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ABSTRACT

We present techniques for parallel divide-and-conqucr, resulting in improved

parallel algorithms for a number of problems. The problems for which we

give improved algorithms include intersection detection, trapezoidal decompo-

sition, and planar point location. We also give efficient parallel algorithms for

fractional cascading, 3-dimensional maxima, 2-set dominance counting, and

visibility from a point. All of our algorithms run in 0(log n) time with either a

linear or sub-linear number of processors in the CRIZW PRAM model.
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1 Introduction

This paper presents a number of general techniques for parallel divide-and-conquer. These tech-

niques are based on a nontrivial generalizations of Cole's recent parallel merge sort result [11], and

enable us to achieve improved complexity bounds for a large number of geometric problems.

The framework is one in which we want to design efficient parallel algorithms for the CREW

PRAM computation model. Recall that this is the synchronous shared memory model in which

processors may simultaneous read from any memory location but simultaneous writes are not

allowed. Our goal is to find algorithms that run as fast as possible and are efficient in the following

sense: if p{n) is the processor complexity, t{n) the parallel time complexity, and $eq{n) the time

complexity of the best known sequential algorithm for the problem under consideration, then t{n) *

p{n) = 0{seq{n)). If the product t{n) * p(n) achieves the sequential lower bound for the problem,

then we say the algorithm is optimal. When specifying the processor complexity we omit the

"big oh," e.g. we say "n processors" rather than "0(n) processors;" this is justified because we can

always save a constant factor in the number of processors at a cost of the same constant factor in the

running time. In all of the problems listed below, we achieve t{n) = O(logn) and, simultaneously

(except for planar point location), an optimal t{n) * p{n).

Previous work on parallel divide and conquer has produced relatively few optimal algorithms.

Previous optimal algorithms in this area have been for the convex hull problem [1,3,5,16,25] and

circumscribing a convex polygon with a minimum-area triangle [1]. Unfortunately, each of these

approaches was very problem-specific. Thus there is a need for techniques of wider scope. In

this paper we give a number of general techniques for efficiently solving problems in parallel by

divide-and-conquer.

We model the divide-and-conquer paradigm as a binary tree whose nodes contain sorted lists of

some kind. In [11], the list at a node was the merge of the two lists of its children. In our problems,

however, the lists at a node of the tree depend on the lists of the children in more complex ways,

involving more than just simple merge operations. For example, in our solution to the segment

intersection detection problem the lists at a node depend on computing, in addition to merges,

set difference operations that are not directly solvable by the "cascading" method used in [11].

Such operations arise here because the lists at a node contain segments ordered by the "above"

relationship (which is obviously not a total order). One may be tempted to delay performing these

set difference operations until the end, as a postprocessing "purging" step. Unfortunately this is not

feasible for many reasons (not the least of which is that this approach could lead to a situation in

which a processor tries to compare two incomparable items). Nor is it possible to explicitly perform
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the set difference operations without sacrificing the time-eiRciency of the cascading method. Our

solution avoids both of these problems.

Another significant contribution of this paper is an optimal parallel construction of the "frac-

tional cascading" data structure of Chazelle and Guibas [10]. This too is based on a generalization

of Cole's method [11] in the sense that instead of the computation proceeding up and down a tree,

it now moves around a directed graph (possibly with cycles). Our solution to fractional cascading

is quite different from the sequential method of Chazelle and Guibas (as their method relies on an

amortization scheme to achieve a linear running time).

The following is a list of the problems for which our techniques resulted in improved complexity

bounds. Unless otherwise specified, each performance bound is expressed as a pair (t(n),p(n))

where t(n) and p(n) are the time and processor complexities, respectively.

Fractional Cascading: Given a directed graph G = {V,E), such that every node v contains

a sorted list C(i'), construct a data structure that, given any edge {v,w) in E and the position of

an arbitrary element x in C(v), enables a single processor to locate i in C{w) in (log n(f(G)) time,

where d{G) is the maximum degree of any node in G. In [10] Chazelle and Guibas gave an elegant

0(n) time, 0(n) space, sequential construction, where n = Xlvev |C'(u)|. We give a (logTi,n/logTi)

construction.

Trapezoidal Decomposition: Given a set 5 of n line segments in the plane, determine for

each segment endpoint p the first segment "stabbed" by the vertical ray emanating upward (and

downward) from p. A (log^Ti,Ti) solution to this problem was given in [1], later improved to

(log n log log n,n) in [4]. We improve this to (log n,Ti).

Planar Point Location: Given a subdivision of the plane into (possibly unbounded) polygons,

construct, in parallel, a data structure which, once built, enables one processor to determine for

any query point p the polygonal face containing p. Let Q{n) denote the time for performing such a

query, where n is the number of edge segments in the subdivision. A (log^ n, n), Q{n) = O(log^ n)

solution was given in [1], later improved to (log n log log n,n), Q{n) = O(logn) in [4]. In [12] this

is further improved to (logn log* n,Ti), Q{n) = O(logn). We give a (logTi,n), Q(n) = 0{\ogn)

solution.

Segment Intersection Detection: Given a set 5 of n line segments in the plane, determine

if any two segments in 5 intersect. A (log^ n,n) solution was given in [1], later improved to

(logn log log n,Ti) in [4]. We improve this to (log n,n).
'

3-Dimensional MsLxima: Given a set S of n points in 3-dimension£il space, determine which

points are maxima. A maximum in S is any point p such that no other point of S has i, y, and
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z coordinates that simultaneously exceed the corresponding coordinates of p. A (log n log log n,n)

solution was given in [4]. We improve this to (log n,n).

Two-Set Dominance Counting: Given a set V — {pi,p2,- •• >P;} and a set 1/ = {91,921 --Ain)

of points in the plane, determine for each point 9, in V the number of points in V whose x and y

coordinates are both less than the corresponding coordinates of 9,. The problem size is n = / + m.

A (log n log log n,n) solution was given in [4]. We improve this to (log n,n).

Visibility from a Point: Given n line segments such that no two intersect (except possibly

at endpoints) and a point p, determine that part of the plane visible from p if all the segments are

opaque. A (lognloglogn,7i) solution was given in [4]. We improve this to (logTi,n).

We recently learned that Reif and Sen [22] can solve planar point location, trapezoidal decom-

position, segment intersection, and visibility in randomized 0(log7i) time using 0{'n) processors.

All of our algorithms are deterministic.

This paper is organized as follows. In Section 2 we present a generalized version of the caiscading

merge procedure and in Section 3 we give our method for doing fractional cascading in parallel. In

Section 4 we show how to apply the fractional cascading technique to a data structure we call the

plant sweep tree, showing how to solve the trapezoidal decomposition and point location problems.

In Section 5 we show how to extend the cascading merge technique to allow for cascading in the

"above" partial order of line segments, giving solutions to the problems of building the plane sweep

tree and solving the intersection detection problem. In Section 6 we use the cascading divide-

and-conquer technique to compute labeling functions, and show how to use this approach to solve

3-dimensional maxima, 2-set dominance counting, and visibility from a point.

2 A Generalized Cascading Merge Procedure

In this section we present a technique for a generalized version of the merge sorting problem.

Suppose we are given a binary tree T (not necessarily complete) with items, taken from some total

order, placed at the leaves of T, so that each leaf contains at most one item. For simplicity, we

assume that the items are distinct. We wish to compute for each internal node v E T the sorted

list U{v) which consists of all the items stored in descendant nodes of v. (See Figure ??.) In this

section we show how to construct U{v) for every node in the tree in 0{height{T)) time using |r|

processors, where |r| denotes the number of nodes in T. This is a generalization of the problem

studied by Cole [11], because in his version the tree T is complete. Without loss of generality,

we assume that every internal node f of T has two children. For if v only has one child then we
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can add a child to v (a leaf node) which does not store any items from the total order. Such an

augmentation will at most double the size of T and does not change its height.

Let a, b, and c be three items, with a < b. We say c is between a and 6 if a < c < b. Let

two sorted (nondecreasing) lists A = (01,02,. .. ,a„) and B = (61,621 ••• ,im) be given. Given an

element a we define the predecessor of o in B to be the greatest element in B which is less than or

equal to o. If a < 61, then we say that the predecessor of a is -00. We define the rank of o in 5

to be the rank of the predecessor of a in 5 (—00 has rank 0). We say that A is ranked in B if for

every element in A we know its rank in B. We say that A and B are cross ranked if A is ranked

in B and B is ranked in A. We define two operations on sorted lists. We define A U 5 to be the

sorted merged list of all the elements in A or B. If 5 is a subset of A, then we define A - fi to be

the sorted list of the elements in A which are not in B.

Let T be a binary tree. For any node u in T we let parent{v), sibling{v), lchUd{v), rchild^v),

and depth{v) denote the parent of v, sibling of v, left child of v, right child of v, and depth{v) (the

root is at depth 0), respectively. We also let root{T) and height{T) denote the root node of T and

the height of T, respectively. The altitude, denoted alt{v), is defined alt{v) = h€ight{T) - depth{v).

Desc{v) denotes the set of descendant nodes of v (including v itself).

Let a sorted list L and a sorted list J be given. As in [11], we say that Z is a c-cover of

J if between each two adjacent items in (-oc,X,oo) there are at most c items from J (where

( — 00, £,00) denotes the list consisting of -cx), followed by the elements of i, followed by 00). We

let SAM Pc{L) denote the sorted list consisting of every c-th element of L, and call this set the

c-sample oi L. That is, SAM Pc{L) consists of the c-th element of L followed by the (2c)-th element

of Z, and so on.

The algorithm for constructing U[v) for each v G T proceeds in stages. We denote the list

stored at a node r in T at stage s by Ut{v). Initially, Uq{v) is empty for every node except the

leaf nodes of T, in which case Uo{v) contains the item stored at the leaf node v (if there is such

an item). We say that an internal node v is active at stage s if [s/3j < alt{v) < s, and we say

t; is full at stage s if alt{v) = [s/3j. It will become apparent below that if a node v is full, then

U,{v) = U{v). For each active node r 6 T we define the list l^j+i(u) as follows:

'

SAMP4{U,iv)) i{alt{v)>s/3

U'.+^v) = { SAMP2{U,iv)) if alt{v) = (s - l)/3

SAMPi{U,{v)) ifa/t(r) = (s-2)/3

At stage s + 1 we perform the foUowing computation at each internal node v which is currently
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active:

Per-Stage Computation(v,5 + 1):

Form the two lists U^^i{lchild{v)) and U'^^i{rchild{v)), and compute the new list

U,+iiv) := UUiilchildiv))uUU,irchild{v)).

Thus, until v becomes full f^,'+i(u) will be the list consisting of every fourth element of U,{v).

We continue defining U^^i{v) in this way up to the point that v becomes full. If ^t, is the stage

at which v becomes full, then at stage 5„ + 1, t/j+i(v) is the two-sample of U,{v) (= U{v)), and,

at stage 3„ + 2, t/^+i(u) = Us{v) (= U{v)). Therefore, at stage s„ + 3, parent{v) is full. After

3 * height{T) stages every node is full and the algorithm terminates. We have yet to show how to

perform each stage in 0(1) time using n processors. We begin by showing that the number of items

in Ua+i{v) can be only a little more than twice the number of items in U,{v), a property which is

essential to the construction.

Lemma 2.1: For any stage s > and any node v £T, \Ut+i{v)\ < 2|[/a(r)| + 4.

Proof: The proof is by induction on s. Bzisis {s = 0): The claim is clearly true for s = 0.

Induction step {s > 0): Assume the claim is true for stage 5-1. If r is full (i.e., alt{v) = [s/3j),

then the claim is obviously true, since U,+i{v) = U,{v) = U{v). Consider the case when alt{v) >

[s/3\ + 1. We know that U,+i{v) = i7,'+i(i) U U^^^iy), where x = lchUd{v) and y = rchild{v).

Thus, we have the following:

\Us+i{v)\ = \Us{x)\
+

\Us{y)\
(from definitions)

2|[/,_i(t)| + 4
+

2\U,-^iy)\ + 4
(by induction hyp.)

<-<
\Us-i{x)\

+
\U,.iiy)\

+ 4

= 2\U,iv)\ + 4

The case when alt{v) = [s/3\ + 1 is similar (actually, it is simpler).

In the next lemma we show that the way in which the Ua{vys grow is "well behaved."

Lemma 2.2: Let [a,b] be an interval with a,b e (-oo,C/j(t;), oo). If[a,b] intersects k + 1 items in

(-00, U'g{v), oo), then it intersects at most 8A; + 8 items in Utiv) for all k > 1 and s > I.
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Proof: The proof is by induction on s. The claim is initially true (for s = 1). Actually, for

any stage 5, if U'g{v) is empty, then U,-\{v) contains at most 3 items, hence, Ua{v) contains at

most 10 elements. Also, if U^(v) contains one item, then U,-i{v) contains at most 7 items, hence,

U,{v) contains at most 18 items (at most 15 of which can be between any two adjacent items in

(-oo,t/»,oo)).

Inductive step (assume true for stage s). Let [a,b] be an interval with a, 6 both in the list

(-oo,t/j+i(r),oo), and suppose [a,b] intersects fc + 1 items in {-oo,Ug^i(v),oo). We first suppose

that alt{v) > [s/3\. Let g be the number of items in (— oo,f/,(v),oo) intersected by [a,b]. Recall

that U,iv) = U',ilchild{v)) U U!,{rchild{v)). Let [ai,6i] (resp. [02,62]) be the smallest interval

containing [a,b] such that a\,bi G (-oo,[/,'(/c/u7<f(t;)),oo) (resp. 02,62 6 (-oo,C/,'(rc/it7d(t;)),oo)).

Suppose the interval [ai,6i] intersects h + 1 items in the list {— 00, U^{lchild{v)), 00) and [02,62]

intersects j + I items in (-00, U^{rchild{v)), 00). Clearly, h -\- j = g. By the induction hypothesis,

[oi,6i] intersects at most 8/i+8 items in U,{lchild{v)), and hence at most (8/i+8)/4 = 2h+2 items in

U,+iilchild{v)). Likewise, [02,62] intersects at most 2j + 2 items in t/j+j (rc/ij7d(v)). The definition

of t/i+j(r) implies that g < 4k + 1. Therefore, since Ut+i{v) = U^^i{lchild{v)) U U',+i{rchtld{v)),

[0,6] intersects at most (2/i + 2) + (2j + 2) items in U,+i{v), where (2/i + 2) + (2j +2) < (2/i + 2) +

(2(4it - /i + 1) + 2) < 8^ + 8. The proof for the case when alt{v) = [s/3\ is similar (actually it is

simpler).

Corollary 2.3: The list ( — oo,f/,'(t'),oo) is a 4-cover for U^^i{v), for all s > 0.

This corollary is used in showing that we can perform each stage of the merge procedure in

0(1) time. We aJso maintain the following rank information at the start of each stage s:

(1) For each item in U^{v): its rank in U'g{3ibling{v)).

(2) For each item in U',{vy. its rank in f/»(v) (and, hence, implicitly, its rank in t/,'+i(t;)).

The lemma which follows shows that the above information is sufficient to allow us to merge

U',^i{lchild{v)) and U',^^{rchild{v)) into the list Ut+i{v) in 0(1) time using \U,+i{v)\ processors.

Lemma 2.4: (The Merge Lemma) [11]. Suppose we are given sorted lists Ag, A'^^^, B'„ B'^^^,

C'f, and C'g^i, where we have the following (input conditions):

(1) a, = b:ucu

(2) ^i+i is a subset of A,;

(3) B', is a ci-cover for B'g^^;
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(4) C, is a C2-cov€T for C^+j,"

(5) B', is ranked in B'^^^;

(6) C, is ranked in C',^^;

(7) B'^ and C, are cross ranked.

Then in 0(1) time using |-B^+il + |C,'+i| processors in the CREW PRAM model, we can compute

the following (output computations):

(1) the sorted list >l,+i = B^+i U C',^^;

(2) the ranking of A',^^ in A,+i;

(S) the cross ranking of B'^^.^ and C^+j.

We apply this lemma by setting A, = f/,(v), A^+j = C/,'+i(r), A,+i = U,+i{v), B', = U',{x),

K+i = U',+-iix), C, = U',{y), and C^+i = l/,'+i(y)- Note that assigning the sets of Lemma 2.4

in this way satisfies input conditions 1-4 from definitions. The ranking information we maintain

from stage to stage satisfies input conditions 5-7. Thus, in each stage 5 we can construct the set

t^»+i(v) in 0(1) time using \U,+i{v)\ processors. Also, the new ranking information (of output

computations 2 and 3) gives us the input conditions 5-7 for the next stage. By CoroUary 2.3 we

have that the constants Ci and C2 (of input conditions 3 and 4) are both equal to 4. Note that in

stage s it is only necessary to store the sets for 5 - 1; we can discard any sets for stages previous

to that.

The method for performing all these merges with a total of \T\ processors is basically to start

out with 1 processor assigned to each leaf node, and each time we pass k elements from a node v

to the parent of v (to perform the merge at the parent), we also pass k processors to perform the

merge. When v's parent becomes fuU, then we no longer "store" any processors at v. (See [15] for

details.) Thus, since there are at most 0(|r|) elements present in active nodes of T for any stage

5, we can perform the entire generalized cascading procedure using |r| processors.

It will often be more convenient to relax the condition that there be at most one item stored

at each leaf. So, suppose there is an unsorted set A{v) (which may be empty) stored at each leaf.

Construct a tree T' from T by replacing each leaf t; of T with a complete binary tree with \A{v)\

leaves, and associate each item in A{v) with one of these leaves. T' now satisfies the conditions of

the method outlined above. We summarize the above discussion in the following theorem:

Theorem 2.5: Suppose we are given a binary tree T such that there is an unsorted set A{v) (which

may be empty) stored at each leaf We can compute, for each node v £ T, the list U{v), which is the

8
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union of all items stored at descendants ofv, sorted in an array, in 0(height(T)-\-\og{mdiXy \A{v)\))

time using a total of\T\ + N processors in the CREW PRAM computational model, where N is the

total number of items stored in T. I

Proof: The complexity bounds from the fact that T' has height at most 0(height{T)+\og{mdLXt,
|
A(r)|)) '

and \T'\ is 0{\T\ + N). U

The above method comprises one of the main building blocks of the algorithms presented in .

this paper. We present another important building block in the following section.

3 Fractional Cascading in Parallel

Given a directed graph G = {V,E), such that every node v contains a sorted list C(v), the problem

is to construct an 0{n) space data structure that, given any edge {v,w) G E and the position of

an arbitrary element x in C{v), enables a single processor to locate x in C{w) in 0(logd(G)) time,

where cf(G) is the maximum degree of any node in G and n = |V'| + |£| + ^j,gv |C(i;)|. Chazelle and » J

Guibas [10] give an elegant 0{n) time sequential construction of such a data structure. However,

their approach does not appear to be "parallelizable." Here we construct such a data structure in

O(logn) time using O(n/logn) processors.

We define In{v,G) (resp. Out{v,G)) to be the set of all nodes w in V such that {w,v) £ E (resp. i

(r,K;) € E). The degneeof a vertex u, denoted cf(t;), is defined as d{v) = ma.x{\In{v,G)\,\Out{v,G)\}.

The degree of G, denoted, d(G), is defined d{G) - maxvgv{d(i»)}. A sequence (t;i,r2,...,r„,) of

vertices is a walk if (ui,t',+i) € £ for all i G {1,2, . . . ,m - 1}.

We begin by showing how to do fractional cascading in O(logn) time and 0{n) space using n j

processors. We will show later how to get the number of processors down to [n/ log n] by a careful

application of Brent's theorem [9].

We begin the fractional cascading construction by preprocessing the directed graph G, convert-

ing it into a directed graph G = {V ,E) such that d{G) < 3 and such that an edge {v,w) in G
corresponds to a path in G of length at most 0{\ogd{G)). Specifically, for each node r G V we 3

construct two complete binary trees T^ and T""' (see Figure ??). Each leaf in T'^ (resp., T°"')

corresponds to an edge coming into v (resp., going out of v). So there are \In{v,G)\ leaves in 7^°

and \Out{v,G)\ leaves in T°"'. We call Tj° the fan-in tree for t; and r°"' the fan-out tree for v. An

edge e = {v,w) in G corresponds to a node e in G such that e is a leaf of the fan-out tree for t;

and e is also a leaf of the fan-in tree for w. The edges in T^ are all directed up towards the root
'

of 7^, and the edges in T""' are all directed down towards the leaves of T""'. For each r G V we
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create a new node v' and add a directed edge from v' to v, a directed edge from the root of T^" to

v' and an edge from v' to the root of r°"'. We call v' the gateway for v. (See Figure ??.) Note

that d{G) = 2. We assume that for each node v we have access to the nodes in In{v,G) as well

as those in Out{v,G). We structure fan-out trees so that a processor needing to go from v to w

in G, with («,«;) € E, can correctly determine the path down T°"' to the leaf corresponding to

{v,w). More specifically, the leaves of each fan-out tree are ordered so that they are listed from

left to right by increasing destination name, i.e., if the leaf in T^"' for e = {v,u) is to the left of

the leaf for / = {v, w), then u < w. K we are not given the Out{v, G) sets in sorted order, then we

must perform a sort as a part of the T""' construction, which can be done in O(logTi) time using n

processors [11]. We also store in each internal node z of T°"' the leaf node u which has the smallest

name of all the descendents of z.

The above preprocessing step is similar to a preprocessing step used in the sequential fractional

cascading algorithm of Chazelle and Guibas [10]. This is where the resemblance to the sequential

algorithm ends, however.

The goal for the rest of the computation is to construct special sorted lists B{v), which we call

bridge lists, for every node v £ V. We shall define these bridge lists so that B{v) = C{v) if v is in

V, and, if u is in 1/ but not in V, then for every {v,w) 6 £' if a single processor knows the position

of a search item x in B(v), then it can find the position of i in B(iu) in 0(1) time.

The construction of the 5(t;)'s proceeds in stages. Let Bg{v) denote the bridge list stored at

node V £ V a.t the end of stage s. Initially, Bo{v) = for all t; in V . Intuitively, the per-stage

computation is designed so that if v came from the original graph G (i.e., t; 6 V), then v will be

"feeding" Bs{v) with bigger and bigger samples of the catalogue C{v) with each stage, the sample

at stage a + 1 being twice the size of the sample at stage s. These samples are then cascaded back

into the gateway v' for v and from there back through the fan-in tree for v. Of course, we will be

merging any samples "passed back" from the fan-out tree for v with B,{v'), and cascading these

values back through the fan-in tree for v as well. We iterate the per-stage computation for [^logiV]

stages, where N is the size of the largest catalogue in G. We will show that after we have completed

the last stage, and updated some ranking pointers, G will be a fractional cascading data structure

for G.

The details are as follows. Recall that Bq{v) = for all v € V. For stage s > we define

^i-^iiv) ** follows:
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b:+^{v) =

B.+i{v) =

SAMPiiBsiv)) iiveV-V

SAMP,^.)iC{v)) ifveV,

B',+^{wi)UB',^.iiw2) if Out{v,G) = {wuW2}

B',^,{w) iiOut{v,G)={w}

if Oixt(t;,G) = 0,

where c{s) = 2'^*^"' and N is the size of the largest catalogue. The Per-Stage Computation,

then, is to compute Bs+i{v) for all r G V in parallel (using |5,+i(v)| processors for each v). The

function c{s) is defined so that if t; G V, then as we go from one stage to the next 5^+i(u) will be

empty for a while, then it will consist of a single element of C(v), then at most three elements, then

at most five elements, then at most nine elements, and so on. This continues until the final stage

(stage [log A^]), when B',^-^{v) = C{v). We show below that each stage can be performed in 0(1)

time, resulting in a total running time of ©(logn) (it takes O(logn) time to compute the value of

N). The following lemma is similar to Lemma 2.1 in that it guarantees that the bridge lists do not

grow "too much" from one stage to another.

Lemma 3.6: For any stage s > and any node v £T, \B3+-[{v)\ < 2|B,(i')| + 4.

Proof: The proof is by induction on 5. Basis (5 = 0): The claim is clearly true for 5 = 0.

Induction step (5 > 0): Assume the claim is true for stage 5 - 1. If t; G V, then the claim is

obviously true, from the definition of c{s). li v £V -V and Out{v, G) contaiins only one node, then

the claim is clearly true as well. So consider the case when v E.V - V, and Out{i\G) = {u'i,tt'2}.

We know that 5,+i(v) = B',j^-i{wi) U B',^i{w2). Thus, we have the following:

\Bs+i{v)\ = \B,{wi:
+

\B,iw2)\

2|5,_i(u;i)| + 4

^1 +
2|5,_i(u;2)| + 4

(from definitions)

(by induction hyp.)

i^i)\
+

\Bs-liW2)\
+ 4

= 2|5,(r)| + 4

In the next lemma we show that the way in which the £a(t;)'s grow is "well behaved," resembling

Lemma 2.2.

11
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Lemma 3.7: Let [a,b] be an interval with a,b £ (-oo,5^(t;),oo). //[a, 6] intersects k+l items in

{-oo,B',{v),oo), then it intersects at most 8k + 6 items in B,iv) for all k > I and s > 1.

Proof: The proof is structuraUy the same as that of Lemma 2.2, since that lemma was based on

a merge definition similar to that for Bg+i{v).

Corollary 3.8: The list {-oo,B',{v),oo) is a 4-cover for 5i+i(v), for s>0.

Corollary 3.9: The list {-oo,B,{v),oo) is an 14-cover for B,{w), for s > and {v,w) € E.

The first of these two corollaries implies that we can satisfy all the c-cover input conditions

for the Merge Lemma (Lemma 2.4) for performing the merge operations for the computation at

stage 5 in 0(1) time using n, processors, where n, = Yl^^v l^»(^)l- We use the second corollary

to show that when the computation completes we will have a fractional cascading data structure

(after adding the appropriate rank pointers). We maintain the following rank information at the

start of each stage s:

(1) For each item in B',{v): its rank in B',{w) \i In{v,G)r\ In{'w,G) is non-empty, i.e, if there

is a vertex u such that (u,u) € E and iu,w) 6 E.

(2) For each item in B',{v): its rank in B,{v) (and thus implicitly, its rank in B',+i{v)).

By having this rank information available at the start of each stage 5 we satisfy all the ranking

input conditions of the Merge Lemma. Thus, we can perform each stage in 0(1) time using n,

processors. Moreover, the output computations of the Merge Lemma allow us to maintain aU the

necessary rank information into the next stage. Note that in stage s it is only necessary to store the

sets for 5 - 1; we can discard any sets for stages previous to that, as in the generalized cascading

merge.

Recall that we perform the computation for [logiV] stages, where N is the size of the largest

catalogue. When the computation completes, we take B{v) = B,{v) for all r G V, and for each

(r,u;) e E we rank B{v) in B{w). We can perform this ranking step by the following method.

Assign a processor to each element b in B{v) for all r G V in parallel. The processor for b can find

the rank of 6 in each B',{w) such that w € Out{v,G) in 0(1) time because 5,(r) contains B',{w)

as a proper subset {B'g{w) was one of the sets merged to make B,(r)). This processor can then

determine the rank of 6 in B{w) = B,{w) for each w 6 Out{v, G) in 0(1) time by using the ranking

information we maintained (from B'^{w) to Bi{w)) for stage s (rank condition 2 above).

12
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By Corollary 3.9, B{v) is an 14-cover for B{w) ii(w,v) G E. This implies that G is a fractional

cascading data structure. For, given the position of an item x in Biw) we can locate x in B{v) in

0(1) time, for each {w,v) G E. Thus, given the position of an item i in C{w) we can locate x in

C{v), where {w,v) £ E, by the following the path in G from w', which stores B{w'){= C{w)), to

V, which stores C{v), locating x in each bridge list along the way in 0(1) time per vertex. Since

this path contains at most |'log<f(G')] vertices, this takes 0{logd{G)) time. We show that G uses

0(n) space in the following lemma.

Lemma 3.10: Let n, denote the space used for the data structure in the fractional cascading al-

gorithm in stage s, that is, n, = Z^„gv> \B,{v)\. Then n, is 0{n) for any s G [0, flog TV]].

Proof: Let us analyze the amount of space, n„, that is added to G for any particular catalogue C{v).

Since we started with all the bridge lists being empty, n, = Ylt,ev "»<• R^c^iU tt^'t while constructing

G we copy one fourth of the elements in each bridge list to at most two of its neighbors. Thus, we

have the following for any 5 G [0, flog A'']]: ,
"

nv < \C{v)\ + 2[\Civ)\/4\+2WCiv)\/A'\+2WC{v)\/4=\ + ...

< 2|C(f)|.

(This is obviously an over-estimate; but it is good enough for the purposes of the analysis.) There-

fore, Ug < 2n. Note that the upper bound for n„ given above holds even if G contains cycles.

We have just shown that we can construct a fractional cascading data structure G from any

catalogue graph G in O(log n) time and 0{n) space using n processors. We have not, however, shown

how to assign these n processors to their respective jobs. Initially, we assign 2|C'(r)| processors to

each node v E V and no processors to each node v £ V -V. Then, each time we pass k elements

from a node r to a node w (in performing the merge at node w) we also pass along (exactly) k

processors to go with them. Since n^ < 2|C(t;)|, we know that there are enough processors assigned

to v G V to do this. To see that this also suffices for v G V" - V note that at the beginning of stage

s node t; has |B,_i(r)| elements (and processors). We "giveaway" at most 2[|5,_i(r)|/4J elements

(and processors) from B,^i(v) in stage s and receive |.B,(t;)| elements (and processors). There

are clearly enough processors to perform the merge to construct B,{v) and repeat the give-away

procedure for the next stage. Thus, we have the following:

Lemma 3.11: Given any catalogue graph G we can construct a fractional cascading data structure

for G which uses 0{n) space in O(logn) time using n processors in the CREW PRAM model.
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Thus, we can do fractional cascading in O(logn) time using n processors. For the applications

we study in this paper we can do even better, however.

Lemma 3.12: Given any catalogue graph G, if d{G) is 0(1) or if we are given Out{v,G) in sorted

order for each v E V, then the total number of operations performed by the fractional cascading

algorithm is 0{n).

Proof: K d{G) is 0(1) or we are given Out{v,G) in sorted order, then the construction of the

graph G (without any bridge lists) clearly requires only 0{n) operations. We will charge all other

operations to nodes v E V, and compute the total number of operations that are performed because

the node v initially stores |C(r)| elements. In the first stage, s^, that B,{v') becomes non-empty

it will receive one element of C{v) from v, hence we will perform one operation in stage Sy for the

node V. In stage 5^+1 we will then perform at most 3 operations, at most 7 in stage 6^ + 2, at most

15 in stage s^ + 3, and so on. As soon as Bg{v') contains at least 8 elements from v (as early as

stage 3v + 3), then we will perform one more operation, passing one element to the fan-in tree for v.

In the next stage, Sv + 4, we will perform at most 2 additional operations, then at most 4 additional

operations in stage 5^ -I- 5, and so on. This pattern will "ripple" back through the fan-in tree for v

and on through the graph G for as long as the computation proceeds. Specifically, the number of

operations charged to a node u G V is, at most, the sum of the following k^ = [log4 |C(u)|] rows:

13 7 15 31 63 127 ... |C(t?)l

2*1 2*3 2*7 2*15 2*31 ... 2[|C(v)|/4j

22*1 2^*3 22*7 ... 22[|C(t;)|/42j

2*v *1

(This is actually an over-estimate, since not all nodes in G have out-degree two.) Summing the

number of operations for each row, and then summing the rows, we get that the number of op-

erations charged to i; e T^ is at most 2(|C(r)| + 2[|C(r)|/4j -I- 2^[\C{v)\/4'^\ + ... + 2*»), which

is at most 4|C(r)|. Thus, the total number of operations performed by the fractional cascading

algorithm is 0{n).

This lemma immediately suggests that we may be able to apply Brent's theorem to the fractional

cascading algorithm so that it runs in O(logn) time using [n/logn] processors:

Theorem 3.13: [9j Any synchronous parallel algorithm taking time T that consists of a total of

N operations can be simulated by P processors in 0( [iV/Pj -|- T) time.
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Proof of Brent's Theorem: Let A', be the number of operations performed at step i in the

parallel algorithm. The P processors can simulate step : of the algorithm in 0{\NilP'\) time.

Thus, the total running time is 0( [NIP\ + T):

Y.\N.IP} < EdAV/'J + 1) < [y/P\ +T. m
«=1 1=1

There are two qualifications one must make to Brent's theorem before one can apply it in the

PRAM model, however. The first is one must be able to compute A', at the beginning of step i

in 0(fA'',7P'|) time using P processors. And, second, we must know exactly how to assign each

processor to its job. Thus, in order to apply Brent's theorem to our problem of doing fractional

cascading we must deal with these processor allocation problems.

Let r = {pi,p2' iPzn} be the set of processors used in the fractional cascading algorithm, and

let r' = {Pi.Pj' •• • 'Pfn/iognll ^^ ^^^ ^^^ of processors we wiU be using to simulate the fractional

cascading jdgorithm. Assuming that d(G) is constant or we are given the list of vertices in Out{v,G)

in sorted order, it is easy to compute the graph G and the initial assignment of processors from

r, so that we assign 2|C(t')| processors to each node v £ l\ in O(logn) time using the processors

in r' by a parallel prefix computation. (Recall that the problem of computing all prefix sums

Ck = II,=i Qi of a sequence of integers (ai,a2, ...,a„) can be done in O(logn) time using ("n/logn"]

processors [19.20].) Let v(p,) denote the vertex in G to which p, 6 T is assigned. Recall that we will

be "passing" the prcx:essor p, around G during the computation, so the value of v(p,) can change

from one stage to the next. Once a processor p, becomes active it stays active for the remainder of

the computation. So, the only thing left to show is how to compute the number of processors active

in stage 5, and assigning the processors in T' to their respective tasks of simulating the processors

in r. We do this by sorting the set of processors in T by the stage in which they become active. It

is easy to compute the stage in which a processor p, becomes active, because this depends only on

the value of t;(p,) and the size of C{v) relative to A' (the size of the largest catalogue). We can sort

the processors in T by the stage in which they become active in O(logn) time using the [n/logn]

prcKessors in V, by using an algorithm due to Reif [21] (since the sUge numbers fall in the range

[1, [log A']]). Thus, by performing a parallel prefix computation on this ordered list of processors,

we can determine the number of processors active in each stage s, and also know how to assign the

processors in T' so that they optimally simulate the activities of the processors in F during stage

3. We thus have established the following:

Theorem 3.14: Given a catalogue graph G = (V,E), such that d{G) is 0(1) or we are given

each Out{y,G) set in sorted order, we can build a fractional cascading data structure for G in
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O(logn) time and 0{n) space using \n/logn] processors in the CREW PRAM model, where n =

\V\ + \E\ + Evev \Civ)\, which ts optimal.

Given a walk {vi,...,Vm) and an arbitrary element i, the query which asks for locating x in

-ivery C(vi) is called the multilocation of x in {vi,...,Vm)- Thus, to perform a multilocation of

z in a walk {vi,...,Vm) we first locate x in C{vi) by binary search and then traverse each other

vertex in the walk in 0{\ogd{G)) time per vertex (by Theorem 3.14). Therefore, we can perform

the multilocation of x in (vi,...,Vm) in 0(loglC(ri)| + mlogd(G)) time. (See Figure ??.) In the

section which follows we give some applications of fractional cascading in parallel.

4 The Plane-Sweep Tree Data Structure

In this section we define a data structure, and show how to turn it into a fractional cascading data

structure so that it can be used to solve the trapezoidal decomposition problem and the planar-

point location problems in O(logn) time using n processors. Since the construction of this data

structure is quite involved, we merely define the data structure now, and show how to construct it

in these same bounds in Section 5.

Let 5 = {si , 52i • • • 1 -Sn) be a set of non-intersecting line segments in the plane, and let X{S) =

(qi,Q2, . . . ,Q2n) ^^ the (non-decreasing) sorted list of the i-coordinates of the endpoints of the

segments in S. To simplify the exposition we assume that no two endpoints in 5 have the same

i-coordinate, i.e., x, < ar,+i. Let X' = {xi,X2,. . . ,Xm) be some subsequence of X{S) and let T

be the complete binary tree whose m + \ leaves, in left to right order, correspond to the intervals

(-oo,ii], [xi,i2], [^2ia;3], ..., [xm-i,Xm]i [^mi+'X)) (respectively). Associated with each iiitemal

node v G T is a closed interval I^ = [x,,Xj] which is the union of the intervals associated with the

descendants of v. Let 11^ denote the vertical strip /„ X (-cx),-|-oo). We say a segment s,- covers a

node v e T if it spans 11,; but not Uparent{v)- Clearly, no segment covers more than 2 nodes of any

level of T; hence, every segment covers at most O(logm) nodes of T. For each node r G T we let

Cover{v) denote the set of all segments in S which cover v.

The idea of using a tree data structure such as this to parallelize plane-sweeping is due to

Aggarwal et al. [1], ajid is itself based on the "segment tree" of Bentley and Wood [7]. The data

structure of Aggarwal et al. consists of the tree T described above with X' = X{S) (i.e., it has

2n -I- 1 leaves). They store the set Cover{v) at each node v sorted by the "above" relation for line

segments. They construct these sets by first collecting the segments in each Cover{v) and then

sorting all the Cover{vys in parallel, an operation which requires 0(log^ n) time using n processors,

16

www.libtool.com.cn



since there are a total of 0(nlogn) items to sort [11]. Once these sets are constructed, the data

structure can then be used to solve various problems by performing certain searches on the nodes

of T. These searches are of the following nature: pven a set of 0{n) input points, for each point p

locate the segment in Cover{v) which is directly above (or below) p, for all u G T such that p 6 n„.

Notice that for the leaf-to- root walk starting with the leaf v such that p G !!„, this search is exactly

the multilocation of p in that walk. AggarwjJ et al. [1] perform all 0{n) multilocations in 0(log^ n)

time using n processors by assigning a processor to each point p and doing a binary search for p in

all the Cover{v) sets such that p G !!„ (there are O(logn) such lists for each p).

As mentioned earlier, our plane-sweep tree data structure shares some of the structure of the

data structure of Aggarwal et ai, but differs from it in some important ways. One important

difference is that it allows us to perform 0{n) multilocations in O(logn) time using n processors,

after a preprocessing step which takes O(logn) time using n processors. Also, instead of taking

X' to be the entire set X{S), we define X' to be the list consisting of every [logn]-th element

of X{S), i.e., X' = 5i4MPfiog„i(X(S)). Thus, each vertical strip n„ associated with a leaf of T

in our construction contains O(logn) segment endpoints. Like Aggarwal et a/., we also store each

Cover(v) list sorted by the "above" relation. In addition, for every node v of T we define the set

End{v) as follows:

End{v) = {st
I

5, G 5, has an endpoint in IIv, and does not span IIv}.

Note that all the segments in the Cover{vys of any root-to-leaf path in T are comparable by the

"above" relation. Thus, if we direct all the edges in T so that each edge goes from a child to

its parent, then the elements stored in any directed walk in T are all comparable by the "above"

relationship. Therefore, we can apply the fractional cascading technique of the previous section to

T (with each Cover{v) playing the role of the catalogue C{v)). Since T has bounded degree and

has 0(n log n) space, we can, by Theorem 3.14, construct a fractional cascading data structure T

for T in O(logn) time and 0(n log n) space using n processors. This data structure allows us to

perform the multilocation of any point p (in a leaf-to-root walk) in O(logn) time (O(logn) for the

binary search at the leaf, and an additional 0(1) for each internal node on the path to the root).

We also store the set End(v) in each leaf v of f. Although End{v) is defined for each node of T

we only construct a copy of £71^(1;) for leaf nodes v. End{v) is not sorted in any particular order.

The plane-sweep tree data structure, then, consists of the tree T constructed from T by fractional

cascading, where T is defined with X' = SAMP^^n]{^{S)), has Cover{v) stored in sorted order

for every node v £T, and the set End{v) stored (unsorted) for each leaf node r G T (see Figure ??).

In section 5 we show how to construct this data structure efficiently in parallel. Since the
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construction is rather involved, before ^ving the details of the construction, we give two applications

of this data structure. We begin with the trapezoidal decomposition problem.

4.1 The Trapezoidal Decomposition Problem

Let S = {5i, S2, . . . ,Sn} be a set of non-intersecting line segments in the plane. For any endpoint p

of a segment in 5 a trapezoidal segment for p is a segment of 5 which is directly above or below p

such that the vertical line segment from p to this edge is not intersected by any other segment in

S. The trapezoidal decomposition problem is to find the trapezoidal segment(s) for each endpoint

of the segments in S. Even in the parallel setting, this problem is often iised a£ a building block to

solve other problems, such as polygon triangulation [1,17,26] or shortest paths in a polygon [14].

Theorem 4.15: A trapezoidal decomposition of a set S of n segments in the plane can be con-

structed in O(logn) time using n processors in the CREW PRAM model, and this is optimal.

Proof: We first construct the plane-sweep tree data structure T for S. Theorem 5.18 (to be given

later, in Section 5) shows that this structure can be constructed in O(logn) time using n processors.

And we already know that T can be made into a fractional cascading data structure T in these

same bounds. We assign a single processor to every segment endpoint (there are 2n such points).

Let us concentrate on computing the trapezoidal segment below a single segment endpoint p. Let

{v,...,root{T)) be the leaf-to-root path in f which starts with the leaf u such that p £ !!„. We first

search through End{v) to see if there are any segments in this set which are below p, and take the

one which is closest to p. We then perform the multilocation of p in the leaf-to-root walk starting

at V, giving us for each w such that p G !!„, the segment in Coveri^w) directly below p. We choose

among these |logn] answers the segment which is closest to p. Comparing this segment to the one

(possibly) found in End{v), we get the segment in 5, if there is one, which is directly below p. Since

the length of the walk from v to root{T) is at most [logn], by Theorem 3.14 this computation

done in O(logn) time using n processors. Since the 2-dimensional maxima problem can be reduced

to trapezoidal decomposition in 0(1) time using n processors [15], and the 2-dimensional maxima

problem has a sequential lower bound of n(nlogn) in the algebraic computation tree model [6,18],

we cannot do better than O(logn) time using n processors.

Solving the trapezoidal decomposition problem efficiently in parallel has proven to be an im-

portant step in triangulating a polygon efficiently in parallel [1,2,4,15,26]. In fact, the method of

Theorem 4.15 can be used in the algorithms of Goodrich [17] and Yap [26] to achieve an O(logn)

time solution to polygon triangulation using only n processors. We next point out that the plane-

sweep tree can also be used to solve the planar point location problem.
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4.2 The Planar Point Location Problem

The planar point location problem is the following: Given a planar subdivision 5 consisting of n

edges, construct a data structure which, once constructed, enables one processor to determine for

a query point p the face in S containing p. This problem has applications in several other parallel

computational geometry problems, such as Voronoi diagram construction [1].

Theorem 4.16: Given a planar subdivision S consisting ofn edges, we can construct a data struc-

ture which can be used to determine for any query point p the face in S containing p in O(logn)

time. The construction takes 0{\ogn) time using n processors in the CREW PRAM model.

Proof: The solution to this problem is to build the plane-sweep tree data structure for S (with

fractional cascading) and associate with each edge Si the name of the face above 5,. As already

mentioned, Theorem 5.18 (to be given later, in Section 5) shows that the tree T can be constructed

in O(logn) time using n processors. Also recall that T can be made a fractional cascading data

structure T in these bounds. Let a query point p be given. A planar point location query for p

can be solved in O(logn) serial time by performing a multilocation like that used in the proof of

Theorem 4.15 to find the segment in S directly below p. After we have determined the segment Si

in S which is directly below p we then can read off the face of S containing p by looking up which

face is directly above 5,.

Incidentally, Theorem 4.16 immediately implies that the running time of the Voronoi diagram

algorithm of Aggarwal et al. [1] can be improved from O(log^n) to O(log^n), still using only n

processors. (We have recently learned that in the final version of their paper [2], they reduce the

time bound of their algorithm to O(log^ n) using a substantially different technique.)

The results of Subsections 4.1 and 4.2 are conditional: they hold :/we can construct the plane-

sweep tree data structure efficiently in parallel. We next show how to construct the plane-sweep

tree in O(logn) time using only n processors.

5 Cascading with Line Segment Partial Orders

In this section we show how to modify the cascading divide-and-conquer technique of Section 2

to solve some geometric problems in which the elements being merged belong to the partial order

defined by a set of non-intersecting line segments. Recall that in this partial order a segment Si is

"above" a segment S2 if there is a vertical line which intersects both segments and its intersection

with Si is above its intersection with aj. We apply this technique to the problems of constructing

the plane-sweep tree data structure and of detecting if any two of n segments in the plane intersect.
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We now briefly give an overview of the problems encountered and our solutions to them. The

essential computation is as follows: we have a binary tree with sets stored in its leaves, and we

wish to combine them in pairs (up the tree) to construct sets at internal nodes. The main difficulty

is that the set stored at some node v is not defined as a simple merge of the sets stored at the

children of v. Instead, its definition involves deleting elements from sets stored at children nodes

before performing a merge. These deletions are quite troublesome, because if we try to perform

these deletions while cascading, then the rank information will become corrupted, and the cascade

will fail. On the other hand, if we try to postpone the deletions to some postprocessing step, then

there wiU be non-deleted elements which are not comparable to others at the same node; hence,

there will be instances when processors try to compare two elements which are not comparable, and

the cascade will fail. The mjiin idea of our method for getting around these problems is to embed

partial orders in total orders "on the fly" while we are cascading up the tree. That is, we change

the identity of segments as they are being passed up the tree, so that the segments in any list are

always linearly ordered. To be able to do this, however, we must do some preprocessing which

involves simultaneously performing a number of cascading merges in parallel. We complete the

computation by performing a purging post-processing step to remove the segments that "changed

identity" (as an alternative to being deleted).

For the intersection detection problem, we need to dove-tail the detection of intersections with

the cascading. That is, we cascade the results of intersection checks along with the segments being

passed up the tree. The complication here is that if we should ever detect an intersection on the

way up the tree we cannot stop and answer "yes" as this would require C>(logn) time (to "fan-in"

all the possible Jinswers). Thus we are forced to proceed with the merging until we reach the root,

even though in the case of an intersection the segments being merged no longer even belong to a

partial order. We show that in this case we can replace the segment with a special place holder

symbol so that the cascades can proceed. After the cascading merge completes we perform some

post-processing to then check if any intersections are present.

The next two subsections give the details.

5.1 Plane-Sweep Tree Construction

We begin by making a few definitions and observations. We let left(nv) (respectively, right(nv))

denote the left (right) vertical boundary line for TI„. We define the dominator node of a segment

Si, denoted doTn{si), to be the deepest node v (i.e., farthest from the root) in T such that 5, is

completely contained in 11^. That is, the dominator of Si is the node v such that s, does not
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intersect left(nt,) or right(nt,), but Si does intersect the vertical boundary separating U.lc,^^l^^^^ and

Ilrchiid(v)- ^ addition, we define the following sets for each node v E T:

L{v) = {s,
I
3, 6 End{v) and 5, n left(n„) ^ 0},

R{v) = {si
I
Si € End{v) and s, D right(nt,) ^ 0},

l{v,d) = {s,
I
5, € L(t;) and d = dept/i((iom(s,))},

J

r(i;, (/) = {si
I
5, G R{v) and d = dept/i(dom(5i))}.

Note that l{v,d) and r(i;,d) are only defined for < d < depth{v). Any time we construct

one of these sets it will be ordered by the "above" relation, so for the remainder of this section we

represent these sets as sorted lists. In the following lemma we make some observations concerning

the relationships between the various lists defined above.

Lemma 5.17: Let v be a node in T with left child x and right child y. Then we have the following

(see Figure 11):
\ ^

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

l{v,d

r{v,d

L{v

R(v

L{v

R{v

Cover(x

Cover{y

= l(x,d)Ul{y,d), ioT d < depth{v)\

= r{x,d)U r{y,d), ioT d < depth{v);

= l{v, 0) U l{v,l) U • • • U l{v, depth{v) - 1);

= r(i>,0)U r(v,l)U---lSr{v,depth{v)- 1);

= L{x)l}{Liy)-l{y,depth{v))y,

= iRix)-r{x,depth{v)))uR{y);

= L{y)-liy,depth{v))-

= R{x)-r{x,depth{v)).

Proof: Easily follows from definitions.

Lemma 5.17 essentially states that the sets /, r, L, R, and Cover for the nodes on a partic-

ular level of T can be defined in ternas of sets for nodes on the next lower level of T. We could

use this lemma and the parallel merge technique of Valiant [24], as implemented by Borodin and

Hopcroft [8], to construct a sorted copy of each Cover{v) set in C)(logn loglogn) time using n pro-

cessors, improving on the previous bound of O(log^ n) time using the same number of processors [1].

We can do even better, however, by exploiting the structure of the L and R sets. We describe how
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to do this below, in order to achieve a running time of O(logn) still using n processors. Before going

into the details of the plane-sweep tree construction, we give a brief overview of the algorithm.

High-Level Description of Plane-Sweep Tree Construction:

The construction consists of the following five steps:

Step 1. Construct l{v,d) and r{v,d) for every v e T. To implement this step we perform

pogn] generalized cascading merges in parallel (one for each d) based on Equations 1 and 2 of

Lemma 5.17 (starting with the leaf nodes of T). We implement this step in O(logn) time using n

processors in total for all the merges.

Step 2. Let (f„ = depth(parent{v)). Compute for each segment in l{v,dy) (resp. r{v,dv)) its

predecessor segment in L{v) - l{v,d^,) (resp. R{v) - r{v,d^,)). We do this, for each u G T, by

making d^ copies of l{v,d^) and r{v,d,,), and merging l{v,dv) (resp. r(r,d„)) with all the l{v,d)

(resp. r{v,d)) such that d < cf„. Note: we perform this step without actually constructing L{v) or

R{v).

Step 3. Construct L{v) and R{v) for every v £ T. To implement this step we perform a

generalized cascading merge procedure based on Equations 5 and 6 and the information computed

in Step 2 (starting with the leaf nodes of T). We never actually perform the set difference operations

of Equations 5 and 6, however. Instead, at the point in the merge that a segment in, say, /(t;,d„),

should be deleted we "change the identity" of that segment to its predecessor in L{v) - l{v,dy)

(which we know from Step 2). That is, from this point on in the cascading merge this segment

is indistinguishable from its predecessor in L{v)- l{v,d^,). We show below that (i) the cascading

merge will not be corrupted by doing this, (ii) the sets never contain too many duplicate entries

(that would require us to use more than n processors), and (iii) after the merge completes, we can

construct L{v) and R{v) for each node by removing duplicate segments in O(logTi) time using n

processors.

Step 4. Construct Cover{v) for every v eT using Equations 7 and 8 and the sets constructed

in Step 3. The implementation of this step amounts to compressing each L{v) (resp. R{v)) so

as to delete all the segments in l{v,d^,) (resp. r{v,dy)), and then copying the set of segments so

computed to the sibling node in T.

End of High-Level Description.

We now describe how to perform each of these high-level steps.
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5.2 Step 1: Constructing l{v,d) and r{v,d)

We construct the l{v,d) and r{v,d) sets as follows. We maJce [logn] copies of T, and let T{d)

denote tree number d. Note that by our definition of T the space needed to store the "skeleton"

of each T{d) is O(n/logn). This of course results in a total of 0(n) space for all the T(d)'s. For

each node v of T{d) such that depth{v) > d we wish to construct the sets l{v,d) and r{v,d), as

given by Equations 1 and 2 of Lemma 5.17. This implies that if we store l{v,d) (resp. r{v,d)) in

every leaf node v of T{d), then for any node v 6 T(d), l{v,d) is precisely the sorted union of the

sets stored in the descendants of v. We start with the elements belon^ng to l{v,d) (resp. r{v,d))

stored (unsorted) in a set Aiv) for each leaf v in T{d), and construct each l{v,d) and r{v,d) by the

generalized cascading- merge technique of Theorem 2.5, (using the A(v)''s as in the theorem). Note:

since l{v,d) and T{v,d) are only defined for d < d€pth{v), we only proceed up any tree T{d) as far

as nodes at depth d+ 1, terminating the cascading merge at that point. We allocate [n/ logn] -\-Nd

processors to each tree T{d), where Nd denotes the number of segments stored initiaUy in the i4(t;)'s

in the leaves of T{d). Thus, since H^^i" Nj = n, we have shown how to construct all the l{v,d)

and r{v,d) sets in 0{logn) time using n processors.

5.3 Step 2: Computing predecessors

In Step 2 we wish to compute for each segment in the set l{v,dv) (resp. r(v,di,)) its predecessor seg-

ment in L{v) — l{v,dv) (resp. R{v) — r(t;,d„)), where d^ = depth{parent{v)). Without loss of gener-

ality, we restrict our attention to the segments in l{v, dy) (the treatment for the segments in r{v, d^)

is similar). Recall that Equations 3 and 4 state that L{v) = /(r,0) U l{v, 1) U • • U l{v,d^) and that

R{v) = r(t;,0) U r(t;, 1) U • • • U r{v,di,). We make dy copies of /(r,<iv) and using the merging proce-

dure of Shiloach and Vishkin [23] we merge a copy of /(t;,dt,) with each of /(v, 0), . . . ,/(t),d„— 1). This

takes O(logn) time using [|Z,(r;)|/ logn] processors for each u 6 T. Since (i) there are O(n/logn)

nodes in each T{d), (ii) each segment appears exactly once in some /(t;,(f„), and (iii) I^ueT l-^(*')l

is O(nlogn), we can clearly implement all these merges in parallel using n processors. Once we

have completed all the merges it is an easy matter to assign a single processor to each segment 5,

and compare the predecessors of a, in /(r,0), . . . ,l{v,dy - 1) so as to find the predecessor of Si in

L{v)-l{v,dy) (= /(v,0)U-- Ul{v,dy - 1)). This amounts to O(logn) additional work, thus Step 2

can be implemented in O(logn) time using n processors.
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5.4 Step 3: Constructing L{v) and R{v)

In this step we perform another cascading merge on T, this time to construct L{v) and Riv) for

each V E T based on Equations 5 and 6 of Lemma 5.17. Initially, we have L{v) and R{v) constructed

only for the leaves. We then merge these sets up the tree based on the Equations 5 and 6 as in

Theorem 2.5. The computation for this step differs from the cascading merge of Step 2, however,

in that we need to be performing difference operations as well as list merges as we are cascading

up the tree. Unfortunately, performing these difference operations explicitly at each level would

require 0(log^ n) time. We get around this problem by never actually performing the difference

operations. That is, we don't actually delete segments from any lists. Instead, we change the

identity of a segment Si in say, l{y,dy), to its predecessor in L{y) — l{y,dy) when we are performing

the merge at node v. (See Figure ??.) We do this instead of deleting it from L{y), because segments

in l(y,dy) are not comparable to segments in L{x) (the list we wish to merge L{y) - l{y,dy) with).

Clearly, the fact that we change the identity of a segment in l{y,dy) to its predecessor in

Liy) - liy,dy) means that there will be multiple copies of some segments. This will not corrupt

the cascading-merge, however, because one of the properties of the "above" relation is that all

duplicate copies of a segment will be contiguous. Moreover, they will remain contiguous as the

cascading-merge proceeds up the tree. In addition, even though we will have multiple copies of

segments in lists as they are merging up the tree, we can still implement this step with a total of

n processors, because there will never be more items present in any L{v) than the total number of

items stored in the (leaf) descendants of v. At the end of this step it is an easy matter to assign

f|X(r)|/logn] processors to each t; and compress out the duplicate entries in L{v) in O(logn) time.

Thus, we can construct L{v) and R{v) (compressed and sorted) for each v £ T in O(logn) time

using n processors.

5.5 Step 4: Constructing Cover{v)

In this step we construct Cover{v) for every v in T, based on Equations 7 and 8 of Lemma 5.17.

We implement this step by first compressing each L{v) (resp. R{v)) so as to delete all the segments

in l{v,d^) (resp. r(r,d„)), and then by copying the set of segments so computed to the sibling of r

in T. This can clearly be done in O(logn) time using n processors.

Thus, summarizing the entire previous section, we have the following:

Theorem 5.18: Given a set S of non-intersecting line segments in the plane, we can construct

the plane-sweep tree T for S in O(logn) time using n processors in the CREW PRAM model, and
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this is optimal. t .

Proof: We have already established the correctness and complexity bounds. To see that our

construction is optimal, note that T requires n(nlogn) space.
'

In the previous sections we assumed that segments did not intersect. Indeed, T is defined only

if they don't intersect. We show in ...e next section that the following idea is useful when we

want to check whether any two of the given segments intersect: we can, in effect, pretend we are

constructing T and check for intersections while doing so.

5.6 The Segment Intersection Detection Problem

The problem we solve in this section is the following: given a set 5 of n line segments in the plane,

determine if any two segments in 5 intersect. We begin by stating the conditions which we use to

test for an intersection.

Lemma 5.19: [1] The segments in S are non-intersecting if and only if we have the following for

the plane-sweep tree T of S:

(1) For every u G T all the segments in Cover{v) intersect left(IIv) in the SEime order as they

intersect right(nv).

(2) For every v E T no segment in End{v) intersects any segment in Cover{v).

Aggarwal et al. [1] used this lemma and their data structure to solve the intersection detection

problem in 0(log^ n) time using n processors. Their method consisted of constructing the Cover{v)

lists independently of one another, basing comparisons on segment intersections with left(n„), and

then testing for Condition 1 by checking if each list Cover{v) would be in the same order if they

based comparisons on segment intersections with right(n„). If no intersection was detected by this

step, then they tested for Condition 2 by performing 0{n) multilocations of segment endpoints.

This entire process took O(log^ n) time using n processors.

We use this lemma by testing for Condition 1 while we are constructing the plane-sweep tree

for 5 (instead of waiting until after it has been built) and in so doing we achieve an O(logn) time

bound for this test (since our construction takes only O(logn) time). We test Condition 2 in the

same fashion as Aggarwal et a/., that is, by doing 0{n) multilocations after the plane-sweep tree

has been built. Since in our data structure the multilocations can all be performed in O(logn)

time, the entire intersection-detection process takes O(logTi) time using n processors.
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Since we do not construct the Cover{v) sets independently of one another, but instead construct

them by performing several cascading merges, we must be very careful in how we base segment

comparisons, and in how we test for Condition 1. For if two segments intersect, then determining

which segment is above the other depends on the vertical line on which we base the comparison.

We consider each step of the construction in turn, beginning with Step 1. Recall that in Step 1

we construct all the /(u, d) and r{v,d) sets for each u G T. In the following lemma we show that if

we base segment comparisons on appropriate vertical lines. Step 1 can be performed just as before.

Lemma 5.20: Let v £ T and < d < depth{v) be given, and let si and *2 ^ t^o segments such

that Si e /(ti',d) and S2 G l{z,d) (resp. si 6 r{w,d) and S2 € r(z,d)j, where w,z £ Desc{v). Then

dom{s\) = dom{s2).

Proof: Let v £ T and < d < [logn] be given. Recall that l{v,d) (resp., r{v,d)) is defined to be

the set of all segments in L{v) {R{v)) which have a dominator node at depth d in T. Note that the

dominator node for any segment 5, in l{w, d),r{w,d), l{z, d), or r{z, d), where tr, z G Desc{v), must

be an ancestor of v, since d < depth{v) and, by definition, s, G End{v) and s, G End{dom{si)).

There is only one node which is an ancestor of v and is at depth d in T.

Thus, we can perform the merges based on Equations 1 and 2 of Lemma 5.17 (e.g., l{v,d) =

l{x,d) U l{y,d)) by basing all segment comparisons on the intersection of the segments with the

vertical boundary separating the two children of their dominator node. That is, if 5i and 52 are two

segments to be compared in Step 1, then we say that si is "above" 52 if and only if the intersect of

s\ with L is above the intersection of ^2 with L, where L is the vertical boundary line separating

the two children of dom{si) (= dom{s2)).

In Step 2 we computed for each segment in l{v,dv) (resp. r(v,dv)) its predecessor segment in

L{v) — l{v,dy) (resp. R{v) - r(i',d„)), where d,; = depth{parent{v)). Recall that we did this by

merging /(u, d^) with each of /(r, 0),. .. ,l{v,dy — 1). A similar computation was done for r(v,dy);

without I06S of generality, we concentrate on the computation involving l(v,d^,). Also recall that

all the segments in /(r,0),. . . ,/(t;,dv) belong to L(v); hence, intersect left(n„). After Step 1

finishes each set liv,d) will be sorted based on segment intersections with the vertical boundary

line separating the two children of the ancestor of v at depth d (the dominator of aU the segments

in l(v,d)). In O(logn) time we can check if this order is preserved in each of l{v,0),...,l{v,d^)

if we base segment intersections on left(n,;), instead. If the order changed in any l{v,d), then we

have detected an intersection, and we are done. Otherwise, we proceed with Step 2 just as before,

basing comparisons on segment intersections with left(nt,).
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In Step 3 we performed a cascaxling merge up the tree T, constructing L{v) and R{v) for every

node V € T. Recall that this cascading merge was based on Equations 5 and 6 of Lemma 5.17

(e.g., L{v) = L{x) U (X(y) — l{y,depth(v)))). Let us concentrate on the testing procedure for the

Z.(«)'s, since the method for the i?(t;)'s is similar. Initially, let us start with each L{v) constructed

at the leaves of T sorted by segment intersections with left(n„). Thus, before we perform the

merge based on the equation L{v) = L{x) U {L(y) — l{y,depth{v))), we must first check to see if the

segments in the sample of L{y) - l{y,depth{v)) (to be merged with the sample of L{x)) have the

same order independent of whether comparisons are based on segment intersections with left(ny)

or left(n„). Unfortunately, to do this completely would require O(logn) time at every level of the

tree, resulting in an O(log^n) time algorithm. So, instead of broadcasting at each level whether

an intersection has occurred or not, we cascade that information up along with the merges. More

precisely, before doing the merge at a node v, we test if every consecutive pair of items in the sample

of L(y) — l{y,d€pth{v)) would remain in the same order independent of whether comparisons were

based on segment intersections with left(ny) or with left(n„). If we detect that an intersection has

occurred, then we we will have two elements which are out of order. We replace both items by the

distinguished symbol $. Then, as the merges continue up the tree, any time we compare an item

with $ we replace that item with $ and proceed just as before. This keeps the merging process

consistent, and after the cascading merge completes we can then in O(logn) time test if any of the

items in any L{v) or R{v) contcun a $ symbol, by assigning |'|Z(t;)|/logn] processors to each v £ T.

In Step 4 we constructed Cover{v) for each v E T. Recall that we did this by simply performing

compressing and copying operations on sets constructed in Step 3. Thus, assuming that no inter-

section was detected in Step 3, we can perform Step 4 just as before. After Step 4 completes we can

assign [|Coi;er(u)|/logn] processors to each v £ T and test Condition 1 directly in 0{\ogn) time,

checking if the items in Cover(v) would be in the same order independent of whether intersections

were based on left(n„) or on right(n„).

If we have not discovered an intersection after Step 4, then the only computation left in the

construction is to perform fractional cascading on the plane-sweep tree T, constructing a fractional

cascading data structure T. In directing all the edges in T to the root, and performing the fractional

cascading preprocessing on T to construct T, we associate a vertical strip with each node in T.

Since T is a tree then T is also a tree (recall the preprocessing step of the fractional cascading

algorithm). For each node r in T if v is also in T, then we take n„ for r in T to be the same as n„

for V in T. Then, for any v which is in T but not in T (i.e., r is a gateway or a node in a fan-in or

fan-out tree), we take 11^ to be the union of all the vertical strips which are descendents of r. Every
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time we perform the per-stage merge computation we compare adjacent entries in each bridge list

B(v) to see if they would be in the same order independent of whether we base comparisons on

segment intersections with left(nt,) or right(n„). If we detect that two adjacent segments intersect

then we replace both with the speciaJ symbol $. Then, as before, any time we compare a segment

with $ we replace that segment by $. Finally, when we complete the computation for Step 5 we

assign f|5(t))|/ logn] processors to each node v and check if there are any $ symbols present in any

B{v) list.

If there are no intersections detected during the fractional cascading, then we perform 0{n)

multilocations of all the segment endpoints as in [1] to test Condition 2. Let p be an endpoint of

some segment s,. We perform the multilocation of p in the plane-sweep tree for S, and check if Si

intersects the segment directly above p or the segment directly below p in each Cover{v) set such

that p € IIv This test is sufficient, since if s, intersects any segment in Cover{v), it must intersect

the segment directly above p in Cover{v) or the segment directly below p in Cover{v). Thus, by

performing a multilocation for p, we can test for Condition 2 in O(logn) time using n processors.

We summarize this discussion in the following theorem.

Theorem 5.21: Given a set of n line segments in the plane it is possible to detect if any two

intersect in O(logn) time using n processors in the CREW PRAM model.

So far in this paper we have restricted ourselves to applications involving line segments. In the

next section we show how to apply the cascaiding divide-and-conquer technique to other geometric

problems, as well.

6 Cascading with Labeling Functions

In this section we show how to solve several different geometric problems by combining the merging

procedure of Section 2 with divide-and-conquer strategies based on merging lists with labels defined

on their elements. For most of these problems our divide-and-conquer approach gives an efficient

alternative to the known sequential algorithms (which use the plane-sweeping paradigm), as well

as giving rise to efficient parallel algorithms. We begin with the 3-dimensional maxima problem.

6.1 The S-Dimenslonal Maxima Problem

Let V = {pi,p2>- •• iPn} be a set of points in ^. For simplicity, we assume that no two input points

have the same x (resp., y, z) coordinate. We denote the x, y, and z coordinates of a point p by x(p),
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y(p), and zip), respectively. We say that a point p, 1-dominates another point pj if i(p,) > x{pj), 2-

dominates pj if i(p,) > x{pj) and j/(p,) > y{pj), and 3-dominates p^ if i(pi).> x(pj), y{pi) > y{pj),

and z{pi) > z(Pj)- A point pi G V^ is said to be a maximum if it is not 3-doirunated by any other

point in V. The 3-dimensional maxima problem, then, is to compute the set, M , of maxima in

V. We show how to solve the 3-dimensional maxima problem efficiently in parallel in the following

algorithm. The labels we use are motivated by the optimal sequential plane-sweeping algorithm of

Kung, Luccio, and Preparata [18].

Without loss of generality, we assume the input points are pven sorted by increasing y-

coordinates, i.e., y{pi) < y(p.+i), since if they are not given in this order we can sort them in

O(logn) time using n processors [11]. Let T be a complete binary tree with leaf nodes vi, r2, . .. ,Vn

(from left to right). In each leaf node r, we store the set B{vi) = {—oo, pi), where -oo is a

special symbol such that i(-oo) < x(pj) and y(-oo) < y{pj) for all points pj in V. Initializ-

ing T in this way can clearly be done in O(logn) time using n processors. We then perform a

generalized cascading- merge from the leaves of T as in Theorem 2.5, basing comparisons on in-

creasing i-coordinates of the points (not their y-coordinates). Using the notation of the previous

section, we let U{v) denote the sorted array of the points stored in the descendants of v € T

sorted by increasing i-coordinates. For each point pi in U{v) we store two labels: zod{p,,v) and

ztd{pi,v), where zod{p,,v) is the largest z-coordinate of the points in U{v) which 1-dominate p,,

and ztd{pt,v) is the largest z-coordinate of the points in U{v) which 2-dominate p,. Initially, zod

and ztd labels are only defined for the leaf nodes of T. That is, zod{p,, v,) = ztd{pi, t;,) = -oo and

zod(-oo,r,) = ztd{-oc,v,) = r(p,) for all leaf nodes r, in T (where U{vi) = (-(x>,p,)). In order to

be more explicit in how we refer to various ranks, we let pred(p,, v) denote the predecessor of p, in

U{v) (which would be -oo if the ar-coordinates of the input points are all larger than i(p,)). (See

Figure ??.) As we are performing the cascading-merge, we update the labels zod and ztd based on

the equations in the following lemma:

Lemma 6.22: Let p, be an element of U{v) and let u = lchild{v) and w = rchild{v). Then we

have the following:

(9) zod{p,,v) =

(10) ztd{p^,v) =

max{2od(p,, «), zod(pred(p,, tu),u))} if p, G f/(u)

max{zod(pred(p,, «), u), zod{pi,w)} if p, e U{w)

ma.x{ztd{pi,u), zod{pTed{p,,w),w)] ifp,Gi7(u)

ztd(p,,w) if p, G U{w)
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Proof: Consider Equation 9. If p, G U{u), then it is clear that every point which 1-dominates

Pi's predecessor in U{w) also 1-dominates p,, since p,'s predecessor in U{w) is the point with

largest ar-coordinate less than x(pi) (or — oo if every point in U{w) has larger i-coordinate than

Pi). Thus zod{pi,v) is the maximum of zod{pi,u) and zod{pTed{pi,w),w) in this case. The case

when Pi e U{w) is similar. Next, consider Equation 10. We know that every point in U{w) has

y-coordinate greater than every point in U{u), by our construction of T. Therefore, if pi € U{u),

then every point in U{w) which 1-dominates p,'s predecessor in U{w) must 2-dominate p,. Thus,

ztd{pi,v) is the maximum of ztd{p,,u) and 2ocf(pred(p,, io),u;). On the other hand, if p,- G U{w)

then no point in U{u) can 2-dominate p,; thus, ztd{pi,v) = ztd{pi,w).

We use these equations during the cascading merge to maintain the labels for each point. By

Lemma 6.22 it should be clear that at the stage when v becomes full (and we have U{u), U{w),

and U{v) = U{u) U U{w) available), we can determine the labels for all the points in U{v) in

0(1) additional time using |f/(t;)| processors. Thus, the running time of the cascading-merge

algorithm, even with these additional label computations, is still O(logn) using n processors. After

we complete the merge, and have computed U{root{T)), along with all the labels for the points

in U(root{T)), note that a point p, 6 U(root{T)) is a maximum if and only if ztd{pi,root{T)) <

z{pi) (there is no point which 2-doniinates p, and has z-coordinate greater than z{pi)). Thus,

after completing the cascading merge we can construct the set of maxima by compressing all the

maximum points into one contiguous list using a simple parallel prefix computation. We summarize

in the following theorem:

Theorem 6.23: Given a set V of n points in Jf^ we can construct the set M of maxima points in

V in O(logn) time using n processors in the CREW PRAM model, and this is optimal.

Proof: We have established the correctness and complexity bounds for parallel 3-dimensional

maxima finding in the discussion above. Kung, Luccio, and Preparata [18] have shown that this

problem has an n(nlogn) sequential lower bound (in the comparison model). Thus, we can do no

better than O(logn) time using n processors.

It is worth noting that we can use roughly the same method as that above as the basis step of

a recursive procedure for solving the general A;-dimensional majcima problem. The resulting time

and space complexities are given in the following theorem. We state the theorem for k > 3 (since

the 2-dimensional maxima problem can easily be solved in O(logn) time and 0{n) space by sorting

followed by a parallel prefix computation).

Theorem 6.24: For k > 3 the k-dimensional maxima problem can be solved in O((logn)*~^) time
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and 0{n) space using n processors on a CREW PRAM.

Proof: The method is a straightforward parallelization of the algorithm by Kung, Luccio, and

Preparata [18], using a procedure very similar to that described above as the basis for the recursion.

We leave the details to the reader.

Next, we address the two-set dominance counting problem. We also show how the multiple

range-counting problem and the rectilinear segment intersection counting problem can be reduced

to two-set dominance problems efficiently in parallel.

6.2 The Two-Set Dominance Counting Problem

In the two-set dominance counting problem we are given a set A = {91,925• i9m} and a set

B = {pi,P2, • • • iPi) of points in the plane, and wish to know for each point p, in B the number of

points in A which are 2-dominated by p,. For simplicity, we assume that the points have distinct x

(resp. y) coordinates. In the algorithm which follows we show how to solve this problem efficiently

in parallel.

Let Y = {pi,P2»--- )P/+m} be the union of A and B with the points listed by increasing y-

coordinate, i/(p,) < y(Pt+i). Clearly, we can construct Y in O(logn) time using n processors [11],

where n = I + va. Our method for solving the two-set dominance counting problem is similar

to the method used in the previous subsection. As before, we let T be a complete binary tree

with leaf nodes V\,V2,...,Vn ordered from left to right, and in each leaf node t;, we store the

set U{vi) = (— oo,p,), (-00 is a special symbol such that i( — 00) < x(p,) and y(— 00) < t/{p,)

for all points pi in Y). We then perform a generalized cascading-merge from the leaves of T

as in Theorem 2.5, baling comparisons on increasing z-coordinates of the points (not their y-

coordinates). We let U{v) denote the sorted array of the points stored in the descendants of

V G T sorted by increasing i-coordinate. For each point p, in U{v) we store two labels: nod(p,, t;)

and ntd{pi,v) The label nod{pi,v) is the number of points in U{v) which are in A and are 1-

dominated by p,, and the label n<d(p,, v) is the number of points in U{v) which are in A and are

2-dominated by pi. Initially, the nod and ntd labels are only defined for the leaf nodes of T. That

is, nod{pi,Vi) = nod{-oo,Vi) = ntd{p„v,) = ntd{-oo,Vi) = 0. For each p, £ Y we define the

function X^(pj) as follows: X^(p,) = 1 if p, £ A, and X^(p,) = otherwise. (We also use pred(p,, r)

to denote the predecessor of p in U{v)). As we are performing the cascading-merge, we update the

labels nod and ntd based on the equations in the following lemma (see Figure ??):

In the previous two subsections the set of objects consisted of points, but in the visibility

problem we are dealing with line segments. The method is slightly different in this case. Let T
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be a complete binary tree with leaf nodes ui,V2,...,u„ ordered from left to right. We associate

the segment 5, with the leaf Vi and at r,- store the set U{vi) = (-oo,pi,p2), where pi and pj are

the two endpoints of 5^, with a:(pi) < x{pi), and -00 is defined such that i(— 00) < x(p) and

j/(— 00) < y(p) for all points p. We then perform a generalized cascading-merge from the leaves

of T as in Theorem 2.5, basing comparisons on increasing i-coordinates of the points. For each

internal node v we let U{v) denote an array of the points stored in the descendants of t> 6 T sorted

by increasing x-coordinates. For each point pi in U{v) we store a label vis{pi,v), which stores the

segment whose endpoints are in U{v) which is visible in the interval (x(p,),i(succ(p,, u))), where

succ(p,, v) denotes the successor of p, in U{v) (based on x-coordinates). Initially, the vis labels are

initially only defined for the leaf nodes of T. That is, if U(v) = (-oo,pi,p2), where 5, = pipj, then
|

t;:s( — 00) = +00, vis{p\) = s,, and vis{p2) = +00. We use pred(p,,r) to denote the predecessor

of Pi in U{v). As we are performing the cascading-merge, we update the vis labels based on the

equation in the following lemma (see Figure ??): |

Lemma 6.25: Let p, be an element ofU{v) and let u = lchild{v) and w = rchild{v). Then we

have the following (if two segments 5, and s^ are comparable by the "above" relation, then we let

min{5,, 5j} denote the lower of the two):

J
min{vis{p„u), vis{pied{p„w),w)} i{p,eU{u)

vis{p„v) = <

y min{tJt5(pred(p,, u), u), vis{p,,w)) i{pi£U{w)

Proof: K we restrict our attention to the segments with an endpoint in U{u), then for any point

Pi € U{u) the segment visible (from —00) on the interval (x(pi),i(succ(p,,r))) is the minimum of the

segment visible on the interval (i(p,),x(succ(p,, u))) and the segment which is visible on the inter-

val (x(pred(p,-, li;)), x(succ(pred(p,, w),w))). This is because the interval (x(p,), x{succ{pi, v))) is ex-

actly the intersection of the interval (x(p,), x(5ucc(p,, u))) and the interval (i(pred(p,, w)), x(succ(pred(pi,

and there is no segment in U{v) with an endpoint interior to the interval (i(pi),i(aucc(p,, r))).

Thus, vis{pt,v) is equal to the minimum of vis{pi,u) and t;ts(pred(pi,u;),u)). The case when

Pi £ U{v) is similar.

By Lemma 6.25 it should be clear that after merging the lists U{lchild{v)) and U{rchild{v))

we can determine the labels for all the points in U{v) in 0(1) additional time using \U{v)\ pro-

cessors. Thus, the running time of this generalized cascading- merge algorithm is still 0{\ogn)

using n processors. After we complete the merge, and have computed U(root{T)), along with all

the vis labels for the points in U{root{T)), then we can compress out duplicate entries in the list
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{vis{pi,root{T)),vis{p2,root{T)), . . . ,vis(p2n,root{T))) using a parallel prefix computation to con-

struct a compact representation of the visible portion of the plane. We summarize in the following

theorem:

Theorem 6.26: Given a set S of n non-intersecting segments in the plane, we can find the lower

envelope of S in O(logn) time using n processors in the CREW PRAM model, and this is optimal.

Proof: The correctness and complexity bounds follow from the discussion above. Since we require

that the points in the description of the lower envelope be given by increasing i-coordinates, we

can reduce sorting to this problem, thus can do no better than O(logn) time using n processors.

7 Conclusion

In this paper we gave several general techniques for solving various geometric problems efficiently in

parallel. In particular, we gave optimal algorithms for doing fractional cascading and a generalized

version of the merge sorting problem. Our method for doing fractional cascading ran in O(logTi)

time using fn/logn] processors, and if implemented as a sequential algorithm results in an sequen-

tial Jilternative to the method of Chazelle and Guibas [10] for fractional cascading. We also showed

how to apply the generalized merging procedure and fractional cascading to efficiently solve several

problems by "cascading" the divide-and-conquer paradigm. For three of the problems, trapezoidzd

decomposition, planar point location, and segment intersection detection, the method involved

merging in the line segment partial order, and required considerable care to avoid situations in

which the algorithm would halt because it attempted to compare two incomparable segments. All

three of these algorithms ran in O(logn) time using n processors in the CREW PRAM model,

which is optimal for all but the point location problem. In addition, since our algorithm for doing

planar point location results in a query time of O(logn), our result immediately implies a O(log^ n)

time, n processor solution to the problem of constructing the Voronoi diagram of n planar points,

using the algorithm of Aggarwal et al. [1].

We also applied the cascading divide-and-conquer technique to problems which can be solved by

merging with labeling functions. We used this approach to optimally solve the 3-dimensional max-

ima problem, the 2-set dominance counting problem, the rectilinear segment intersection counting

problem, and the visibility from a point problem. All of our algorithms for these problems ran

in O(logn) time using n processors in the CREW PRAM model, which is optimal for aU of the

problems. Incidentally, the same technique as employed by Cole in [11] to implement his merging

procedure in the EREW PRAM model (no simultaneous reads) can be applied to the algorithms
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for generalized merging, fractional cascading, 3-dimensional maxima, 2-set dominance counting,

rectilinear segment intersection counting, and visibility from a point, resulting in EREW PRAM

algorithms with the same asymptotic bounds as the ones presented in this paper. Apparently, one

cannot apply his techniques to our algorithms for the other problems, however, since the algorithms

for those problems explicitly use concurrent reads.
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/(v, d) for

d < depth{v)

inLiy)-l{y,depth{v))

mi(r)

ml(

also in l{y , depth{y))

(c)

in l{y , depth{v))

and not in Coverix)

Figure 5: The plane-sweep tree equations. (a) l{v,d) = l{x,d) U /(y,<f), (b)

X(v) = /(v,0) U liv,depth{v) - 1), (c) L(v) = L(i) U (X(y) - (L(y) - /(y,depi/i(v))),

(d) Cover(i) = Liv) - l{y,depth{v)).

U[z) = (-00,-00,-00,-00,-00,-00,-00,-00)

U-(u;) = (1,1,1,1,1,2,7,7)

w

C;(u)= (1,3,3,3,5,7,8)

C/(v) = (1,3,4,6,7,8)

8

/"

Figure 6: Segment identity changing during the cascading merge. We illustrate

the way segment names change identity to that of their predecessor as we are perform-

ing the cascading merge. In this case we are constructing the X(u)'s. We denote the

predecessor of each segment by a dotted arrow.
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pred(pj, w)

o pred(p,-,u) ^

Pi

Figure 7: The combinmg step for 3-dimensionaI maxima. Points to the right

of the dotted line l-dominate p,- (reap, pj), and points enclosed in the dashed lines

2-dominate p,- (py).

Pi
-V

? pred (pj,u))

» pred(p,-,u)
-P P;

Figure 8: The combining step for dominance coxmting. Points to the left of the
dotted Une are l-dominated by p, (resp. pj), and points enclosed in dashed Unes are
2-doniinated by p, (pj).
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Need to construct

Uiv) = (4.12.13.50.103)

4 50

Figure 1: An example of the generalized merge problem-

(a)

V
O-

w
-*o

(c) (d)

Figure 2: Converting G into a bounded degree graph G. A node v in G (a)

corresponds into a node v adjacent to its gateway v', which is connected to the fan-in

tree and the fan-out tree for v (b). An edge c in G (c) is converted into a node in G
which corresponds to a leaf node of two trees (d).
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Errata.

Figures cited within the text were inadvertantly omitted. Please see the fol-

lowing list of page and figure numbers for the correct references.

(1) Page 4 should read: (Sec figure 1).

(2) Page 9 should read: (See figure 2).

(3) Page 10 should read: (Sec figure 3).

(4) Page 16 should read: (See figure 3).

(5) Page 17 should read: (Sec figure 4).

(6) Page 21 should read: (See figure 5).

(7) Page 24 should read: (See figure 6).

(8) Page 29 should read; (See figure 7).

(9) Page 31 should read: (Sec figure 8).

(10) Page 32 should read: (See figure 9).
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Before merge: U{u) and U{w)
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