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PREFACE.

A portion of this work appeared in the form of a series of
articles on the Construction of Roofs, published in Building.
These articles have been carefully revised, and greatly extended
by the addition of such matter as appeared necessary to make
the work more suitable as a manual for instruction, for private
study, or for reference.

It now essentially represents the course of study in Graphic
Statics, with special application to Trussed Roofs, pursued by the
Students in the School of Architecture of this University for
several years past, after a trial of the more favorably known
text-books treating this subject.

The author has always believed, that, so far as possible, the
student should receive full instruction in all those branches of
the study which he will be required to apply in completely
working out a design for a trussed roof, in actual practice.

Consequently, to determine the strains acting in the truss-
members, to calculate the sectional dimensions required for these
members, and to arrange the details of the connecting joints,
embodying these details in suitable drawings, are all of equal
and essential importance, though text-books usually stop with
the first, leaving the student to acquire a knowledge of the others
a8 best he may.

The author is not aware that any formuls for determining the
lengths of members of roof trusses have ever before been given.

That this little work may be found to substantially aid the
diligent and inquiring student and draughtsman, as well as to
serve as a work of reference for the architect, is the highest
desire of the writer.

N. CLIFFORD RICKER.
UxrveRrsiTY oF ILLINOIS,
CuamraieN, IiL., July 24th, 1885.
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CHAPTER L

ELEMENTARY GRAPHIC STATICS.

DEFINITIONS.

In most architectural and engineering constructions, the differ-
ent members of a structure are acted upon by various loads or
pressures, but the structure is not usually moved thereby, because
of the action of other pressures, by which the first are neutralized.
Such structures and forces are then said to be in equilibrium,
which is a state quite different from that in which no forces act
on the structure.

(1.) Statics is a branch of Applied Mechanics, treating of the
effects of forces in equilibriumn, which neither produce motion,
nor change the position of the body or structure acted upon.

(2.) Graphic Statics is a method of considering the mode of
action and the effects of these forces, by means of a regular
system of graphical operations, employed in place of mathemat-
ical computations, over which it possesses material advantages.

Discovered by Professor Culmann and perfected by later
writers.

(8.) A Force is usually an influence or pressure exerted on one
body by another body, by a fluid or gas, which may be at rest or
in motion. Unless resisted or neutralized in some way, it causes
the body to move along in a straight line, or changes its rate or
direction of motion, if it be already moving.

(4.) A simple force always acts along a straight line, which is
termed its Zine of action

(8.) The force may be assumed to be applied at any point of its
line of action, this point being called the point of application of
the force.

(6.) The magnitude or intensity of the force is always meas-
ured by some unit of weight, being expressed in pounds, tons,
ete. The ton of 2,000 pounds is most convenient for this purpose,
and will be employed hereafter unless otherwise noted.



6 REPRESENTATION OF FOROES.

Representation of a Force.

(7.) A given force may be fully represented by a right line, if
the three following conditions are all satisfied :

a. Magnitude. Draw a straight line containing as many units
of length as the given force contains units of force or weight.
Any convenient scale of equal parts may be employed, though a
decimally divided scale is most convenient.

b. Location. The line of action of the force must be either
drawn or known, and the line representing the force must either
coincide with or be parallel to this line of action.

c. Sense. The senseof a force is the direction in which it acts
or tends to move the body affected, and must always be indicated,
usually by an arrow-head attached to the line representing the
force.

(8.) Example. TFig. 1. A < 8

Let AB be the line of action of
a force F — 6 pounds, acting from L S S S |
B towards A. Repmen::l‘::.n ::;f a Force.

Commencing at any point 0, draw
a line of indefinite length parallel to AB. Lay off 01 equal to
one unit of any convenient scale, here made one-fourth of an
inch ; make 06 equal to six times 01. Indicate the sense by an
arrow-head. The given force I' is then fully represented by the
line 06, because the three prescribed conditions are all satis-
fied. (7.)

Resultant of several Forces.

(9.) All the forcesare assumed to lie in a common plane, which
coincides with the plane of the drawing or paper.

(10.) The resultant of two or more forces is that single force
which would exactly replace them, and have the same effect on
the body acted upon as the given forces.

(11.) The anti-resultant of the same forces would be that single
force, which would exactly neutralize their effect and produce a .
state of equilibrim

(12.) Consequently, the resultant and a.ntx-resultant of several
given forces always have equal magnitudes and a common line of
action, but their senses are opposed. If the given forces are
already in equilibrium, they can have neither resultant nor anti-
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resultant,, (Otherwise; these can always be found, provided no
two of the forces form a couple. (13.)

A Couple.

(13.) A couple is composed of two forces of equal magnitude,
having parallel lines of action and opposed senses. It becomes
evident that a couple tends to produce rotation of the plane of
the two forces, and therefore it can neither be replaced nor neu-
tralized by a single force. Hence, it can have neither resultant
nor anti-resultant. A couple tends to rotate its own plane about
any fixed point in this plane, termed its centre of rotation. If
the direction of this rotation be like that of the hands of a watch,
it is wusually called positiwe; if in the opposite direction,
negative.

(14.) Example. Fig. 2. ke -8
Let AB be the line of action of j{

a force of 4 pounds, acting towards C—=> -0

A; OD of an equal force acting . -

towards D. Lt L P ¢
The given forces form a couple of Fig. 2.

ne gativ e rotation. Representation of a Couple.

Commencing at any point 0, represent F1 by the line 04, and
F2 will also be represented by 40. Indicating the senses, as
in the figure, the couple is fully represented by the lines 04
and 4 0.

The perpendicular distance between the lines of action of the
two forces is termed the lever-arm of the couple.

Components of a Force.
(15.) The components of a force are the two or more simple
forces by which it may be replaced. Hence, a force is the resultant
of its components.

Conditions of Equilibrium of Forces.
(16.) Forces are said to be in equilibrium if the following
conditions are satisfied :

a. The given forces exactly neutralize each other, so that the
position of the body acted upon is not changed.
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b. They have meither resultant nor anti-resultant, nor form s
couple.

¢. Their force polygon must close. .

d. Their equilibrium polygon must also close, its angles lying
on the lines of action of the given forces. The truth of the last
two conditions will become evident hereafter.

Composition of Forces.
(17.) Composition of forces signifies obtaining the resultant or
anti-resultant of several given forces by combining them. This

may be effected by the Parallelogram of Forces, or by the Force
and Equilibrium Polygons.

a. By Parallelogram of B_..—"
Forces. Fig. 3. G Bl
Oes= - ————3 —=>C
(18.) Let tv?o forces, F1, F2, 5 \E\< _______
act at any point A, along the D>
lines BA and DA. Required, Fig. 3.

. 1 Forces.
their resultant. Parallelogram of Forces,

Represent F1 by AB, F2 by AD, and draw BC parallel to
AD, and DC parallel to AB, thus completing the parallelogram
ABCD. Join AC by the diagonal R, which represents the re-
quired resultant of the given forces, F1, F2. Its magnitude can
be measured by applying the scale used in laying off F1 and F2
on AB and AD. ,

(19.) For, suppose a body to be placed at A, so arranged as to
be free to move in any direction, but offering a uniformly in-
creasing resistance to this motion, like that of a coiled spring.
If the force F1 alone acts on this body, it would evidently
move along the line AB produced, until it reached some point, b,
at which the resistance becomes equal to the impelling force.
Similarly, if F2 alone acts on the body at A, it must pass along
AD produced, stopping at the point &, where the resistance equals
F2. Now, if F1 be first applied, moving the body to b, and then
F2 be allowed to act, it must pass along bc, which is parallel and
equal to Ad, stopping at ¢, where the resistance just equals the
combined effect of the two forces. The same result would evi-
dently be obtained if both forces were simultaneously applied
to the body at A, or if their resultant R were applied instead.

For, ABCD and Abdcd are similar parallelograms, because the
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angles, dAb and DAB are equal, and BA : Ad:: DA : Ad.
Hence, AB: Ab:: AC: Ac. That is, the ratio of R to ac is the
same as that of F1 to Ad or of F2 to Ad. Therefore, if the two
forces are replaced by their resultant R, the same effect is pro-
duced as by the forces themselves. But their resultant R is AC,
the diagonal of the paral-
lelogram ABCD.

b. By Force Polygon.
Fig. 4.

(20.) The lines of action
of the given forces must
pass through a common
point of application A, and
must also lie in a common
plane.

Let the forces F1, F2,
3 and F4 act at the point
A. TRequired, their result-
ant.

Represent F1 by AB, F2 by AC, F3 by AD and F4 by AE,
severally laid off from A on their respective lines of action, to
any convenient scale, and all having the same sense, toward or
from A.

Commencing at B, draw Be parallel and equal to F2 or AC;
<d parallel and equal to 3 or AD, and dF parallel and equal to
F4 or AE; join AF, which is the required resultant of the four
given forces, or, if iis sense be reversed, it becomes their anti-
resultant.

(21.) For, complete the parallelogram ABc¢C, and R1 or Acis
‘evidently the resultant of F1 and F2; complete parallelogram
AcdD, and R2 or Ad will be the resultant of R1 and F3, or of
F1, F2 and F38. Likewise, R3 is the resultant of R2 and F4, or
of the given forces F1, F2, F3 and F4.

The polygon ABcdFA is termed the “ZForce Polygon” of the
given forces F1—F4, becanse each of its sides represents one of
the given forces, its last or “closing” side FA being their
resultant R.

(22.) The following points should be carefully noted :

1. The forces must all have the same sense or direction around

Fig. 4.
Force Polygon.
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the Force Polygon, excepting the resultant, whose sense is opposed
to that of the forces.

2. The forces may be arranged in any order to form the poly-
gon, provided each is taken but once, and with the proper sense.

3. If the sense of the resultant be reversed, it becomes their
anti-resultant, with which they are in equilibrium. (11.)

4. Consequently, if the given forces are already in equilibrium,
as is usually the case in structures, the force polygon must close,
and all the forces composing it have the same sense. (12.)

5. The line of action of the resultant and anti-resultant will be
the line AF.

The magnitude, location and sense of the resultant of several
forces acting at a common point may therefore be fully deter-
mined by the Force Poly-

gon.
¢. By Force and Equi- Fs A°
librium Polygons. 71

(23.) The lines of action
of the forces lie in a com-
mon plane, but do not in-
tersect at a common point,
the given forces having no
common point of appli-
cation.

Let the given forces be F1, F2 and F3, their lines of action
being as shown in Fig. 5. Required, their resultant R.

Commencing at any point O, make O1=F1,12=F2and 2 3
=F3; join 80. The polygon, 01230 will then be the force
polygon of the given forces, and its closing side 30 will be their
resultant. (21.)

This resultant must have the same magnitude as 30, to which
it must likewise be parallel; it must have the sense from O
towards 3, opposed to that of F1, F3. (22.) It is therefore
fully determined by the force polygon, with the sole exception
of the location of its line of action, which must be found by the
equilibrium polygon.

(24.) Select any point P and join it with each angle of the
force polygon by right lines, PO, P1, P2 and P3. Beginning at
any point @, on the line of action of F1, draw an indefinite line

Fig. &.
Force and Equilibrium Polygons.
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parallel to PO, and ab parallel to P1, intersecting the line of
action of F2 at b ; draw d¢ parallel to P2, cutting F3 at ¢, and
make cd parallel to P3. The lines ad and cd usually inter-
sect at some point d, which is one point of the line of action
of the resultant R, and which may then be drawn through &
parallel to O3 of the force polygon. This fully determines the
required resultant, since its magnitude, location and sense are
all known. (7.)

(28.) For, suppose that the force F1 be applied at @, and that
two other forces represented by PO and P1, respectively, act
along the lines da and ab. These threc forces, F1, PO and P1,
form a triangle P, O, 1, consequently, if PO has the sense from
d towards @, and P1 from @ towards b, as indicated in the figure,
their senses will be opposed to that of F1, which will then be
their resultant. (22.) The force F'1 may, therefore, be replaced
at @ by its two components, PO and P1, with the given senses.

Similarly, F2 may be replaced at b by two components, P1 and
P2, acting along da and be as indicated ; F3 may also be replaced
at ¢ by its components, P2 and P3, acting along <b and de.

For the three original forces we have now substituted four
others, whose effect is precisely the same as that of the given
forces.

(26.) Now, the component of F1 acting along ab and that of
F2 acting along ba, are each represented by P1, and they are
therefore equal, but have opposed senses. Their sole effect would
be to neutralize each other, and they may therefore be omitted
without material error. In the same way, the component of ¥2
acting along ¢ and of F3 acting along c¢b, neutralize each other,
and may be dropped.

Hence, the given forces are replaced by the two components
not yet neutralized, one equal to PO and acting along da, the
other equal to P3 and acting in de. Their lines of action inter-
sect at d, which is therefore one point of the line of action of
their resultant. (18.) -

But the resultant of PO and P3 is O3, which is identical with
the resultant of the given forces F1, F2and F3. The point & is
therefore one point of the required line of action of the result-
ant of the given forces, which may then be drawn parallel to the
closing side of the force polygon.
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(27.)' The'same process and reasoning would be applicable to
any number of given forces, since each force is replaced by its
two components, and all these components neutralize each other,
with the exception of the first and last, which intersect on the
line of action of the resultant. Consequently, the method becomes
perfectly general.

(23.) The point P is usually termed the “Pole;” the lines
PO, P1, P2 and P38, joining the pole with the angles of the
force polygon, are called “Strings;” the “Force Diagram ™ is
the figure composed of the force polygon, the pole and the
strings. The polygon abeda is called the “Eguilibrium Poly-
gon,” because if the senses of the resultant R and of the com-
ponents acting along the sides of the equilibrium polygon abcda
be reversed, the three forces applied at each of its angles would
then be in equilibrium, and the polygon would not change its
form.

(29.) Since the pole may be “taken anywhere at pleasure, and
the beginning point @ may be chosen on the line of action of
F1, it is evident that an infinite number of different force dia-
grams and equilibrium polygons may be drawn, but which all
give the same resultant of the given forces.

This gives a means of checking the accuracy of the work, by
taking a new pole and proceeding as before, obtaining another
point &’y which must lie on the line of action drawn through o,
if the work is correct.

Resolution of Forces.

(30.) This is the reverse
of composition of forces,
signifying the decomposi-
tion of a given force into
two or more components by
which it may be replaced
or necutralized, if their
senses are reversed. The
lines of action of the two Fig. 6.
components must either Resolution into Parallel Componenta.
both be parallel to that of the given force, or intersect it at a
common point.
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Ezample. Components parallel to force. Fig. 6.

(31.) Let the lines of action of the components be C1 and C2
respectively, distant 2 feet and 8 feet from that of the given
force F, to which they are parallel, and let F =10 Ibs.

Represent F by O1 (7); choose any pole P and join PO, P1.
Commencing at any point @ on the force F, draw ab parallel to
PO and ac parallel to P1, intersecting C1 at b and C2 at ¢; join
bc and draw Pz parallel to bc. Then C1=0z=26 lbs., and C2=
#1 —41bs. The components evidently vary inversely as their
relative distances from the force F. (15.)

Ewample. Components not par- .9,
allel to force F. Fig. 1.

(32.) Let the lines of action of the Ci
required components C1 and C2 in-© F
tersect that of the force at a, and let v
F =10 Ibs. "

Represent F by O1, and draw P1
parallel to C2, PO parallel to Cl. Fig 7.
Then C1 is represented by PO and Resolution tnto Components not
C2 by P1, and their numerical values Parallel.
can be found by measurement with the scale used in laying
off O1=F. (15.)

Reactions at ends of a loaded beam or truss.

(33.) The lines of action of all the forces or loads supported
by the beam lie in a common vertical plane passing through the
axis of the beam, and may be parallel to each other or not. Their
resultant may be found by (23) and (24), and may then be substi-
tuted for the forces. It may be resolved by (31) into two com-
ponents parallel to itself, acting at the ends of the beam, and
which are the downward pressures of the beam on its supports.
If the senses of these components are then reversed, they will be
the equal upward pressures of the supports against the ends of
the beam, and which are in equilibrium with the original loads or
forces supported by it. These will, therefore, be the required
reactions. Their values are dependent on the loading, not on the
form of the beam or truss.*

* This very useful method is due to Major J. R. Willett, of Chicago. (See Amerécan
Avrchiteet, vol. 111., pp. 80, 41, 55).
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Ezample. TFig. 8.

(34.) Let the beam p|"
AB be acted upon by
the four forces F1, F'2,
F3 and F4, which are
assumed to be not par- ¢
allel to each other, to
make the case as gen-
eral as possible. Re- v
quired the reactions
V1and V2at A and B.

Represent F1 by O1,
F2 by 12, F3 by 23,
and F4 by 34, form-
ing the force polygon
O4; join O4, which .4 Fig. 8.
will represent the re- Reactions at ends of Beam.
sultant R of the four given forces. (20), (21.)

Take A and Bon top of beam and over inner faces of the
supports, and draw Aa and Bf parallel to O4, and which will be
the lines of action of the required reactions V1 and V2, since
these are to be parallel to the resultant R, which must be parallel
to O4. (23), (24), (33.)

Choose any pole P and draw strings PO, P1, P2, P3 and P4.
Commencing at any point @ on Aga, draw ab parallel to PO and
intersecting F1 at 5 ; then dc parallel to P1, c¢d parallel to P2, de
parallel to P3, and ¢f parallel to P4, cutting Bf at /. Join af,
which is the closing line of the equilibrium polygon abcdef.
Through P draw Pz parallel to af, intersecting O4 at the dividing
point z. Then Oz=V1 and 4 =V2.

(35.) For, produce the first side b and last side ¢f of the equi-
librium polygon to intersect at g, and through ¢ draw gA parallel

to O4; gk will then be the line of action of the resultant R, by
which the given forces may be replaced. (238), (24.) Let the
four forces be replaced by their resultant R, and we then
have the single force R, represented by O4, which is to be
resolved into two parallel components V1 and V2. Then ga
is parallel to PO, gf is parallel to P4, and Pz to af, con-
sequently Oz =V1 and 4 =V, whose senses must be opposed
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to that of R, since they represent the upward pressures of the
supports.

(36.) If all the given forces are vertical and parallel, as is fre-
quently the case when loads are supported by the beam or truss,
the reactions V1 and V2 are likewise vertical and the force
polygon becomes a vertical straight line, which is usually termed
the “ load line.”

If the pole P be taken on the left-hand side of the force poly-
gon O-4, the equilibrium polygon will be inverted, that is, it will
be convex upward, but this does not affect the values of V1 and
V2, as these do not depend on the position of the pole P. This
will frequently be found very convenient in obtaining the strains
in roof trusses, since the paper below the truss diagram is then
left free for working out the strain diagrams.

Reactions at Ends of Truss, one End Resting on Expansion
Rollers.

(37.) Both ends of all shortspan trusses, and of all trusses
having wooden tie-beams, are usually firmly anchored to the walls
of the building. But if the trusses are long and are built of iron,
the stability of the walls would be seriously affected by the
changes in the length of the trusses, resulting from the expan-
sion and contraction of the metal, caused by changes in tempera-

J X

Fig. 9.
Reactions at ends of truss; one roller.

ture. To avoid this danger, one end of a long iron truss usually
rests on iron rollers, while the other is attached to the wall.
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Consequently, if the friction of the rollers be neglected, the
wall beneath them can only exert a vertical pressure on that end
of the truss, i. e., the reaction at that end must be vertical, while
the remaining components of the resultant of all the forces acting:
on the truss must be supported at the fixed end. Hence, the two
components or reactions V1 and V2 are then neither parallel to
each other nor to the resultant R. (32.)

Example. Fig. 9.

(38.) Let AB represent a beam or jruss of any form, the end
A being supported by rollers placed on the wall, B being firmly
fixed to the wall.

The original forces F1, F2, etc., which act on the beam, are
omitted for the sake of simplicity, and it is assumed that they
have been replaced by their resultant R, represented by O4,
which has been found as in (35).

This resultant is then resolved by (32) into the two parallel
components Oz and x4, which would act along the lines Aa and
Bb, were the roller omitted at A and both ends of the beam
fastened to the walls. Through « draw the horizontal de, also
the vertical Od, and join d4. Then V1—=0d —=required vertical
reaction at A, and V2=—=d4 — required reaction at B. (32), (37.)

For V1= 0d = vertical component of ox, and dr—=its hori-
zontal component, which must be transferred through the beam
and supported at B. V2 —=the resultant d4 of dz and 24, and is
therefore the required reaction at B. (10.)

(39.) Suppose that the end A be fixed and the roller be placed
at B. Draw vertical 4¢ and join Oe. Then V1—=0¢ and V2=
é4, which is vertical. (38.)

It is evident that rollers could not be placed at each end, since
the beam would then roll off its supports, unless the resultant of
the forces acting upon it were vertical.

MOMENTS OF FORCES.
DEFINITIONS.

(40.) The Centre of Rotation of the moment of a force is any
fixed point, about which, as a centre, the force intends to rotate
the plane containing both the point and itself.
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(41.) The Lever-Arm of the moment of a force is the perpen-
dicular, let fall from the centre of rotation on the line of action
of the given force.

(42.) The Moment of a Force is the measure of its tendency
or power to rotate its plane about the centre of rotation. The
numerical value of the moment always equals the product of the
magnitude of the force and the length of its lever-arm, and is
expressed in foot-tons, inch-tons, inch-lbs., ete., according to the
units of length and of force or weight employed. The foot-ton
will here be used as the unit of moments, being equal to the
effect of a force of one ton, with a lever-arm of one foot.
(This term “foot-ton” is employed in a very different sense in
mechanical engineering, to represent the force required to lift
one ton one foot high in a minute,— ¢ of one horse power.)

(43.) A moment is said to be “ positive” or “ negative,” accord-
ing as it tends to produce rotation in the same direction as the
hands of a watch, or the opposite.

Example. Fig. 10. Co\\
(44.) Let C be the centre of rotation h
and F the given force. Let fall the per- P

pendicular Ca on the line of action of
the given force F; then Ca is the lever-
arm of the force, and F X Ca = moment
of F about C. This moment is negative, Moment of a Force.

because it tends to produce rotation opposed to that of a watch.

Moment of a Couple.

(45.) The moment of a couple (13) about any point whatever,
in its own plane, equals the product of one force into the per-
pendicular distance between the lines of .
action of the couple. A couple can only 7—‘[-—“

|

Fig.10

be neutralized by another couple having
an equal moment and an opposed rotation. R f
Erample. Fig. 11. ¢ 5
(46.) For,let F1 and F2 form the given Fu—* L,
couple. Let 2 and «1 be the lever-arms of mmf‘:’:‘twph
F1 and F2 about any centre of rotation C )
in their plane. The moment of F1=F1Xxw; of F2=F2Xxal
the last being negative or minus, because its direction of rotation
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is negative. The moment of the couple=F (2—z1) =F X d, d
being the perpendicular distance between the lines of action of
F1 and F2. Since the same value would evidently be obtained
for any other location of the centre of rotation C, the moment
of a couple has a constant value =F X d.

Resultant Moment of Several Forces.

(47.) This is that single moment, which would exactly replace
the moments of all the given forces, or, if its direction were
reversed, would exactly neutralize them and produce equilibrium,
with any centre of rotation whatever. Hence, if several forces
are in equilibrium, their resultant moment —=0. (12.)

Since the resultant moment of several forces is identical with
the moment of their resultant about the same centre of rotation,
it may be found by determining their resultant by (18), (20) or
(23), when the moment of this resultant will be the required
resultant moment.

Or, it may be found graphically by Culmann’s Method.

Culmann’s Method for a Single Force.

(48.) Let F (Fig. 12) be the given force and C the centre of
rotation.
0

\\‘ l
\\\
~ \\\ 8'
2f--—H--—-—=>P '
~ N SN :
-~ ~

//’ F \Ed
1 Fig. 12 i
1

gt-—---- $C

Culmann’s Principle.

Represent F by 01; with pole P, draw the strings P0, P1,
and also draw P2 perpendicular to 01. The length of this per-
pendicular to 01 is usually represented by the symbol H.

Commencing at any point @ on the line of action of F, draw
the equilibrium polygon dac, by parallels to P0 and P1; produce
ba indefinitely, and through C draw Ce parallel to F or 01. Draw
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Cg and af perpendicular to F or 01. Then the moment of F
about C = ed X H.

For, from similar triangles 01 P, dea,01: H :: de: af. Hence,
01X af=dexH. But 01=F,and af—= Cg, which is the lever-
arm of F about C. Therefore, the moment of F about the
centre of rotation C = deX H.

The string P2 or H, perpendicular to 01, is termed the “ Pole
Distance,” and the line de may be called the « Intercept,” since it
is a line drawn through C, parallel to F, and intercepted between
the sides of the equilibrinm polygon dac, which intersect on the
line of action of the given force F.

Hence, the moment of any force always equals the product of
the corresponding intercept and the pole distance. This is Cul-
mann’s Principle, which should be clearly understood, as it will
be found very useful in the consideration of a loaded beam,
purline, etc. :

Culmann’s Method for Several Forces, which may or may not
be Parallel.
(49.) It has just been demonstrated that Calmann’s method is
true, when applied to a single force. (48.)
Since this single force may be the resultant of any number of
given forces, it is evident that the principle becomes perfectly
general, and is therefore applicable to any number of forces.

Moment of several Forces.

Let 1, F2 and F3 (Fig. 18) be the given forces, C being any
given centre of rotation.
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loading be more complex, the graphical method is preferable,
for it is easily applied to even the most complicated forms of
loading, which are treated analytically with great difficulty, if
at all,

A. By Formuls.

Let W=—total load on the beam, in net tons.

Let w—=10ad on each lineal foot of the beam, in tons.
Let L=—=clear length of beam, in feet.

Let V=reaction at either support, in tons.

1. Load concentrated at centre of beam.
(52). V= Yé_z reaction at either end.
v—;-”: bending moment at any point X, distant « feet from the

left support, and lying between that and the centre.
W (L—a)
2

and right support.

WL . . .

— = Wwaximum bending moment acting anywhere along the
beam, and here found at its centre.

0 =bending moment at either end.

= bending moment for any point X between centre

E—g = shear at any point of the beam, except at the centre, where
the shear theoretically — 0.
2. Load wniformly distributed.
wlL,

Y =_§= 5 —reaction at either end.

wﬁ%_—a—’)= bending moment at any point X, distant @ feet
from the left support.
2
Q%Ii= W;SL =maximum bending moment acting on the beam,

and found at its centre. ,
0 = bending moment at either end.

.gL(L—zw) —shear at any point X.
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%I—‘ = yg = maximum shear at either support.
0 —shear at the centre of the beam.

B. Graphical Method.

1. Load concentrated at several points.

(53.) Let three loads, W1, W2 and W3, act on the beam at the
points C, D and E. (Fig. 14.)

Find the reaction V1 at left, and V2 at right support, by em-
ploying the method explained in (83) and (34), using any pole

f ] 2 ﬁl- ‘i
Al x Jo
T i .18 | %
\\1\ — H ! /
) N 'b il ) ) e
] ] 1 |
| 1
? v \\ g h tl E dl
| ~ Vo I
| I: ! ' |
y 1 ~ L )
Y‘ S N i 1
H RN b |
SO ) |
] o ‘q \\\\\‘L ] f
_? P i == 3pm W
W[
I -~
_T__ﬁ‘:._. ——— 0 J’
Fig. 14

Several Concentrated Loads.

P, and drawing the equilibrium polygon abede. The “ dividing
point” is then at @, and V1 =0z, V2 =a3.

Through the dividing point @, draw the horizontal ¢ shear
axis” gf ; draw the horizontal 04, intersecting the vertical line
of action of W1 in A; also 1 Xl intersecting lines of action of
W1land W2 in % and ?; then 2mn, cutting lines of action of
‘W2 and W38 in m and n; lastly, 30p, intersecting line of action
of W3 in o, and a vertical through the right support in p.

The broken line ghkimnop is termed the “shear line,” and the
diagram composed of the shear axis, shear line and the verticals
drawn through the two supports, is called the “ Diagram of
Shears.”’ :

To determine the shear at any point X, drawa vertical through
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that point, and measure the'length of that portion z of this ver-
tical, comprised between the shear axis and the shear line, using
the scale employed in laying off the force polygon 03. This will
be the required shear at that point.

(54.) The equilibrium polygon abede is also called the « Dia-
gram of Bending Moments.”

To determine the bending moment at any point X, measure
that portion of a vertical through the point included between
the equilibrium polygon and its closing line ae, in feet, using
the same scale as that of the length of the beam AB. Through
the pole P draw a perpendicular to the resultant 03, which per-
pendicular is termed the “pole distance,” and is usually repre-
sented by the symbol H. (48.) Measure the length of H in
tons, at the same scale as that of 03.

Then H X y —Dbending moment at X in foot-tons. (48.)

For, produce a¢ and bc¢ to intersect at 7, and draw the hori-
zontal 7¢. Then from similar triangles 7vf, 12P, we have 7s:
y::H:1e. Hence, rsX1le=HXy.

But 1x is the resultant of V1 and W1, and 7s is the lever-arm
of this resultant for the point X; hence, 78 X 12 = bending moment
acting at X ; hence H Xy —bending moment at X also. ‘

If we call y the “<ntercept” for the point X, we obtain the
following general rule:

The bending moment at any point of the length of a beam
equals the product of the pole distance H and the corresponding
intercept for the point (48.)

2. Load continuous, not uniform.

(55.) Let the loading be represented by the enclosed area
ABCD (Fig, 15) above the beam, the vertical distance between
the curve and the beam representing the relative intensity of the
loading at the corresponding point of the beam.

Divide the area by verticals into strips of equal or unequal
breadth ; find the area and centre of gravity of each strip; sub-
stitute for the weight of each strip a numerically equal force,
acting vertically through its centre of gravity; draw the equili-
brium polygon or diagram of bending moments, and the shear
diagram, in the way explained in the last case (54), (55).

(56a.) These diagrams are approximately, but not absolutely
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correct, for. the loading is not actually concentrated at the centres
of gravity of the strips, as assumed here. To correct this error,
produce the verticals, which separate the strips, so as to intersect

Load continuous and varying.

the equilibrium polygon in the points a, 3, ¢, d, ¢, and the shear
line in the points £, g, A, # and m. Trace a curve tangent to the
ends a and ¢, and the intersections b, ¢ and & of the equilibrium
polygon, which will be the «“ Eguilibrium Curve ;” the lengths of
the intercepts are to be measured between this curve and the
closing line @e. Trace a curve through the ends f and m, and
the intersections ¢, 4 and % of the shear line, obtaining the
“ Shear Curve;” the true shears are to be measured between this
curve and the shear axis.

General Deductions.

(57.) From examination and comparison of the preceding dia-
grams of bending moments and shears, we may deduce the fol-
lowing facts.

1. The maximum shear is always found at one end of a
beam.

2. The zero shear is always found at or near the centre of the
beam, at the same point as the intersection of the shear axis and
the shear line of the shear diagram.
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8. The maximum bending moment always occurs at or near
the midd'e of the beam, at the same point as the longest inter-
cept between the equilibrium polygon or curve and its closing line.

4. The zero bending moment is always found at each end of
the beam.

5. The maximum shear and zero bending moment are always
found at the same points, at one end of the beam.

6. The zero shearand maximum bending moment always occur
together, at or near the middle of the beam.

The mode of computing the safe sectional dimensions of a
beam, after its bending moments and shears are determined, will
be given hereafter, in finding the sectional dimensions of principal
rafters, purlines, etc. (Chapter VIIL.)

CENTRE OF GRAVITY.
DEFINITIONS.

(58.) The centre of gravity of a plane figure is that point by
which it may be suspended or balanced, without any tendency to
rotation being produced, from any position.

An awis of symmetry is any right line, which divides the figure
into two equal and similar parts. The centre of gravity of the
figure is then found somewhere on this line. 'When two axes of
symmetry can be drawn, making any angle with each other, the
centre of gravity of the figure must always be at their inter-
section.

In case the two sets of parts into which the figure is divided
are all equal and similar, the two axes are called “ awes of similar
symmetry.” (79.)

The centre of gravity of a regular geometrical figure is usually
found at its geometrical centre.

Centre of Gravity of a Triangle.

(59.) Let ABC be the given
triangle. (Fig. 16.)

Bisect any two sides as at a

and b. Join each middle point

with the opposite vertex of °

the triangle by right lines C. 6. ogfi-;}:n:._
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Ba, Ab) intersecting’'at (C, which will be the required centre of
gravity of the triangle ABC.

(60.) Or, bisect one side, as at b, join b with the opposite
vertex by the right line Ab; which is then to be divided into
three equal parts, the required centre of gravity being at that
point of division nearest b or the base BC.

Centre of Gravity of a Trapezoid.

(61.) Let ABCD be the
given trapezoid, the sides
AB and CD being paral-
lel. (Fig. 17.)

Bisect each parallel
side, AB at @, CD at b,
and join a@b. Produce
AB in either direction,
making Bo =CD; pro- C. G. of a Trapezold.
duce CD in the opposite
direction, making Cd—=AB; join dc. The required centre of
gravity of the trapezoid will then be found at G, the intersec-
tion of @b and cd.

Centre of Gravity of a Trapezium.

(62.) Let ABCD be the given trapezium, no pair of its sides
being parallel. (Fig. 18.)

Divide the figure into two
triangles by drawing either diag-
onal, as into the triangles ACB,
CDB, by the line CB.

Find the centres of gravity of
each triangle by (59) or (60), as
at g and A ; join gh.

Divide the trapezium into two
other triangles ABD, ACD, by P
_ the other diagonal AD, and find Fig.18
their centres of gravity / and C- G. of & Trapesium.
e¢; join ¢f. The required centre of gravity of the trapeziam
will be at C, the intersection of ¢f and gh.

This method is also applicable to any quadrilateral.
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C’m&raqfarmﬂyqftbe Cross Section of a Beam or
Column.

a. Two Awes of Symmetry.
(63.) The centre of gravity must be at the intersection of the

two axes of symmetry AB and CD, Fig. 19. (58.)

¢ ¢

18 T
-QBI0-

1Fig.10 | '
!

Two Axes of Symmetry.

b. One Awrs of Symmetry.

(63a.) The centre of gravity must lie somewhere on the axis
AB. (58.) (Fig. 20.)

Divide the section into any number of strips of equal or
unequal width by parallel lines, drawn perpendicular to the axis
AB. TFind the centre of gravity of each strip by (58), (59), (61)
or (62), according to its shape; compute the area of each strip in
square inches.

On any line 03, parallel to the lines subdividing the figure
into strips, at any convenient scale, lay off 01 numerically equal
to the area of the upper strip; 12— area of second; 2 3 —area
of the third, etc., in regular order from left to right, taking the
strips in order from top to bottom of figure.

Draw PO and P3, making angles of 45° with 03, and P will
be the pole of the force polygon 03. (P must always be found
in this manner and not assumed at pleasure, in this case.)

Assume that a force having a magnitude numerically equal to
the area of each strip acts at right angles to the axis AB, through
the centre of gravity of the strip. Then will 03 be the force
polygon of these forces. (Fig. 20.)

The lines of action of the forces are parallel to 03, of course.

Commencing at any point &, on the line touching the top of
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the figure and parallel to 03, draw the equilibrium polygon
de¢fgh, producing its first and last sides to intersect at & (24);
then draw %C parallel to 03, intersecting the axis AB at C,
which will be the required centre of gravity of the figure.

—— -

o~
-3 --
Lo

:

__?8..

Fig.20
One Axis of Symmetry.

(64.) For, it is evident that this centre of gravity may be
found by experiment, by cutting out the fullsized section from
any material of uniform thickness and weight, then balancing
this over a straight knife-edge, at right angles to the axis AB.
The weight of each strip is exactly proportional to its area, and
may be replaced bya numerically equal force, acting at the centre
of gravity of the strip, and perpendicular to the plane of the
figure. The resultant of all these forces must pass through the
required centre of gravity of the section. The equilibrium
polygon of these forces is actually projected on the line AB, but
for convenience it is revolved into the plane of the figure, to
determine the point %, which is then revolved back to C on AB,
becoming the centre of gravity of the given figure. The force
polygon 03 may likewise be considered as being the force poly-
gon of the forces replacing the areas of the strips, and revolved
into the plane of the figure also.

¢. No Awis of Symmetry. ’

(85.) Let the section have no axis of symmetry, as in Fig. 21.

Divide the figure into strips by horizontal parallel lines as
before ; replace areas of strips by numerically equal horizontal
forces ; draw force polygon 5 and equilibrium polygon fghkimn,
determining the point p. (63), (64.) Draw horizontal line pG.

Assume that a vertical force, numerically equal to the area of
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each strip, acts at its centre of gravity; draw vertical lines of
action of these forces; also, force polygon #8 and equilibrinm
polygon nvwa, obtaining the point z; draw the vertical 2G.

I 1.2 3 4 [
== \\ T 'I
\
A@=——==t-=——— g g /
Ay
AR /
! il
B \\\\" V;
bO'“-—-——-"'-_"" \‘\‘\, /,
\\TV4

@

c e 7
%—_——_-_—_—_—_ - — ——
e

» P8
eH-—--9
! w
t i n
]
]
]
1
1
R
-~
e
|7
/////
-
/’ Fig. 21.
8 No Axis of Symmetry.

The required centre of gravity of the given section must lie
somewhere on each of the two lines G and 2@, and will there-
fore be found at their intersection G. In the given case, the
centre of gravity lies entirely outside the outline of the figure.

The methods of (63) and (65) are perfectly general, and are
applicable to any form of plane figure, however irregular its
‘outline may be.

MOMENT OF INERTIA.

DEFINITIONS.
(66.) The Moment of Inertia of a plane figure is a numerical
quantity, whose value depends on both the form and the area of

the figure, and which is always represented in formule by the
symbol I.
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‘When the plane figure is the cross section of a beam or of a
long column, the strength and stiffness of the beam, and approxi-
mately that of the column also, vary directly as the moment of
inertia of the figure ; hence the evident necessity of a method for
finding the value of the moment of inertia of any plane figure.

(67.) Let Fig. 22 represent any
given plane figure; AB being any “A._
line or axis, drawn through the
centre of gravity of the figure, the
moment of inertia of the figure
about the axis AB being required.

Take any minute square portion
@ of the figure, and multiply its
area in square inches by the square
of the perpendicular distance ¥ from its centre to the given axis
AB in inches, thus obtaining a numerical product.

Let this be done for each similar minute area @, into which the
figure can be divided ; take the sum of all the numerical pro-
ducts thus obtained, no matter whether the respective minute
areas lie above or below AB. This sum will then be the required
numerical value of the moment of inertia of the given figure
about the axis AB only; the moment about any other axis
might or might not be equal to that about AB. The accuracy of
the method is evidently greatest when the area @ is taken as
small as possible. This method would be quite tedious and
troublesome in practice, but is here given only for the purpose
of clearly explaining the meaning of the term “Moment of
Inertia.”

(68.) The Radius of Gyration,with reference to any axis AB,
is that average value of the distance y, which would produce the
same numerical value of the moment of inertia, as the actual and
varying values of ¥.

Hence, the (radius of gyration)®Xarea of the figure —=its
moment of inertia.

Or, radius of gyration—= V moment of inertia.

area of figure.

‘We will represent the radius of gyration by the symbol Rg in

the formulse.

Fig. 22
Moment of Inertia.
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General Formule.
a. Axis passing through centre of grawity of figure.
(69.) Let A —area of the given figure in square inches.
Let I =its moment of inertia about the given axis.
Let Rg = radius of gyration about the given axis in inches.

ThenRg:,‘/-%_
1

AndA_(—W

Also, I =A (Rg)*

b. Awis not passing through the centre of grawvity of the figure.
(70.) Let CD be the given axis,
for which the moment of inertia of
the given figure is required. (Fig. 5. .- ) g
23.) Through the centre of gravity |
of the figure, draw AB parallel to ‘f

CD. c -
Let I — moment of inertia for axis Big. 23
AB Axis outside C. G. of Figure.

Let Rg —radius of gyration for Axis AB.

Let I’ —=moment of inertia for axis CD.

Let Rg’ =radius of gyration for axis CD.

Let d = perpendicular distance between axes ABand CD in
inches.

Then I' =14 Ad®*—=moment of inertia for axis CD = mo-
ment of inertia for AB -} product of area of figure into square of
the perpendicular let fall from the centre of gravity of the figure
on the given axis CD.

Also, Rg' = ¥R + @* =radius of gyration for the axis CD.

Evidently I’ and R¢g’ must always exceed I and Rg.

Formule for Moment of Inertia, ete.

(71.) The values of the moment of inertia, radius of gyration,
etc., may be obtained by means of formuls, in case of a few
simple figures.

Let &’ = distance from the horizontal axis through the centre
of gravity of the figure or section, to that fibre or part most dis-
tant from it, in inches. The other notation is indicated in Fig.
24.  (See page 33.)
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(72.) TABLE OF MOMENTS OF INERTIA.

SECTION. AREA. - | Mowm IN, L RngGn. a’

A | b |

’ 2 36 4.243 3

bh® h h

B. bh 12 3464 | 2

& 8 8

C. ¢ 12 3466 | 2
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L . € (43 « [13

Graphical Method for Moment of Inertia, ete.

(78.) Let the given plain figure or cross section of beam be as
represented in Fig 25, a form of section much used for cast-iron
lintels.

The section has a vertical axis of symmetry AB, on which its
centre of gravity must be found. (58.) Locate this centre of
gravity by (63), or by (65), in case it has no axis of symmetry, by
drawing the force polygon O4 and the equilibrium polygon
Johkmn-p; then draw the horizontal pC, determining the re-
quired centre of gravity C. - The line pC, produced across the
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Simple Figures.

section, must always be horizontal when the beam is set in place,
and is usually called the “Newtral Awis” of the section, because
the fibres of the beam, which lie in the neutral axis, are neither
subject to compression nor tension, theoretically.

PR E

! Fig. 25
Graphical Method for I.

(74.) After drawing the equilibrium polygon, as in Fig. 25,
and finding the centre of gravity of the section, produce the
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horizontal lines, which separate the different strips into which the
section is divided, to intersect the equilibrinm polygon, as in the
right hand portion of Fig. 25. Draw a continuous curve by
means of a curved fuler, tangent to the polygon at its ends s and
w, and also at each intersection 7, v and v, just found. This
curve may be termed the “ Equiltbrium Curve” and is to be
substituted for the equilibrium polygon first found, because the
curve corresponds to the division of the section into strips of
infinitely small thickness. (56 a.)

(75.) The area comprised between the equilibrium curve
stwvw and the tangents sy and wy at ite ends, or the first and
last sides of the equilibrium polygon produced, may be termed
the “ Inertia Area,” and is to be found in square inches, that is,
as it would be if the given section were drawn full size.

General Formule.

(76.) Let A —area of given figure or cross section in square
inches.

Let A'—area of inertia figure in square inches, as if it were
drawn full size.

Then I = A X A’=required moment of inertia of figure about
the neutral axis pC. For any other axis, see (70).

Also, Rg— ¥ A’— radius of gyration for axis pC.

Finding Area qf Inertia Figure.

a. By a Planimeter.

(77.) This is most nearly accurate and is easiest, since the area
is found by merely passing the tracing point of the instrument
around the perimeter of the inertia figure.

Let L —ratio of reduction of scale of the given section from

r
full size, = $, 1, 7, ete.

Measure actual area of inertia figure with a planimeter, set to
read in square inches.

Then A’= 17X area obtained by planimeter.

b. By equidistant abscissas.

(78.) Commencing with the neutral axis pC or zy, draw a
geries of equidistant lines across the figure, parallel to pC, mak-
ing the common distance # between any two adjacent lines as
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small as possible. Measure the length of each line, intercepted
between the curve and its tangents, at the same scale as that of
the given section, in inches, and write in these lengths, as in
Fig. 25.

%‘he upper and lower abscissas each — O, but may fall outside
the horizontal at top or bottom of the figure, though this involves
no material error.

Then A’—=aXsum of lengths of all the abscissas.

Also, Rg= vA".

The accuracy of the result is greatest when the parallel lines
are as close to each other as possible, but it will always be slightly
larger than the true value. This error is eliminated by the use
of the planimeter, but is usually quite small.

This graphical method for obtaining I, Rg and A’ is perfectly
. general, practically accurate, and is easily applied to beam sec-
tions of complex form. '

Awes of Similar Symmetry.

(79.) When two axes of symmetry may be drawn through the
centre of gravity of a figure, which is thereby divided into ex-
actly similar and equal portions in both cases, the moment of
inertia of the given figure about any axis whatever passing
through its centre of gravity will have a constant value, and the
heam or column whose section is represented by the figure will
be equally stiff in all directions. (58.)
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GENERAL CONSTRUCTION OF ROOFS.

DEFINITIONS,

1. The Roof.

(80.) A Rogf is the covering or upper enclosing surface of a
building, with the frame-work by which this is supported. It may
be plane, eylindrical, spherical, ete.

A Zzight Roof is usually one of moderate span, without trusses,
the rafters being directly supported by the walls or partitions of
the building.

A Heavy Roof is employed for wider spans, and the rafters
are then supported by purlines and trusses. It is usually
required for spans of more than 20 feet.

The Span of a roof is the horizontal distance between the
external surfaces of the walls of the building; its Rise is a ver-
tical, let fall from its ridge to a horizontal line joining the inter-
sections of the external surfaces of the walls and the roof
surfaces ; the Inclination of a roof equals the angle between its
surface and a horizontal.

A Bay of a roof is that portion of its surface comprised
between the vertical centre planes of two adjacent trusses; the
same name is also sometimes applied to the space between the
trusses themselv

A Section Area is that portion of the roof surface supported
by a single purline or at a loaded point, and is the area com-
prised between the centre lines of two adjacent purlines and two
trusses. The number of section areas supported by a single
truss is usually one less than the number into which one bay is
divided, or than the number of panels in a truss.

2. The Truss.

-(81.) A Truss is a triangular, polygonal, or curved frame-
work, whose ends rest on the walls. Its middle plane is vertical,
and is at right angles to the walls, by which it is supported.
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Any stable form of truss must always be composed of triangles,
since the triangle is the only polygon whose form cannot be
changed without altering the length of one or more of its
sides.

The Span of a truss is the horizontal distance between the
centres of its end-joints, and is usually the same as that between
the centres of the walls, which support the truss; its &¢se is the
vertical connecting its span line and the centre of the joint at the
apex or highest point of the truss. '

The rise and span of a truss are evidently a little less than
those of the corresponding roof surface.

A truss is frequently represented by a 7russ Diagram, which
is always composed of the centre lines of its members, and those
meeting at any joint should always intersect at a common point,
if possible. The truss diagram is drawn before commencing to
find the strains on the different members of the truss.

A Panel of a truss is that portion lying between the centre
lines of two adjacent vertical or radial members. Its form may
be triangular, rectangular, trapezoidal, or that of a trapezium.

A Member of a truss is any straight or curved piece which
connects two adjacent joints of the truss.

he Tpper Chord is composed of the members which form
the upper edge or margin of the truss. Each half of the upper
chord of a triangular truss is often termed a Principal. The
Lower Chord is composed of the members forming the lower
edge of the truss. If straight, this is frequently termed the
Tie-beam or Tierod; the first being a wooden timber, the second,
one or more iron rods.

The Web-members connect the joints of one chord with those
of the other, and may be radials in case of curved trusses, diag-
onals, or verticals. They may be Struts, capable of resisting
compression ; Z%es, for tension only, Strut-ties or Tie-struts, for
resisting either compression or tension alternately.

The upper chord is subject to compression ; the lower, to ten-
sion only, as will be seen hereafter.

A Joint is the connection of two or more members, whose
centre lines must intersect at a common point if possible, this
common point being the centre of the joint. This is also some-
times called a Vertex or Apex.
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A Toaded 'Povnt-i8'a"joint at which a load is attached to
and supported by the truss. It is usually found on the
upper chord only, at the points where the purlines rest on the
chord, at the ends of two adjacent panels of the truss. The
lower chord is not generally loaded, unless it supports a ceiling.

Mode of Supporting Roofs.

(82.) The rafters of light roofs are not trussed, but rest directly
on the walls, and support the sheathing and covering of the roof.
For spang of more than twenty feet the rafters may sometimes
be placed two to three feet apart, and then trussed in pairs with
strips of boards, etec.

Heavy roofs are supported by trusses resting on the side walls.

1. The sheathing is supported by rafters, which rest on the
purlines, these being supported by the trusses.

2. The sheathing is supported directly by the purlines, the
rafters being omitted.

SYNOPSIS OF A COMPLETE ROOF.
(83) 1. The Roof Surface. '

a. The covering material.
b. The sheathing or boarding.
¢. The internal ceiling, if any.
2. The Supporting Framework.
a. The rafters.
b. The purlines.
8. The Trusses.
a. The upper chord or principals.
b. The web-members ; struts, ties and strut-ties.
¢. The lower chord; tie-beam or tie-rod.

CONSTRUCTION OF THE ROOF.

A. Roof principally composed. of wooden timbers.

1. The Roof Surface.

(84.) The Covering Material protects the roof and the build-
ing from water, snow and wind, and may be composed of any
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impervious substance. Tin, sheet-iron, copper, lead, zinc, tiles,
slates, shingles, etc., are used for this purpose.

The Sheathing is usually lumber of ordinary quality, one inch
thick, either laid open for shingle, or laid close for tile and metal
roofs. In good buildings a cheap grade of matched flooring is
commonly used for the purpose, and it is sometimes made more
nearly impervious to air and water by a covering of felt or
heavy paper, placed beneath the covering material. If visible
from beneath, the dressed surface of the lumber is turned down-
wards, and afterwards painted, stained and varnished, etc. A
separate thickness of beaded wainscoting is sometimes placed
below the sheathing of churches, and it is sometimes set
diagonally.

In churches, the lath-and-plaster ceiling is frequently attached
to the lower edges of the rafters, and must then be included in
the loads supported by the roof and truss. In buildings for
other purposes, the ceiling is usnally supported by special ceiling
joints and not by the rafters. This ceiling may also be com-
posed of beaded wainscoting, plastering, building paper, etc.

2. The Supporting Framework.

(85.) The Rafters are usually scantlings, two to four inches
thick and from four to twelve inches in depth, set edgewise, and
placed at from twelve to twenty-four inches between centres.
They are parallel to the upper chord of the truss or perpen-
dicular to the edge of the roof, and are supported by the pur-
lines, their feet resting on the wall-plates. The depths of rafters
are sometimes increased towards their lower ends.

The Purlines are timbers nearly square in section, parallel to
the edge of the roof, and, of course, are horizontal. They are
placed from eight to sixteen feet apart, support the rafters, and
are notched down on the upper chord to about one-half their
depth at the loaded points.

The rafters are sometimes omitted, and the sheathing is then
supported by the purlines, which are thinner and are placed
from two to four feet apart. This "system possesses some advan-
tages 1 the construction of curved or cylindrical roofs, since
the sheathing is then easily bent to the curve of the required
surface, and it is not necessary to cut the rafters to the
curve. .
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The upper surface of the purline is usually set parallel to the
adjacent surface of the roof.

8. The Truss.

(86.) The Upper Chord, if straight, is composed of timbers of
nearly square section, and from 16 to 24 feet long, spliced at or
near the joints. For the sake of obtaining a good appearance,
the. apper chord is frequently made of uniform section through-
out, though this requires more material. Being only subject to
compression, simple halved splices are sufficient. If the upper
chord be curved, it is usually built up from several thicknesses
of 2, 8 or 4 inch plank, firmly spiked together, after being bent
to the required curve. This method is often employed for
building up straight chords also, because it is cheaper than
splicing, the timbers are more thoroughly seasoned, and more
readily obtained.

The Lower Chord or Tie-beam is a wooden timber, having
the same horizontal breadth as the upper chord, to which its
ends are firmly fastened. It is always subject to temsion, and
should be composed of timbers connected by strapped or fished
splices. Or, it is more convenient and economical to build up
the tie-beam from planks set edgewise and firmly spiked and
bolted together. The last method is now frequently employed
in good work because cheaper and better. If curved, the planks
are laid flatwise, bent to the curve and fastened together, as de-
seribed for the curved upper chord.

In some forms of trusses one or more tie-rods are substituted
for the wooden tie-beam to obtain a lighter effect at an increased
cost. The joints are then made by means of joint-pins, eyes
being formed on the ends of the rods. The lengths of the rods
are usually adjusted by sleeve-nuts or turn-buckles.

The Web-members are sometimes, in cheap trusses of small
spans, composed entirely of strips of boards and scantlings.

The Struts are either timbers of square cross section, or their
widths are the same as that of the upper and lower chords, so
as to be flush with these on each face of the truss, for sake of
appearance. The last method looks best, but requires somewhat
more material than the first.

The Z7%es are usually round rods of wrought-iron, having nuts
and washers on each end, because more convenient than if a
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head were formed on one end. Some material is saved by
enlarging the ends before cutting the screw threads, but this is
rarely done for small rods, or except in a large roof principally
constructed of iron. Wooden ties are now very seldom used,
because it is so difficult to properly connect them with the other
members at the joints, except by the use of iron straps, bolts,
ete., which makes them more expensive than rods.

The Tiie-struts or Strut-ties are subject sometimes to compres-
sion, sometimes to tension, according to the forces and direction
of the wind, and they are either composed of one or two timbers
for resisting the compression, with a tie-rod for the tension, or a
single timber may resist the compression, having straps, plates or
bolts at each end, sufficiently strong to transmit the tension of the
member to the chords.

The T4erod is substituted for the tie-beam, when the lower
chord is to be of iron instead of wood, especially when it forms
a broken line, the members then being more readily connected at
the joints than if they were of wood.

Each member of the tie-rod is single, or it may be composed of
two or more parallel, round or rectangular bars of wrought-iron,
extending from joint to joint of the lower chord. These bars are
connected to each other and to the web-members by means of
eyes and cylindrical joint-pins, cast-iron sockets, etc., and their
lengths are usually adjustable by sleeve-nuts or turn-buckles.

B. Roof principally constructed of wrought-iron.

This kind of roof is more fire-resisting than one of wood, and
is therefore preferred for public buildings, fire-proof structures,
and buildings exposed to special danger from fire.

1. The Roof Surface.

(87.) The Rogf’ Covering is usually of tin, copper, sheet or cor-
rugated iron, slates or tiles.

The Sheathing may be of boards, laid close or open ; beneath
it is sometimes placed a series of 4-inch brick arches, turned be-
tween iron beams, and brought to an external plane surface by
concrete ; or hollow tiles may be used, which make a warmer and
lighter roof ; or the sheathing may be entirely omitted, the slates
or other roofing material then being attached to iron purline bars
by copper wires.
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2. The Framework.

(88.) The Purline Bars (if any) are small, horizontal, rectan-
gular, T, I or channel bars, placed the same distance apart as the
weathering of the courses of slates or tiles. They are fastened to
the rafters by bolts or rivets and castings of proper forms.

The Rafters are larger T, I or channel bars, placed a few
feet apart and parallel to the trusses; they are supported by
the purlines, to which they are bolted or riveted; sometimes
omitted.

The Purlines are usually T, I or channel bars of considerable
gize, supporting the raftersand fastened to the upper chord at the
loaded points, which are eight to sixteen feet apart. If the rafters
are omitted, as is usually the case in curved roofs, the purlines
are then placed three or four feet apart, and are attached to the
upper chord by castings of different heights, so that their upper
edges are properly brought up to the desired curve. Arches of
bricks or hollow tiles are sometimes then turned between the
purlines.

8. The Truss.

(89.) The Upper Chord is a single bar, or is composed of two
or more T, I or channel bars, firmly connected together by lacing
bars or plates, the splices being made at or near the joints, by
means of riveted patch plates. For roofs of wide spans, channel
bars are commonly employed, their top and bottom flanges being
turned outward and laced together by diagonal bars. For curved
roofs, the upper chord is usually polygonal in form, each member
being straight and not bent to the curve, the purlines being set
out to the curve by joint-blocks of proper height.

Struts are either single I or star bars, or they are built up of two
Ts, two channels, or of four angle bars riveted together, and
having eyes forged on their ends, so as to connect with the adja-
cent members by pin joints. Riveted joints made with patch
plates are common in Europe, but are rare in the United
States. '

T'ies are either round iron rods with nuts and washers or with
eyes, or they may be rectangular bars with eyes; they are fre-
quently adjustable by turn-buckles, ete.

Tie-struts and Strut-ties are similar to struts, being so arranged
as to resist either compression or tension.




OONSTRUCTION OF IRON ROO¥FS. 43

The Lower Chord is always composed of wrought-iron rods or
rectangular bars, connected at the ends by eyes and pins.

(90.) The different members of iron trusses are connected at
the joints in one of two ways.

1. By Patch Plates and Rivets. Rarely used in the United
States, except for connecting the members of the upper chord.

2. By Pins and Eyes. This is usually preferred, because the
trusses are more easily and quickly erected, requiring less manual
labor and scaffolding, and thestrains in the members can be more
accurately determined than when rivets and patch plates are
employed.
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LOADS AND PRESSURES ON ROOFS.

(91.) These are taken per square foot of the inclined surface
of the roof, except where otherwise stated. They are of two
kinds : Permanent, which act constantly after the completion of
the roof ; and Zemporary, which only occur at irregular intervals
and act during limited periods.

1. Permanent Loads.

(92.) a. Roqf covering only.

Shingles, 16 inch, 2 lbs.

Shingles, long, 8 Ibs.

Tin and paint, 1 1b.

Iron, sheet and paint, 1} 1bs.

Iron, galvanized, 1 to 3 lbs.

Iron, corrugated, 1 to 33 Ibs.

Copper, sheet, § to 1} lbs.

Zine, 1 to 2 1bs.

Felt and asphalt, 11b.

Felt and gravel, 8 to 10 Ibs.

Slates, average, 10 1bs.

Tiles, plain, average, 12 Ibs.

Tiles, fancy, laid in mortar, 25 to 30 lbs.

(98.) b. Sheathing per square foot.

Pine, hemlock, spruce, poplar, redwood, per inch thick, 3 Ibs.

Chestnut or maple, 4 lbs.

Ash, hickory, Georgia pine, oak, 5 lbs.

Brick arches 4 inches thick and concrete, 70 lbs,

Porous tiles for slating, without slates, 10 lbs.

Hollow tiles, 3% in. flat, 12 1bs.

Hollow tiles, 6 in. arches, 22 1bs.

Hollow tiles, 9 in. arches, 32 lbs,

Hollow tiles, 12 in. arches, 36 1bs.
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(94.) "'c. Rafters, per square foot of roof.

‘White pine, 2Xx4, 16 in. centres, 1.5 1bs.

White pine, 2X 6, 16 in. centres, 2.25 lbs.

‘White pine, 2X 8, 16 in. centres, 3 Ibs., ete.

For heavier woods, increase these weights proportionally, or
determine dimensions of rafters by formulee for rafters, and then
compute their average weight per square foot of roof, allowing
the same weights per square foot of board measure already given
for sheathing. (98.)

For purline bars and rafters of wrought-iron, first determine
their sectional dimensions by the proper formule; their weights
are then easily computed by allowing 3} lbs. per lineal foot
of bar per square inch in its cross section. Then compute
average weight per square foot of roof surface.

(95.) d. Purlines.

Approximate weight per square foot of roof surface, if of
white pine, other woods in proportion. (93.)

1. If supporting rafters, 1 to 3 lbs.

2. If supporting sheathing, no rafters, 2 to 4 lbs.

Or, compute dimensions of purlines by formulse therefor,
then finding their weight per square foot as in (94).

For iron purlines, proceed as for iron rafters. (94.)

Approximate weight of iron purlines is from 2 to 4 lbs. per
square foot of the horizontal projection of roof surface.

(96.) e. Ceiling, if any be used.

‘Wainscoting, same as sheathing of equal thickness. (93.)

Lathing and plastering, 2 coats, 9 Ibs.

Lathing and plastering, 3 coats, 10 lbs.

Brick arches or hollow tiles, same as for sheathing. (93.)

Light ceiling tiles, supported by T iron joists, without plaster-
ing, 5 Ibs.

97.) f. Truss, per square foot of area covered by roof.

The weight of the truss varies with the span and inclination
of the roof, the distances betwcen adjacent trusses, the kind of
materials used in its construction, ete.

But in practice, the approximate weight of the truss is com-
puted by first assuming its average weight per square foot of the
horizontal projection of the roof, or the area covered by it, then
multiplying this weight by the horizontal projection of that
portion of the roof actually supported by the truss.
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The'following table is constructed from data given by different
authorities, and gives the approximate weight of truss per square
foot of horizontal projection of the roof, for trusses constructed
of wooden timbers and iron rods, and also for trusses entirely
constructed of wrought-iron. It will be noticed that the weights
of trusses of the latter type are considerably greater than those of
the former.

TABLE OF WEIGHTS OF TRUSSES.

SPAN. ‘WOODEN. IRON. BPAN, ‘WOODEN. IRON.
Ft. Lbs. Lbs. Ft. Lbs. Lbs.
10 .60 .92 140 7.40 12.00
20 1.20 1.83 150 8.00 12.65
30 1.82 2.75 160 8.50 18.16
40 2.10 8.75 170 . 9.00 18.70
50 2.50 4.63 180 9.50 14.27
60 8.10 5.50 190 10.00 14.85
70 8.7 6.38 200 10.50 15.43
80 4.25 7.38 210 11.00 16.00
90 4.75 8.28 220 11.50 16.58

100 5.256 9.00 280 12.00 17.15

110 5.75 9.85 240 12.50 17.75

120 6.35 10.75 250 18.00 18.80

180 6.80 11.86

The weights for spans intermediate between those given in the
table can easily be found by a simple interpolation between the
two nearest given values.

The span of a truss is very seldom required to exceed 250 feet.

(98.) The actual weight of any required truss is determined
as follows: Assume the weight of the truss according to the
table ; determine the strains in the members of the truss by
methods to be given hereafter; then find dimensions required
for the sections of these members, according to the material of
which they are composed ; finally, compute their weights, whose
sum will be the corresponding actnal weight of the truss; divide
this total weight by the horizontal area covered by one bay of
the roof, <. e., the roof supported by one truss, and the quotient
will be the weight of this truss per square foot of horizontal
area. If this weight differs materially from that assumed from
the table, then take it as the true weight for the truss, and repeat
the process until the assumed and computed weights practically
accord, and these will be the required actual weight.
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Let w = weight of the truss per square foot of horizontal
area covered by the roof in pounds.

Let ¢+ = angle of inclination of the surface of the roof.

Then w cos. 2 = weight of the truss per square foot of inclined
roof surface.

2. Temporary loads.

The maximum intensities of the temporary loads rarely or per-
haps never occur. Their values are assumed with reference to
the results of experiment and observation, so as to be safe under
all circumstances.

(99.) a. Snow.

Weight per square foot of horizontal area covered by the
roof.

The weight of freshly fallen snow is about one-eighth that of
water, or averages 8 lbs. per foot in depth. If mixed with hail
or sleet, it may weigh four times as much, or 32 lbs. per foot.
But its depth then rarely exceeds a few inches. The following
table is believed to make a sufficient allowance.

TABLE OF MAXIMUM WEIGHT OF SNOW PER
SQUARE FOOT. ’

Northern New England, New York, Michigan, Minnesota. ..80 lbs.

Boston, Albany, Buffalo, Milwaukee, St. Paul.............. 25 ¢
New York City, Cleveland, Chicago, Des Moines............ 20
Philadelphia, Pittsburg, Wheeling............ccc.evvveninnns 15 «
Baltimore, Cincinnati, Indianapolis............c.cco0iuenes 10 ¢
Richmond, Louisville, St. Louis...........cc.cociiiiienennnn 5«

In sheltered mountain valleys, the snow usually falls to a great
depth, which must be determined and considered in designircg
structures for such localities.

The weight of snow per square foot of the inclined roof sur-
face may easily be found by multiplying the given weight by
the cosine of the angle of inclination.

(100.) b. Wind presswre.

The intensity of the pressure of the wind on a roof evidently
varies with its inclination, but the relation of the two values is
not accurately known. The direction of the wind is usually hori-
zontal, causing a practically uniform pressure, perpendicular or
normal to the roof. Its maximum velocity is here taken at 100
miles per hour, which produces a pressure of about 50 Ibs. per
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square/ foot ‘of Ca.Cplane surface, placed at right angles to its
direction.

Hutton’s formula is generally employed by American and
English architects and engineers, and will be used here in lieu of
a better. It probably gives values somewhat larger than the true
ones, and is therefore safe, though causing the use of a slight
excess of material in the truss.

Let P— maximum pressure on a vertical plane surface in lbs.
per square foot.

Let Pn —maximum pressure acting perpendicular to surface
of the roof, in 1bs. per square foot.

P is usually taken at 40 1bs. for buildings in protected situa-
tions, and at 50 Ibs. for those on exposed sites.

It will be best to take the larger value for buildings erected in
the Western States, in localities subject to violent winds. The
smaller value wili suffice for buildings of ordinary size in cities,
which are usually sheltered in part.

Then

Pn f— P sin ?: 1.84 cos. ¢—1.

The table on the opposite page is based on this formula, taking
P at 40 1bs. and at 50 lba
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WIND PRESSURK.

TABLE OF NORMAL WIND PRESSURES.

(101.)
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For angles between 60 and 90, same as for 60,
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RITTER’S METHOD OF MOMENTS.

(102.) This method for determining the magnitudes of the
strains acting in the members of a roof truss is next best to the
graphical one, requiring less drawing, but necessitating con-
siderable arithmetical computation. 8till, it is often very useful
for checking the accuracy of other methods, since it is readily
applied to a few members of the truss, and the results may then
be compared with those previously obtained. It will here be
applied to a simple form of truss only, but the effect of inclined
forces will be considered, which has not before been done, so far
as the writer is aware. For a complete exposition of this method,
see Ritter’s “ Iron Bridges and Roofs,” English translation by
Sankey.

Moment of a Force.

(103.) Let B be any fixed point, lying, of course, in the plane
of the force F, Fig. 26. Through B draw BA perpendicular to
the line of action of the force.

The fixed point B is termed the centre of rotation of the force
F, or of its plane. (40.)

The perpendicular BA is the “lever-arm” of the force, with
reference to B. (40.)

The “moment” of a force always equals the product of its
magnitude and its lever-arm, here = F X BA.

This moment may be expressed in inch-lbs., foot-tons, etc.,
according as the magnitude of the force is measured in lbs. or
tons, and its lever-arm in inches or feet.

& — F )
The term foot-ton merely represents the A —
moment or effect of one ton with a lever- !
arm one foot long. |LB
It is evident that the force may cause its Fig. 26.

plane to rotate about the centre 3 to the Moment of & Force.

ee——
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right, like the hands of a watch, or to the left, as in Fig. 26.
The former is usually termed *positive,” and the latter “ nega-
Zwe,” and the signs |- and — are prefixed to the corresponding
moments. (42.)

Equilibrium of Moments.

(104.) If several forces act in
a common plane, and are also in 1
equilibrium, their moments about \
any centre of rotation in that Fa
plane must be in equilibrium like- F~———--%-—\&——""
wise. (16.) That is, there will be N
no tendency of their plane to ro-
tate in either direction, and the )
algebraic sum of their moments Fig. 27.

—=0. ( 47) Equilibrium of Moments.

Let the forces F1, F2, F3 and F4, Fig. 27, act in a common
plane and be in equilibrium. From any centre of rotation or
point C let fall a perpendicular on the line of action of each
force.

Then,—F1 X a1+F2X a2—F3 X a3-+F4 X a4 =0.

This equation is called the “Eguation of Equilibriwm of
Moments.” The moments of F'1 and F8 are affected by the sign —,
because each tends to rotate the plane in a negative direction;
those of 2 and F4 by -}, because positive. (61.) (108.)

an

Determination of an Unknown Force.

(105.) Let the forces be in a common plane and in equili-
brium, but suppose that the magnitude of F2, for example, is
unknown, though both its line of action and lever-arm are
given.

Then—F1X al4-F2 X a2—F3 X a3-4F4 X a4=0, as before.

Transposing, +F2X a2 = +F1 X a14-F3 X a3 —F4 X a4.

Reducing, F2 _Fix a1+F3a>;a3—F4 X a4

All the quantities on the right hand side of the equation being
known, the numerical magnitude of F2 can easily be computed.

This simple principle forms the basis of Ritter’s method.
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General Principles.

(106.) 1. If any number of forcesare in equilibrium, and act
at a common point or in a common plane, the sum of their
moments = 0.

2. The moment of any force whose line of action passes
through the centre of rotation, equals 0.

3. The external loads and forces acting at any joint of a truss
are always in equilibrium with the strains in the members, which
meet at that joint, or the joint would move.

4. Each joint then being in equilibrium, the entire truss, or
any portion of it, must be so likewise.

5. Consequently, any portion of the truss may be cut off from
the remainder and separately considered, without destroying its
equilibrium.

6. The line of section dividing the truss may be straight or
curved, but must not cut more than three members whose strains
are unknown.

7. The sense or direction of the strain acting in any cut mem-
ber is always assumed to be directed towards the line of section
from the part of the truss considered. (Figs. 29, 31.)

8. The centre of rotation, for determining the magnitude of
the strain in any cut member is always to be taken at the inter-
section of the other two cut members, since the moment of the
strains in these last members then equal 0, and may be omitted
from the equation of moments, because both their lines of action
pass through the centre of rotation.

9. The sign 4 prefixed to the numerical magnitude of
a strain indicates that this strain is tension; —, that it is
compression.

A clear understanding of these principles will be best gained
by carefully examining their application to an example, with
subsequent practice.

A few authors—Dubois, for example—employ — to indicate
tension, and -} for compression, but the method here given is the
one more commonly employed.

APPLICATION TO A ROOF TRUSS.
Programme of conditions.
(107.) Let the truss be of the form shown in Fig. 28, having
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a span of 40 feet, with the trusses placed 16 feet apart. Rise of
upper chord, 12 feet ; of lower one, 2 feet.

Then 28;&:18 = 2?:_012 =.600 = tan. 31 degrees nearly, which
is the angle of inclination of the roof. (This angle may also be
directly measnred with a
protractor.)

The roof is to be covered
with tin, laid on inch pine
sheathing, which rests on
2X 8 rafters, set 18 inches Fig. 28.
between centres. These are Diagram of Truss.
supported by 8X12 purlines, which rest on the trusses, at the
loaded pomts B, D and F.

The maximum snow load is assumed to be 20 Ibs. on a
horizontal surface ; maximum wind pressure 50 lbs. on a vertical
surface ; both taken per square foot. (Chap. III.)

By the table for wind pressures (101), we find that the wind
pressure perpendicular to a surface having an inclination of 31
deg. is 34 Ibs. per square foot.

Length of principal, AD = ¢ 20°X12* = 22.32 feet; of AB
or BD —11.66 feet.

Therefore, a section area—11.66X16 —=186.6 square feet; —
inclined area of roof actually supported at B, D or F.

The horizontal projection or horizontal area covered by this
section area — 16 X 10 = 160 square feet, since the truss is divided
in 4 panels of equal length.

Computations of loads on truss.

(108.) Tin, 1 Ib. per square foot

Sheathing, 3 lbs «

Rafters, 2% “ “

Total, 6% lbs. ¢ “ of roof.

Permanent load per section area:

Tin, sheathing and rafters —186.6X 6.6§ =1, 244 Ibs,

Purline, 8 X12, 3 Ibs. per foot B. M. — 384 Ibs.

Truss =160X2. 11b. =336 lbs.

Total permanent load per section area and loaded point,
1,964 1bs.

Snow, per section area — 160X 20 = 3,200.
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Total permanent and snow load supported at each ot the
loaded points, B, D and F — 5,164 1bs. — 2.582 tons.

Since there are three loaded points upon the upper chord, the
entire permanent and snow load supported by the truss
= 2.582X3 = 7.746 tons. (The half loads at A and H are not
included, because they are directly supported by the walls.)

Wind pressure per section area — 186.6X 34 — 6,344 lbs.—
3.172 tons.

Total permanent load supported by truss—.982X3— 2.946
tons,

Total wind pressure supported by truss —8.172X 1.5 = 4.758.

If the wind acts on the left-hand side of the roof, a full wind
load is supported at B, and a half load at D; none at F.

The maximum snow load and wind pressure can hardly be
found on the same side of the roof at the same time. The maxi-
mum strains in the members of the truss will most probably be
found by first considering the truss as supporting the permanent
and maximum snow loads; afterwards, the permanent load and
maximum wind pressure.

Strains caused by permanent and snow loads.

(108a.) The total load on the truss is then 7.746 tons, equally
divided between the points B, D and F. Hence, one-half this,
or 3.873 tons, is supported at A and also at H, causing an equal
upward reaction in each wall, which
acts as an upward force, so as to make
the truss in equilibrium. (Fig. 29.)

Strain in AB, centre of rotation ?

at C. g /__- 3
Cut off part of the truss by a iine §'*4;;—2—9—:

1-2, removing the remainder, as in
Fig. 29, and take centre of rotation anywhere on AE, as at C, so
as to reduce moment of strain in AC to 0. (106-8.)

Let fall perpendicular Ca on AB and measure its length, which
is found to be 4.28 feet, and is the lever-arm of the strain in AB;
the lever-arm of the reaction at A —10 feet.

Let (AB) represent the expression “strain in the member
AB'”*

* First employed by Prof. W. H. Burr.
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The equation of equilibrium of moments will then be:
+ (ABx4.984-3.873X10=0. (104, 105, 106.)
Transposing and reducing:

3.873x10
TABB=— ==
ing in member AB. (106-9.)

The direction of the required strain being always taken
towards the line of section, the moment of (AB) must be positive
or 4.

Strain in A C, centre of rotation at B. Fig. 29.

Let fall the perpendicular Bb on AC, —=4.96 feet—Ilever-arm
of (AC); that of reaction at A =10 feet.

—(AC)x4.9643.8783x10=0.

Transposing, reducing and changing signs to make (AC)--.

+(AC)= +3 813;; 10 —+-7.809 tons — tension in AC.

Strain in BC, centre of rotation at A. Fig. 30.

— 9.049 tons, — the compression act-

The moments of the strains in AC and AD, and of the re-
nction at A, each = 0, leaving only the load of 2.582 tons at B.
(106-8.)

+(BC)x104-2.582 10 =0.

+@BC)= 2_5_%2%1_0 —2.582 tons compression = (BC).

Strain in DC, centre of rotation at A. Fig. 31.

Draw line of section 1-2; produce DC and let fall on it the
perpendicular Aa = 6.72 feet,—lever-arm of CD.

—(CD)x 6.72+2.582X10 =0.

+(CD)= +2 5227>2< 10__ 3.842 tons tension.
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Strain in BD, centre of rotation at C. Fig. 81.
+(BD)X 4.28-+3.873% 10 = 0.

—+(BD)= _&%)8(_10=__9‘049 tons compression.

Fig. 31.

Strain in CE, centre of rotation at D. Fig. 31.
—(CE)x9.944-3.873 X 20—2.582X 10 = 0.
+(CE)= +3' 878X 23; 3'582 X10_ —+5.195 tons tension.
Strain in DE, centre of rotation at H. TFig. 32.

Draw the curved line of section 1-2-3; let fall the perpen-
dicular He on CE produced ; Ha —3.98 feet — lever-arm of
the strain in CE ; lever-arm of DE = 20 feet.

+(DE)x 20—(CE)X% 8.08 = 0.

Since (CE) has just been found = + 5.195 tons ;

+(DE) = XEQ52—>;3'9——8= +1.034 tons tension.

The truss being uniformly loaded, when supporting the maxi-
mum permanent and snow loads, the strains acting in the mem-
bers of the right half of the truss will be the same as those
already found in the corresponding members of the left hand.



APPLICATION OF RITTER’S METHOD. 57

Strains oaused by permament and wind loads.
(110.) Total permanent loads on truss — 2.046 tons.
Total wind loads on truss —4.758 tons.

Since the former act vertically, and the latter are
perpendicular to left side of the truss, assuming the
wind to act on the left hand side of the roof, their
resultant must be inclined. Its value may be easily
found graphically.

In Fig. 33, make bc vertical and ab perpendicular to
left side of truss, respectively equal to 2.946 and 4.758
tons, at any convenient scale. Join ac¢, which will
measure 7.44 tons, and which is the required resultant of all
loads on the truss, and also equals the sum of the reactions at A
and H, which must be parallel to ac, the truss being fixed to
each wall.

(111.) In Fig. 34, draw the truss diagram (81), also reactions
at A and H, parallel to ac of Fig. 33. At B and D make

Fig. 33.

verticals Ba and Dd each — permanent load of 0.982 tons, at
any convenient scale; also, draw ac and de perpendicular to
AD, making ac— one wind load = 3.172 tons, and de¢ = a half
wind load = 1.586 tons; join Be and De, which will represent
the resultants of permanent and wind loads, acting at B and D
Be=4.05, and De—=2.48 tons. At F is a vertical permanent
load of 0.982 tons.

Produce lines of action of the reaction at A and of the re-
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sultants at B, D and F, and let fall on each a perpendicular from
H, which will be the lever-arm of each force for H as a centre
of rotation, and measure lengths of these lever-arms. That of
reaction at A — 37.75 feet, those of resultants at B, D and F,
are 24.96, 14.87, and 10 feet as given in the figure.

(112.) Hence, for Reaction at A, centre of rotation at I1.
+ (Reaction at A)X37.75—4.05X 24.96—2.48 X 14.87—.982X
10=0.

Reaction at A — 4.05 X 24.961-2.48 X 14.87-4-.982X10__
tons. 87.75

The reaction at H therefore — 7.44—3.915 — 3.52% tons.

(118.) To determine the strains on the different members, the
lever-arm of each force or member is to be found as before, by
letting fall a perpendicular from the centre of rotation on the
corresponding line of action or member, then ineasuring the
length of this perpendicular, which will be the required lever-
arm for that force or member. This is shown in Figs. 35 and
36, but it is not thought necessary to illustrate the process of
obtaining the strain in each member by separate figures as before.
(109.)

(114.) For the left side of the truss, the equations are as fol
lows:

3.015

Fig. 35.

Strain in A B, centre of rotation at C. (Fig. 385.)
+(AB) X 4.28-+-3.915 X 9.75 = 0.

15
(AB)-—3 -9 ) ;89 15 — —8.918 tons compression.
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Strain in A C, centre of rotation at B. (Fig. 85.)
—(AC)X4.96+3.915%x11.40 = 0.

(AC)= +?L'?—1—i—>g——;1'40:: -+4-8.998 tons tension.

Strain in BC, centre of rotation at A.
+(BO) X 10-44.05 X 11.56 =0.

4.05x11.5
(BO)=— —%—ﬁz —4.682 tons compression.

Strain in CD, centre of rotation at A.
—(CD)X 6.734+4.05X11.56 = 0.

4.05%11.56
(CD)= +—-6><T= —+ 6.96 tons tension.

Strain in BD, centre of rotation at C.
~(BD) X 4.28-+3.915 X 9.75-+4.05 X 2.04 = 0.

3.915 % 9.75+44.05 X 2.04
(BD)= — X 74;;34 X3 = —6.988 tons compression.

Strain in CE, centre of rotation at D.

—(CE)x9.94+43.915 X 22.85—4.05 X 11.60 = 0.
3.915X22.85—4.05X11.60

(CE)=+ X 9594 5X = +-4.278 tons tension.

Strain in DE, centre of rotation at H.

+(DE) X 20—(CE) X 3.98=0.

. 3.9
(DE)=-|—4—-2£32—-—>(§8=+0.869 tons tension.

(115.) For the right half of the truss, commence at H and
proceed toward: the middle of truss. The strains in the mem-
bers of the right half must be obtained, as they differ from those
already found in the corresponding members of the left half.

The equations are as follows :

Strain in HF, centre of rotation at C. (Fig. 36.)

— (HF) X 4.28—3.525X9.12 =0.

HF) = — :ﬁ%xgg_m. = — 7.511 tons compression.

Strain in HG, centre of rotation at F. (Fig. 36.)

HHG) X 4.96—3.525 X 7.48 =0.

(HG) = &ﬁ’%%@: + 5.316 tons tension.
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PFig. 36.

Strain in F@, centre of rotation at H.
— (FG)x 10—.982 X 10 = 0.

FG) = — %: — 0. 82 tons compression,

‘Strain in D@, centre of rotation at I1.
+(DG)x 6.72—0.982X 10 = 0.
DdG) =+ (_).9_862'_{2253): - 1.461 tons tension.
Strain in DF, centre of rotation at G.
—(DF) X .428—3.525x9.12 =0.
DF) = — ?%Sg__l_%z — 7.511 tons compression.
Strain in G E, centre of rotation at D.
+(GE)x 9.94—8.525 X 14.93—0.982X 10 = 0.
(GE)' = 4 3.525 )(91;;93—0.982)( 10 _ - 4.307 tons tension.

The Strain Sheet.

(116.) After determining the strains acting in each member
of the truss for permanent and snow and permanent and wind
loads, the results must be collected in a table or strain sheet, like
that here given, to more conveniently determine the maximum
strain which may act on each member, and whether any mode of
loading may reverse the strain, that is, cause tension in a member
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usually subject to compression, ete. If this be the case, such
member must be so designed as to safely resist otk the maximum
compression and tension which may act on it (86), (89). It will
be sufficient to write out the strain sheet for the left half of the
truss only, as the truss is symmetrical, and the strains found in
the members of the right side, when the wind acts on the left
side of the roof, are identical with those in corresponding mem-
bers of left side, with the wind acting on the right side.

In the present example no strains are reversed, each member
being subject to compression or tension only.

So far as known to the writer, Ritter’s Method has previously
been applied only to the vertical components of the wind forces,
neglecting their horizontal components, thus introducing a serious
error. It is evidently as readily applicable to the actual inclined
forces, since their lines of action are easily found, and the lengths
of the lever-arms may then be found by measurement on the
truss diagram, as here explained.

P.&EW P.&W.

MEMBER. P. & 8. WINDWARD ARD. MAXIMUM.
AB......... —9.049 — 8.918 —7.611 — 9.049.
BD......... —9.049 —10.848 —%.511 —10.848
AC......... +17.809 + 8.998 +5 816 + 8.998
CE......... +5.195 + 4.278 +4.307 + 5.195
BC......... —2.582 — 4.682 —0.982 — 4.682
CD......... +3.842 + 6.967 +1.461 + 6.967
DE......... +1.084 + 0.869 +0.869 + 1.034

Compression is denoted by — ; tension by +.

The maximum strains in AB, CE and DE are caused by the

P. & 8. loads ; the maximum strains in running numbers by P.
& W. loads.




CHAPTER V.

THE GRAPHICAL METHOD.

This method will here be applied to several forms of trusses,
80 selected as to comprise most of the difficulties found in prac-
tice ; it can easily be applied to any given form of truss by the
reader, if the given examples are carefully studied.

Programme of Conditions for Problem 1.

(117) Truss to be of form shown in Fig. 37; span 80 feet ;
rise of upper chord 15 feet ; trusses placed 16 feet apart between
centres, each being divided in 8 equal panels.

Roof covered with tin, laid on inch pine sheathing, supported
by 2x6 rafters, spaced 24 inches between centres; rafters are
supported by 8x10 purlines set edgewise, one to each panel.

Maximum snow load (for New York City, Chicago, etc.) = 20
Ibs. per square foot of horizontal area covered by the roof ; maxi-
mum wind pressure = 50 lbs. per square foot on a vertical plane
surface ; these loads are the same for all the trusses treated in
this chapter.

Length of principal rafter — 4'40°4-15° — 42.72 feet; panel
length of upper chord — 42.72--4 — 10.68 feet; section area of
roof =—10.68X 16 — 171 .square feet nearly.

Inclination of surface of roof — 20§ degrees nearly (107).
The maximum wind pressure normal to roof surface will then
be = (28.0424.1)=-2 = 23.6 1bs. nearly. ’

Computation of Loads Supported by one Truss.

(118.) Tin and paint, 1 lb. per square foot.
Sheathing, 3 “ “
Rafters, 1.5 “ “«

Total, 55  « «
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Load per séction area or point of upper chord.

Tin, sheathing and rafters — 171X 5.5 = 941 1bs.

Purline, 8 X10 = 1062 feet B. M, X 3 = 420 1bs.

Truss = 160X 41 Ibs. = 680 Ibs.

Total permanent load = 2041 Ibs. = 1.021 tons.

Snow load = 160X 20 — 3200 lbs. =1.600 tons.

‘Wind load = 171X 23.6 — 4036 1bs. — 2.018 tons.

Since the truss is divided in 8 equal panels, and one-half of
each end panel rests directly on the walls, the truss evidently
supports 7 section areas of the roof.

Hence, total permanent and snow load supported by one
truss = 7 (1.021-4-1.600) = 18.347 tons.

(119.) Notation Employed.

Bow’s notation, modified, is the best and most simple. See
Fig. 37.

Call the entire surface of the paper above the truss diagram,
X ; that below it, Y ; then number each triangle, composing the
truss, in regular order from left to right; name any member of
the truss, from the letter and number, or the two numbers
denoting the two surfaces separated by that member.

Letter the ends of the line in the strain diagrams, which repre-
sents the strain acting in this member, the same as the surfaces
separated by the member. Compare Figs. 37, 38, 39, etc.

After this system of notation is clearly understood, it will be
found to materially aid in drawing the strain diagrams of a
complex form of truss.

(120.) Strain Diagram for Permanent and Snow Loads.

Draw the truss diagram to any convenient scale, as in Fig. 37,
as large as possible.

Taking any convenient scale of tons to the inch, draw a verti-
cal line in Fig. 38, making its length —18.347 tons— total
permanent and snow load on truss. Divide this load line into
7 equal parts, each part representing the load at B, D, F, ete. ;
bisect the load line at Z, and its lower half — that part of the
truss and its load supported by the right hand wall, the upper
half — load on left hand wall, each being — 9.174 tons nearly.

Since the end of the truss cannot move, each wall must exert
an upward pressure exactly equal to the downward pressure of



64 GRAPHIOAL METHOD—PROBLEM 1.

the truss on it; and this upward pressure is represented by the
same half of the load line. The upward pressures or reactions
of the walls are always considered instead of the downward pres-
sure, because they hold the truss in equilibrinm with the loads
aeting upon it.

X
H
D E cl\ 7 L
B A
A2 s ANV (==
e e S S Y

Therefore, we have a vertical force of 9.174 tons acting wup-
wards at A, and represented by the upper half of load line, Fig.
38, and which must be in equilibrium with the strains acting in
the two members X1 and Y1, which meet at A. (106.)
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Draw in Fig. 38, #1 and %1 parallel to X1 and Y1 of Fig. 37,
intersecting at 1; these lines will represent the strains acting in
the corresponding numbers X1 and Y1, and their magnitudes
in tons may be measured by applying the same scale nsed in lay-
ing off the load line.

At B, Fig. 37, we have the load, represented by the upper
division 2@ of the load line, and the strain in X1, represented by
o1, to find the unknown strains acting in X2 and 12.

Draw @2 parallel to X2 and through 1; draw 12 parallel to 12
of Fig. 21, intersecting at 2. Then #2 and 12 represent the re-
quired strains in X2 and 12 as before.

No load acts at C, but the strains acting in Y1 and 12 are
known, while those acting in ¥3 and 23 are required. Through
2 draw 23 parallel to 23 of Fig. 37, intersecting y1, with which
3 must coincide, at 3 ; 3 and 2 8 represent the required strains
in ¥3 and 2 8.

The strain diagram for the left half of the truss is completed
by taking the joints in such order that not more than two un-
known strains are found at any joint. The strain diagram fox
the right half of the truss is best drawn by commencing at the
end O, then proceeding towards middle of the truss; it is merely
a duplicate of that for the left half, and is omitted in Fig. 38 for
the sake of clearness.

(121.) Resultants of Permanent and Wind Loads.

The wind is assumed to act on the left side of the roof, so that
full wind loads are supported at B, D and F, with a half wind
load at H. Since the permanent load acts vertically and the
wind load is normal to the roof, their resultant must be found
graphically, then substituted for them. :

With any convenient scale as large as possible in Fig. 37, make
the vertical Fa=1.021 tons — permanent load; make ad per-
pendicular to AH and = 2.018 tons — wind load ; join ¥5, which
measures 3.00 tons by the same scale —required resultant at F
and also at B and D. Through B and D draw lines parallel to
Fb. Make He¢—=1.021 tons, and ¢d perpendicular to AH and
=1.009 tons = half a wind load ; Hd measures 1.99 tons — re-
sultant at H. Each resultant is evidently considerably less than
the sum of a permanent and wind load.
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(122.) Strain Diagram for Permanent and Wind Loads.

There are equal resultants at B, D and F, a smaller one at H,
with equal permanent loads only at I, L. & N.

With the same scale nsed in Fig. 38, draw ¢f in Fig. 39
parallel to Fb and =3.00X3=19.00 tons; draw fgy parallel to
Hd and =1.99 tons; also, make gA vertical and =1.021 X3 =
3.063 tons ; divide ¢f and gh into three equal parts. The loads
on the truss, from left to right, will then be represented in order,
from ¢ to & on the load line. Join ¢A, which equals and is
parallel to the resultant of all the forces acting on the truss; con-
sequently, the sum of the reactions (or upward pressures of the
walls) at A and O is represented by ¢k, to which they must be
parallel, as no expansion rollers are here used.

The magnitude of each reaction must be found before the strain
diagram can be drawn, and this is most readily dome by the
method of the Equilibriumn Polygon (Fig. 33).

Select any pole P, and draw lines connecting it with the
divisions of the load line (Fig. 39). Commencing at A in Fig.
387, draw the inverted equilibrium polygon A klmnopy, its sides
parallel to the strings in (Fig. 89), taken in order downwards, and
intersecting on the lines of action of the resultant forces, acting
at the joints of the truss; the last side Pg¢ intersects at ¢, @
parallel to ¢4 (Fig. 39), drawn through O (Fig. £7). Join Ag, and
parallel to Ag. Fig. 37, draw Py in Fig. 39, cutting ¢4 at y. Then
ey represents the reaction at A, yA that at O.

The strain diagram is then drawn in the same way as that for
the permanent and snow loads, commencing at A to draw the
left-hand side, and at O for the right-hand side. The magnitudes
of the strains are then measured as before.

(128.) Checks on the Accuracy of the Work.

1. The strain diagram must close, <. ¢., the middle line 67
of Fig. 38 or 39, and which is drawn last, must be parallel to the
corresponding member 6 7 of Fig. 37. True in all cases.

2. An 2-line, a y line, and each alternate vertical, intersect at
a common point. True for most triangular trusses.

3. Apply Ritter's Method (Chap. IV.) to find the strains
in a few members, which must be sensibly equal to the values
obtained graphically.
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(124.) Determination of Nature of Strain.

Let a load W be supported by a post AB, as in Fig. 40. The
load evidently acts at A as a downward force, and is necessarily
resisted by an equal upward force acting within the post at A.
Neglecting the weight of the post, an equal downward force
must act within the post at B. '

Hence, if the internal forces acting within a member are
found to act from its middle towards its ends, as in Fig. 40, the
member must be subject to compression.

G I
at
]
3
Fig-.ZO—Oom preasion. Fig. 41—Tension.

Let a load W be supported by a rope AB, as in Fig. 41. The
load acts at Bin a downward direction, and is resisted by an
equal upward force within the rope, producing an equal down-
ward force at A.

Therefore, if the internal forces act from the ends of a mem-
ber towards its centre, as in Fig. 41, this member must be subject
to tension.

Take joint A, Fig. 37. The corresponding force polygon in
Fig. 38 is @y 1, because the sides of this triangle represent the
three forces acting at A. 'We know that these three forces must
be in equilibrium at A, and that the line @y represents the
reaction of the wall, which must act upwards ; consequently at A,
the strain in Y1 must act in the direction from 1 towards ¥,
and that in X1 must act from « towards 1 in Fig. 38, because
these three forces must act in the same direction around the tri-
angle or force polygon @y 1, as they are in equilibrium at A.
(22.) Hence X1 is subject to compression and Y1 to tension,
since in the former the internal strain acts from the middle
towards the ends of the member X1, and vice verse in Y1
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Take joint B, Fig. 37. The corresponding force polygon in
Fig. 38 must be the polygon @z 2 1, the load at B being repre-
sented by ox. This load acts downwards, therefore the strain in
X1 must be in the direction from 1 to «, Fig. 38; the strain in
12, from 2 towards 1; the strain in X2, from @ towards 2; all
the members meeting at B are therefore in compression.

Take joint C. The force polygon will be 3 2 1, 3 and 41
coinciding, because both are drawn through the same point ¥,
parallel to the same straight line AO. Since the strain in Y1
acts from left to right at A, it must act from right to left at C,
because the strains at the ends of any member must always be
equal in magnitude, but opposed in direction ; otherwise the
member would be moved endwise in the direction of the greater
strain, or in that of both strains, if they had the same sense, and
this member could not then be in equilibrium, as required.
Consequently, at C, the strain in Y1 must act from y towards 2
(Fig. 38); that in Y3 acts from 3 towards 2; that in 2 3, from 2
towards 8; that in 12, from 1 towards 2. Then Y1, Y3 and
2 8 are evidently subject to tension, and 1 2 to compression, as
already found at B.

The same kind of strain being found to act in 1 2 at both its
ends B and C, proves that the nature of the strains in all the
members meeting at C have been correctly determined.

The kinds of strain acting in the remaining members of the
truss may be found by continuing the use of the method just
explained, which must also be applied to the strain diagram for
permanent and wind loads (Fig. 39), because the nature of the
strain in a member is sometimes changed by the wind pressure,
especially in curved roofs. (Prob. 4) Great care must be taken
to obtain a clear knowledge of this method by applying it
practically.

(125.) The Strain Sheet.

Three different intensities of strain are found to act on each
member of the truss, caused by the permanent and snow loads,
and by the permanent and wind loads; in the last case, different
strains are found on the windward and leeward sides of the roof.
The line @ 12 (Fig. 39) represents the strdin acting in X1, for
example, when the wind acts on the right-hand side of the roof,
ete.
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After measuring the magnitudes of these strains with the same
scale used in laying off the load lines (Figs. 38 and 39),and deter-
mining their nature, collect them in a table as follows, indicating
tension by - and compression by —. (1086.)

STRAIN SHEET FOR PRdBLEM 1.

WINDWARD. LEEWARD.
MEMBER. P.&8. P.& W.W. P.&W.L. Maxnron,
Tons. Tons. Tons. Tons.

X —26.10 —22.90 —16.42 —26.10
X —22.82 —19.10 —14.90 —22.82
X —18.64 —15.80 —13.46 —18.64
X —14.88 —11.49 —12.00 —14.88
Y +24.42 +22.87 +14.868 +24.42
Y +20.92 +18.63 +12.98 +20.93
Y +17.42 +14.87 +11.68 +17.42
1 - 8.1 — 4.56 — 1.54 — 4.56
8 — 4.87 — 5,84 — 1,70 — 5.84
5 — 5.26 — 6.40 — 2.07 — 640
2 + 1.82 + 1.62 + 0.55 + 1.62
4 + 2.63 + 8.17 + 1.05 + 817
6 + 7.87 + 6.30 + 6.80 + 7.87

The maximum strains in the upper and lower chords are evi-
dently produced by the permanent and snow loads, but those in
the web members by permanent and wind loads, with the sole
exception of that in the vertical 6 7.

(126.) LProgramme of Conditions for Problem 2.

The type of truss, its dimensions, loads, etc., to be exactly as
in Problem 1, with the following exceptions:

1. An equal portion of the weight of the truss is assumed to
be supported at each joint of the upper and lower chords.

2. The truss is also required to support a lathed and plastered
ceiling, attached to joists, their ends being supported by the
horizontal tie-beam of the truss. A rough floor is laid on these
joists, but no load is to be placed on it.

(127.)  Computation of Loads.

Weight of truss —=80X16X4.25— 5440 1bs. As there are
16 joints in the truss, 5440 =16 — 340 lbs.— load at each
joint.
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Permanent load per joint of upper chord:

Tin, sheathing and rafters (118) . 941 Ibs.
Purline . . . 320 «
Truss . . . . . . . 340 «
Total . . . . .  16011lbs
Permanent load, 1601 lbs. = . . . .801 tons.
Snow load (118), 32001bs.= . . . 1.600
Total permanent and snow load = .  2.401 tons.

Total permanent and snow load on upper chord — 2.401X
7=16.807 tons.

‘Wind load per section area as before (118), — 2.018 tons.

Permanent load per joint of lower chord. The ceiling joists
are 28, 16 inch centres, with a rough floor laid on top of joists,
but without any load on it.

Lathing and plastermg, 3-coat work . . 10 1bs.
Rough floor . . . . 3 «
Joists . . . . . . . . 4«
Total per square foot . . . . 17 lbs
Ceiling =160 X17= . . 2720 1bs.
Truss, as before . . . . 840 «
Total per joint . . 3060 lbs. =1.53 ton.

Total permanent load for lower chord =1.583X7=10.71 tons.

(128.) Strain Diagram for Permanent and Snow Loads.

Draw the truss diagram (Fig. 42) to the same scale as that of
Fig. 387.

%Vith the scale used in Fig. 38, draw the vertical load line de
in Fig. 43, making it = 16.807 tons; divide it in 7 equal parts,
marking the points of division z, also bisecting it at . On the
same vertical line, lay off b and ac, each = 10.71 + 2 tons, and
divide d¢ into 7 equal parts, marking these points of division ¥.

The load line de represents the total load on the upper chord,
one part @ also representing the load at one joint; dc represents




DIAGRAMS FOR PROBLEM 2. 1

C
T
B
e
8
]
, g / e
- / Ylp
1 B ; i = T
P. and 8. Diagram.
- az
U—2 == v
X == / v
> 1
Ne—= ¢
p<:—’:’:__::- . /W — : ::
6><-- /W"*--zb
A T~ m xe

\
/
\




2 GRAPHICAL METHOD—PROBLEM 2.
the total'load' on-the-lower chord, one part yy being the load at
one joint.

Joint A. The reaction evidently — half the total load on the
entire truss,—ac-ab=~>le. Through %, draw %1 parallel to
Y1 of Fig. 42, and through ¢, draw «1 parallel to X1 ; these in-
tersect at' 1, and 1 represents the strain in Y1, and «1, that in
X1 of the given truss.

Joint B. Draw 12 and y2 parallel to 12 and Y2 of Fig. 42,
intersecting at 2.

Joint C. Draw 23 and #3 parallel to the corresponding mem-
bers of the truss, intersecting at 3.

The mode of completing the strain diagram is sufficiently
obvious. For sake of clearness, only one-half the diagram is here
given.

(129.) Strain Diagram for Permanent and Wind Loads.

In Fig. 42, make ¢gG and Im each —.801 ton; also, gh—a
wind load — 2.018 tons, and mn half a wind load, = 1.009 tons;
join G4, which measures 2.78 tons, and In, which —1.78 tons.

In Fig. 44, make ab parallel to G4 of Fig 42, and —=2.78 X3
=—8.34 tons; bc parallel to In and =—1.78 tons; cd vertical and
=.801X 3—=2.403 tons; using the same scale as in Fig. 43.
Join ad, which will be the resultant of the permanent and wind
loads on the upper chord only.

Choose a pole P, and by the method of the Equilibrium Poly-
gon, as applied to Problem 1, find the dividing point /'; then af

—reaction at A, and fd —reaction at O, for the loads on the

upper chord only.

Through f draw a vertical line, and make f¢ and fs each—
ab or ac of Fig. 43=10.71 + 2 tons; divide gsin 7 equal parts.
Then afs or the resultant as = total reaction at A, and ¢ /@ or the
resultant g — total reaction at O.

Joint A. Through @ and s (Fig. 44) draw «1 and %1 parallel
to X1 and Y1 of Fig. 42, intersecting at 1.

The remainder of the diagram or the left half of the truss is
then completed as in Fig. 43.

For the right-hand half, commence at O, drawing through &
and ¢ of Fig. 44, #1 and y1 parallel to X14 and Y14 of Fig.
42, ete.
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The y-strain lines must be measured from the -vertical line
g% ; the w-strain lines, from the broken load line abed.

(130.) The Strain Sheet.

The strains on the different members are then measured, and
collected in the following table, as in the preceding case.

STRAIN SHEET FOR PROBLEM 2.

MEMBER. P.&S8. P.EW.W. P.&W.L. MAXIMUM.
X —39.08 —385.24 —28.60 —389.08
X —38.40 —29.656 —25.80 —33.40
X —27.82 ' —24.03 —21.97 —27.82
X —22.22 —18.88 —18.68 —22.22
Y +-86.58 +84.42 +25.85 +36.58
Y +86.58 +84.42 +25.86 +-86.68
Y +81.28 +28.48 +22.74 +81.28
Y +26.056 +22.62 +19.68 +26.05
1 + 1.55 + 1.56 + 1.56 + 1.65
3 + 8.50 + 8.75 + 2.70 + 8.75
5 + 5.4 + 6.06 + 8.88 + 6.05
7 +13.27 +11.7 +11.77 +18.27
2 — 5.66 — 6.85 — 8.84 — 6.85
4 — 6.52 — 7.46 — 8.86 — 7.46
[ — 7.90 — 9.08 — 474 — 9.08

(131.) Comparing this strain sheet with that of Problem 1
(125), we note the following points:

1. The strains in the members are increased about 50 per cent.
on an average.

2. The maximum strains in the chords are still caused by P.
and 8. loads; in the web members, by P. and W. loads.

3. The Graphical Method is readily applicable in the manner
indicated to a truss loaded in any manner at each joint, or at
only a portion of the joints.

4. It can be applied to an iron truss supporting a ceiling, with
expansion rollers at one end, by determining the y-points as
shown hereafter in Problem 3, then drawing a vertical through
each y-point, and laying off on each vertical the loads at the
joints of the lower chord, as done from the point £ in Fig. 44.

(132.) Programme of Conditions for Problem 3.
Truss to be of Fink type, as in Fig. 45; span, 80 feet ; rise of
upper chord, 17 feet; of lower chord, 2 feet; divided in 8 equal
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panels; trusses 16 feet apart between centres; snow load and
wind pressure taken at 20 and 50 Ibs. as in previous Problems.
Roof to be covered with Carnegie Bros.’ corrugated iron,
weighing 2 Ibs. per square foot laid, without sheathing or com-
mon rafters ; supported by two purlines to each panel or section

Fig. 1.3,

area ; each purline to be a 6 in. 10 Ib. channel bar; roof truss to
be of wrought-iron, with expansion rollers at one end, the other
being fastened to the wall.

Length of principal = #17*4-40? — 43.46 feet. Panel length of
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apper chord —43.46+4-—=10.865 feet. Section area —10.865
X 16 =174 square feet, nearly. Half a section area — 87 square
feet — area of roof supported by one purline.

Inclination of roof — 23 degrees nearly ; hence, maximum wind
pressure — 26.3 lbs. per square foot. (101.)

(183.) Computation of Loads on Truss.

Corrugated iron =174 X 2= . 348 1bs.
Purlines =2 X 16 X 10= . . 820 «
Truss =160 X 7.38= . . . 1181 « (97.)

Total permanent load per section area — 1849 Ibs —.925 ton.
Snow load = 160 X 20 — 3200 lbs. —1.600 tons.
Permanent and snow load =.925 4 1.600 = 2.525 tons.
Total permanent and snow load for the entire truss — 2.525
X 7=17.675 tons.
‘Wind load per section area—174 X 26.3 — 4577 1bs. — 2.289
tons.

(184.) Strain Diagram for Permanent and Snow Loads.

The load line is laid off in Fig. 46 as in Problem 1 (120)=
17.675 tons, and is then bisected at y, and also divided into 7
equal parts, corresponding to the number of loaded points on
the truss. There is no ceiling, and the entire weight of the truss
is assumed to be concentrated at the joints of the upper chord,
88 in Problem 1.

Commencing at A (Fig. 45), proceed as before until the mem-
ber 3 4 is reached. Taking the joint D, we have three unknown
strains in 3 4, ¥4 and 4 5; taking the joint E, we also have
three unknown strains in 8 4, 4 7 and %7 ; the problem there-
fore becomes indeterminate. But the loads at B and F being
equal, the strains in 1 2 and 5 6 must evidently be equal also;
since the angles ACD and DGH are equal, and each angle is
bisected by 1 2 or 5 6, equal strains will be caused in 1 and 2 3
by the pressure of the member 1 2, and in 4 5 and 6 7 by that of
5 6 ; therefore, the strains in 2 3 and 4 5 must be equal, but the
magnitude of that acting in 2 3 has already been found, being
represented by the line 2 3 of Fig. 46.

Consequently, the lines 3 4 and @5 of Fig. 46 must be con-
nected by a line 4 5, parallel to 4 5 of Fig. 45, its length being
equal to that of 2 3 of Fig. 46.
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Draw 1 5 perpendicular to 1, and the point 5 thus found on
5 will be the only one through which the required line 4 5
can be drawn to satisfy the given conditions.

The strain diagram is now easily completed.

" (185.) Strawn Diagram for Permanent and Wind Loads.

Determine resultants at B, D, F and H, as in Problem 1, and
lay off load line abed as before ; join ad, which would be the
required resultant of all the loads acting on the truss, if the
expansion rollers were omitted.

Divide ad at f into the reaction af acting at A, and fd
acting at P, by the method of the equilibriim polygon.

1. Rollers at A, or on Windward side of truss. (38.)

The horizontal component of the loads on the lower half sec-
tion area AB must be resisted by the truss, since it cannot be
transmitted through the rollers to the wall at A. This is found
equal to .45 ton by graphical construction. (32.) Make ae
horizontal and equal to .45 ton, and let fall a vertical through e
(Fig. 47), to intersect a horizontal drawn through f; their inter-
section will be the y-point, and ey will be the reaction at the
left wall, d that at the right-hand wall.

2. Rollers at P, or at the Leeward.

Draw a vertical through & to intersect a horizontal througi
J, and this point of intersection will be the y-point for rollers at
leeward ; ay will then be the reaction at the left, and dy at the
right-hand wall.

It is evident that both these cases must be considered, because
the wind may act on either side of the roof, and it is necessary
to determine the maximum strains which may possibly occur.

The completion of the diagram offers no difficulty, and two
strain diagrams are obtained, as in Fig. 47, having different
y-points, but derived from the same load line, one corresponding
to rollers at the windward, the other to rollers at the leeward
side of the truss.

It is easier to shift the position of the rollers than the direction
of the wind in the strain diagram, the same results being obtained.

(186.) The Strain Sheet.
The magnitudes of the strains are measured and their nature
determined by the method already explained (124), thus obtain-
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ing five different strain values for each member, as shown in the
accompanying table.

It is usual to take the larger strain as being the maximum for
the member, without regard to the position of the rollers, because
both sides of the truss are then made alike, economizing labor,
though this involves the use of a slight excess of material on the
side of the truss at which the rollers are placed.

STRAIN SHEET FOR PROBLEM 8.

. Rollers |Windward| Rollers | Leeward
MEMBER. P.&8. [P.&EW.W.[P.& W.L|P.&W.W.|P. & W. L.|Maximum
D: G T —28.60 | —26.02 | —17.38 { —27.06 | —18.37 | —28.60
X Beeiiannnanns —27.60 | —25.66 | —17.04 | —26.70 | —18.02 | —27.60
X5 cee —16.66 | —26.36 | —17.67 | —26.60
X6.. —16.30 | —25.78 | —17.30 | —25.78
Y1 +12.45 | +28.17 | +17.00 | +28.17
Y38 +11.10 | +23.06 | +16.60 | +23.05
Y"1 + 7.45 | +11.57 | +11.57 | +18.50
12 — 085} — 810 — 0.85 | — 8.10
34 - 17| —630|— 170 | — 6.80
56 — 08| — 810 — 0.85 | — 8.10
28 + 1.85 | + 6.05 | + 1.85 | + 5.06
45 + 1.85 | + 5.05 | + 1.85 | + 5.06
47 + 8.90 | +11.90 | + 4.46 | +11.90
67 + 6.25 | +16.97 | + 5.80 | +16.97

(137.) Programme of Conditions for Problem 4.

Truss to be semicircular as in Fig. 48 ; depth of truss 10 feet
at top ; divided into 12 equal panels by radials; trusses 16 feet
apart between centres ; radials to be in tension and to be iron
rods, if possible; diagonals to be in compression, and to be
wooden timbers in any case ; upper and lower chords of the
truss to be built up of plank, bent to the curve and firmly fast-
ened together.

Roof covered with tin, laid on inch sheathing of pine, which
is supported by 4X 8 pine purlines set edgewise and radially, and
which are to be set 16 inches between centres at A, B and D,
18 inches at F, 24 inches at H, and 36 inches at K and M ; com-
mon rafters omitted, as the sheathing rests directly on the pur-
lines and is bent to the curve of the roof.

Length of upper chord =80 3.1416 <+ 2 = 125.67 feet.

Panel length of upper chord =125.67 + 12 = 10.47 feet.
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Section area —10.47X 16 — 167.5 square feet.

The inclination of a tangent at any joint of the upper chord
may be taken as the average inclination of the section area of the
roof, which is supported at that joint, and is most easily found
by measurement with a protractor, after drawing the tangent and
a horizontal line through each point.

Fig. 4.9.
P. and 8. Diagram.

Or, the quadrant being in this case divided into 6 equal parts
by the radials, the inclinations of the roof at the different joints,
and the corresponding wind pressures, will be as follows:

Point................ A B D F H K M

Inclination. .......... 90. 175. 60. 45. 80. 15, O deg.
‘Wind Pressure....... 50.0 50.0 50.0 45.0 83.1 17.7 0.0 lbs.
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(188.) Computation of Loads.

1. Permanent Loads.

The weight of the purlines per square foot of roof or per sec-
tion area varies with their spacing.

Total weight of the entire truss—80X4.25—5440 Ibs.
Hence, average weight for one panel or loaded point, as the
entire weight of the truss is assumed to be concentrated at the
joints of the upper chord — 544012 — 453 Ibs.

At B or D the tin, sheathing and purlines average 10 lbs. per

Fig. 50.
P. and W. Diagram.

square foot ; P. load per section area —167.5X104-453 — 2128
Ibs. = 1.064 toms.
At F, tin, sheathing and purlines weight 9.5 lbs. per square
foot. P.load =167.5X%9.5+453 — 2044 1bs. — 1.022 ton.
" At H, tin, sheathing and purlines, weigh 8 Ibs. per square foot.
P. load =167.5 X 84453 = 1793 1bs. = 0.897 ton.
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At Kor M, tin, sheathing and purlines weigh 6§ lbs. per
square foot. P.load =167.5X 6§-4-453 = 1570 Ibs. = 0.785 tons.

2. Snow Loads.

Bisect each panel length of the upper chord, and drop a verti-
cal to the horizontal line AP ; the horizontal distance between
any two adjacent verticals)16 —horizontal projection of the
section area supported at that joint of the upper chord, located
between the two verticals ; the snow load for that point is found
by multiplying the corresponding horizontal projection just
found, by 20 Ibs., thus proceeding for all the loaded points of the
upper chord, obtaining the following snow loads :

AtB, 273x16X20= 874 Ibs.= 0.437 ton
At D, 5.16X16X20 = 1648 Ibs. = 0.824.
AtF, 17.44%16%20= 2380 Ibs. =1.190.
At H, 9.05X16X60=2896 Ibs. — 1.448.
At K, 10.12X 16X 20 = 3240 Ibs. = 1.620.
At M, 10.47% 16X 20 = 3350 1bs. = 1.675.

3. Wind Loads.

These are computed by multiplying a section area by the nor-
mal wind pressure at each joint of the upper chord.

At B, 167.5X50.0 = 8375 1bs. — 4.188 tons.
At D, 167.5x50.0 — 8375 Ibs. —4.188.

At F, 167.5X45.0 = 7538 1bs. — 3.769.

At H, 167.5%33.1 = 5544 Ibs. = 2.772.

At K, 167.5X17.7= 2964 1bs. — 1.482.

At M, no wind pressure and no wind load.

4., Permanent and Snow Loads.
At B, 1.0644-0.437 = 1.501 tons.
At D, 1.064+0.824 —1.888.

At F, 1.022+41.190 = 2.213.

At H, 0.894-1.448 — 2.342.

At K, 0.785+41.620 = 2.405.

At M, 0.7854-1.675 = 2.460..

To avoid errors, it is well to collect these results in a table of
the following form before drawing strain diagrams :



GRAPHICAL METHOD—CRISCENT TRUSS. 81

Point.............. B D F H K M
Inclination........ 3. 60. 45, 30. 15. 0 deg.

'W. Pressure....... 50.0 50.0 450 831 17.7 0 lbs.

P. Load............ 1.064 1.004 1.023 0.897 0.785 0.785 tons.
S.Load............ 0.437 0.824 1,190 1.448 1.620 1.675 tons.
P. and 8. Load.... 1.501 1.888 2.212 2.8342 2405 2.460 tons.
W. Load........... 4,188 4.188 8.769 2.772 1.482 0. tons.

As the truss is mostly comstructed of wood, no expansion
rollers are necessary, and it being fixed to each wall, it is not
necessary to compute the loads on the half section area supported
at A.

(139.) Strain Diagram for Permanent and Snow Loads.
In Fig. 49, we lay off downwards on a vertical, the P. and S.
-loads just found, taken in order from A to M ; bisect the load
for M at % ; produce the load line downwards below ¥, and with
dividers, take the distance from y to each @-point above ¥, laying
it off below y, so as to make the two portions of the load line
symmetrical about the point ¥.

Then zy — half the load line — the reaction at either A or P.

For the curved members of the chords, draw the correspond-
ing strain lines parallel to the chord of the arc representing the
given member ; this is most correctly done by drawing a radius
to the middle point of the arc, then making the required strain
line perpendicular to this radius. (Remember that the centres
and radii of the two chords are different.)

If any diagonal member be found to be subject to tension, it
should be omitted, the other diagonal of the same panel being
used instead, which will then be in compression, as required.
Only one diagonal of a panel can be considered at the same time,
a8 a single diagonal divides it in two triangles, making it then
perfectly stable, and a second one is not necessary. Besides, two
would make the problem indeterminate.

Complete the strain diagram in the manner already described
for problems 1 and 3.

(140.) Strain Diagrem for Permanent and Wind Loads.

At each point B, D, etc., on the windward side of the truss,
find the resultant of the permanent and wind loads there acting,
as indicated in Fig. 48. (121.)

Commencing at any point @ (Fig. 50), represent the resultant at
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B (Fig. 48), oy abd, that at D by be, etc., completing the load line
abed by taking the resultants in order from A towards P; join
ad, which represents the resultant of all the forces acting on the
truss, as well as the sum of the reactions at A and P ; by the
method of the equilibrium polygon, divide ad into ay —the re-
action at A, and yd — the reaction at P.

The diagram is then completed like that for permanent and
snow loads, excepting that the dotted diagonals will be required
for the windward side of the truss, as they are required to be in
compression. Both sets of diagonals would therefore be em-
ployed in the actual construction of the truss.

1. Note that all #-lines falling on the right of the load line awd
denote that the corresponding members are subject to tension on
the leeward side of the truss, so that the four lower panels of the
upper chord are evidently in tension on the leeward side of the
roof.

2. Also, that all y-lines lying on the right-hand side of a verti-
cal drawn through the y-point denote compression in the corre-
sponding members ; therefore, the five lower panels of the lower
chord are subject to compression on the leeward side of the roof.

(141.) The Strain Sheet.

Measure the strain lines of each diagram, and collect the results
on a strain sheet, as in the following table:

The names of dotted or counter diagonals are denoted by un-
derlining in column 1.

The greatest regular strain on any member is written in
column 5 as a maximum, while the greatest strain of opposite
nature is written as a minimum in column 6. The correspond-
ing member must be so designed as to safely resist each of these
strains acting upon it. (See table on opposite page.)

(142.) Programme of Conditions for Problem 5.

Truss to be of type shown in Fig. 51; divided in 7 equal
panels, the roof of the middle panel being raised 4 feet to per-
mit the insertion of windows between it and the main roof, for
better lighting the centre of the building ; truss and roof to be
entirely constructed of iron ; therefore, the compression members
ghould be shorter than those in tension, to secure proper
economy ; the long diagonals of the panels are here used instead
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of the short ones, as in problem 1, because required to be in
tension instead of compression.

STRAIN SHEET FOR PROBLEM 4.

MEMBER. P. &8, P.&EW.W.| P.&W. L. | Maximum. | Minimum.
X 1oon.. veees| —1620 | —84.90 | + 5.68 | —8493 | + 5.68
X 9rviiivenn..| —1525 | —20.74 | + 668 | —20.74 | + 6.68
X 4. —1766 | —24.98 | + 840 | —2428 | + 8.40
X 6oiennennnnn. —18.87 | —1877 | + 050 | —18.87 | + 0.50
X 8ieuininnnnnn —19.68 | —1855 | — 2.83 | —10.68
X10......... ...| —2022 | —'887 | — 588 | —20.92
Y 1. + 547 | +26.70 | —17.18 | +2670 | —17.18
Y 8000 41040 | +928.55 | —18.44 | +98.56 | —18.44
Y boo.n. vioed| +1458 | +25:15 | — 9076 | +25.16 | — 9.78
Y T - +17.70 | +20.47 | — 6,00 | +20.47 | — 6.00
Y 0. | +1973 | +1475 | — 198 | +10.73 | — 1.08
Y, +20.53 | + 862 | + 276 | +20.52
1 9.0 vl +878 | +694 | —18 | +694 | — 188
8 4..........)] +500 | +68 | + 000 | + 680
56........ vl 4584 | + 704 | 4140 | + T.04
78l #8500 | +710 | +978 | + 710
910......... ... + 42 | +68 | + 415 | + 6.88
112 +88 | +68 | +68 | + 588
28, c| — 425 — 458 | — 4.58
2 8. ... — 5.02 — 5.03
o — 8.58 — 450 | — 450
465...... — 8.85 — 835
6 Meeennnnn | —ave — 465 | — 4.65
8 M. i, — .56 — 1.56
8 0eneennen. — 1.80 — 505 | — 5.05

Qs e - 7.99 — 7.99
01L...c..on.ns — 0.68 — 595 | — b5.95
1011....... 0. — 748 — 148

Span, 80 feet; rise of upper chord, 16 feet, exclusive of the
raised central portion; of the lower chord, 3 feet; the lower
chord is made a circular arc, for the sake of appearance and to
shorten the verticals and diagonals, though this also increases the
strains on the members. The weight of the truss is assumed to
be equally divided between all the joints of both chords, as in
problem 2, but there is no ceiling.

Roof to be covered with corrngated iron, weighing 2 lbs. per
square foot laid, supported by three 6 inch 13.5 Ib. I beams for
each panel of the main rvof; five 6 inch 10 Ib. channels being
used as purlines for the raised central portion. No expansion
rollers are used in this case.
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(148.) Computation of Loads.
1. Permanent Loads.

Length of inclined principal =4/ 1ef+(?_>f{_89)'—_- 37.83 foet.

Panel length —37.83 < 3—=12.61 feet. Section area—
12.61X16 =201} square feet. Area supported by one purline
= 2014 + 3 = 67} square feet.

‘Weight of truss — 80X 16X 7.38 = 9440 1bs. It has 14 joints,
exclusive of the raised portion; hence, 944014 —674 lbs. =
weight at each joint. (97.)

Corrugated iron—201}x2=. . .  403.5 lbs.
Purlines = 3X13. 5X16 = . . . 648.
Truss = . . 674«

Total — 1725.5 1bs. — .868 ton — permanent load at the joints
B,D, N and P.

Corrugated iron=101x2= . . . 202 Ibs.
Purlines—=2X13. 5X16= . . . 439, «
Truss= . . . . 674, «

Total =— 1308 lbs. — .654 ton — permanent load at joints
F and L, exclusive of the weight of the raised portion, helf
of which is supported at each joint F and L.

For the raised central portion :

AtF,sashand glass—. . . ., . 64lbs
Vertical post —. . . . . 38 «

Total =102 1bs. =—=.051 ton.

At H, sash and glass = . . . . 64 «
Third of small truss = . . . 38 «
Purlines =14 X16 X10= . . 240 «
Corrugated iron = 504 X 2 = . . 101 «

Total —443 lbs. — .222 ton.

At I, Third of small truss—. . . . 381bs.
Purlines =2x16X10 = . . 320 «
Corrugated iron =101 X2= . . 202 «

Total =560 lbs. —=.280 ton.

This makes the total permanent weight of the raised central
portion = 051+ .292 + .280 - .222 -+ .051 = .826 ton, which is
equally divided between the joints I and L.
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Hence, .654 4 .413 — 1.067 = tons = total permanent load at
Fand L.

The permanent load at each joint of the lower chord = 674
Ibs. = .337 ton.

2. Snow Loads.

At joints B, D, F, L, N and P, = 80X 16X 20 < 7=3657 lbs.
=1.829 tons.

3. Wind Loads.

Inclination of the roof surface is about 25 deg., so that the
normal wind pressure is 28.3 lbs. per square foot.

At B and D, the wind load = 201$ X 28.3 = 5710 lbs. — 2.855
tons.

At F, the normal wind load = 101X 28.3 = 2855 Ibs. = 1.428
tons.

The horizontal wind load = 2X 16 X 50 = 1600 Ibs. = .800 ton.

At H, the horizontal wind load = 216X 50 =1600 lbs. =
+800 ton.

At H and I, the normal wind load = 50. 5X28. 3 = 1428 lba.
=.714 ton.

4. Table of Loads.

These results may be collected in the following table :

Point, B D F H I
P.Load.............. 0.868 0.868 1.067  (0.222)  (0.280)
8. Load.............. 1.820  1.829  1.820  (0.457)  (0.918)
P.andS............. 2.6071 2607 2896 (0.679)  (1.198)
W. Normal. ......... 2.855 2.855 1.428 0800  0.800
W. Horizontal....... ..... ..... 0.800  0.800

The loads for H and I included in brackets are also included
in those given for F.

(144.) Strain Diagrams for Permanent and Snow Loads.

1. Main Truss, exclusive of ransed portion.

On the vertical line ab, Fig. 52, lay off downwards the loads at
the joints of the upper chord, taken in order from left to right.
The middle point ¢ of this line will be both an @-point and a
y-point, since the number of panels is odd. From ¢ lay off in
both directions 8 loads of .337 tons each, representing the weight
of the truss at each joint of the lower chord
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Disgrams for Ralsed Portion.
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Then for joint A, through b and & of Fig. 52, draw «1 and
y1, intersecting at 1; for B, draw 1 2 and «2, intersecting at 2;
for C, draw 2 3 and 3, intersecting at 3, etc., completing the
strain diagram, of which one-half is here given. Evidently, the
strains in 6 10 and %7 are equal, asthey should be, these members
being parallel.

2.  Truss of raised central portion.

In Fig. 54, lay off the loads acting at H, I and K, downwards
from @ to b; bisect ad at c. Draw «11 parallel to 11 of Fig.
51, and 11 coincides with ¢, the member being vertical, so that
no strains exist on the members 11 10 and 10 14 under permanent
and snow loads.

For joint H, draw #12 and 12, intersecting at 12. The dia-
gram is then drawn for the other side, forming the complete
strain diagram as in Fig. 54.

(145.) Strain Diagram for Permanent and Wind Loads.

1. For raised central portion.

In Fig. 51, make Ha—=.222tons—=DP. load at H; ab =.714
tons—=normal W load; b¢—.800 ton—=horizontal W load;
He = their resultant —1.400 tons.

At I, make Id — .280 ton; de¢=—.714 ton; then I¢—the re-
sultant at I —=.970 ton.

In Fig. 55, make gh—1.400 tons; A2—=.970 ton; <k—.222
ton — permanent load at K; then gk—the resultant of these
forces. By the method of the equilibrium polygon, divide g% at
10 into ¢g10 and 10%, the respective reactions at F and L.

For joint F, draw 211 and 10 11, intersecting at 11; for H,
draw 11 12 and @12, intersecting at 12, etc. The complete strain
diagram is given in the figure.

The strain diagrams of Figs. 54 and 55 are here drawn at a
scale five times as large as that of Figs. 52 and 58, for the
sake of greater clearness.

2. Main truss, exclusive of raised portion.

The resultants at B and D are parallel, and are obtained as in
the previous problems.

At F, make Fg—.654+4.051=.705 ton—total permanent
load at F, exclusive of the permanent loads at the joints H, I and
K ; make ¢r—1.428 tons—normal W. load; r7¢6=—.800 ton =
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horizontal W load, and st —=.940 ton—1load at F due to the
raised central portion, —g¢10, Fig. 55. The resultant F¢ — 3.39
tons.

At L, make Lu=—.705 ton — P. load at K, exclusive of that
of raised portion ; wv —1.535 tons = load at L due to raised por-
tion = %10, Fig. 55. Resultant Lv — 2.155 tons.

In Fig. 53, draw the load line abcde as before, taking the loads
in regular order from left to right, and neglecting the raised
central portion, as the loads due to this are included in those at
Fand L. Then a¢ —resultant of all the forces acting on'the
truss. Divide this at /' by the method of the equilibrium poly-
gon, into ¢f'—=reaction at A, and fe —reaction at R.

Thrugh f draw the vertical gk, on which lay off 3 loads up-
wards and downwards, each —.337 ton —1load at each joint of
lower chord.

For the joint A, draw through ¢ and A, #1 and y1, intersect-
ing at 1; for B, 1 2 and @2, intersecting at 2, etc. The complete
strain diagram is here given.

(146.) The Strain Sheet.
The Strain Sheet for this Problem is as follows:

STRAIN SHEET.

MEMBEE. P.&8. |P.&W.W.| P.&W.L. | Maximum. | Minimum.
X —28.76 —22.10 —30.66
X —80.09 —22.10 —30.66
X —22.90 —18.90 —24.10
X — 1.16 — 0.64 - 1.30
X — 0.68 — 0.93 — 1.4
61 —15.60 —15.66 —16.57
Y +29.17 +17.86 +28.17
Y +21.27 +14.88 +21.94
Y +14.20 +12.40 +16.58
Y +12.25 +12.23 +16.57
1 — 4.05 — 0.87 -~ 4.5
8 — 6.62 — 1.85 — 6.62
5 — 1.36 + 0.95 — 1.8 + 0.95
12 — 0.22 — 0.22 — V.22
11 — 0.56 + 0.88 + 1.80 - 0.55
2 + 9.94 + 3.70 + 9.94
4 +10.83 + 8.78 +10.88
6 + 8.00 + 8.00 + 8.00
11 + 0.65 — 1.06 — 1.06 + 0.65




CHAPTER VI

LENGTHS OF TRUSS MEMBERS.

(147) In many cases, especially in the construction of iron
roofs, it is necessary to correctly determine the length of each
member of a truss to the nearest 4 of a foot or {} of an inch,
a degree of accuracy only attainable by computation, but not
possible from measurement of a drawing. In the best Engineer-
ing work, the maximum error allowed in the lengths of truss
members is 4 inch.

To avoid errors, it would be preferable to make the computa-
tions in feet and decimals of a foot, then using a wooden rod for
laying off the feet, and a steel scale graduated to 4l of a foot,
for laying off the fractional part of a foot. Or, the decimal of a
foot can be changed into inches and fractions, which are most
convenient for the ordinary mechanie.

(148.) Length of a Member.

The jount length of a member here signifies the length of its
axis or centre line, taken between the intersections of this axis
with the centre lines of those members, which are connected with
the ends of the given member. It therefore equals the length of
the corresponding line in the truss diagram, this diagram being
composed of the centre lines of the different members of the
truss. The joint length is always meant in the following formu-
1, unless otherwise mentioned.

The actual length of any member is seldom the same as its
joint length, being either longer or shorter; but is readily deter-
mined if the joint length be known, since their differences at each
end of the member can easily be measured from the detail draw-
ings of the end joints, which should be made full size, and may
be on separate sheets.

The lengths of adjustable members need not.be so accurately
determined. Tie-rods are usually adjustable by nuts, or by
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sleeve-nuts placed between their ends; other membersare seldom
adjustable.

(149.) Notation employed in Formule.

Let s —span of truss in feet —horizontal distance between
centres of end joints ; this also usually — distance between centres
of the supporting walls.

‘Let » — number of panels into which the truss is divided. They

are of equal horizontal length, unless otherwise stated.

Let 7' =rise of upper chord = height of its middle and high-
est point above a horizontal line drawn through the centres of the
end joints of the truss.

Let " —=rise of the lower chord above the same horizontal.

Let ¢ —angle of inclination of upper chord, if composed of
two straight lines of equal inclination.

Let </ = inclination of a tangent at the end of a curved upper
chord.

Let ¢”” —angle of inclination of lower chord, if composed of
two straight lines of equal inclination.

Let ¢” —inclination of tangent at end of a curved lower chord.

Let p =number of panels between the nearest end of the truss,
and any vertical considered, or the uwpper end of any given
diagonal.

Let ¢ —number of panels between the middle of the truss and
any given vertical, or the upper end of any diagonal.

Let R’ —radius of curvature of a circular upper chord.

Let R” — radius of curvature of a circular lower chord.

Let d —=depth of truss at centre — vertical distance between
centre lines of the chords.

Let # = difference between the heights of the endsof any web-
member above a horizontal drawn through the centres of the end
joints of the truss.

A. General Formule.

(150.) Chord net curved, but composed of two equal princi-

4

QZ'_ = tans’ = tan angle of inclination of upper chord.

%Il

= tan ¢/ — tan angle of inclination of lower chord.
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%—: joint length of any panel of a horizontal chord, except Fink.

= =jointlength of any panel of inclined upper chord.

_8 ) . .
7 oos7— length of panel of inclined lower chord, except for

a Fink truss.
7’ —r’ =length of middle vertical, if any, =d.

gpﬂ:height of any joint of inclined upper chord above
n

horizontal span line.
%p%zheight of any joint of inclined lower chord above

horizontal span line.

(151.) Chord a circular arec.

2%1 =tan §¢' =tan } angle inclination tangent at end of upper
chord.
27,/'
! - =tan } <"’— tan } angle of inclination at end of lower chord.
3 sfn 7 =R’=radius of curvature of upper chord.
ml’T@—ﬁ = R"=radius of curvature of lower chord.
-ig()Lsi?i—é_' = total developed length of upper chord.
NI
I—B%—Zi;—iﬁ — total developed length of lower chord.

2 <= angle at the centre of chord subtended by the span s.

B. Special Formule.
(152.) T'russ to be of type shown in Fig. 56 or 57.

m/m

Lower chord honzontal and straight.
g%dzlength of any vertical.
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1 I /P44 pr_ ‘ ;
e —length of any diagonal, either truss.
(153.) Truss of type as in Fig. 58 or 59.

Fig. 58 >~ Fig.59 -

Lower chord composed of two equal inclined straight lines.
?_ﬂ(r' —r'""y=Ilength of any vertical.
1 ‘/ +4 [ p (—7") £ 1]=Iength of any diagonal.

In the last formula use -} sign for diagonals inclined inward,
as in Fig. 59; use — sign if they incline outward, as in Fig. 58.

(154.) Truss of type as in Fig. 60.

A

Fig. 60

Upper chord divided in equal parts; joints of lower chord
midway between verticals dropped through those of upper and
lower chord horizontal.

1.5¢ 5 8__

— joint length of end panels of lower chord.

1/ ~+ 4 p*»® —length of any web-member.

(155.) Truss of type shown in Fig. 61.

“ Fig.61 >

Similar to the last, except that lower chord is composed of two
equal inclined lines.
1.5 8
7 o8 ¢

_;4/ .% +4 [p (@—7") & »"P=Ilength of any web-member.

—length of end panels of lower chord.
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Use + sign for members inclined at top towards centre of
truss; — «ign for those inclined outwards. .

(136.) Fink truss of type as in Fig. 62.

D

F
Kk &

CHE A mig ez B

Lower chord entirely horizontal.
__',_zlength of middle portion AB of lower chord.
tan 2/

%I
One—half this = length of secondary tie-rod AE, CE, ete.
One-fourth this —length of tertiary tie-rod CH, ete.

& tan ¢’

Tos? — length of primary strut AF, ete.

One-half this —length of secondary strut EG, ete.
One-fourth this = length of tertiary strut HK, ete.

(187.) Fink truss of type as in Fig. 63.

D

e .
L
é A mig.63 B

Central portion AB horizontal, but raised above a horizontal
through end joints of truss.
7’
7 —r” tan ¢’
gin 27
AC of lower chord.
2 (' —7 . .
tan—((% /_;,), ) —length of horizontal portion AB of lower
chord.
7',— r/l
Bin (%I ’//)
One-half this = length of secondary tie-rod CE, EF, ete.
One-fourth this —length of tertiary rod CK, HK, etc.

,=tan ¢ —=tan inclination of the portion

—length of primary tierod AC, AD, ete.
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sin (¢/—4") (¥ —7")
gin (2¢'—2")
One-half this —length of secondary strut EH, etc.
One-fourth this — length of tertiary strut KL, ete.
w) = distance from the horizontal line AB, up to
tan 2(¢'—7"’
the intersection of AC produced, with the middle vertical
through D.

=length of primary strut AF, ete.

(158.) Fink truss of type as in Fig. 64.

B
Fig.64
Lower chord composed of two lines of equal inclination.
<08 gﬁl(;:j:z(;;gr") = length of portion AB of lower chord.

8

4 cos ¢’ cos (2 —17")
One-half this = length of secondary rod CE, ete.
One-fourth this — length of tertiary rod CH, ete.
g tan (¢'—¢") __ £ ori
~Tomd length of primary strut AF, ete.
One-half this —length of secondary strut EG, ete.
One-fourth this —length of tertiary strut KH, ete.

CHE

—length of primary tie-rod AC, ete.

(159.) Truss of type as in Fig. 65 or 66.

Lower chord a circular arc; upper chord as before.
2" — angle subtended at centre of lower chord by span s.

2pr _ height of any joint of upper chord above a horizontal
n

drawn through the end joints of the truss.

'—R"+ /R"s —( g8 )’= height of any joint of lower chord
n

above the same span line.
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J—difference of height of its ends — 2pr +R”
-—‘/Rﬂz - (%,)s= length of any vertical. (149.)

1 ;:—:+f ’=1ength of any diagonal, inclined either way, or
length of any panel of lower chord, measured on a straight line
and not on the arec itself.

(160.) T'russ of type shown in Fig. 61.

A

Same as in the last case, except that the joints of lower chord
are midway between verticals dropped through those of upper
chord.

‘/ (ﬂ)"i'f : —length of end panels of lower chord,
n

straight.
Y (%)""f * —length of any half panel of lower chord,

straight.
Other formulse are as in the last case (159.)

(161.) Truss of type as in Fig. 68 or 69.

Fig.68 Fig. 69

Diagonals inclined either way ; lower chord horizontal ; panels
of equal horizontal length.

7—R +/R_’s—(g{)9 =height of any joint of upper chord
n

above the horizontal lower chord.

The same —length of the corresponding vertical.

Let V —1length of a vertical through the upper end of any
diagonal.
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PV _ o di
= = length of this diagonal.
1/ %’Fﬁ =straight length of any panel of upper chord.

(162.) Truss of type as m Fig. 70 or T1.

r—R’ V R*— (98) —height of any joint of upper chord
above a horizontal through centres of end joints.

21”'7": height of any joint of lower chord above same hori-

zontal.
J =Ilength of any vertical.

# +7*_ length of any di i '
% =length of any agonal, or straight length of any
panel of upper chord.

(163.) T'russ‘as in Fig. 12 or 78.

Both chords are circular arcs; panels of equal horizontal

length.

2__
7 —R'4/ R (%)2: height of any joint of upper chord

above horizontal span line.

;D R”—(¢s\* . . . '
7' —R'4 )= height of any joint of lower chord

above same horizontal.
—length of any vertical.

V % T 1o gth of any diagonal, or straight length of any

panel of either chord.
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(164.) T7russ as in Fig. T4 or T5.

Both chords are circular arcs; upper chord divided into panels
of equal length on the curve by radials drawn to its centre.

2 R’ gin (i): straight joint length of any panel of upper
n
chord.
Let @ = cot (2-—1-’&/ )

n
Let b = R 4 »'—7").
r—R [l—cos (2—71,91,)]= height of any joint of upper chord
above a horizontal through end joints of truss.
r”—a*b+ R’ +4/8 R"—a? *—R"*+ (a2 4 R”‘)”_ .
e Y iFa 1o ) ~height
of any joint-of lower chord above the same horizontal.

R [l—sin (2 Z:’,)]: liorizontal distance from a vertical drawn

through centre of truss, to any joint of the upper chord.
a®—R R7Z?—R*4+26R'—8* | {ab—aR'\?_ , .
1(+a’,)iV s (1“'_“2 )_honzonta.l
distance from the same vertical, to any joint of the lower
chord. '

Let f = difference between vertical heights of the ends of any
member, above a horizontal span line, as before.

Let g =difference between the horizontal distances to the
ends of the same member, from a vertical through the centre of
the truss.

J?+ ¢* =length of any radial or diagonal, or the straight
length of any panel of either chord.

The truss diagram is in this case usually drawn full size, the
lengths of the members being then measured on it. But it is
preferable to find them by computation, though the process is
rather lengthy.
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(165.) Crescent Truss as wn Fig. 16 or T1.

£

Upper chord a semicircle, divided in equal panels by radials,

Here ?:'_—_900; R’:r’:%

."2_8 — total length of upper chord.

ut

v curved panel length of upper chord.

& sin (%%) = straight panel length of upper chord.

%_ cos (ISTOQ) = height of any joint of upper chord above a

horizontal span line.

s a*b'+’Ti\/a'R'=-a'b'—§+<az b’+%)’

2 1+ ita 1Fa

height of any joint of the lower chord above span line.
_‘;_ [1 — sin (%Oq)] = horizontal distance from a vertical

through centre of truss, to any joint of upper chord.

)
20— ) WE=Lhbr (@),
ite + ifa +\Tgge/ =
zontal distance from same vertical to any joint of lower chord.
Y%+ g = length of any radial, diagi.xal, or straight length
of any panel of either chord.
Here, f = difference in height of end+of the member,and ¢
= difference in their distances from the middle vertical.

(166.) T'russ as in Fig. T8 or 79.
Both chords semi-circular and concentric.
Let & = depth of truss at centre.

% = R’ = radius of upper chord.

;o aa e
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%’; = total length of upper chord.
% = curved panel length of upper chord.

& sin (%) = straight panel length of upper chord.

_';_ — d = R” = radius of lower chord.

™ (_;; - d) = total length of lower chord.
_}(% - d) = curved panel length of lower chord.

(% - d) [2 sin(%)] =straight panel length of lower chord.

The panels are all similar, and each may be divided in two tri-
angles by either diagonal.
Taking the outer triangle, its radial side = &; the chord side
o
—gsin (%), the angle included between these sides=90° —%-
The length of the diagonal may then be computed by means
of the ordinary trigonometrical formuls for an oblique-angled
triangle, having two sides and the included angle given, to find
the other side.

(167.) T'russ as in Fig. 80 or 81.

AN

Fig. 80 Fig.81

Lower chord horizontal, upper chord a parabola, whose vertex
is at its centre ; panels of equal horizontal length.
7/=length of middle vertical.

7 (1— i—gj): length of any other vertical.
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v —ig—":—= height of any joint of upper cherd above hori-
zontal span line.

' -n—a’ ~+./? = length of any diagonal, or straight length of any
panel of upper chord.

(168.) Truss as in Fig. 82 or 83.

Upper chord parabolic, vertex at centre; lower chord com
posed of two lines of equal inclination.
4 4
v — f;r = height of any joint of upper chord above hori-
zontal span line.
i

' — %?—z height of any joint of lower chord.
J =length of any vertical.

1% iz -+ ./*=length of any diagonal, or panel of upper chord.

n

(169). T'russ as wn Fig. 84 or 85.

Both chords parabolic, vertices at their centres.

7 —4—%2 = height of any joint of upper chord above horizon-
tal span line.

r — 4_79;1 = height of any joint of lower chord.

J=length of any vertical.

% % ~+/*=Ilength of any diagonal, or panel of either chord.
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FORMULAE AND TABLES.

GENERAL EXPLANATIONS.

(170.) The following formuls® and tables are required for
determining the sectional dimensions of the elementary parts of
roofs, such as rafters, ceiling joists, purlines, members of trusses,
details of joints, etc.

The formule are really derived from those formulse usually
given in works on the resistance of materials, their different ap-
pearance resulting from the fact that lengths are given in feet
instead of inches, and loads or strains are given in tons of 2,000
pounds, the numerical co-efficients being changed accordingly.
This makes the use of the formule much more simple, especially
in calculations made without the aid of logarithms.

Examples of the use of the formulse will be given in Chapter
VIII.

(171.) Kends of Strawn.

There are five principal kinds of strain which may act on the
different members of architectural and engineering structures:

1. Tension, which acts lengthwise, tending to stretch the
member affected.

2. Shearing, which tends to slide one part on the other, along
a plane of shear or separation.

a. Transverse shear acts across the fibres of wood, or in
any direction in case of other materials.

b. Longitudinal shear acts parallel with the fibres of wood
only. :

3. Compression may act in any direction, but always tends
to compress or shorten the member in that direction. If the
piece be short, it is often termed Crushing.

a. Transverse crushing acts perpendicular to the fibres of
wood only.
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b. Simple crushing acts lengthwise the fibres of wood ; in any
direction in other materials; but the member must be so short
as to give way by crushing alone.

¢. Mixed crushing and bending, when the piece is of medinm
length, giving way partly by crushing, partly by bending.

d. Simple bending, if the piece be sufficiently long to fail
entirely by bending, not by crushing.

Most columns, posts and struts belong to the two last.

4. Tramsverse Strain usually acts across the member, being
caused by a load supported by the member; the member is
usually horizontal, though it is often inclined, like a rafter. The
beam generally fails by the rupture of the lower or the crushing
of the upper fibres, at its centre.

This failure may occur in either of two ways, both of which
must be considered in any given case:

a. By Breaking, which is avoided by the use of a sufficient
factor of safety.

b. By Bending so much as to become unsightly, or to crack
plastering ; avoided by limiting the amount of deflection.

5. Torsion tends to twist off a member, as in turning a nut
with a wrench. It seldom occurs in architectural or engineering
structures, after they are once completed, and does not therefore
raquire further consideration here ; but it is of great importance
in mechanical engineering, being one of the strains most com-
monly found in machines.

(172.) These strains may be further classified as follows:

a. Direct, whose intensity is assumed to be equal over the
entire resisting area of the member; the corresponding formule
are all alike and very simple.

Tension, Shearing, Compression (short pieces).

b. Indirect, which produce other forms of strain, or are un-
equally distributed over the resisting area.

Compression (pieces of medium or great length), Transverse
Strain, Torsion.

-(173.) Notation employed.
Let A —sectional area of piece in square inches.
b — greater side of rectangular section in inches.
a = lesser side of rectangular section in inches.
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Let''s'=='side of 'square section in inches.
d —=diameter of circular section in inches.
Z — maximum rafe resistance of piece in net tons.
J =factor of safety, usnally — 5.

J =10 for spliced wooden tie-beams.
J =2.5 for resistance of woods to transverse crushing.
Formulw for Tension.

(174.) Any Form of Cross Section.
Let T = co-efficient for tension, for the given material, = ulti-
mate tensile resistance of a bar 1 inch square, in net tons. For

values, see (233).

z=AT_ maximum safe tensile strength of piece in tons.

S
A= ZTf minimum safe sectional area of piece, square inches.

an 5) Recta/ngular Cross Section.
f = maximum safe tensile strength, tons.

f minimum safe thickness, inches.

= 1—,{ — minimum safe breadth, inches.

(176.) Square Cross Section.

Z= S}T__ maximum safe strength, tons.

8= 1/ = minimum safe side, inches.

(1717.) Circular Oross Section.
7, —7m@T

=7
d = nearly 1} % ?,—1,-; — minimum safe diameter, inches.

= maximum safe strength, tons.

Bolts or Rods of Round Wrought Iron.

(178.) A. Screw Ends not enlarged. See ‘“American Archi-
tect,” No. 401. With heads, nuts and washers. Table 1.
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The/ 'maximum ‘saféstrength of the finished rod will be less
than that of the original rod, on account of being weakened by
cutting the screw threads, and this strength is therefore to be
determined by Table 1, and not by the formule of (177).

1. Maximum safe strength of rod given; required, least safe
diameter of rod, dimensions of head, nut, washers, etc.

Look for the given safe strength, or the next larger value, in
column 2 of Table 1; the required diameter of rod and the
other dimensions will be found on the same horizontal line, and
in the proper columns of the Table.

2. Diameter of rod given; required, its maximum safe
strength.

Look for given diameter in column “Diam.;” on the same
horizontal line its required maximum strength will be found in
column 2.

(179.) B. Serew Ends enlarged. Table 2.

The maximum safe strength equals that of the original rod, if
the work be properly done, and may be found by formula (177),
or more conveniently by means of Table 2, which is to be used
in the manner already explained for Table 1 (178).

The rod with enlarged ends has a nut on each end; it should
be employed whenever possible, becanse more economical than
that with ends not enlarged.

(These Tables are reprinted here by permission of Messrs.
J. R. Osgood & Co.)

Formule for Shearing.
Notation.

Let S = co-efficient for shearing for the given material, across
the fibres of wood, or in any direction in other materials, — re-
sistance to shearing of an area of one square inch in net tons.

Let S’ = co-efficient for shearing parallel with the fibres of
wood only.

A. Shearing in all cases, except parallel with fibres of wood.

(180:) Any Form of COross Section.

Z = éf-.s—= maximum safe resistance in tons.
Z

A= —Sl = minimum safe area of piece, square inches.
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(181.) ' Rectangular Cross Section.

abs . .
Z = —~ = maximum safe resistance, tons,

S
a= ZS—{— = minimum safe thickness, inches,
b= ZS'_£= minimum safe breadth, inches.
(182.) Sgquare Cross Section.

= va = maximum safe resistance, tons.
4= 4/ Z__J = minimum safe side, inches.
8

(183.) Circular Cross Section.

Z= s _ maximum safe resistance, tons.

4f
d=1; 1% %Z nearly, = minimuin safe resistance, tons.
B. Shearing parallel with fibres of wood.
(184.) Any form of Oross Section.

Z = %maximum safe resistance, tons.
A= Zs—f = minimum safe area, square inches.
(185.) Lectangular Cross Section.

= ai_}_S’ = maximum safe resistanee, tons.
a= % = minimum safe length of piece, inches.
b= éf—; = minimum safe breadth, inches.

(186.) Circular Cross Section.
7 — T8’
=7

& = nearly 151/ A—b{— = minimum safe diameter, inches.

— maximum safe resistance, tons.
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Formule for Compression.

(187.) Notation employed.

Let C = co-efficient for crushing in all cases, except across
fibres of wood, — ultimate resistance to crushing per square inch
in tons.

Let C’ = co-efficient for crushing across fibres of wood only.

Let & = factor of safety in this case only, — 2.5, except for
washers in roof trusses, then — 1.25.

Let m —length of end bearing of timbers on walls, etc.,inches.

Let b = horizontal breadth or thickness of timbers, inches.

Let W = total load on timber, at centre or uniform, tons.

Let ¢ = distance between centres of joists, rafters, etc., inches.

Let L = length of timbers in feet.

Let w — total weight of one square foot of floor, roof, etc.,
and its maximum load, in tons.

Let A — sectional or solid area of a column, square inches.

Let /=6 for cast-iron columns, =4 for those of wrought
iron ; =5 for wooden struts, ete.; — 8 to 10 for masonry piers.

Let & —external diameter of a hollow cylindrical column,
inches.

Let Rg = radius of gyration of cross section of an iron column
or strut, inches. (68.)

Let P — maximum safe compression or load on column or stru.,
per square inch of section, in tons.

A. Simple Crushing.

Length of piece limited to a few times the least dimension of
its cross section.

a. Crushing n all cases, except across fibres of wood.

(188.) .Any Form of Cross Section.
C

Z= —A7- = maximum safe resistance, tons.
A= ‘%fz minimum safe sectional area, square inches.

(189.) Rectangular Cross Section.

abC
Z = — — maximum safe resistance, tons.

S
—'{ minimum safe thickness, inches.
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= —C—‘Z minimum safe breadth, inches.

(190.) Sguare Cross Section.

7z=¥C
S

s =4 —ZG—’ = minimum safe side, inches.

— maximum safe resistance, tons.

(191.) Circular Cross Section.

Z= Ll fC — maximum safe resistance, tons.

@ = nearly 1} 4/ _(_)_.3 = minimum safe diameter, inches.

b. COrushing across fibres of wood only.
Let % = factor of safety for this case.

(192.) Any Form of Cross Section.

Z—= - = maximum safe resistance, tons.

A= %‘- = minimum safe sectional area, square inches.

(193.) Rectangular Section or Area.
abC’

Z= T_manmnm safe resistance, tons.
a= (Zy];; = minimum safe thickness, or length of area, inches.
b= -(%k—_ minimum safe breadth, inches.

(194.) Square Cross Section, or Area.

Z= LAY = maximum safe resistance, tons.

k
s =4 -%—]f —minimum safe side, inches.

(195.) Circular Section or Area.

/
7= ”ZZC — maximum safe resistance, tons.

d =nearly 1} Z,’f = minimum safe diameter, inches.
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(196.) End-Bearing of Beam, Girder, etc.
m=rr = minimum safe length of bearing, inches.

Also apply formula (189) to determine safe resistance of wall
to crushing, taking @ = m just found by (196). Z in formula
(189) must be the actual pressure of the end of the timber on the
wall, not more than one-half W in (196).

(197.) End-Bearing of Joists, Rafters, etc., 2 inches thick.
we Lk
48C’

B. Mized Crushing and Bending.

Pieces of medium length. The same formule are now gen-
erally employed as in case of simple bending. (C.)

C. Simple Bending. Long Colwmns, Struts, ete.

The formulee are much more complex than those for A and B,
being partly theoretical, but principally based on the results of
experiments on columns.

(198.) Solid Columns, Struts, etc.

These are usnally of wood, those of metal being either hollow,
or built up of bars and plates, riveted together to secure strength
and economy of material.

The maximum safe or working load Z is usually given to ob-
tain the least safe dimensions of the cross section of the column.

There are two general modes of procedure:

=minimum safe end-bearing, inches.

a. By Computation.

(199.) Assume dimensions of cross section, compute by the
proper formula the corresponding value of P — maximum safe
compression per square inch of sectional area; then Z—=PA =
total maximum safe load or compression on the column.

Should this differ materially from the given value of Z, repeat
the process until a section is found which gives practically the
same value,

b. By the use of Graphical Tables, as explained heregfter.
(200.) Square Posts of White Oak.

P .._f ( 3.00 17 = maximum safe load per square inch.
14576 _)
&




FORMUL.E FOR WOODEN COLUMNS. 109

Square Posts of White Pine.

P= 2.5 15 — maximum safe load per sq. inck. (203.)
f(1+.576—8,

(201.) Rectangular Posts of White Pine.

Let @ = thickness or least side of post, inches.

Let & — breadth or greater side, inches.

1. Given, @, L, f and Z; required, .

By (200), or more conveniently by (203), determine maximum
safe strength of a square column, whose side s = a ; call this W".

al

Then b = W

2. QGiven, b, L, f and Z; required, a.

Assume a value of @, and proceed, as in the last case, to deter-
mine the greater side 4; should this differ materially from the
given value of 3, repeat the process.

(202.) Rectangular Posts of White Oak.
Proceed as in (201), but taking /' — 4} instead of 5. .

(208.) Graphical Table 3, for Square Posts of White Pine.

This table is computed by means of the formula for square
Ppine posts (200), using a factor of safety — 5.

1. Given, L, maximum safe load Z ; required, safe side s.

Look for intersection of a vertical through Z, with a horizontal
through L. Should this fall on a curve, the corresponding num-
ber at the end of the curve will be the required side &; if it falls
between two curves, estimate value of the side to nearest } inch,
according to relative distance of the point from the two nearest
curves between which it lies. It will usually be necessary to take
the next larger side in even inches, since dimensions of timber
are usually in multiples of 2 inches.

(204.) 2. Given, L, and side s; required, maximum safe
load Z.

Look for intersection of a horizontal through L, with the curve
representing s; a vertical through this intersection nges safe
load Z at top of the table.

(205.) Columns of Cast Iron.
Section a solid cross or ring of metal, not built up.

= required breadth of column.
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a. Hollow Oylindrical.

P= ———Lﬁ = maximum safe load per square inch.
F (1+ 36 ?)

b. Hollow Square.

P= _i.L_T: = waximum safe load per square inch.
f(l +.27 ?’)

c. Star or Cross Columms.

P= ————40—]:—- —maximum safe load per sq. in., tons,
7 (1 +108.3

(208.) Mode of using preceding Formulem.

Given Z, f, L and d, s or b; required, the thickness of metal.

By proper formula, determine P; then Z < P — minimum
safe sectional area in square inches—= A. Compute total area of
the section of the column — A’; then A’ — A —area of hollow.
Compute diameter or side of hollow, @’ or s. Then § (d—d')or
$ (8 — &) = required thickness of metal.

For star columns, Z <+ P = A = area of section.

Then ¢ = b— 4 — A =thickness of the metal.

Cast iron is now seldom used in the construction of roofs.

(207.) Colummns or Struts of Wrought Iron.

Columns or struts composed of bars or beams riveted together.

The following formule have been much used in practice,
though the tables of the Pencoyd Iron Co. are preferable.

Let Rg = radius of gyration of cross section in inches.

a. Both ends of columns or strut flat.

P= ———20—L = maximum safe load per sq. inch, tons.
1+4-.004 _z)
f( + R4
5. One end flat, the other pin-jointed.
P= 20 17\ = maximum safe load per sq. inch, tons.
7 (1 + .006_)
R¢’
¢. Both ends pin-jointed.
P= ——-—20—1..,— = maximum safe load per sq. inch, tons.
f (1 n .008_R7)
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(208.) Mode of using the preceding Formule.
Given, L, Z and f (usually = 4 for wrought-iron columns).

Assume a section for the column and determine the least
value of Rg for that section, for an axis passing through the
centre of gravity of the column or strut. This may usually be
done by the aid of the values of Rg for beam sections, given in
Carnegie’s Pocket Book, etc., or by the formulse of (73), and the
general formula of reduction (70).

(209.) Graphical Table No. 4.

This is empirical, being based on the results of expenments on
different forms of section of wrought-iron beams made by the
Pencoyd Iron Co. It offers the latest and best mode of deter-
mining the strengths of sections of wrought-iron struis, vrin-
cipals, ete.*

The horizontal scale at top represents the values of L—;—Bg,
being in feet, Rg in inches; the vertical scale at the left gives
the corresponding safe comprewon or load per square inch of the
metal cross section.

There are four curves, corresponding: 1, to struts with both
ends rounded or hemispherical ; 2, ends hinged or pin-jointed ;
3, ends flat; 4, ends fixed.

Given, L and Z; required, the dimensions of one or more I-
beams, cha.nnels, T or angle bars, required to safely resist the
compression Z.

Assume a beam of the required form of section, and find the
corresponding value of Rg and area of cross section A, from any
of the Iron Mill Books.

Look for intersection of a vertical through L-+Rg, with the
curve corresponding to the manner in which the ends of the
member are attached to adjacent members; a horizontal through
this intersection gives the maximum safe compression P per
square inch of the section, at the left side of the table. Then
PA — safe resistance of the assumed beam.

Should PA differ materially from the given value of Z, repeat
the process, assuming a larger or smaller beam, as required. It
is usually necessary to take the lightest or most economical
beam.

* Published by permission of Messrs. A. & P. Roberts & Co.
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If the beam or strut be free to give way in either direction,
the smallest value of the Rg for the section must be taken.

If a member be composed of two I-beams, channels, ete., placed
gide by side and laced together by diagonal bars, the minimum
distance between the centres of gravity of the two beams must
not be less than twice the value of Rg for one beam, at right
angles to this distance.

The maximum distance between lacing points on either beam
must not exceed (length of the member) (least Rg for one beam)
=+ (least Rg for the compound member).

Formulm for Transverse Strain.

(210.) Ewmplanations.

The beam or piece may fall in either of two ways, both of
which must be considered. Both kinds of formuls must be ap-
plied, and the safest result taken as the true one.

a. By Breaking, the beam fails by giving way at the
centre.

b. By Bending, the beam fails by deflecting too much.

(211.) Notation.

Let W — total load supported by the beam or piece, in tons

Let L = clear length of the piece or beam, in feet.

Let I — moment of inertia of cross section of beam. (66.)

Let » = maximum safe deflection ver foot of length of beam,
usually = .03 inch.

Let b = horizontal breadth or thickness of rectangular section
in inches.

Let d = depth of rectangular section, inches.

Let f = factor of safety, usually = 5.

Let B = co-efficient for breaking for the given material, —
centre breaking load of bar 1 inch square, 12 inches long between
sapports of ends.

Let E = co-efficient for bending for the material = its modulus
of elasticity < 2,000.

Let &’ = vertical distance from neutral axis of section to most
distant fibre of section, in inches.

Let M = maximum bending moment acting on the beam,
usually found graphically. (50.)
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A. Beam supported at Ends, Load concentrated at Centre.
(212.)  Cross Section not rectangular.

BREAKING. BENDING.
__6BI w=Elr
7 D

_Wifa [= 36WL’
6B
_ 6BI ~
L_Wfd’ L= ‘/36W
(218.) Cross Section rectangular, sclid.
BREAKING. BENDING.
Bba? _Ebra®
W‘T V=t
_VWfL p—432WL?
B& F/rd’
d= ‘/WfL de 432WL’
Bb .
_Bba? L— d’
WS TV 439W

B.  Beam supported at ends, load uniform.
(214.) Section not rectangular.

BREAKING. BENDING.
_12BI W= El»
Lfa’ 22,5132
_WfLa 1=22.5WL?
“12B ~ Er
12BI El»
I“Wﬁ I_‘_ 22.5W
(215.) Oross Section rectangular, solid.
BREAKING. BENDING.
JL 27012
p=WfL p=270WL?
2Bd? Erd’
d= W7L - d= */9T0WL
2Bb Ebr

__2Bbad? = /Ebrd®
L= W7 L= 2T0W
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C. Beam supported. at ends, load arranged in any manner.

Let M = maximum bending moment in foot-tons, acting any-
where along the beam ; usually determined graphically. (53),(55.)

Two sets of formuls are given for bending, one correspond-
ing to a load concentrated at the centre, as in A ; the other, to
one uniformly distributed, as in B; the true value lies between
the limiting values given by the two formule, and is to be
assumed in accordance with the arrangement of the loading
along the beam, approaching either limiting value, as the arrange-
ment of the loading approaches the mode corresponding to that
limiting value.

The formulee for breaking give true values for any manner of
loading.

(216.) Cross Section not rectangular.

BREAKING. BENDING.
Load Concentrated. Load Uniform.
_1.5BI _ EI» _ EI»
M= Jja M_144L M=io1
1= Mfd 1—144ML 1 180ML
T 1.5B ~ Er Er
_ EI» _ ElIr
L=rzm L=1oom
(217.)  Cross Section rectangular, solid.
BREAKING. BENDING.
Load Conobo:tr:ted. Loadlgnlfom.
__Bbd __Ebrd __ Ebra®
M= if M={7esL M =gte0L
_4Myf p—1728ML p—2160ML
“Bad* ~ Erd® T Erd®
=4 /AMf _ 2 /1798ML _2/2160ML
=V B a=Y g =V g,
1, — Ebra® — Ebrd®
T 1728M T 2160M

Formulm for Floor and Ceiling Joists, Rafters of
Iron or Wood, ete.

Let ¢ = distance between centres of joists, in inches.
Let w = weight of one square foot of floor or roof and its
maximum load, in tons.
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4’ for wrought iron I or channel beams=d-+-2.
d’ for angle of T bars can be found in the pocket-books. (211.)

(218.) COross Section not rectangular. Of Iron.

BREAKING.
w=144BI
I qud'
o J44BI
Lwfad
1=
144B

1y TEL

BENDING.
e El»
1.875¢L®
o= El»
1.875wl?

I=1.875w¢:L'
Er

'/ Elr

L= 1.875w¢

(219.) Oross Section rectangular, solid. Of Wood.

BREAKING.
w=24Bb
7
__24Bbd?
T wfI?
p=wef L
24Ba?
ad= wg L
24Bb

L=y %DB;,d,

[

BENDING.
= Ebrd®
22.5¢1*
o= Ebrd®
22.5wl?
__22.5cwl?

Erd®
de I”/22.%§:L'
. l’/ Ebrd®
L= 22.5cw

Formula for Sheathing of Roofs. Wooden.
(220.) Sheathing supported by Common Rafiers.

115

Let w=weight of sheathing, covering, and maximum load, per

|
! Let c=distance between centres of rafters, inches.
|

square foot, tons.

Let ¢=thickness of sheathing, in inches.

o 3436B2
7e

4/ wf
t_‘/3456B

),

=V =

__T6.8Ere
w=—
8
o= / 76.3:%#

~ 5%
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(221.) Sheathing supported by Purlines; no Rafters.
Let L=distance between centres of purlines, in feet.

_24B# _Erp
Fa% T 92512

_./2%AB¢ _ I'/ Erf®
L= Jw L= 22.5w
_J I _ /22500
=/ i/ B

24B

w w

For roofs, w is to be taken — weight of sheathing and cover-
ing - snow load or wind pressure, whichever may be the greater.
This usually gives a small excess of strength.

(222.) Formulam for Common Rafters.

Take w — weight per square foot in tons, of covering, sheath-
ing and rafters, 4+ maximum snow load or wind pressure (213),
then apply formuls for joists, ete. (218), (219.)

(228.) Formulm for Purlines.

Let w = total weight of one square foot of roof and its maxi-
mum load in tons, as in (222).

A —area of roof actually supported by the purline, square feet.

The W — Aw — total load on purline in tons.

Apply formule for beams supported at each end under a uni-
form load, substituting Aw for W. (214), (215.)

© Mized or Compound Strains.

The member or piece is acted upon by two or more kinds of
strain at the same time. Consequently, its dimensions must be
sufficient to enable it to safely resist all these strains.

(224.) Beam under Transverse Strain and Shearing.

Any beam supported at each end,and loaded, is subject to both
transverse strain and shearing. The beam is generally of uniform
section from end to end.

1. Determine by methods of Chapter 1 (50) to (57), the maxi-
mum bending moment, M, in foot-tons acting anywhere along
the beam ; find corresponding dimensions of section by (216) or

(217).
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2. Determine by (50) to (57) the transverse shear SH, acting at or
adjacent to the location of M maximum ; compute ‘the sectional
area required to safely resist this shear by (180).

3. Increase the dimensions of the section in any way as found
by 1, by the area found by 2.

This value of the shear is evidently less than the maximum

shear acting anywhere along the beam ; if the loading be con-
" tinuous, 4.c., not concentrated at different points, this shear will
=0, and the dimensions of the beam found by 1 are sufficient
to resist both bending moment and shear.

(225.) Member subject to both Longitudinal Compression and
to Transverse Strain.

This frequently occurs in the principal of a roof, especially
when the common rafters are omitted, and several purlines in
each panel directly support the sheathing.

1. Determine the section of the member required to resist the
compression by (205) or (206), if it be of cast iron; by (207), 208)
or (209), if it be of wrought iron; by (200) or (203), if of white
pine ; by (202) or (204), if of white oak.

Compute by (69), (70), (71) or (73), the required moment of
inertia I corresponding to the section just found for compres-
sion, which call I".

2. By formule of (216), compute the moment of inertia I of a
section required to safely resist the transverse strain only, which
call I”.

3. Design a new section, whose value for I =1"4I".

(226.) Member subject to Tension and Transverse Strain.

This occurs in the lower chord of a roof truss, when it supports
a ceiling also, ete.

1. Determine the maximum bending moment M maximum,
and by (216) or (217), compute the sectional dimensions required
to safely resist this strain alone.

Or, these dimensions may be directly computed by (214) or
(215), if the load be uniform.

2. Determine by (174) the additional area A required to safely
resist the tension alone.

3. Design a new section similar to that determined by 1, but
whose area is increased by A.



118 FORMULX FOR COMPOUND STRAINS.

(221.) Inolined Beams Supporting Transverse Forces or
Loads.

This occurs in rafters, in principals and members of upper
chords, which support purlines, etc.

The resultant of all the forces acting on the beam may be
resolved by (32) into two components.

1. Parallel component, which produces compression lengthwise
the member. )

2. Normal component, producing transverse strain in the
member.

This is then to be solved by (225).

(228.) Wooden Keys or Joggles.

These should have their fibres parallel to those of the timbers
in which they are inserted, because they are just as strong, and
the key does not then loosen by shrinkage.

The key is then subject to longitudinal shear and to crushing.
Its middle plane usually coincides with the plane of the joint
between the timbers.

In order to make the key equally safe against crushing and
shearing, as well as to avoid crushing the timbers adjacent to the
ends of the key, employ the following proportions: Keys are
usually made from 2-inch plank, for convenience.

a. For White Oak Keys in White Oak Timbers.

1. Make length of key 3} times its depth or thickness.

2. Make least distance between keys or key and end of timber
the same.

b. For White Oak Keys in White Pine Timbers.

1. Make length of key 2} times its depth or thickness.

2. Make least distance between two keys or key and end of
timber 6} times its depth or thickness.

For either (a) or (b), safe resistance of key to shearing —.09 X
length X breadth in inches.

(229.) Revets of Wrought Iron.

A rivet may give way in either of two ways:

1. By shearing off the rivet tramsversely.

Let Z — maximum safe resistance of one rivet to shear in tons.
Let ¢t—thickness of plate connected by rivet; in case the
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plates are of different thicknesses, then ¢=—thickness of the
thinner.

Let d = diameter of rivet in inches.

Z = 2.945 d* — maximum safe resistance in tons.

d = 583 ¥Z — minimum safe diameter of rivet.

The diameter of the rivet should always be more than the
thickness of the thicker plate.

2. By crushing the edge of plate or side of rivet.

= ,7% — minimum thickness of plate, inches.

d—=Z--"T .5t = minimum diameter of rivet, inches.

Determine & or Z for both crushing and shearing, and take
the safest result. (See Carnegie’s Pocket Book, page 135.)

The least diameter between centres of rivets should not be less
than 3 diameters, if possible.

The least distance from centre of rivet to edge of plate should
at least be 1} diameters.

(230.) Wrought-Iron Joint Pins.

Pins are cylindrical, and are employed for connecting the
members of wrought-iron trusses.

They may fail by transverse shearing, by crushing the edge of
the plate against which they bear, or by breaking transversely.

a. Shearing at a single section.
Z = 2.945d? — maximum safe resistance to shearing.

d = .583 ¥Z — minimum safe diameter of pin.

b. Crushing of pin or edge of supporting plate.

Let ¢ = thickness of plate or bar considered, in inches.

Z = 6.25¢d = maximum safe pressure of pin against bar or

plate, tons.
d= é%?t — minimum safe diameter of pin, inches.
t= 3-?5(—1 = minimum thickness of plate or bar, inches.

¢. Breaking of pins.

The maximum safe tensile or compressile strain in the fibres of
the pin most distant from its axis may be taken—"7.5 tons for
roofs, per square inch.
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Let M’ = maximum bending moment in nck-tons, found to act
anywhere along the pin. (50) to (57.)

s o—
d= 1-1071/ M’ —minimum safe diameter of pin.

M’ = .737@® = maximum safe bending moment, inch-tons.

The three sets of formulee must be applied in any given case,
taking the safest result, so as to ensure the safety of the pin.

We also have the following approximate rules, which are
generally safe and are more easily applied :

1. For eye-bars of rectangular section, .75 X breadth of bar =
least diameter of pin.

2. For round eye-bars, 1.5 X diameter of bar = least diameter
of pin.

(231.) Bars and Eyes for Eyebars and Pin Joints.

Let b = breadth and ¢ = thickness of a rectangular bar. Then
b should not be greater than 67, or less than 4.

Then .75b = approximate diameter of pin.

Then .85 = least breadth of metal on each side of eye.

"End of eye semicircular, connected with bar by long curves.

Let d = diameter of a round eye-bar.

1.5d = approximate diameter of pin.

Eye to be of rectangular crosssection ; width at eye on each
side of pin = d, thickness = } d.
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TABLE OF AVERAGE CO-EFFICIENTS FOR MATERIALS.*

MATERIAL. T. 8. 8 C. E B.
Ash, white.............. 6.25| 8.00{ 0.30 | 8.00| 1.18 750. | 264
Beech, American... ..... 450| 250| .... | 415] .... 690. | .204
Birch, American........ 600 2.76)| 0.84 | 4.25] 0.90 690. | .27
CedaT. v ceunenenrninins 450(...../0.70 | 2.80| 0.98 500. | .200
Cherry........ cererenaas . 1.47(....| 840|1.23 615. | .260
Chestnut..... ceereeniaan 475| 0.76( 0.85 | 2.50 0.51 600. | 200
Elm...oooertiiveinennnn. 5.00| 1.69] 0.70 | 4.40| .... 625. | .228
Fir, New England....... 500(... .|0.84| 3.40| 0.60 550. | 1758
UM....oo0nn ceeeaaseen 6.7 295 ... 840 .... 700. | .208
Hemlock................ 4.00| 1.84|0.24 | 2.75| 0.80 600. | .20
Hickory ..... .. ...... 600 800(....| 460] 1.70 650. 840
Larch, kmatac...... 425 1.25]| 0.65 [ 2.25| 0.65 600. 211
Locust .......eo000neeen 7.00| 8.50|0.57 | 5.00| 1.87 750, | .8u8
Mahogany .............. 650|..... ... | 875 1.48 720. | .250
l;:le, rock.............] 5.00| 300(0.80| 3.00| 1.12 760. | .250
5.75| 425|0.85 | 4.00| 2.25 900. | .280
Oak red.......unt. 450|...../0.89 | 800 .... 625, | .2s8
Oak, i 5.50| 2.15|0.40 | 3.50( 1.38 700. { .800
Pine, Georgia 776 2.50( 0.81 | 4.25|1.02 900. | .80
Pine, pitch 475| 2.50(0.26| 400|....7[ 750. | .250
Pine, red... 425|..... oo | 8001 ... 700. | .226
Pine, white........... 4.00| 1.25)|0.25| 250| 0.40 650. | .200
Pine, yellow 500 219[{0.25| 275| 0.45 700. | .200
Poplar, yellow 850| 2.20|0.20 | 250 0.46 625. | .210
PruCe....cccceeenees vo..] 6.00| 1.67]0.25( 3.00| 0.40 700. | .220
%;camore..... .......... 57 |.....] ... | 8761 .... 600. | .215
alnut, black.......... 4,50 1.81 . 8.80( 1.07 750. | .203
................... 148/..... 1425 .... | 8800. | .098
Granite, average........ 029|.....0 .. 680 .... [ ..... .051
Limestone, average......| 0.68]..... . 430 8400. | .044
Marble, average.........| 085|..... 440 ... | ... .040
Sandstone, average...... 008 ..c0] ouu | 288 .0ii | .onln 029
Slate, average........... 400, ....0} ... | 450 . 7000. | .1562
Aluminum, bronze...... 86.45| ....].... 6525 5000.
Brass, cast.......coe0.en 900(18.50| .... (8275 .... | 4475. | .64
Bronze....... ...ccuu.. 17.50(.....] .... [6000| .... | B5000. |1.480
Bronze, phosphor........: 25.001 1850 .... |.....| «... | 7000. |.....
Copper, cast............. 1095 .....] .... |47.50| .... | 75800. |.....
Iron, cast, average...... 8.0{11.00] .... |48.00] .... | T725. |[1.025
Iron, cast, best...........| 18.50|14.00( .... (6800 .... | 11500. [1.250
Tron, Pig....covvvveennn. 700} .....{ .... |40.00( ... | 6500, |1..00
Iron, wrought, avorago.. 25.00122.50| .... | 28.50| .... | 18000. [ 1.200
Iron, wrought best......[88.00|.....] .... |..... . | 14500. | 1.800
Lead.cast ..... .......| 095].....]....| 885 450. | .....
Steel, cast...... ceveees..| 5200|4000 .... |7500 15000. | 2.860
Steel., hard........ FUUUURE I, 1.1 ) I R I I 18600. | 2.228
Steel, mild.... ......... 80.00|....-| . vev o] ov.. | 14500, | 1466
Steel, wrought, nvemge.. 52.00 | 84.50 4500 .... | 14500. | 2.820
Zinc, cast. ......... ... 1.80... . 2000 .... | 675. | .208

*This table was carefully revised in 1887 to accord with the results of recent experi-
ments, th; vanl.uu of the co-eficients somewhat different from those used in

Chapters VII




CHAPTER VIIL

DETERMINATION OF
SECTIONAL DIMENSIONS OF RAFTERS, PURLINES
AND TRUSS MEMBERS.

We will here consider two examples, which will sufficiently
explain the proper mode of procedure.

1. A roof principally constructed of wood.

2. A roof entirely constructed of wrought iron.

A. WOODEN ROOF¥F.

Take, as an example, the roof already studied in problem 1,
Chapter V. (117 to 125).

(283.) Computation of Lengths of Truss Members.

See Chapter VI. (150, 152).

Span between centres of end joints A and O (Fig. 37), 80 feet.
Rise H G, 15 feet. Number of panels, 8.

1. Principals. Total length of principal = #4074 15* =
42.712 feet. Then 42.72 + 4 =10.68 feet = 10 feet 84 inches
very nearly = joint length of members forming principals.

2. Tiebeam. Joint length = 80—+ 8 = 10 feet.

8. Vertical Ttes.

Tie 6 7. Joint length = rise = 15 feet.

Tie 4 5. Joint length = 3 X 15 <+ 4 = 11.25 feet = 11 feet 3
inches.

Tie 23. Joint length=1 X 15--2="17.5 feet =7 feet 6 inches.

4. Struts.

Strut 1 2. This is the hypothenuse of a right-angled triangle,
the altitude of B above AO being 8.75 feet. Hence, its joint
length = 4/3.75% 4- 10* = 10.68 feet as for principals.

Strut 3 4. Joint length = 47.5° 4 10* = 12.5 feet.

Strut 5 6. Joint length = #11.25* 4 10° = 15.052 feet = 15
feet 0§ inches very nearly.

|
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(234.) Common Rafters. (219), (227.)

These are subject to a transverse strain, like floor joists, and
also to a longitudinal compression like a strut, thus making it
very difficult to accurately determine the joint effect of the two
kinds of strain, and the corresponding depth of the rafters.

For practical purposes it is wusually sufficient to consider the
rafter as subject to transverse strain only, caused by a load per
square foot of the roof surface, equal to the permanent weight of
this surface, plus the snow load or wind pressure, whichever of
the last two may be greatest.

 Then compute the least safe depth of the rafter by the fol-
lowing formule, taking the larger of the two results. Both for-
mulee must be applied, because the rafter may fail either by
breaking, or by bending too much. (219.)

1. For Resistance to Breaking.

i=4/ ‘;i’bbi — depth in inches.
2. For Resistance to Bending.
8
a=y 23200l L7 — depth in inches.

In these formule (219), (211), (117), (118):

w = weight of 1 square foot of roof surface and its greatest
load, either snow or wind pressure, in net tons, = 5.5 - 23.6 lbs.
= .01455 tons.

¢ = distance between centres of rafters in inches = 24.

f = factor of safety, = 5.

L = length of rafter between centres of purlines in feet =
10.68.

b = breadth or thickness of rafter, usually 2 inches = 2.

d = depth of rafter in inches.

7 = maXimum permissible deflection or sag of rafter in inches
per foot of its length, usually .03.

B = co-efficient for material of rafter, for breaking = .23.

E = co-efficient for bending for the material = 750. (232.)

Substituting these values in the formule and reducing :

1. Breaking.

__./.01455 X 24 X 5 % 10.68*
d_‘/ 24 X .23 X 2

= 4.25 inches.




124 DIMENSIONS OF RAFTERS AND PURLINES.
2. Bending.
_ /235 X .01455 X 24 X 10.68° __ .
d—‘/ 7505 2 X 03 = 5.97 inches.
The rafters should, therefore, be 2 X 6 inches. These compu-

tations aro most readily performed by the aid of a good 5-place
table of logarithms (Newcomb’s).

(235.) 2. Purlines.

The purlines are only subject to transverse strain, but their
sides not being vertical, their resistance to a load acting vertically is
less, for rectangular purlines of ordinary length, than if their
sides were vertical, like those of girders. But in roofs of ordi-
nary inclination, the wind pressure is greater than the snow
load per square foot of roof surface, and the resultant of the
permanent load and wind pressure being nearly parallel to the
middle plane of the purline, the error here noted is principally
eliminated.

The breadth of the purline is generally assumed, and its depth
(at right angles to the roof surface) is then computed by the
following formulee, taking the greater result. (215), (224.)

1. Resistance to Breaking.

d=4 A;%{L = depth in inches.

2. Resistance to Bending.
'/ 270 Aw I? o
= —_—_— = I .
d=4 o depth in inches

In these formule :-

A =area of roof surface in square feet actually supported by
one purline, = distance between centres of trusses X distance
between centres of purlines, here = 10.68 X 16 = 171 square
feet nearly. (117.)

L = distance between centres of trusses, here = 16 feet.

b = breadth of purline, say 8 inches.

The other letters have the same signification and value as
in (234).

Substituting these values and reducing :

1. Breaking.

_/TTI X 01455 X B X 16 _ 4, o :
d= ‘/ 55 23 8 = 7.35 inches.
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2. Bending.

‘8
gt/ 2O X ITT X OT4BE X 16 _ g gz 0

750. X 8 X .03
Hence the purline should be 8 X 10 deep.

v (286.) 3. Principals and Struts.

These are here only subject to longitudinal compression. The
most convenient formula for square posts or struts of white pine,
under compression, is that of Col. C. Shaler Smith, put in the
following form :

W= 258 = maximum safe compression or load

7 (1 + .576_:;-

on post in net tons. (200.)

Also, 8 = side of square post in inches.

L =length of post in feet.

J = factor of safety, usually 5.

This formula may also take the following form, when re-
quired for computing the sides of the strut, the load or com-
pression W being given.

& = ‘/ W= #1.152 WL+ W? = side in inches.

(2387.) Graphical Table. (202.)

Since the use of these formule is rather tedious in practice,
they have been embodied in a graphical table, devised by the
writer and used in his classes for several years, though now pub-
lished for the first time. (See Table 3.)

The figures at top of table are safe loads or compressile strains
in net tons, with a factor of safety of 5; those at the left side are
lengths of posts or struts in feet ; while the figures at upper ends
of carved lines are the sides of posts in inches.

(238.) 7o find Side of square Post or Strut.
Its length and maximum load or compression being given.
_ Look for intersection of a horizontal through the given length,
at left, with a vertical through the given compression, at top;
if this intersection falls on a curve, the corresponding num-
ber at the end of this curve will be the required side of
post or strut; if between two curves, estimate value of side to
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nearest } inch, according tc the relative normal distance of the
intersection from the two curves, between which it lies. (203.)

For example, let W —238 tons; L—=16 feet; required s. A
horizontal through 16 and vertical through 38 intersect midway
between the two curves 12 and 13. Hence, the post must be at
least 12§ inches square.

(289.) To find sectronal Dimensions of rectangular Post. (201.)

Its length L and load W being given.

Let a=least side of post in inches,

Let b=greater side of post in inches.

There may be two different cases.

A. Given ¢, W and L; required .

On the graphical table find intersection of a horizontal through
L with the curve representing a; a vertical through this point
gives at the top the safe strength of a square post, whose side is
a; call this W

Then b=a-\vv‘;=required size of post.

B. Given b, W and L; required a.

Assume a value for @ and proceed as before to determine the
corresponding value for b; should this differ materially from the
given value of b, assume a new value for @ and proceed as before,
continuing the approximation until a value is obtained for b,
equal to or slightly smaller than the given one. (201.)

For example: given, W 40 tons, L 16 feet, a = 12 inches; re-
quired . We find W' to be 35.5 tons, b to be 13.52 inches.
The post should be 12X 14 inches.

Also, let W be 35 tons, L. 18 feet, b 16 inches; required a.
Making a=10 inches, $=20.0 inches; or if @ be 12 inches, b=
13.4 inches. The post should, therefore, be 12X 14 inches.

(240.) Application to Problem 1. (See Strain Sheet.)

Principal. The greatest compression found in any member
of the principal=26.10 tons, acting on X1. Length of X1=
10.68 feet. By (238), we find that this member must be at least
94 inches square. If it be made 8 inches wide, its depth by
(239) must be 13.05 inches, so that the principal must either be
8 14 deep or 10X 10, the latter being preferable, because stiffer
and cheaper.
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For convenience in construction, the entire principal is usually
made of the same dimensions thronghout, so that it is unneces-
sary to find those of X2, X4 and X6, because they are the same
as Tor X1. The tie-beam always has the same horizontal breadth
as the principal, for sake of appearance, and this is usually true
of the struts also, which look better if their edges are flush with
those of the upper and lower chords.

Strut 1 2. Maximum compression, 4.56 tons; length, 10.68
feet; breadth, 10 inches, same as for principal. By (239) we
find this strut must be 6X10 inches.

Strut 34. Maximum compression, 5.84 tons; length, 12.5 feet
(measured on truss diagram, Fig. 21); breadth, 10 inches. By
(239) this must also be 6 <10 inches.

Strut 5 6. Compression, 6.40 tons; length, 15.10 feet. A tim-
ber 610 would not be quite sufficient, and it should be 8 X 10.

(241) 4. Tie-Beam.

The breadth of tie-beam always being that of the principals,
its depth may be found by the following formula: (175).

d=,_%'};—=least safe depth in inches.

Let Z=maximum tensile strain on tie-beam in tons.

J=factor of safety=10 in this case, to allow for splicing tie-
beam, cutting fibres by indents, bolt-holes, ete. (173.)

T=4 tons for white pine. (232.) ‘

b=breadth of tie-beam in inches, here 10 inches.

Here Z=strain on Y1=24.42 tons.

Substituting values and reducing : d= 24.42X10

4—X10— =6.11 inches.

A timber 6 X10 would do, if of good quality and carefully
spliced, which is best done by building it up of five 2 6 planks,
set edgewise and firmly spiked and bolted together, breaking
joints. For convenience in construction, the tie-beam should
have the same dimensions throughout, although the strains on
Y3 and Y5 are smaller. :

(242.) 5. Wrought-Iron Rods. (178), (179.)
The diameters of rods and dimensions of heads, nuts, washers,
etc., may be most conveniently found by means of Table 1 or 2.*

* Reprinted here by permission of Mesars. J. R. Osgood & Co.
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The'origin 'of ‘the formulse on which the tables are based, with
the mode of their construction, is fully explained in an essay by
the writer, published in No. 401 of the American Architect for
September 1, 1883.

Screw threads are usually cut on the ends of bolts and short
rods, 8o as to reduce theirsolid diameter, and their tensile strength
as well, which will only be that due to the uncut metal between
the bases of the threads. Longer rods, especially those used in
roof and bridge trusses, usually have their ends enlarged before
the threads are cut, 8o as to make the screw ends as strong as the
rod itself, thus producing a considerable saving in material and
cost.

Rods with ends not enlarged may have a head forged on one
end, or nuts on both ends, which is often more convenient in
setting up the truss, and avoids the risk of a bad weld. Nuts
are always placed on both ends of rods having enlarged ends.

The number of threads per inch, and the proportions of heads
and nuts, are in accordance with the standard of the Franklin
Institute, more generally adopted in the United States than any
other, the different dimensions of some manufacturers being also
given.

‘Washers are usually made of cast iron, are circular, square or
rectangular, and their thickness should always be the same as
that of the corresponding nuts and rod-ends.

(243.) Mode of using the Tables. (178), (179.)

A. To determine dimensions for a rod required to safely resist
a given tensile strain : Look in column 3 of the table for the
given strain, or the next larger one; on the same horizontal line
will be found the diameter of the rod in the first column, and
the dimensions of ends, nuts and washers in the proper columns.

B. To determine the maximum safe tensile strength of a rod:
Look for the given diameter in the first column; its maximum
safe tensile strength will be found on the same line in the third
column.

(244.) Application to Problem 1.

We will employ rods with enlarged ends, because cheaper.
Table 2.

Tie 2 3. Maximum strain = 1.67 tons. (Strain sheet.) (125.)
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Looking in the table we do not find this strain, but the next
larger ome is 1.86 tons, corresponding to a rod }} inch diame-
ter. The diameter of enlarged end — §}inch; nuts, § thick
and 14§ square; washers, = §} thick and 2§} diameter, as
circular washers are generally used, and they press on white
pine timber.

Tt 4 5. Strain, 8.17 tons. Similarly, diameter rod }§ inch;
of enlarged end, 13 inches; nuts, 18 X144 inches; washers,
14 X 3§} inches diameter.

Tt 67. Strain, 7.87 tons. Rod, 1} inches diameter ; end, 1§}
inches; nuts, 1§§X 2} inches; washers, 1§§X6}] diameter, or
5% square.

Since this rod is rather large, it would usually be better to re-
place it by two rods. Then 7.87 = 2= 8.94 tons strain on each,
assuming them to be of equal diameter, and equally screwed up.
Diameter of rods, 1 inch, with ends 1} inches; nuts, 1} X 2
inches; washers, 1} X 44% inches diameter.

It will sometimes be convenient to substitnte a single rectangu-
lar plate for the round washers of a group of rods. The area of
this plate must equal the combined areas of all the washers.
Since 344 —side of square washer for l-inch rod, 2 X 343 X
343 — 27 square inches nearly —area of equivalent rectangular
plate. If this plate be made 8 inches long, its width should be
3% inches and it should be 1} thick.

B. WROUGHT-IRON ROOF.

Take, as an example, the roof already examined in Problem 5,
Chapter V (142)to (146). (150), (151), (159.)

(245.) Computation of Lengths of Truss Members.
In this problem, s—=80 feet; n="7; 7 =16 feet; »" =3
feet.
/
2%: ?_%(__(ssow(:tan ¢ =tan 25° 1’ 1" = inclination of up-
per chord.
8  __ 80
ncos? 7 cos 25°1'1"
length of any panel of upper chord, excepting the middle one.

=12.612 feet = 12 feet 74} inches —
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Tt- = % = 11.429 feet — 11 feet 544 inches — length of mid-
dle panel of upper chord.

12'212 = 6.806 feet — 6 feet 84} inches — length of mem-
ber X12.

11.429 .

3 =5.714 feet=>5 feet 84} ins. —=length of member 11 12.
9"’_ 2 X8 — ,__ o ’ ”
=2 =tanj1 =tan 417 91"

Hence, :" = 8° 34’ 42" — angle of inclination of tangent at
end of lower chord, at A or R.

s 80 T s
S —Im B 3T AY = R" = 268.166 feet — radius of
curvature of lower chord.
Heights of joints of chords above a horizontal line drawn
through joints A and R. (150.)

Joint F, height — 16 feet.

Joint D, height — 2 )(316 = 10.667 feet.
Joint B, height = % = 5.333 feet.

Joint G, height — 3 — 268.166 - 4/ 268.166*— (-5 X 80)’ -
2.939 feet. (159.)

/
Joint E, height =3 — 268.166 +- 4/ 268.166*— (1.5 ;( 80)’=
2.452 feet. '
2.5 X 8

Joint O, height = 3 — 268.166 4 4/ 268.166*— (
1.984 feet.

-3
S
N’ |
w0l
l

Lengths of Verticals.

Vertical 1 2=5.833—1.234=4.099 feet=4 feet 1,8 inches.
Vertical 34=10.667—2.452=8.215=8 feet 2§} inches.
Vertical 5 6=16.—2.939=13.061=13 feet 04} inches.
Vertical X 11=4 feet. .

5.333

Vertical 12 13= —2—=2.667=2 feet 8 inches.
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Lengths of Diagonals. (159.)
Diagonal 2 3 — #/11.429°+4(10.667—1.234)*—14.819 feet—14
feet 9§34 inches.

Diagonal 4 5= ¢/11.429°1(16.—2.459 — 17.725 feet—17
feet 84} inches.

Diagonal 67 = #11.499°1(16.—2.939)*—17.355 feet—17 feet
447 inches.

Diagonal 10 11= #4*+-5.714*=6.975 feet=6 feet 114§ inches.

Determination of Sectional Dimensions.
(246.) Purlines.
1. Purlines of Main Roof. (223), (214.)
There are to be 3 purlines to each panel or section area.

Hence, A =67} square feet; »w=5.2-}-28.3 1bs.=.01675 ton; f=
5; L=16 feet; B=1.2; E=12442; »=.03. (232.)

Breaking.
_ AwfLd_ 67.95X.016T5X5Xd ,
I==998 == fax12 oM
Bending.
2 2
I =22.5A'wL _22.5X67.25X.01675 X 16 — 17.39.

Er 12442%.03

By Table of Properties of I-beams, page 62, Carnegie Bros.’
Pocket Book, we find the lightest I-beam, whose value of I or
moment of inertia of its cross section is greater than 17.39, is a
6-inch 13.5-1b. beam, for which 1—=24.5 in column 8. Then &’
=d=+2=3., and 6.247 d'—=6.247xX3=18.731. This last value
of I is required for resistance to breaking, but being smaller
than that of the assumed beam, this beam will be safe against
both breaking and bending. It is also the lightest that will do,
and therefare the most economiecal.

2. Purlines of Small Roof.

There are to be three purlines on each side; the middle one
supporting 503 square feet of roof = A. The other values are
the same as in the last case.



182 DIMENSIONS OF PURLINES AND CHORD.

Breaking.
__B43XEX16Xd __
I_———I—W— =4.683d",
Bending.
I=22.5 X .843 X 16’= 13.01.

12442 %.03

In the same way we find that a 6-inch 10-Ib. channel will do,
but not a 5-inch 10-Ib. I-beam ; so that it will be most economical
to use the channel. The other two purlines only support half as
much roof area, but it will be necessary to make them of the
same depth and section as the middle one.

(247.) Upper Chord. (225.)

Each member of this chord is to be composed of two chan-
nels, laced together by diagonal bars, resisting longitudinal com-
pression, and also supporting two purlines, each of which causes
a concentrated transverse load of 1.127 tons, located at one-third
the length of the member from each end.

1. Resistance to Transverse Strain only.

(248.) First find M maximum — maximum bending moment
acting anywhere along the member. (54.)

|

Q
>

[’} P | 14

JP

In Fig. 86 make ad=12.61 feet, and divide in three equal
parts at b and ¢. Lay off load line af'—=2X1.127 tons; assume
pole P, making pole distance Pe— say 2 tons; draw equilibrium
polygon akid. The maximum intercept (uniform between 5 and
¢, since Az is parallel to ad) = 2.35 feet, and M maximum = 2X
2.835 =4.70 foot-tons.
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As the load is neither concentrated at the middle, nor uni-
formly distributed among the member, apply formule of (216).
Values as before, except that the value of M maximum is used
in place of those of A and .

Breaking.

I_Mfd’_ 4.70X5Xd
~1.5B 1.5X1.2
Bending.—Load concentrated at centre.
__144MIL__ 144 X4.70x12.61

=138.054".

—09
I= Er 12442%.03 22.865.
Bending.—Load uniformly distributed.
I__lSOML_ 180X 4.70x12.61__ 98.581

Er 12442%.03

The true value of I, required to safely resist the bending, cor-
responding to the actual arrangement of the loading, evidently
lies between the limits 22.865 and 28.581. It is readily obtained
by the following approximate method.

If equal pole distances of 2 tons be taken, and this total load-
ing be considered as actually arranged, as concentrated at the
centre, and as if uniformly distributed, the values of the three
corresponding intercepts will be as follows:

2.35 feet for actual arrangement of loading.
3.50 feet for load concentrated at centre.
1.75 feet for load uniformly distributed.

Then 1.75 = difference between the two last, and 8.50—2.35
=1.15 = difference between the first two.

The difference between the values of I corresponding to the
last two intercepts — 28.581—22.865 — 5.7186.

Then 1.75 : 1.15 :: 5.716 : 8.765.

And 22.865 - 3.765 — 26.63 — approximate actual value of I
required to resist bending, under the actual arrangement of the
loading. The value for breaking is correct, without any interpo-
lation or correction.

Zf 1127Tx5

For shearing (180), A = S =955 — .25 square inches,
which is so small that it may safely be neglected. ’
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(249.) Resistance to both Compression and Transverse
Strain.

Members X1, X2. Try two 9-inch 18-1b. channels.

By Carnegie, page 65, for these channels: A =—10.80 square
inches; I=129.6; Rg— 3.46. Then F—I; =1_§%1= 3.65.

By Table 4 (209), a vertical through 3.65 at top of table in-
tersects the curve for hinged struts (pin-jointed at A), on a hori-
zontal through 5.35 tons — safe compression per square inch of
section. The maximum compression on the member being 30.66
tons (146), we have 30.66--5.35 = 5.72 square inches — sectional
area required to safely resist compression alone.

Then 10.80 : 129.6 : : 5.72 : 68.5 =11’ —that part of the total
value of I for the entire section employed in resisting compres-
sion alone.

Also 1" —that value of I required for resisting transverse strain
alone, = 138.05 X 4.5 = 59.00, for breaking, this being greater
than the value 26.63 previously found for bending. (248.)

'+ 1" = 68.5 4 59. —= 117.90 = total value of I required for
the section of the member; this being less than the total value
for two 9-inch 18-l1b. channels, which —129.6, these channels
would be amply sufficient. (225.)

If the sum of I’ and I” is found to exceed, or to be materially
smaller than I for the two channels, it would be necessary to
assume some other size of channels uniil one is found which will
be suitable.

(250.) Minemuwm Distamce between the Channels.

Using two 9-inch 18-1b. channels, by (209), we find that the
minimum distance between the centres of gravity of the chan-
nels must not be less than 2 X 3.46 =6.92 inches. According to
Table, page 65 of Carnegie, column 15, the centre of gravity of
the channel is .68 inch from the outside of the web. Hence,
6.92—2 X .68 =5.56 inches— minimum distance in clear be-
tween the webs of the channels. We will make this 5§ inches.
If the total thickness of all the eye ends at any joint of the
upper chord should exceed this distance, it must be increased so
as to receive them between the channels.

According to the Pocket Book of the Pencoyd Iron Company
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(Wrought Iron and Steel in Construction), page 144, the maxi-
mum distance between lacing points should not exceed about 2
feet. The actual distance would only be about 17 inches, and
this is therefore sufficient.

Member X4. Maximum compression, 24.10 tons.

It will be necessary to employ two 9-inch 18-lb. channels, as
this will be found more economical than to use 8-inch channels
of weights varying according to the compression on each
member.

Member X11. Maximum compression, 1.30 tons.

Try a 4inch 81b. I'beam. L=+ Rg=4.00+1.61=249. By
Table 4, 6.22 tons —safe compression per square inch of section.
Then 1.830--6.22 = .209 square inch —area of section required.
The actual area of this beam is 2.4 square inches,.so that the
beam is much stronger than necessary, though it will be best to
use this for the sake of appearance, and because it will probably
be required to aid in resisting the horizontal pressure of the wind
against the windows.

Meomber X12. Maximum compression, 1.4 tons.

This also supports a transverse pressure of .843 tons at its cen-
tre. By (212) we obtain:

_ WLfZ 843X 6.306X5X

7
I= B — 6x1.9 = 3.688d'.
36WIL? 36X6.306%X.843
I= Er = 19449%.08 3.227.

Try a 5-inch 10b. I-beam. L -+ Rg=— 6.306 = 2.03 =3.10.
By Table 4, 5.68 tons —safe compression per square inch. 1.40
=+ 5.68 — .246 square inch — area required for compression.
Then 3.00 : .246 :: 12.3 : 1.01 =T’ for compression alone.

For breaking, I”—8.688X2.5—=9.22. Then I'4+1"=1.01+4
9.22 = 10.23 —total value of I required for the section. The
actual value of I for this beam being 12.30, it is somewhat
stronger than necessary, but a 4-inch 101b. I-beam would be too
weak.

Member 6 10. Compression alone, 16.57 tons.
Try two 6-inch 7.5-lb. channels. L -+ Rg = 11.43 <+ 2.67=
4.29. By Table 4, 4.95 tons —safe compression per square inch
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of section.  '16.57 <+~ '4.95=38.35 square inches — area required.
The area of the two channels being 4.50 square inches, these
bars are a little larger than necessary, but 5-inch 7.5-lb. bars
would be too small.

(251.) Verticals an Members of Small Truss.

The struts 1 2, 3 4, and 5 6, are frequently each constructed
of two Ts riveted together; but in this case it will be more
economical to use a star bar for each, cutting away the side wings
at each end, and forming an eye to slip on the joint pin. It
would not be sufficient to merely allow an open notch in the
ends of the strut to rest against the joint pin, for a cyclone in
the vicinity might lift the roof surface temporarily, allowing the
strut to fall out, thus causing the fall of the truss when closed
eyes would have made it secure. Or the ends of the side wings
may be welded down to form the eyes.

Member 1 2. Maximum compression, 4.05 tons.

Try a 2} X 2§ star. L -+~ Rg=23.87 + .52="7.43.

By Table 4, 8.42 tons = safe compression per square inch.
Then 4.05 < 3.42 — 1.185 square inch sectional area required.
The actual area being 1.65, this bar will do. The 2X 2 star would
be too weak.

Member 8 4. Maximum compression, 6.62 tons.

In the same way we find a 4X4 star to be required for this
member.

Member 5 6. Maximum compression, 1.36 tons; maximum
. tension, 0.95 tons.

A 343} star will be sufficient to resist the compression and
the tension also. (174.)

Member 12 13.  Maximum compression, .22 ton.

As this strain is quite small, it will probably be most economical
to use two round rods for this member, these being most readily
connected with the other members at the joints.

The value of Ry for the section of a round rod =d + 4. (73).

Try two § rods. L+ Rg=4X2.70 < .625 =17.3. By Table
4, .80 ton — maximum safe compression per square inch of sec-
tion. .22 —+ .80 =.275 square inches = sectional area of both rods.
The actual area being .614 square inches, these rods will do,
though two §-inch rods would be too weak.
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Member 11 12. Maximum compression, 0.55 ton ; maximum
tension, 1.30 tons.

In the same way two 1-inch rods are found to be sufficient for
this member, safely resisting both compression and tension; its
tensile strength being found by Table 2, as these rods would be
as strong as those with enlarged ends.

Member 11 10. Maximum compression, 1.06 tons ; tension, .65.
This is also composed of two rods, which are found to be
14 inch in diameter.

(252.) ZLower Chord.

Each member is composed of a pair of equal, straight, round
rods of wrought iron, with properly formed eye-ends, so that the
strength of these rods would equal that of similar rods with en-
larged ends; their dimensions may then be found by Table 2.

Member Y1. Maximum tension 29.17 tons.
By Table 2, two 2-inch rods are required.

Member Y3. Tension 21.94 tons. Two 1§ rods.
Member Y5. Tension 16.58 tons. Two 14 rods.
Member Y7. Tension 16.57 tons. Two 1§ rods.

(258.) Diagonals.

These are also composed of pairs of equal round rods with eye-
ends. If it be desired to make their lengths adjustable, this is
best done by means of sleeve-nuts, properly enlarging the ends
of the rod in the sleeve-nut, according to Table 2.

Member 2 3. Tension 9.94 tons. Two 1} rods.
Member 4 5. Tension 10.83 tons. Two 14 rods.
ember 6 T. Tension 3.00 tons. Two § roda.



CHAPTER IX,

DETAIL DRAWINGS OF TRUSS JOINTS.

(254.) In practice, these should be drawn full size,or al as
large a scale as possible, and each joint may be drawn o~ a
separate piece of paper for convenience.

RULES.

(255.) 1. Choose any point on the paper to represent the
intersection of the centre lines of those members meeting at the
joint, and draw through it a line parallel to the centre line of
each member, as shown in the truss diagram, Fig. 37 or 51.

2. If any member be curved, draw this centre line parallel to
its tangent at the joint considered.

3. Lay off half the width of each member, in a vertical plane,
on each side of its centre line, parallel to which draw its sides.

4. Then form the joint as indicated in the following applica-
tions, computing its dimensions where necessary, so as to be
certain of its safety, and so that its different parts may be equally
strong as far as possible.

A. A WOODEN ROOF.

(256.) Application to Problem 1. (117.)

Assume the point g, Fig. 87, and draw the centre lines ab and
ac parallel to AB and AC of Fig. 37; lay off 5 inches on each
side of ab, and 3 inches on each side of ac, and draw the top and
bottom lines of the principal and tie-beam. It will be best to
make the top of tie-beam the joint plane, substituting a white
oak key for the usual indents, because it is equally strong and
more easily and accurately fitted. The fibres of the key should
be parallel to those of tie-beam, so as to avoid loosening by
shrinkage, and it may be tapered so as to be driven tightly after
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. the bolts are in place. A key 2 inches thick should be nearly 6
inches long, parallel to tie-beam. (228.)

Suppose that the wall is 16 inches thick, and that the end of
tie-beam may be flush with its face, being covered by the cornice.
Draw the lines of the wall, placing its centre under a. The toe
of principal may be clipped at about 2 inches deep, and the
centre of key should be placed about midway between the points
<and f.

Fig. 87, Joint A.

The key may fail in either of three ways: 1st, by shearing the
key along the plane of the joint; 2d, by crushing the indent at
end of key; 3d, by shearing off the indent along the lower plane
of the key. _

1.—Resistance of key to shearing. (185.)

. Let a=1ength of key in inches, here 5}.

b= breadth of key = 10 inches.

J = factor of safety — 5.

S! —resistance of white oak to shearing lengthwise the fibres,
per square inch, — .45 ton.

Then ¥ — 35X 105X 45 _ 4.95 tons — safe resistance of key.

2.— Resistance of indent to crushing. (189.)

Let @ = depth of indent in inches, =1 inch.

b = breadth of indent = 10 inches.

J = factor of safety — 5.

C —resistance of white pine to crushing endwise per square
inch, = 2.5 tons. ,

~abC _1X10X2.5
Then 7 = E

= 5 tons, — resistance of indent.
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3.—Resistance of indent to shearing. (185.)

Let a = distance from key to end of tie-beam, — 18 inches.

b = breadth of tie-beam, — 10 inches.

J =15, as before.

S! —resistance of white pine to shearing Iengthwise, per

square inch, = .20 ton.
abS' _ 13 X 10 X .20

Then 7= 5
to shearing.

The least of these three values will, therefore, be the greatest
safe resistance of tire key, — 4.95 tons.

The maximum shear in the plane of the joint, or tendency of
the foot of the principal to slide on top or tie-beam — maximum
strain in Y1 = 24.42 tons. Hence, 24.42 — 4.95 —=19.47 tons,
= the remaining shear that must be resisted by bolts. Assuming
that 6 bolts are to be employed, 19 47 + 6 — 3.25 tons — shear
on each bolt.

Let & = required diameter of a bolt.

‘W = maximum shear on one bolt, — 8.25 tons.

J = factor of safety — 5.

S = resistance of wrought-iron to shearing, = 22.5 tons per
square inch.

Then d =14 4/ “éf —=144/22 X5 _ 956 inch, say 1

22.5
inch. (183.)

The nuts and washers for these bolts should have dimensions
similar to those for bolts with ends not enlarged; or, the nuts
should be 1 X 1§ inches; washers, 1 X 333 inches diameter.
The bolts should be so arranged as to avoid any danger of shear-
ing the wood left between them, and one inch space should be
left between key and nearest bolts ; the bolts should be perpen-
dicular to the principal, not to tie-beam, so as to draw tighter if
the joint slips any, and the washers require to be sunk into tie-
beam to get a good bearing, as shown. The purline is usually
placed as shown, notched on truss, but also supported by the wall.

There might be danger that the under side of the tie-beam
would be crushed by its pressure on the wall.

Let Z — maximum pressure of truss on one wall, = 9.174 tons
(measured on strain diagrams, Figs. 38 and 39).

— 5.20 tons — resistance of indent
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k = factor of safety crushing across fibres, —2.5.

b —=breadth of beam in inches, —10.

C! = resistance of white pine to crushing acroses fibres, —1.25
tons per square inch.

Wk _ 9174 X 2.5

Then 367 =10 % 1.95
ing of truss on wall. The actual end-bearing being 16 inches,
this danger does not exist. (193.)

Good brick masonry will safely resist a pressure of 8 tons per
square foot; hence, 9.174 <+ 8 = 1.147 square feet— bearing
area of tie-beam on wall to avoid crushing it. The actual area =
1.111 square feet, which might do, though it would be safer to
place the ends of the trusses on stone blocks 12 X 16, 8 or 10
inches thick, built into the walls.

9.—Joint B. Fig. 88.

= 5.74 inches = length of end-bear-

Fig. 88, Joint B.

Draw centre lines dd and b¢ parallel to BD and BC of truss
diagram, as before, and draw top and bottom lines of principal
and strut, the latter being 6 inches deep. It is best to indent the
strut into the under side of principal sufficiently to resist its
sliding, then fastening it in place by spikes, by a pinned ora stub
tenon, as shown.

On bc make bc =4.56 tons (maximum compression on strut
AB) at any convenient scale. Let fall the perpendicular cd on
bd, and measure bd, which represents the tendency of the strut
to slide along the under side of principal, or the pressure against
the indent. This pressure = 3.44 tons.

Let P — this pressure against indent, always acting parallel to
plane of joint. (In case the joint be not parallel to centre line of
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principal, draw through & a parallel, and through ¢ a perpendicu-
lar, to the line of the joint.)

J = factor of safety, = 5.

b = breadth of strut at right angles to plane of drawing.

C = resistance of white pine to crushing endwise, per square
inch, = 2.5 tons.

Then depth of indent = g:.w_x5_ =.69 inches, say }

10 X 2.5
inch. (189.)
The centre of the purline is usually placed at the intersection

of a vertical through 3, with top of principal, as shown.
8.—Joint C. Fig. 89.

Fig. 89, Joint C.

The depth of timbers are laid off as before. Make b —4.56
tous, and let fall vertical ba, finding ac = 4.28 tons =P.

Then depth of indent = %028;2_: = .86 inch, say } inch.

Half diameter of rod is laid off on each side of a vertical

through ¢, and the drawing is easily completed.
4—Joint D. Fig. 90.

Fig. 90, Joint D.

Making df = 5.84 tons, P—=23.15 tons, and depth of indent
= § inch.
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5.—Joint E. Fig. o1.

T
Fig. 91, Joint E.

P —4.67 tons; indent =4} inch.
6.—Jont F. Fig. 92.

S
[+)

/‘:. & ‘
>
H
Pig. 92, Joint B. \'f

P —2.29 tons ; indent } inch.
1—Joint G. Fig. 93.

Fig. 93, Joint G.

143

In Fig. 93 make fg = windward strain on FG —6.40 tons,
and kg = leeward strain, = 2.07 tons; let fall verticals fe¢ and
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km ; then em — 2.88 tons — maximum difference of the hori-
zontal pressures of lower ends of struts against each other, —
tendency to slide at the joint G.

Also lay off on g¢ 5.27 tons, = maximum P and S compres-
sion on FG ; drop vertical ¢%, finding gk to be 8.53 tons. This
must be taken because greater than 288 tons, and the cor-
responding depth of indent = § inch.

8.—Joint Il. Fig. 94.

Fig. 94, Joint H.

The principals abut against each other, and slipping may be
prevented by dowels of wood or iron, fitting holes bored in ends
of timbers. The top is clipped to afford a good bearing for the
washers or bearing plate of the vertical rods. The purline is
usually notched on with sides vertical, as shown. The notches
for purlines are generally cut, half in purline and half in the
principal, so as to weaken both as little as possible. A cogged
joint is stronger and better.

B. AN IRON ROOF.
(257.) Application to Problem 5.
Joint A, Figs. 95 and 96.

These figures give two views of the finished joint.

1. Diameter of Pin. (230.)
It resists the pressure of two rods, each exerting a tensile

strain of 15.33 tons, causing single shear.

By the formule of (230) d = .583 415.33 =2.29 inches, say
2 inches.

In Figs. 95 and 96, the end A of the truss is supported by the
pin, which rests in a semi-cylindrical notch in the top of the cast-
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iron bed-plate, and which fills the space between the eye-ends
of the lower chord. The greatest reaction — maximum pressure
of bed-plate against the pin —about 10 tons, and tends to bend
the pin by transverse strain, which is uniformly distributed over
2} inches of the middle of the length of the pin. By the
graphical method (36), M — maximum bending moment acting on
the pin = 11.25 ¢nch~tons.

2@

Fig.05 TIMig. 06
Joint A.

By formula of (230) d = 1.107 #11.25 = 2.5 inches.

2. Rod-ends. (231.)

The 2-inch rods composing the member Y1 should have eye-
ends of rectangular section, 2 X 1§ inches on each side of pin,
and connected with the body of the rods by long curves instead
of those shown in the figures.

8. Joint-plates and Rivets. (229.)

The maximum pressure of each end of the pin against edge of
hole through web of channel and the joint-plate —=15.65 tons.
The total thickness of the plate and web together —¢—15.65
~+ (6.25 X 2.5) =say 1 inch. As the web is .305 inch thick, we
have 1.00 — .305 —=.695 —say 4} inch — thickness of joint-plate.

If $inch rivets are used, the maximum safe resistance of one
rivet to single shear —=2.945 X .75*—=1.655 tons. (229.) Hence,
1.00 : .695 :: 15.65 : 10.88 tons pressure of pin to be transmitted
through the plate and rivets to the channel. And 10.88 + 1.655
=6.57, say 7 rivets are required.

In Fig. 95, 10 rivets are actually employed, those on the left-
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hand side of the pin only serving to hold the joint-plate and
channel firmly together, resisting very little shear.

There should be a nut on each end of the pin to prevent it
from slipping endwise. There being very little strain on this
nut, the ends of the pin may be reduced as shown, outside the
joint-plates, and the nuts may be made cylindrical and of cast
iron, being turned up by a bent hook. This will produce some
economy of time and space, as the rivets can be set closer to the
pin, not interfering with tarning up the nut, and the nuts are
more easily finished in the lathe.

Fig. 07
Laocing Bars.

Or, the screw-thread might be omitted and the nut be held
in place by a steel pin driven into a hole drilled through the nut
and the end of the pin.

The purline is riveted on as shown, being held by two rivets
through each channel. It may sometimes be necessary to
strengthen it by a cast-iron plate of proper form riveted in the
lower angle between the purline and the principal.

The scction of the principal is shown in the same figure.

The bed-plate should be firmly fastened to the wall by four
long bolts, at least § inch in diameter, and it must be sufficiently
large to avoid crushing the wall.

Fig. 97 represents the mode of lacing together the two chan-
nels composing the upper chord.

Joint B. Figs. 98 and 99.

If the channel bars are not spliced at the joint B, no joint-plate
would be necessary ; it is here assumed that they are spliced, and
that all the pressure of the member X2 against the end of X1
must be transmitted through the joint-plate and the rivets, to
allow for imperfect fitting of the ends of the channels against

each other.
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1. Diameter of Pin.

The pin only resists the pressure of the strut 1 2 —4.05 tons,
causing a single shear of 2.03 tons, and a transverse pressure of
4.05 tons concentrated at its centre, which gives M maximum —
5.82 inch-tons. (56.)

Then by (230) d = .583 4/2.03 — .833 inches for shearing.

d=1.107 ¥5.82 = 1.99 inches for bending.

Hence, the pin must be 2 inches in diameter.

2. Joint-plates and Rivets.

All the compression in X2 must pass through the plate and
rivets under the assumed conditions, determining their dimen-
sions and number. The clear width of the plate is about 5

inches, deducting the diameter of the pin-hole, and it may safely
be assumed to resist 5 tons per square inch of cross section.

Then 30.66--(2 X 5) = 8.066 — sectional area of plate, and 3.066
-+ 5=.613 —say § inch, its thickness.

Using $-inch rivets, as for joint A, each rivet resists 1.655 tons
shear, so that 30.66 < (2X1.655)—9.28, say 10 rivets on each
end of joint-plate.

Fig. 99 shows a partial cross section of the webs and joint-
plates with the pin eye-end of bar, which should be about 1 inch
wide on each side of pin,and of the same thickness as the web of
the star, with the fillers of cast iron placed between the channels
to keep the star in place. These are cylindrical, about § inch
thick, and are bored for the pin.
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Joint D. Figs. 100, 101.

1. Diameter of Pin.

Maximum single shear — 4.97 tons; M maximum = 7.14 inch-
tons.

d = .583 ¥4.97 = 1.30 inches for shearing.

d=1.107 ¢YT.14=213 inches, say 2} inches for bending,
which is the required diameter of the pin.

. Fig.101
/]

int D.

2. Joint-plate and Rivets.

Clear width about 4} inches; pressure of X4 —24.10 tons.
Hence, 24.10 = (2X5)=2.41 square inches, = area of plate;
2.41 + 4.875 = .495, say } inch = thickness of plate. '

24.10 + (2 X 1.655) = 7.3, say 8 rivets in each end of plates.

3. Eye-ends.

The eye-end on star 3 4 should be 1 inch wide on each side of
pin. Those on diagonals 2 3 should be 1} X . (231.)

Joint F. Figs. 102, 103. |
1. Diameter of Pin.
Maximum single shear — 5.42 tons; M maximum — 1.95 inch- |
tons. .
d = .583 ¢/5.42 —1.36 inches for shear.
d=1.107 ¥/1.95 = 1.38 inches, say 1§ inches, for breaking.
2. Joint-plates and Rivets.
Net width of plate—about 4% inches. 16.57+(2X5)=1.66
square inches; 1.66--4.875 =33, say § inches, — thickness.
16.57+(2 X 1.655)=15.02, say 5 rivets in each end.
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3. Eye-ends.

On star 5 6, 1 inch wide on each side of pin.

On I-post X11, the joint is best made by two plates riveted
on and slightly bent, so as to straddle eye-end of star (Fig. 108).

Fig.103

it Fig.102
On diagonal rods 45 to be 1} X 1} inches on each side of pin.
On diagonals 11 10, to be 1} X § each side of pin.

Joint C. Figs. 104, 105.

e Fig. 104 Fig.105
Joint C.

1. Diameter of Pin.

The maximum single shear is caused by one of the middle pair
of rods, composing member Y3, and = 21.94-+-2 =—10.97 tons.

Then .583 4#/10.97 = 1.93, say 2 inches diameter of pin.

The joint pins of the lower chord are not supported at their
ends, and fail by shearing, rather than by bending or crushing.

2. Eye-end.

On star, 1 inch wide on cach side of pin.

On rods Y1, 2 X 1} on each side of pin.

On rods Y3, 13 X 18 on each side of pin.

On rods 238, 1} X £ on each side of pin.



150 DETAILS OF JOINTS OF IRON TRUSS.

Joint E.  Figs. 106, 107.

1. Diameter of Pin. :

Maximum single shear is caused by the middle rods Y3, and —
10.97 tons, as for joint C. Hence, the pin must also be 2 inches.

Joint E.

2. Eye-ends.

On star, 1 inch wide on each side of pin.
On rods Y3, 1§ X 1 on each side of pin.
On rods Y5, 1} X 1} on each side of pin.
On rods 4 5, 1} X 1§ on each side of pin.

Joint @. Figs. 108, 109.

1. Diameter of Pin.
Maximum single shear is caused by the middle rods compoeing
the member Y7, and — 16.57-+-2 — 8.29 tons.

Then .583 48.29 — 1.5 inches.

2. Eye-ends.

On star, 1 inch on each side of pin.

On rods Y5, 1} X 1} on each side of pin.
On Y7, 1} X 1} on each side of pin.

On 67, § X 4§ on each side of pin.

i
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Joint H. Figs. 110, 111.

1. Diameter of Pin.
Maximum single shear is caused by tension on the two rods
1112, and =1.80+2=.65 ton.

Then .583 4.65 — .47, say } inch.

' I Joint H.
Fig.110

2. Eye-ends.

On rods 11 12, these may be 1 X 4 inch, as the size of the rods
is determined by the compression acting on them.

The joint-plates should be } inch thick, with 6 }-inch rivets, as
in Fig. 110, the ends of the I-beams being mitred together.
" In order to make the joint-pin as short as possible, so as to

~ avoid bending it, the ends of the rods 11 12 are bent inward to

fit close against the joint-plates, as in Fig. 111. They are held
together and springing is prevented by a rivet or bolt through
holes punched just below the member X12, as in Fig. 110.

The channel purline should be stiffened by a wrought-iron
stay, riveted to the member X12, as in Fig. 110.

Joint I.  Figs. 112, 118.

1. Diameter of Pin.
Maximum single shear is caused by compression on rods 12 13,
and = 22-+-2=.11 ton.

This requires a pin .583 .11 =.194 inch, but it will be better

‘to make it § inch, like the pin at H.

2. Eye-ends.

On rods 1213, § X 4 inch on each side of pin. The ends of
the rods are bent to fit against the joint-plates, and held together
by a rivet, as shown in Figs. 112, 118.
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The I-beams should be mitred together and connected by joint-
* plates } inch thick, with four }-inch rivets, as in Fig. 112.
The two channel purlines should be connected by a wrought-

Fig.113

Joint I.
Fig.112

iron stay riveted to each. Or, a single I-beam might be substi-
tuted therefor, though this would probably involve cutting a
notch in its lower flange, or chipping away the apex of the truss,
to bring the purline to the proper height.

Joint J. Figs. 114, 115,

1. Diameter of Pin.
Maximum single shear is due to the rods 13 14, and ==1.30 <+

2 =.65 ton.
d—=.583 .65 — .47, say } inch.
2. Eye-ends.

On rods 10 11, 10 14, 11 12 and 13 14, to be $ X§ inch on each
gide of pin, as the dimensions of the rods are determined by the
compression acting on them.

On rods 12 13, § X } inch on each side of pin will do.

The vertical rods 1213 are placed nearest the ends of the pin,
as in Fig. 115.
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13

The mode of construction here employed for an iron truss is
that considered most economical under the special conditions,
and for the type of truss selected. A truss of wider span or of
different type might require the use of other trade sections of
iron, or differently-arranged joints.

Riveted joints are preferred by some engineers, especially in
England, but pin joints render the truss more quickly and easily
erected, while the axes of the strains in the members more nearly
coincide with the axes of the members themselves, unless the
riveting is done with great care.

In arranging the details of any joint, it should always be
remembered that its least resistance is always the limit of its
strength, so that all its parts should be of equal strength, so far as

possible.

s
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