely increased.

176. Multiplying together a series of the equations at the

end of Art. 173, jt> + 1 in number, and omitting common
factors,

r{n)

T(p-^l — n)
.'. 1— /^ . 2— ?e . 3— 71 ... »— 7^ . = —^^^-— —;

T{1 —n)

writing 1 — 7^ for n, and /? — 1 for p. Multiplying together

these two equations, we have

r(j»H-w + i)r(jt) — w + i)

nTnr{l — n)

r{p-hn + l)T{p-^n + i) 1

n' n" n^ n'

P * "^^ ' "^3^ *•• "p

1^2^3^..j»2 nT{n)T{l — n)

T{p + n + l).T{p'^n'^l)

[r(j» + i)f
* rer(w)r(l — wV
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114 INTEGRAL CALCULUS.

By Art. 175 the first fraction on the second side of

this equation converges to the value 1, as j?; is indefinitely

increased

;

sinwTT 1
/ N^/-. N

"^

.-. ^=: ——
.-; -, or Tin)T(l — n)=:z .

71 7T nr{n)T[l—7i) - ^ ^ sm^TT

Ilenco when 7i = -|,

[r (i)f = TT, r (i)
= TT^ =^/^

"" ^-i e~^ ^.^.

f. /1\/^^ — 1\ ^
x\lso, writmej - for n, r - ) r I = ,

^ n \n / \ n J . tt

sni —
n

^ hr 72, r (
- r ) =—-—

,

n \7lJ \ 71 J .
Qtt

sni—
n

71 — J „ /n — 1\ ^l TT

for 71, r r - = —
n \ 7Z. J n ,71—1

sm TT

n

Multiplying {n — 1) of these equations together, and re-

TT . 2 7r ,71 1 71

memberinc^ that sin— .sm ...sm tt == --—-r, we
°

71 71 71 2" ^

have

findFrom / .'»-ie~''c?^' = 7r^ \ve easily

e-^^ d^ = ^ TT^, putting x^ = os.

177. To investigate I dec e'""" cos ro). Integratmg by

parts,
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1 .. r/dx e^""^ cos r^ = 6"''^ cos r ii? / e~"^ sin rx dx
a aj

/dx e~"^ sin rx^ e~"'' sin rx ] / ^""-^ cos rxdx ;

f'

dx e"''' cos r^ = — e""^ ^
:^

a^ 4- r"

« sin rx — r cos r;»
dx €~'"' Bmrx =— e"

tj^' + r^

These integrals are to be taken between limits x-= oo and
a; = 0. When a is positive and not zero, e"""" is zero at the

former limit, at which also the fractions on the second sides

of these eq[uations are finite if a and r be not zero, since

sines and cosines are finite by their definition. Again, when
X has the limit 0, e"""^ = 1 if ^ he finite; the numerators

of the fractions become a and r respectively, if a and r be

finite. Hence

f.
dx€~'''' cosr^ =

«--}- ^"

f. d'~^r'
dxe ''•'sinr^ = —

^ •••••• (1-)

178. Sine and cosine of an infinite angle. If, in defiance

of the restrictions with respect to a and r, by which these

results are obtained, w^e put a = 0, r remaining finite, and
assume that e~""''' = l, for all values of x between its

limits, the results apparently become

y^ 00 /'CO 1

«^^cosr^ = 0; / dx^mx-=.~ (2,)Jo r ^
'^

whence, since

/\ smrx /*, . cosr;2?
a^cosra; = , /dxsinrx:= ,

it would follow that cos oo = and sin oo = 0.

But it is essential to the evaluation of the original definite

integral that ax-= qp, when a; = oo ; a condition which re-
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116 INTEGRAL CALCULUS.

quires an arbitrary relation between x and a if the latter

Imve the limit 0. Moreover, the supposed values of cos oo

and sin cr^ violate the relation sin^ + cos' = 1, which is part

of the very definition of "sine" and "cosine."

The antecedent objection to assigning a definite value to

the sine or cosine of an infinite angle is perfectly insuper-

able ; for, however great a number of times the radius

describing the angle revolve, the sine and cosine will vary

from 1 to — 1 in the course of each revolution.

The correct statement to be substituted for equations (2)
appears to be, that the original definite integrals of 6~"-^cosr^

and 6~"^ sin roSy approach the limits and - respectively,

when a approaches the limit 0, r remaining finite.

Since equations (1) are true for all finite positive values

of a and r, let r^=^na where n is any arbitrary number.
Then, the first equation of (1) becomes

/^ 00 1
/ dx e""""" cos (na)^ x =
Jo a -{-a -\- n

If it were allowable to put a = 0, we should have in strict

y. a> 1 1
dx =^ - .-. CD = -, any finite arbi-

'i »i

trary quantity, — a result which obviously contradicts the

fundamental principles of the Integral Calculus.

179. To investigate / dxe ""^cos^^t. By integration

by parts twice, it is easily found tliat

2 sin X — a cos x ^ e~"^

fi
d X e"''-^ cos^^ = €~''^" cos x -

a'^ + 4 a (a- + 4)

When ^ = 00, e~""^ is zero for all positive values of a not

zero, and therefore the second side of the preceding equa-

tion vanishes. When x = 0, the same side becomes

a 2

a" -|- 4 a {a' -\- 4)

'

/r* 00
6~"* cos^xdx

., a (a' +4)
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180. Differentiation of definite integrals. The differential

coefficient with respect to c of a definite integral

r-^^^'
c) dx,

be

is found by differentiating under they the function /(^, c).

Let F be the integral, and ^F its increment, due to an
increment gc of c ; and let ^f{x, c) be the corresponding

increment of /(a?, c).

If = /^ f(x, c H- Sc) dx — /^ f{x, c) dx

= /^
"^

^^^^"^^ c + Sc) ~/(^, c)} dx,

= r^i^^.,and^=r^^^^.,
J h oc dc J J) dc

^Yhen Sc has the limit zero.

y'^ CO

dx £—«^'^^ cos ^cx. The prin-

ciple of the last article is remarkably illustrated by this

integral. Calling it F,

d¥ p 00

1-=— / c/^ 3^ €-"'''' sin 2 c;r (1)

"^"o
(^""^ .€-«'^'BinJic^)~2cci-2 /^"^cif^iye-^'^'cosSc^^

integrating by parts. The quantity in the bracket disappears

when taken between the assigned limits, for all finite \alues

of c, a not being zero

;

^/ F r7 TJ*

.'. —- =- 2ca-2F; .'. — =- "Xca-Kdc.
dc F

Integrating, log ^ F =— c'^a*^ + a constant, or F= C e-^^'^'""^

Equation (1) and all that follow from it are true for all finite

values of c, positive or negative. Therefore, if in the last

equation, g having the limiting value 0, we have
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IIB INTEGRAL CALCULUS.

y^ CO 1 /> 00

putting «^^'^ = z. Hence, by Art. 17G, C =—
;

yf/a; e-«^^- cos "^cx =z— ^-c^a-^

3^

This integral is due to Lav>lace :-~Memoires de VInstitute
1810.
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APPENDIX.

BEMOKSTRATION OF TATLOR's THEOREM.

Let any fuDction (/) of a single variable and its suc-

cessive differential coefficients (/^ f" , &c.) be finite and
continuous for all values of the variable from a to a -\'li.

In the expression

l.Z 1.2..,'il—l 1.2.. .72,

let R bo such a finite quantity, not involving ^, that when
ic = h the expression = 0. It is also zero when a: = 0.

But a function which is zero for two different values of its

variable cannot be always increasing nor always decreasing

in the interval. Hence there is some value (x^) of x be-

tween and 7^, for which the differential coefficient of (1)
(i. e. its rate of increase) is zero ; or,

f{a-^^)-fa^ra.x-ra~..,--n f" ... (2),
J-. ^ 1 ,^...71 — 1

is zero when x=:a)^; (2) is zero also when x = 0. There-
fore, as before, there is a value of x between x^ and 0,

for which the differential coefficient of (2) is zero. Con-
tinuing the process to n differentiations, we have, finally,

f"(a -i- x) — R= 0, when x has some value between and A.

Let this value be G/t where is a proper fraction. Then
R=/"(a + 07t), Substituting this value of R in (1), and
putting (1) = when x = h,

which is Lagrange's Theorem on the Limits of Taylor's

Theorem.
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120 INTEGRAL CALCULUS.

If the last term of this series become zero vilien n is

sufficiently large,

f(a-\- h) =fa -i-f^a.h -f f^ a .
-—- -f .,. to convergence,

which is Taylor's Theorem.

This demonstration is a somewhat simplified form of one
originally published by the Author, in the *' Cambridge and
Dublin Mathematical Journal," vol. vi., p. 80, and reprinted

in his '* Manual of the Differential Calculus," Art. 54.

2. Taylor's theorem demonstrated by integration.

By successive integration by parts,

ff {a + h- z)dz= zf {a -irh — z) -{ rzf\a -f h-'z)dz

= &c.

^'^ 1.2...7t-l^ ^
^

Take this result between z=.li and ^= 0. The first side

of the equation becomes, by Art. 39, (III.), f{a + Ji^—fa.
Then, transferring fa to the second side of the equation

taken between limits,

/(a -h h) =fa +fa.h +ra • ]^ -h...

1.2... n-—!*^ ^
^

which expresses the remainder of Taylor's series by a definite

integral.

G. Woodfali and Son, Printers, Angel Court, Skinner Street, London.
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PRIZE MEDAL, INTEEKATIONAL EXHIBITION. 1862

was awarded to the Pablishers of

*'Weale*a Series."

WEALE'S
RUDIMENTARY, SCIENTIFIC, EDUCATIONAL

AND CLASSICAL SERIES,
OP WORKS SUITABLE FOR

Eiujhie&rSy Architects, Builders, Artisans, and Students

generally, as well as to those interested in Workmen's
Libraries, Free Libraries, Literary and Scientific Insti-

tutions, Colleges, Schools, Science Classes, dc, dc.

•»* THE ENTIRE SERIES IS FREELY ILLUSTRATED WHERE
REQUISITE.

{The Volumes contained in this List are hound In Ump cloth, except

where otherwise stated.
)

AGRICULTURE,
m. CLAY LANDS AND LOAMY SOILS, by J. Donaldson, la,

140. SOILS, MANUEES, AND CROPS, by R. Scott Burn. 2^.

141. FARMING, AND FARMING ECONOMY, Historical and
Practical, by R. Scott Burn. 35.

142. CATTLE, SHEEP, AND HORSES, by R. Scott Burn. 2^. U.

145. MANAGEMENT OF THE DAIRY—PIGS—POULTRY,
by R. Scott Burn. With Notes on the Diseases of Stock, 2s.

146. UTILISATION OF TOWN SEWAGE—IRRIGATION-
RECLAMATION OF WASTE LAND, by R. Scott Burn.
2s. %d.
Nos. 140, 141, 142, 145, and 146 bound in 2 vols., cloth boards^ 14*.

177. CULTURE OF FRUIT TREES, by De Breuil. 187 Wood-
cuts. 3s. 6d. [I^ow ready.

LOCKWOOD <fe CO., 7, STATIONERS' HALL COURT.
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2 ARCHITECTURAL AND BUILDING WORKS.

ARCHITECTURE AND BUILDING
16. ARCHITECTURE, Orders of, by W. H. Leeds. Is. Gd.) in l

17. Styles of, by T. Talbot Bury. 1.9. M.l27\d.
18. Principles of Design, by E. L. Garbett. 2s,

Nos. 16, 17, and 18 m 1 vol. cloth boards, 6s. 6d.

22. BUILDING, the Art of, by E. Dobson. Is. 6d.

23. BRICK AND TILE MAKING, by E. Dobson. Ss.

25. MASONRY AND STONE-CUTTING, by E. Dobson. New
Edition, with Appendix on the Preservation of Stone. 2s. Gd.

30. DRAINAGE AND SEWAGE OF TOWNS AND BUILD-
INGS, by G. D. Dempsey. 2s.

With i\o. 29 {See page 4), Drainage of Districts and Land.-^, S.?.

35. BLASTING AND QUARRYING OF STONE, &c., by Field-

Marshal Sir J. F. Burgoyne. Is. 6d.

36. DICTIONARY OF TECHNICAL TERMS used by Architects,

Builders, Engineers, Surveyors, &c. New Edition, revised

and enlarged by Robert Hunt, F.G.S. [Li jjrcparatioii.

42. COTTAGE BUILDING, by C. B. Allen. Is.

44. FOUNDATIONS & CONCRETE WORKS, by Dobson. Is. Qd.

45. LIMES, CEMENTS, MORTARS, &c., by Burnell. Is. 6d.

57. WARMING AND VENTILATION, by C.Tomlin3on,F.R.S. 35

83*^. DOOR LOCKS AND IRON SAFES, by Tomlinson. 2-5. 6d,

111. ARCHES, PIERS, AND BUTTRESSES, by W. Bland. Is.Qd.

116. ACOUSTICS OF PUBLIC BUILDINGS, by T.R. Smith. 1,9.6^.

123. CARPENTRY AND JOINERY, founded on Robison and
Tredgold. Is. 6d.

123*^. ILLUSTRATIVE PLATES to the preceding. 4to. 4,<^. 6d.

124. ROOFS FOR PUBLIC AND PRIVATE BUILDINGS,
founded on Robison, Price, and Tredgold. Is. 6d.

124*. PLATES OF RECENT IRON ROOFS. 4to. [licpnutin^.

127. ARCHITECTURAL MODELLING IN PAPER, Practical

Instructions, by T. A. Richardson, Architect. Is. Qd.

128. VITRUVIUS'S ARCHITECTURE, by J. Gwilt, Plates. 5s.

130. GRECIAN ARCHITECTURE, Principles of Beauty in, by
the Earl of Aberdeen. Is.

Nos. 128 and 130 in I vol. cloth boards, 7s.

132. ERECTION OF DWELLING-HOUSES, with Specifications,

Quantities of Materials, &c., by S. H. Brooks, 27 Plates. 2^. 6d,

156. QUANTITIES AND MEASUREMENTS, by Beaton. Is. (jd.

175. BUILDERS' AND CONTRACTORS' PRICE-BOOK, by
G. R. Burnell. 3^. Gd. [Now ready.

PUBLISHED BY LOCKWOOD & CO.,
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ARITHMETICAL AND MATHEMATICAL WORKS.

ARITHMETIC AND MATHEMATICS.
32. MATHEMATICAL INSTEUMENTS, THEIR CONSTRUC-

TION, USE, &c., by J. F. Heather. Original Edition in

1 vol. Is. Qd.

*^* In ordering the above, he careful to say *' Original Editiony^ to

distinguish it from the Enlarged Edition in 8 vols., advertised

on page 4 as now ready.

60. LAND AND ENGINEERING SURVEYING, by T.Baker. 25.

61*. READY RECKONER for the Admeasurement and Valuation

of Land, by A. Arman. \s. ^d.

76. GEOMETRY, DESCRIPTIVE, with a Theory of Shadows and
PerspectiYe, and a Description of the Principles and Practice

of Isometrical Projection, by J. F. Heather. 2^.

83. COMMERCIAL BOOK-KEEPING, by James Haddon. \s.

84. ARITHMETIC, with numerous Examples, by J. R. Young. \s, M,
84*. KEY TO THE ABOVE, by J. R. Young. Is. 6^.

85. EQUATIONAL ARITHMETIC : including Tables for the

Calculation of Simple Interest, with Logarithms for Compound
Interest, and Annuities, by W. Hipsley. 1*.

85*. SUPPLEMENT TO THE ABOVE, l^.

85 and 85^ in 1 ro/., 25.

86. ALGEBRA, by J. Haddon. 25.

86*. KEY AND COMPANION to the above, by J. R.Young. \s,U.
88. THE ELEMENTS OF EUCLID, with Additional Propositions,

and Essay on Logic, by H. Law. 25.

90. ANALYTICAL GEOMETRY AND CONIC SECTIONS, by
J. Hann. Entirely New Edition, improved and re- written

by J. R. Young. 2^. \]>low ready.

91. PLANE TRIGONOMETRY, by J". Hann. \s.

92. SPHERICAL TRIGONOMETRY, by J. Hann. Is.

Nos. 91 and 92 in 1 vol., 'Zs.

93. MENSURATION, by T. Baker. \s. U.
94. MATHEMATICAL TABLES, LOGARITHMS, with Tables of

Natural Sines, Cosines, and Tangents, by H. Law, C.E. 25. 6^^.

101. DIFFERENTIAL CALCULUS, by W. S. B. Woolhouse. I5.

101*. WEIGHTS, MEASURES, AND MONEYS OF ALL
NATIONS ; with the Principles which determine the Rate of

Exchange, by W. S. B. Woolhouse. Is. 6^.

102. INTEGRAL CALCULUS, RUDIMENTS, by H. Cox, B.A. Is.

103. INTEGRAL CALCULUS, Examples on, by J. Hann. Is.

104. DIFFERENTIAL CALCULUS, Examples, by J. Haddon. Is.

105. ALGEBRA, GEOMETRY, and TRIGONOMETRY, in Easy
Mnemonical Lessons, by the Rev. T. P. Kirkman. Is. 6<^.

117. SUBTERRANEOUS SURVEYING, AND THE MAG-
NETIC VARIATION OF THE NEEDLE, by T. Fenwick,
with Additions by T. Baker. 2s. %d.

7, STATIONERS' HALL COURT, LUDGATE HILL.
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CIVIL ENGINEERING WORKS,

131. READY-RECKONER FOR MILLERS, FARMERS, AND
MERCHANTS, showing the Value of any Quantity of Corn,
with the Approximate Values of MiU-stones & Mill Work. Is.

136. RUDIMENTARY ARITHMETIC, by J. Haddon, edited by
A. Arman. 1.9. Qd.

137. KEY TO THE ABOVE, by A. Arman. I*. Qd,

147. STEPPING STONE TO ARITHMETIC, by A. Arman. Is.

148. KEY TO THE ABOVE, by A. Arman. Is.

158. THE SLIDE RULE, AND HOW TO USE IT. With
Slide Rule in a pocket of cover. Ss.

168. DRAWING AND MEASURING INSTRUMENTS. In-
cluding—Instruments employed in Geometrical and Mecha-
nical Drawing, the Construction, Copying, and Measurement
of Maps, Plans, &c., by J. F, Heather, M.A. Is. 6c?.

[How ready.

169. OPTICAL INSTRUMENTS, more especially Telescopes,

Microscopes, and j^pparatus for producing copies of Maps
and Plans by Photography, by J. F. Heather, M.A. \s. Qd.

\^Kow ready.

170. SURVEYING AND ASTRONOMICAL INSTRUMENTS.
Including—Instruments Used for Determining the Geome-
trical Features of a portion of Ground, and in Astronomical
Observations, by J. F. Heather, M.A. Is. M. \Now ready.

*^* The above three volumes form an erdargement of the Author''

s

original ivorh^ " Mathematical Instrumentsf' the Tenth Bdition

of which {l\o. 32) is still on saUy price \s, 6d.

PRACTICAL PLANE GEOMETRY : Giving the Simplest

Modes of Constructing Figures contained in one Plane, by
J. F. Heather, M.A. 2s. [Just ready.

PROJECTION, Orthographic, Topographic, and Perspective

:

giving the various modes of Delineating Solid Foniis by Con-
structions on a Single Plane Surface, by J. F. Hkathes, M.A.

*«* 17w above two volumes, tvitk the Author's nora already i}i

th^ Series, *' Desc^Hptii-e Geometry^' will form a oom,plefe Ele-

mentary Course of Mathematical Drawing

.

CIVIL ENGINEERING.
13. CIVIL ENGINEERING, by H. Law and G. R. BurneU. Fifth

Edition, with Additions. 55.

29. DRAINAGE OF DISTRICTS AND LANDS, by G.D.Dempsev.
Is.U.

'

With No. 30 {Seepage 2), Drainage and Sewage of Tenons^ 3*.

PUBLISHED BY LOCKWOOD k CO.,
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WORKS IN FINE ARTS, ETC.

31. WELL-SINKING, BORING-, AND PUMP WORK, by J. G.
Swindell, revised by G. R. Burnell. 1*.

43. TUBULAR AND IRON GIRDER BRIDGES, including the

Britannia and Conway Bridges, by G. D. Dempsey. Is. Qd.

46. ROAD-MAKING AND MAINTENANCE OF MACADA-
MISED ROADS, by Field-Marshal Sir J. F.Burgoyne. Is. Qd

47. LIGHTHOUSES, their Construction and lUainination, by Alan
Stevenson. Ss,

62. RAILWAY CONSTRUCTION, by Sir M. Stephenson. With
Additions by E. Nugent, C.E. 2s. 6d.

62*. RAILWAY CAPITAL AND DIVIDENDS, with Stetistics of

Working, by E. D. Chattaway. 1*.

No. 62 and 62« in 1 vol., 3s. Qd.

80*. EMBANKING LANDS FROM THE SEA, by J. Wiggins. 2^.

82**. GAS WORKS, and the PRACTICE of MANUFACTURING
and DISTRIBUTING COAL GAS, by S. Hughes. 3s.

82***. WATER-WORKS FOR THE SUPPLY OF CITIES AND
TOWNS, by S. Hughes, C.E. 3s.

118. CIVIL ENGINEERINja OF NORTH AMERICA, by D.
Stevenson 3s

120. HYDRAULIC ENGINEERING, by G. R. Burnell. 3s.

121. RIVERS AND TORRENTS, with the Method of Regulating

their Course and Channels, Navigable Canals, &c., from the

Italian of Paul Frisi. 2s. 6d.

EMIGRATION*
154. GENERAL HINTS TO EMIGRANTS. 2s.

157. EMIGRANT'S GUIDE TO NATAL, by R. J. Mann, M.D. 25.

159. EMIGRANT'S GUIDE TO NEW SOUTH WALES
WESTERN AUSTRALIA, SOUTH AUSTRALIA, VIC-
TORIA, AND QUEENSLAND, by James Baird,B.A. 2s.6rf.

160. EMIGRANT'S GUIDE TO TASMANIA AND NEW ZEA-
LAND, by James Baird, B.A. 2s. [i?^^y.

FINE ARTS.
20. PERSPECTIVE, by George Pyne. 2s.

27. PAINTING; or, A GRAMMAR OF COLOURING, by G.
Field. 28.

40. GLASS STAINING, by Dr. M. A. G^ssert, with an Appendix
on the Art of Enamel Painting, &o. Is,

41. PAINTING ON GLASS; from the German of Promberg. Is.

69. MUSIC, Treatise on, by C. C. Spencer. 2^.

71. THE ART OF PLAYING THE PIANOFORTE, by C. C.

Spencer. Is.

7, STATIONERS' HALL COURT, LUDGATE HILL.
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WORKS IN MECHANICS, ETC.

LEGAL TREATISES.
50. LAW OF CONTEACTS FOR WORKS AND SERYICES

by David Gibbons. Is. 6d.
*

107. THE COUNTY COURT GUIDE, by a Barrister 1* 6d
108. METROPOLIS LOCAL MANAGEMENT ACTS 1^* Z'
108^. METROPOLIS LOCAL MANAGEMENT AMENDMENT

ACT, 1862; with Notes and Index. 1^.

1^ T.TTT-r.> . ^^^^ ^'^^- ^^^ ^"'^ 108* m 1 vol., 2s. 6d.

lummfT^^lf"' ""'^^^^^^ PEBVENTION

110. RECENT LEGISLATivE" ACTS applying to Contractors.
Mercliants, and Tradesmen. Is.

^^^' ^?St.^^^ ^^ FRIENDLY, PROVIDENT, BUILDINGAND LOAN SOCIETIES, by N. White Is

''^^-^^''^'

163. THE LAW OF PATENTS FOR INVENTIONS, by F W
Campin, Barrister. 2^.

> j • »

•

MECHANICS & MECHANICAL ENGINEERING.
6. MECHANICS, by Charles Tomlinson. Is. U.

12. PNEUMATICS, by Charles Tomlinson. New Edition Is 6^
33. CRANES AND MACHINERY FOR RAISING HEAVY

BODIES, the Art of Constructing, by J. Glynn Is
34. STEAM ENGINE, by Dr. Lardner. Is.

.59. STEAM BOILERS, their Construction and Management by
R. Armstrong. With Additions by R. Mallet. U. Qd '

63. AGRICULTURAL ENGINEERING, BUILDINGS MOTIVEPOWERS, FIELD MACHINES, MACHINERY AND
IMPLEMENTS, by G. H. Andrews, C.E. 3..

67. CLOCKS, WATCHES, AND BELLS, by E. B. Denison. New
Edition, with Appendix. 3^. 6d.

^^•^ T^^r.^.^^P^^^'^ ^^" ^^^ '^^^ "^^^ ^^^ Editions) separately. Is.m. ECONOMY OF FUEL, byT. S. Prideaux. Is.Qd.
78. STEAM AND LOCOMOTION, by Sewell. lUeprinttna
78^. THE LOCOMOTIVE ENGINE, by G. D. Dempsey l/ 6^*
79^. ILLUSTRATIONS TO ABOVE. 4to. 4.. %d.

^
rii^rel^i^f

'

80. MARINE ENGINES, AND STEAM VESSELS, AND THESCREW, by Robert Murray, C.E., Engineer Surveyor to the
Board of Trade. With a Glossary of Technical Terms, and

^r, ^ .^ equivalents in French, German, and Spanish. 3^.
^2' I^-^P^ POWER, as applied to Mills, &c., by J. Glynn. 2s,

o^- ?JiS%f^^ DYNAMICS, byT.Baker. NewEditiom 1..6k
^^- MECHANISM AND MACHINE TOOLS, by T.Baker; and
,.o

™^^S AND MACHINERY, by J. Nasmytli. 2.. 6^\m. MEMOIR ON SWORDS, by Marey, translatedby Maxwell. 1*.
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NAVIGATION AND NAUTICAL WORKS. 7

114. MACHINEEY, Construction andWorking, by CD. Abel. ls,6d.

115. PLATES TO THE ABOVE. 4to. 7^. 6^.

125. COMBUSTION OF COAL, AND THE PREVENTION OF
SMOKE, by C. Wye Williams, M.I.C.E. 3^.

139. STEAM ENGINE, Mathematical Theory of, by T.Baker. Is.

162. THE BRASSFOUNDEE'S MANUAL, bv W.Graham. 25.6^.
164. MODERN WORKSHOP PRACTICE. By J. G. Winton. 35.

165. IRON AND HEAT, Exhibiting the Principles concerned in

the Construction of Iron Beams, Pillars, and Bridge Girders,
and the Action of Heat in the Smelting Furnace, by James
Armour, C.E. Woodcuts. 2^. 6^. [liow ready.

166. POWER IN MOTION: Horse Power, Motion, Toothed Wheel
Gearing, Long and Short Driving Bands, Angular Forces, &c.,

by James Armour, C.E. With 73 Diagrams. ^sSSd. [Nowreadij.

167. A TREATISE ON THE CONSTRUCTION OP IRON
BRIDGES, GIRDERS, ROOFS, AND OTHER STRUC-
TURES, by F. Campin. Numerous Woodcuts. 2^. [Heady.

171. THE WORKMAN'S MANUAL OF ENGINEERING
DRAWING, by John Maxton, Instructor in Engineering
Drawing, Royal School of Naval Architecture & Marine Engi-
neering, South Kensington. Plates & Diagrams. 3^. Qd. [Heady,

172. MINING TOOLS. For the Use of Mine Managers, Agents,
Mining Students, &c., by William Morga>-s, Lecturer on
Mining, Bristol School of Mines. V2mo. 2s.Q>d. {Noio ready.

172^.ATLAS OF PLATES to the above, containing 200 Illustra-

tions. 4to. 4s. Of?. \Noiv ready.

176. TREATISE ON THE METALLURGY OF IRON ; con-
taining Outlines of the History of Iron Manufacture, Methods
of Assay, and Analysis of Iron Ores, Processes of Manufacture
of Iron and Steel, &c., by H. Bauerman, F.G.S., A.R.S.M.
Second Edition, revised and enlarged. Woodcuts. 45.F^. [Ready

COAL AND COAL MINING, byW.W. Smyth. [Inpreparation.

NAVIGATION AND SHIP-BUILDING.
51. NAVAL ARCHITECTURE, by J. Peake. 35.

53*. SHIPS FOR OCEAN AND RIVER SERVICE, Construction
of, by Captain H. A. Sommerfeldt. I*.

53**. ATLAS OF 15 PLATES TO THE ABOVE, Drawn for
Practice. 4to. 75. M. {Reprinting,

54. MASTING, MAST-MAKING, and RIGGING OF SHIPS,
by R. Kipping. \s. 6d

54* IRON SHIP-BUILDING, by J. Grantham. Fifth Edition,
with Supplement. 4s.

54**. ATLAS OF 40 PLATES to illustrate the preceding. 4to. 385.
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SCIENTIFIC WORKS.

55. NAVIGATION ; the Sailor's Sea Book : How to Keep the Log
and Work it off, Law of Storms, &c., by J. Greenwood. 26.

83 bis, SHIPS AND BOATS, Form of, by W. Bland. Is. 6d.

99. NAUTICAL ASTRONOMY AND NAVIGATION, by J. R.

Young. 2s.

100*. NAVIGATION TABLES, for Use with the above. Is. 6d.

106. SHIPS' ANCHORS for all SERVICES, by G. Cotsell. 1*. 6d.

149. SAILS AND SAIL-MAKING, by R. Kipping, N.A. 2s. Qd.

155. ENGINEER'S GUIDE TO THE ROYAL AND MER-
CANTILE NAVIES, by a Practical Engineer. Revised by

D. F. McCarthy. 3s.

PHYSICAL AND CHEMICAL SCIENCE.
1. CHEMISTRY, by Prof. Fownes. With Appendix on Agri-

cultural Chemistry. New Edition, with Index. Is.

2. NATURAL PHILOSOPHY, by Charles Tomlinson. Is.

3. GEOLOGY, by Major-Gen. Portlock. New Edition, is. Gd,

4. MINERALOGY, by A. Ramsav, Jan. 35.

7. ELECTRICITY, by Sir W. S. Harris. Is. 6d.

7*. GALVANISM, ANIMAL AND VOLTAIC ELECTRICITY,
by Sir W. S. Harris. Is. 6d.

8. MAGNETISM, by Sir W. S. Harris. New Edition, revised and
enlarged by H. M. Noad, Ph.D., E.R.S. With 165 woodcuts.

35. 6«5. [This day.

11. HISTORY AND PROGRESS OF THE ELECTRIC TELE-
GRAPH, by Robert Sabine, C.E., F.S.A. 35.

72. RECENT AND FOSSIL SHELLS (A Manual of the Mollusca).

by S. P. Woodward. With Appendix by Ralph Tate, F.G.S.

Gs.%d. ; in cloth boards, 75. %d. Appendix separately, l5,

79**. PHOTOGRAPHY, the Stereoscope, &c., from the French

of D. Van Monckhoven, by W. H. Thornthwaite. l5. 6d
96. ASTRONOMY, by the Rev. R. Main. New and Enlarged

Edition, with an Appendix on " Spectrum Analysis." l5. 'od.

133. METALLURGY OF COPPER, by Dr. R. H. Lamborn. 25.

134. METALLURGY OF SILVER AND LEAD, bv Lamborn. 25.

135. ELECTRO -METALLURGY, by A. Watt. 25.

138. HANDBOOK OF THE TELEGRAPH, by R. Bond. New
and enlarged Edition. I5. 6^.

143. EXPERIMENTAL ESSAYS—On the Motion of Camphor
and Modern Theory of Dew, bv C Tomlinson. I5.

161. QUESTIONS ON MAGNETISM, ELECTRICITY, AND
PRACTICAL TELEGRAPHY, by W. McGregor. I5. U.

173. PHYSICAL GEOLOGY (partly based on Portloek's " Rudi-
ments of Geology "), by Ralph Tate, A.L.S.,&c. 2-9. {Now ready.

174. HISTORICAL GEOLOGY (partly based on Portloek's "Rudi-
ments of Geology "), by Ralph Tate, A.L.S., «&e. 2s. ^d.

[JS'ow ready.

PUBLISHED BY LOCKWOOD k CO.,

www.libtool.com.cn



EDUCATIONAL WORKS.

MISCELLANEOUS TREATISES.
12. DOMESTIC MEDICINE, by Dr. Ralph Gooding. 25.

112-\ THE MAIJAGEMENT OF HEALTH, by James Baird. Is,

113. USB OF FIELD ARTILLERY ON SERVICE, by Taubert,

translated by Lieut.-Col. H. H. MaxweU. Is, Qd,

150. LOGIC, PURE AND APPLIED, by S. H. Emmens. Is. Qd.

152. PRACTICAL HINTS FOR INVESTING MONEY: with

an Explanation of the Mode of Transacting Business on the

Stock Exchange, by Francis Playford, Sworn Broker. Is.

153. LOCKE ON THE CONDUCT OF THE HUMAl^ UNDER-
STANDING, Selections from, by S. H. Emmens. 2.^

NEW SERIES OP EDUCATIONAL WORKS.

1. ENGLAND, History of, by W. D. Hamilton. 5s. ; cloth boards,

6s. (Also in 5 parts, price Is. each.)

5. GREECE, History of, by W. D. Hamilton and E. Levien, M.A.
2s. ed. ; cloth boards, 3s. Qd.

7. ROME, History of, by E. Levien. 2s. 6^. ; cloth boards, 3s. 6d.

9. CHRONOLOGY OF HISTORY, ART, LITERATURE,
and Progress, from the Creation of the World to the Con-
clusion of the Franco-German War. The continuation by
W. D. Hamilton, F.S.A. 3s. cloth limp ; 3s. 6^. cloth boards.

[Now ready

^

11. ENGLISH GRAMMAR, by Hyde Clarke, D.C.L. Is.

11*. HAISTDBOOK OF COMPARATIVE PHILOLOGY, by Hyde
Clarke, D.C.L. Is.

12. ENGLISH DICTIONARY, containing above 100,000 words,

by Hyde Clarke, D.C.L. 3s. 6<?. ; cloth boards, 4s. ^d,

, with Grammar. Cloth bds. 5s. 6^.

14. GREEK GRAMMAR, by H. C. Hamilton. Is.

15. DICTIONARY, byH. R.HamUton. Vol. 1. Greek-
English. 2s.

17. Yol. 2. English—Greek. 2s.

: Complete in 1 vol. 4s. ; cloth boards, 5s.

^ with Grammar. Cloth boards, ^s,

19. LATIN GRAMMAR, by T. Goodwin, M.A. Is.

20. DICTIONARY, by T. Goodwin, M.A. Vol. 1. Latin
—English. 2s.

22. Vol. 2. English—Latin. Is. 6^.

Complete in 1 vol. 3s. ^d. ; cloth boards, \s. Qd.

, with Grammar. Cloth bds. 5s. 6d,

24. FRENCH GRAMMAR, by G. L. Strauss. Is.
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10 EDUCATIONAL WORKS.

25. FEENCH DICTIONARY, by Elwes. Yol. 1. Fr.—Eng. 1*.

26. Yol. 2. English—French. Is. 6^.

Complete in 1 vol. 2s. 6d. ; cloth boards, 3s. 6d.

, with Grammar. Cloth bds. 4s. 6^.

27. ITALIAN GRAMMAR, by A. Elwes. Is.

28. TRIGLOT DICTIONARY, by A. Elwes. Yol. 1.

Italian—English—French. 2s.

30. Yol. 2. English—French—Italian. 2s.

32. Yol. 3. French—Italian—Enghsh. 2s.

Complete in 1 vol. Cloth boards, 7s. 6d.

, with Grammar. Cloth bds. Ss. Qd.

34. SPANISH GRAMMAR, bv A. Elwes. Is.

35. ENGLISH AND ENGLISH—SPANISH DIC-
TIONARY, by A. Elwes. 4s. ; cloth boards, 5s.

,j vrith Grammar. Cloth boards, Qs.

39. GERMAN GRAMMAR, by G. L. Strauss. Is.

40. READER, from best Authors. Is.

41. TRIGLOT DICTIONARY, by N.E. S.A.Hamilton.
Yol. 1. English—German—French. Is.

42. Yol. 2. German—French—English. Is.

43. Yol. 3. French—German—English. Is.

Complete in 1 vol. os. ; cloth boards, 4s

, with Grammar. Cloth boards, 5s.

44. HEBREW DICTIONARY, by Bresslau. Yol. 1. Heb.—Eng. 6s.

^ with Grammar. 7s.

46. Yol. 2. Enghsh—Hebrew. 3s.

Complete, with Grammar, in 2 vols. Cloth boards, 12s.

46*. ^ GRAMMAR, by Dr. Bresslau. Is.

47. FRENCH AND ENGLISH PHRASE BOOK. Is.

48. COMPOSITION AND PUNCTUATION, by J.Brenan. Is.

49. DERIYATIYE SPELLING BOOK, oy J. Rowbotham. Is. 6^.

50. DATES AND EYENTS. A Tabular Yiew of English History,

with Tabular Geography, by Edgar H. Rand. [Li Preparation.

51. ART OF EXTEMPORE SPEAKING. Hints for the

Pulpit, the Senate, and the Bar, by M. Bautain, Professor at

the Sorbonne, &c. 2s. Gd. [JS'oiv ready.

THE

SCHOOL MANAGERS' SERIES OF READING BOOKS,
Adapted to the Requirements of the New Code of 1871.

Edited by the Rev. A, R. Grant, Rector of Hitcham, an 1 Honorary
Canon of Ely; formerly H.M. Inspector of Schools.

s. d. s. d. . s. d.

First Standard 3 Third Standard 8
I

Fifth Standard 1

Second ,,0 6 Fourth „ 10
i

Sixth „ 12
The following are in preparation :—

Lessons from the Bible. Part 1. Old Testament. [Geography.
Lessons from the Bible. Part 2. New Testament, and Scripture
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EDUCATIONAL AND CLASSICAL WORKS. 11

LATIN AND OREEE CLASSICS,

WITH EXPLANATORY NOTES IN ENGLISH,

LATIN SERIES.

1. A NEW LATIN DELECTUS, with Vocabularies and
Notes, by H. Young 1,5.

2. C^SAR. De Bello Gallico ; Notes by H. Young . . 2^.

3. COENELIUS NEPOS; Notes by H. Young . . . U.

4. VIRGIL. The Georgics, Bucolics, and Doubtful Poems;
Notes by W. Rushton, M.A., and H. Young . Is. Qd.

5. VIRGIL, ^neid ; Notes by H. Young . . .25.

6. HORACE. Odes,Epodes, and Carmen Seculare, byH.Young Is.

7. HORACE. Satires and Epistles, by W. B. Smith, M.A. Is. Qd.

8. SALLUST. Catiline and Jugurthine War; Notes by
W. M. Donne, B.A . Is. 6d.

9. TERENCE. Andria and Heautontimorumenos ; Notes by
the Rev. J. Davies, M.A. Is. Qd,

10. TERENCE. Adelphi, Hecyra, and Phormio; Notes by
the Rev. J. Davies, M.A 2h.

11. TERENCE. Eunuchus, by Rev. J. Davies, M.A. . Is. 6d,
N'os. 9, 10, and II m 1 vol. cloth boards, Gs.

12. CICERO. Oratio Pro Sexto Roscio Amerino. Edited,
with Notes, &c., by J. Davies, M.A. {Mw ready,) . . ls»

14. CICERO. De Amicitia, de Senectute, and Brutus; Notes
by the Rev. W. B. Smith, M.A 2s.

16. LIVY. Books i., ii., by H. Young .... Is. U.
16*. LIVY. Books iii., iv., v., by H. Young . . , Is. 6c^.

17. LIVY. Books xxi., xxii., by W. B. Smith, M.A. . Is. 6d
19. CATULLUS, TIBULLUS, OVID, and PROPERTIUS,

Selections from, by W. Bodham Donne . . . .2s,
20. SUETONIUS and the later Latin Writers, Selections from,

by W. Bodham Donne 2s.

21. THE SATIRES OF JUVENAL, by T. H. S. Escott, M.A.,
of Queen's College, Oxford Is. 6^.
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13 EDUCATIONAL AND CLASSICAL WOKKS.

GREEK SERIES.

WITH BXPLANATOllT NOTES TN I;N(;LISH.

1. A NEW GKEEK DELECTUS, bj II. Young . . U.

2. XENOPHON. Anabasis, i. ii. iii., by H. Young . . Is.

3. XENOPHON. Anabasis, iv. v. vi. vii., by H. Young . Is.

4. LUCIAN. Select Dialogues, by H. Young . . . U.

5. ITOMEE. Iliad, i. to vi., by T. H. L. Leary, D.C.L. U. 6a.

6. HOMEE. Iliad, yii. to xii., by T. H. L. Leary, D.C.L. Is. U.

T. HOMEE. Iliad, xiii. to xviii., by T.H. L. Leary, D.C.L, Is. Qd.

8. HOMEE. Iliad, xix. to xxiv., by T. H. L. Leary, D.C.L. Is. M.

0. HOMEE. Odyssey, i. to yi., by T. H. L. Leary, D.C.L. l5. 6d.

10. HOJMEE. Odyssey, yii. to xii., by T. H. L. Lmry, D.C.L. 1^. %d.

U. HOMEE, Odyssey,xiii.toxviii.,byT.H.L.Leary,D.C.L. b.Si.

12. HOMEE. Odyssey, xix, to xxiy. ; and Hymns, by T. H. L.

Leary, D.C.L, . . , 23.

13. PLATO. Apologia, Crito, and Plu^do, by J. Davies, M.A. 2s.

U. HEEODOTUS, Books i. ii., by T. H. L. Leary, D.C.L. Is. 6d.

15. HEEODOTCrS, Books iii. iy., by T. H. L. Leary, D.C.L. Is. 6^.

16. HEEODOTUS, Books y.vi. yii., by T.H.L. Leary, D.C.L. \s.Qd.

17. HEEODOTUS, Books yiii. ix., and Index, by T. H. L.

Leaiy, D.C.L I5. 6^.

18. SOPHOCLES. Oildipus Tyrannus, by H. Young . . \s.

20. SOPHOCLES. Antigone, by J. Milner, B.A. . . . 2,?.

23. EUEIPIDES. Hecuba and Medea, by W. B. Smith, M.A. Is.U.

26. EUEIPIDES. Alcestis, by J. Milner, B.A. . . . \s.

SO. .^SCHYLUS. Prometlieus Vinctus, by J. Davies, M.A. . \s.

S2. ^SCHYLUS. Septem contra Theba^, by J. Dayies, M.A. Is,

4*3. AEISTOPHAJNES. Acharnenses, by C. S. D. Townshend,

M.A. .,..,.... I5. 6af.

41. THUCYDIDES. Peloponnesian War. Book i., by H. Young \s.

42. XENOPHON. Panegyric on Agesilaus, by LI. F.W.Jewitt USxl.
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^vu;^^ »T 7F^^ a~c 1) ft Y>*r< ') *^ y •rrs- > '* -' ^^^^ ^

^)

'

A SZLECTICir TROrrl WEALE'S SEIIIES.

^'.i'.

^'^Jr^ m^ASUIiES. WEKrRTS, AXD ZIOXEYS OF ALL - ^•::;-

3^"^;* NJTWm, and au Analysis of tlio Christian, HeJ.rew, and j),,- ;-,

^^-\c IMahometan Calendars. By W. S. B. Woolhouse, i .ix.A.b., *1^g. ^.^- -^^,

'^ Is. Gd. ^^5:^>^-

^A-jf'St INTEGIIAL CALCULUS, Eudimcntary Treatise on ^^j^*^;-.

A^^C?l| the. By Homesiiam Cox, B.A. Illustrated. Is.
9 x'A-^

'^Wr' LNTEGRAL CALCULUS, Examples on the. By ^^^
-Si^ti James Hanx, late of King's College, London. Illustrated. Is- ,^T;i,-b

(^$p DLFFERENTIAL CALCULUS, Elements of the. By

?^I/J;1) W. S. B. WooLHousE, F.K.A.S., &c. Is.

'^:^^ DIFFERENTIAL CALCULUS, Examples and Solu- '^^^
::^^i'^ tionsinthe. By James IIaddon, M.A. Is.

'ilXT^'

''fc| GEOMETRY, ALGEBRA, and TRIGONOMETRY, 'j^f^^

/3^ 07: in Easy Mnemonical Lessons. By the Eev. Thomas Penyngton ^gi'

^

^^^ KmE:MAN,M.A. Is. 6d. C^^

^^ MILLERS, MERCHANTS, AND FARMER'S ^^
j^5r)^ READY RECKONER, for ascertaining at sight tne value ol ^^^^"^^

'£^ ^d any quantity of Corn, from one Bushel to one hundred Quarters, T^)^
"^IfT^ at anv given price, from £ 1 to J£5 per quarter. Together with the % ^.
' ^c2 approximate values of Millstones and MUlwork, &c. is. ^^^
i'S^'^V- ARITHMETIC, Eudimentary, for the use of Schools p';^
"l^t$ and Self-Instruction. By James Haddon, M.A. Kevised by <^2^sL

^^^ Abraham Arman. Is. 6d.
It(%

b%H'^" A KEY to Rudimentary Arithmetic. By A. Arman. Is. 6d. '^^^

'-^ll^ UUTHMETIC, Stepping-Stone to; being a complete ^X^^l
^'^^ course of Exercises in the First Four Rules (Simple and Com- ^^^ o^

:^A5<TA pound), on an entirely now principle. For the L se of Elementary .^^ \^
i^^^'c Schools of every Grade. Intended as an Introduction to the .^^-^

^'H'^ more extended works on Arithmetic. By Abraham Armax. Is. r^^^

^'^-^ ^ X^r to Stepping-Stone to Arithmetic. By A. Arman. Is. ^^^

WM the slide rule, and how to use IT; |&
'-^ ^^' containing full, easy, and simple instructions to perform all Busi- ^ st

ness Calculations with unexampled rapidity and accuracy. By .-^.^

Charles HoARE, C.E. With a Slide Rule in tuck of cover. Ss. .^^^

^ ,, -rv. STATICS AND DYNAMICS, the Principles and Prac- i^
hf^ci tice of; with those of Liquids and Gases By T- Bakep C L.

^.^^^
PA^td Second Edition, revised by E. Nugent, C.E. Many lUustra- ,^c^^

rr:^^} tions. Is. 6d. %^
1;^^% f^<M
^<^fI LCCKWOOD & CO., 7, STATIONERS' HALL COURT, E.C. ^^ c^^_
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